rustc_middle/ty/print/
pretty.rs

1use std::cell::Cell;
2use std::fmt::{self, Write as _};
3use std::iter;
4use std::ops::{Deref, DerefMut};
5
6use rustc_abi::{ExternAbi, Size};
7use rustc_apfloat::Float;
8use rustc_apfloat::ieee::{Double, Half, Quad, Single};
9use rustc_data_structures::fx::{FxIndexMap, IndexEntry};
10use rustc_data_structures::unord::UnordMap;
11use rustc_hir as hir;
12use rustc_hir::LangItem;
13use rustc_hir::def::{self, CtorKind, DefKind, Namespace};
14use rustc_hir::def_id::{CRATE_DEF_ID, DefIdMap, DefIdSet, LOCAL_CRATE, ModDefId};
15use rustc_hir::definitions::{DefKey, DefPathDataName};
16use rustc_macros::{Lift, extension};
17use rustc_session::Limit;
18use rustc_session::cstore::{ExternCrate, ExternCrateSource};
19use rustc_span::{FileNameDisplayPreference, Ident, Symbol, kw, sym};
20use rustc_type_ir::{Upcast as _, elaborate};
21use smallvec::SmallVec;
22
23// `pretty` is a separate module only for organization.
24use super::*;
25use crate::mir::interpret::{AllocRange, GlobalAlloc, Pointer, Provenance, Scalar};
26use crate::query::{IntoQueryParam, Providers};
27use crate::ty::{
28    ConstInt, Expr, GenericArgKind, ParamConst, ScalarInt, Term, TermKind, TraitPredicate,
29    TypeFoldable, TypeSuperFoldable, TypeSuperVisitable, TypeVisitable, TypeVisitableExt,
30};
31
32macro_rules! p {
33    (@$lit:literal) => {
34        write!(scoped_cx!(), $lit)?
35    };
36    (@write($($data:expr),+)) => {
37        write!(scoped_cx!(), $($data),+)?
38    };
39    (@print($x:expr)) => {
40        $x.print(scoped_cx!())?
41    };
42    (@$method:ident($($arg:expr),*)) => {
43        scoped_cx!().$method($($arg),*)?
44    };
45    ($($elem:tt $(($($args:tt)*))?),+) => {{
46        $(p!(@ $elem $(($($args)*))?);)+
47    }};
48}
49macro_rules! define_scoped_cx {
50    ($cx:ident) => {
51        macro_rules! scoped_cx {
52            () => {
53                $cx
54            };
55        }
56    };
57}
58
59thread_local! {
60    static FORCE_IMPL_FILENAME_LINE: Cell<bool> = const { Cell::new(false) };
61    static SHOULD_PREFIX_WITH_CRATE: Cell<bool> = const { Cell::new(false) };
62    static NO_TRIMMED_PATH: Cell<bool> = const { Cell::new(false) };
63    static FORCE_TRIMMED_PATH: Cell<bool> = const { Cell::new(false) };
64    static REDUCED_QUERIES: Cell<bool> = const { Cell::new(false) };
65    static NO_VISIBLE_PATH: Cell<bool> = const { Cell::new(false) };
66    static NO_VISIBLE_PATH_IF_DOC_HIDDEN: Cell<bool> = const { Cell::new(false) };
67    static RTN_MODE: Cell<RtnMode> = const { Cell::new(RtnMode::ForDiagnostic) };
68}
69
70/// Rendering style for RTN types.
71#[derive(Copy, Clone, PartialEq, Eq, Debug)]
72pub enum RtnMode {
73    /// Print the RTN type as an impl trait with its path, i.e.e `impl Sized { T::method(..) }`.
74    ForDiagnostic,
75    /// Print the RTN type as an impl trait, i.e. `impl Sized`.
76    ForSignature,
77    /// Print the RTN type as a value path, i.e. `T::method(..): ...`.
78    ForSuggestion,
79}
80
81macro_rules! define_helper {
82    ($($(#[$a:meta])* fn $name:ident($helper:ident, $tl:ident);)+) => {
83        $(
84            #[must_use]
85            pub struct $helper(bool);
86
87            impl $helper {
88                pub fn new() -> $helper {
89                    $helper($tl.with(|c| c.replace(true)))
90                }
91            }
92
93            $(#[$a])*
94            pub macro $name($e:expr) {
95                {
96                    let _guard = $helper::new();
97                    $e
98                }
99            }
100
101            impl Drop for $helper {
102                fn drop(&mut self) {
103                    $tl.with(|c| c.set(self.0))
104                }
105            }
106
107            pub fn $name() -> bool {
108                $tl.with(|c| c.get())
109            }
110        )+
111    }
112}
113
114define_helper!(
115    /// Avoids running select queries during any prints that occur
116    /// during the closure. This may alter the appearance of some
117    /// types (e.g. forcing verbose printing for opaque types).
118    /// This method is used during some queries (e.g. `explicit_item_bounds`
119    /// for opaque types), to ensure that any debug printing that
120    /// occurs during the query computation does not end up recursively
121    /// calling the same query.
122    fn with_reduced_queries(ReducedQueriesGuard, REDUCED_QUERIES);
123    /// Force us to name impls with just the filename/line number. We
124    /// normally try to use types. But at some points, notably while printing
125    /// cycle errors, this can result in extra or suboptimal error output,
126    /// so this variable disables that check.
127    fn with_forced_impl_filename_line(ForcedImplGuard, FORCE_IMPL_FILENAME_LINE);
128    /// Adds the `crate::` prefix to paths where appropriate.
129    fn with_crate_prefix(CratePrefixGuard, SHOULD_PREFIX_WITH_CRATE);
130    /// Prevent path trimming if it is turned on. Path trimming affects `Display` impl
131    /// of various rustc types, for example `std::vec::Vec` would be trimmed to `Vec`,
132    /// if no other `Vec` is found.
133    fn with_no_trimmed_paths(NoTrimmedGuard, NO_TRIMMED_PATH);
134    fn with_forced_trimmed_paths(ForceTrimmedGuard, FORCE_TRIMMED_PATH);
135    /// Prevent selection of visible paths. `Display` impl of DefId will prefer
136    /// visible (public) reexports of types as paths.
137    fn with_no_visible_paths(NoVisibleGuard, NO_VISIBLE_PATH);
138    /// Prevent selection of visible paths if the paths are through a doc hidden path.
139    fn with_no_visible_paths_if_doc_hidden(NoVisibleIfDocHiddenGuard, NO_VISIBLE_PATH_IF_DOC_HIDDEN);
140);
141
142#[must_use]
143pub struct RtnModeHelper(RtnMode);
144
145impl RtnModeHelper {
146    pub fn with(mode: RtnMode) -> RtnModeHelper {
147        RtnModeHelper(RTN_MODE.with(|c| c.replace(mode)))
148    }
149}
150
151impl Drop for RtnModeHelper {
152    fn drop(&mut self) {
153        RTN_MODE.with(|c| c.set(self.0))
154    }
155}
156
157/// Print types for the purposes of a suggestion.
158///
159/// Specifically, this will render RPITITs as `T::method(..)` which is suitable for
160/// things like where-clauses.
161pub macro with_types_for_suggestion($e:expr) {{
162    let _guard = $crate::ty::print::pretty::RtnModeHelper::with(RtnMode::ForSuggestion);
163    $e
164}}
165
166/// Print types for the purposes of a signature suggestion.
167///
168/// Specifically, this will render RPITITs as `impl Trait` rather than `T::method(..)`.
169pub macro with_types_for_signature($e:expr) {{
170    let _guard = $crate::ty::print::pretty::RtnModeHelper::with(RtnMode::ForSignature);
171    $e
172}}
173
174/// Avoids running any queries during prints.
175pub macro with_no_queries($e:expr) {{
176    $crate::ty::print::with_reduced_queries!($crate::ty::print::with_forced_impl_filename_line!(
177        $crate::ty::print::with_no_trimmed_paths!($crate::ty::print::with_no_visible_paths!(
178            $crate::ty::print::with_forced_impl_filename_line!($e)
179        ))
180    ))
181}}
182
183#[derive(Copy, Clone, Debug, PartialEq, Eq)]
184pub enum WrapBinderMode {
185    ForAll,
186    Unsafe,
187}
188impl WrapBinderMode {
189    pub fn start_str(self) -> &'static str {
190        match self {
191            WrapBinderMode::ForAll => "for<",
192            WrapBinderMode::Unsafe => "unsafe<",
193        }
194    }
195}
196
197/// The "region highlights" are used to control region printing during
198/// specific error messages. When a "region highlight" is enabled, it
199/// gives an alternate way to print specific regions. For now, we
200/// always print those regions using a number, so something like "`'0`".
201///
202/// Regions not selected by the region highlight mode are presently
203/// unaffected.
204#[derive(Copy, Clone, Default)]
205pub struct RegionHighlightMode<'tcx> {
206    /// If enabled, when we see the selected region, use "`'N`"
207    /// instead of the ordinary behavior.
208    highlight_regions: [Option<(ty::Region<'tcx>, usize)>; 3],
209
210    /// If enabled, when printing a "free region" that originated from
211    /// the given `ty::BoundRegionKind`, print it as "`'1`". Free regions that would ordinarily
212    /// have names print as normal.
213    ///
214    /// This is used when you have a signature like `fn foo(x: &u32,
215    /// y: &'a u32)` and we want to give a name to the region of the
216    /// reference `x`.
217    highlight_bound_region: Option<(ty::BoundRegionKind, usize)>,
218}
219
220impl<'tcx> RegionHighlightMode<'tcx> {
221    /// If `region` and `number` are both `Some`, invokes
222    /// `highlighting_region`.
223    pub fn maybe_highlighting_region(
224        &mut self,
225        region: Option<ty::Region<'tcx>>,
226        number: Option<usize>,
227    ) {
228        if let Some(k) = region {
229            if let Some(n) = number {
230                self.highlighting_region(k, n);
231            }
232        }
233    }
234
235    /// Highlights the region inference variable `vid` as `'N`.
236    pub fn highlighting_region(&mut self, region: ty::Region<'tcx>, number: usize) {
237        let num_slots = self.highlight_regions.len();
238        let first_avail_slot =
239            self.highlight_regions.iter_mut().find(|s| s.is_none()).unwrap_or_else(|| {
240                bug!("can only highlight {} placeholders at a time", num_slots,)
241            });
242        *first_avail_slot = Some((region, number));
243    }
244
245    /// Convenience wrapper for `highlighting_region`.
246    pub fn highlighting_region_vid(
247        &mut self,
248        tcx: TyCtxt<'tcx>,
249        vid: ty::RegionVid,
250        number: usize,
251    ) {
252        self.highlighting_region(ty::Region::new_var(tcx, vid), number)
253    }
254
255    /// Returns `Some(n)` with the number to use for the given region, if any.
256    fn region_highlighted(&self, region: ty::Region<'tcx>) -> Option<usize> {
257        self.highlight_regions.iter().find_map(|h| match h {
258            Some((r, n)) if *r == region => Some(*n),
259            _ => None,
260        })
261    }
262
263    /// Highlight the given bound region.
264    /// We can only highlight one bound region at a time. See
265    /// the field `highlight_bound_region` for more detailed notes.
266    pub fn highlighting_bound_region(&mut self, br: ty::BoundRegionKind, number: usize) {
267        assert!(self.highlight_bound_region.is_none());
268        self.highlight_bound_region = Some((br, number));
269    }
270}
271
272/// Trait for printers that pretty-print using `fmt::Write` to the printer.
273pub trait PrettyPrinter<'tcx>: Printer<'tcx> + fmt::Write {
274    /// Like `print_def_path` but for value paths.
275    fn print_value_path(
276        &mut self,
277        def_id: DefId,
278        args: &'tcx [GenericArg<'tcx>],
279    ) -> Result<(), PrintError> {
280        self.print_def_path(def_id, args)
281    }
282
283    fn print_in_binder<T>(&mut self, value: &ty::Binder<'tcx, T>) -> Result<(), PrintError>
284    where
285        T: Print<'tcx, Self> + TypeFoldable<TyCtxt<'tcx>>,
286    {
287        value.as_ref().skip_binder().print(self)
288    }
289
290    fn wrap_binder<T, F: FnOnce(&T, &mut Self) -> Result<(), fmt::Error>>(
291        &mut self,
292        value: &ty::Binder<'tcx, T>,
293        _mode: WrapBinderMode,
294        f: F,
295    ) -> Result<(), PrintError>
296    where
297        T: TypeFoldable<TyCtxt<'tcx>>,
298    {
299        f(value.as_ref().skip_binder(), self)
300    }
301
302    /// Prints comma-separated elements.
303    fn comma_sep<T>(&mut self, mut elems: impl Iterator<Item = T>) -> Result<(), PrintError>
304    where
305        T: Print<'tcx, Self>,
306    {
307        if let Some(first) = elems.next() {
308            first.print(self)?;
309            for elem in elems {
310                self.write_str(", ")?;
311                elem.print(self)?;
312            }
313        }
314        Ok(())
315    }
316
317    /// Prints `{f: t}` or `{f as t}` depending on the `cast` argument
318    fn typed_value(
319        &mut self,
320        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
321        t: impl FnOnce(&mut Self) -> Result<(), PrintError>,
322        conversion: &str,
323    ) -> Result<(), PrintError> {
324        self.write_str("{")?;
325        f(self)?;
326        self.write_str(conversion)?;
327        t(self)?;
328        self.write_str("}")?;
329        Ok(())
330    }
331
332    /// Prints `(...)` around what `f` prints.
333    fn parenthesized(
334        &mut self,
335        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
336    ) -> Result<(), PrintError> {
337        self.write_str("(")?;
338        f(self)?;
339        self.write_str(")")?;
340        Ok(())
341    }
342
343    /// Prints `(...)` around what `f` prints if `parenthesized` is true, otherwise just prints `f`.
344    fn maybe_parenthesized(
345        &mut self,
346        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
347        parenthesized: bool,
348    ) -> Result<(), PrintError> {
349        if parenthesized {
350            self.parenthesized(f)?;
351        } else {
352            f(self)?;
353        }
354        Ok(())
355    }
356
357    /// Prints `<...>` around what `f` prints.
358    fn generic_delimiters(
359        &mut self,
360        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
361    ) -> Result<(), PrintError>;
362
363    /// Returns `true` if the region should be printed in
364    /// optional positions, e.g., `&'a T` or `dyn Tr + 'b`.
365    /// This is typically the case for all non-`'_` regions.
366    fn should_print_region(&self, region: ty::Region<'tcx>) -> bool;
367
368    fn reset_type_limit(&mut self) {}
369
370    // Defaults (should not be overridden):
371
372    /// If possible, this returns a global path resolving to `def_id` that is visible
373    /// from at least one local module, and returns `true`. If the crate defining `def_id` is
374    /// declared with an `extern crate`, the path is guaranteed to use the `extern crate`.
375    fn try_print_visible_def_path(&mut self, def_id: DefId) -> Result<bool, PrintError> {
376        if with_no_visible_paths() {
377            return Ok(false);
378        }
379
380        let mut callers = Vec::new();
381        self.try_print_visible_def_path_recur(def_id, &mut callers)
382    }
383
384    // Given a `DefId`, produce a short name. For types and traits, it prints *only* its name,
385    // For associated items on traits it prints out the trait's name and the associated item's name.
386    // For enum variants, if they have an unique name, then we only print the name, otherwise we
387    // print the enum name and the variant name. Otherwise, we do not print anything and let the
388    // caller use the `print_def_path` fallback.
389    fn force_print_trimmed_def_path(&mut self, def_id: DefId) -> Result<bool, PrintError> {
390        let key = self.tcx().def_key(def_id);
391        let visible_parent_map = self.tcx().visible_parent_map(());
392        let kind = self.tcx().def_kind(def_id);
393
394        let get_local_name = |this: &Self, name, def_id, key: DefKey| {
395            if let Some(visible_parent) = visible_parent_map.get(&def_id)
396                && let actual_parent = this.tcx().opt_parent(def_id)
397                && let DefPathData::TypeNs(_) = key.disambiguated_data.data
398                && Some(*visible_parent) != actual_parent
399            {
400                this.tcx()
401                    // FIXME(typed_def_id): Further propagate ModDefId
402                    .module_children(ModDefId::new_unchecked(*visible_parent))
403                    .iter()
404                    .filter(|child| child.res.opt_def_id() == Some(def_id))
405                    .find(|child| child.vis.is_public() && child.ident.name != kw::Underscore)
406                    .map(|child| child.ident.name)
407                    .unwrap_or(name)
408            } else {
409                name
410            }
411        };
412        if let DefKind::Variant = kind
413            && let Some(symbol) = self.tcx().trimmed_def_paths(()).get(&def_id)
414        {
415            // If `Assoc` is unique, we don't want to talk about `Trait::Assoc`.
416            self.write_str(get_local_name(self, *symbol, def_id, key).as_str())?;
417            return Ok(true);
418        }
419        if let Some(symbol) = key.get_opt_name() {
420            if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = kind
421                && let Some(parent) = self.tcx().opt_parent(def_id)
422                && let parent_key = self.tcx().def_key(parent)
423                && let Some(symbol) = parent_key.get_opt_name()
424            {
425                // Trait
426                self.write_str(get_local_name(self, symbol, parent, parent_key).as_str())?;
427                self.write_str("::")?;
428            } else if let DefKind::Variant = kind
429                && let Some(parent) = self.tcx().opt_parent(def_id)
430                && let parent_key = self.tcx().def_key(parent)
431                && let Some(symbol) = parent_key.get_opt_name()
432            {
433                // Enum
434
435                // For associated items and variants, we want the "full" path, namely, include
436                // the parent type in the path. For example, `Iterator::Item`.
437                self.write_str(get_local_name(self, symbol, parent, parent_key).as_str())?;
438                self.write_str("::")?;
439            } else if let DefKind::Struct
440            | DefKind::Union
441            | DefKind::Enum
442            | DefKind::Trait
443            | DefKind::TyAlias
444            | DefKind::Fn
445            | DefKind::Const
446            | DefKind::Static { .. } = kind
447            {
448            } else {
449                // If not covered above, like for example items out of `impl` blocks, fallback.
450                return Ok(false);
451            }
452            self.write_str(get_local_name(self, symbol, def_id, key).as_str())?;
453            return Ok(true);
454        }
455        Ok(false)
456    }
457
458    /// Try to see if this path can be trimmed to a unique symbol name.
459    fn try_print_trimmed_def_path(&mut self, def_id: DefId) -> Result<bool, PrintError> {
460        if with_forced_trimmed_paths() && self.force_print_trimmed_def_path(def_id)? {
461            return Ok(true);
462        }
463        if self.tcx().sess.opts.unstable_opts.trim_diagnostic_paths
464            && self.tcx().sess.opts.trimmed_def_paths
465            && !with_no_trimmed_paths()
466            && !with_crate_prefix()
467            && let Some(symbol) = self.tcx().trimmed_def_paths(()).get(&def_id)
468        {
469            write!(self, "{}", Ident::with_dummy_span(*symbol))?;
470            Ok(true)
471        } else {
472            Ok(false)
473        }
474    }
475
476    /// Does the work of `try_print_visible_def_path`, building the
477    /// full definition path recursively before attempting to
478    /// post-process it into the valid and visible version that
479    /// accounts for re-exports.
480    ///
481    /// This method should only be called by itself or
482    /// `try_print_visible_def_path`.
483    ///
484    /// `callers` is a chain of visible_parent's leading to `def_id`,
485    /// to support cycle detection during recursion.
486    ///
487    /// This method returns false if we can't print the visible path, so
488    /// `print_def_path` can fall back on the item's real definition path.
489    fn try_print_visible_def_path_recur(
490        &mut self,
491        def_id: DefId,
492        callers: &mut Vec<DefId>,
493    ) -> Result<bool, PrintError> {
494        debug!("try_print_visible_def_path: def_id={:?}", def_id);
495
496        // If `def_id` is a direct or injected extern crate, return the
497        // path to the crate followed by the path to the item within the crate.
498        if let Some(cnum) = def_id.as_crate_root() {
499            if cnum == LOCAL_CRATE {
500                self.path_crate(cnum)?;
501                return Ok(true);
502            }
503
504            // In local mode, when we encounter a crate other than
505            // LOCAL_CRATE, execution proceeds in one of two ways:
506            //
507            // 1. For a direct dependency, where user added an
508            //    `extern crate` manually, we put the `extern
509            //    crate` as the parent. So you wind up with
510            //    something relative to the current crate.
511            // 2. For an extern inferred from a path or an indirect crate,
512            //    where there is no explicit `extern crate`, we just prepend
513            //    the crate name.
514            match self.tcx().extern_crate(cnum) {
515                Some(&ExternCrate { src, dependency_of, span, .. }) => match (src, dependency_of) {
516                    (ExternCrateSource::Extern(def_id), LOCAL_CRATE) => {
517                        // NOTE(eddyb) the only reason `span` might be dummy,
518                        // that we're aware of, is that it's the `std`/`core`
519                        // `extern crate` injected by default.
520                        // FIXME(eddyb) find something better to key this on,
521                        // or avoid ending up with `ExternCrateSource::Extern`,
522                        // for the injected `std`/`core`.
523                        if span.is_dummy() {
524                            self.path_crate(cnum)?;
525                            return Ok(true);
526                        }
527
528                        // Disable `try_print_trimmed_def_path` behavior within
529                        // the `print_def_path` call, to avoid infinite recursion
530                        // in cases where the `extern crate foo` has non-trivial
531                        // parents, e.g. it's nested in `impl foo::Trait for Bar`
532                        // (see also issues #55779 and #87932).
533                        with_no_visible_paths!(self.print_def_path(def_id, &[])?);
534
535                        return Ok(true);
536                    }
537                    (ExternCrateSource::Path, LOCAL_CRATE) => {
538                        self.path_crate(cnum)?;
539                        return Ok(true);
540                    }
541                    _ => {}
542                },
543                None => {
544                    self.path_crate(cnum)?;
545                    return Ok(true);
546                }
547            }
548        }
549
550        if def_id.is_local() {
551            return Ok(false);
552        }
553
554        let visible_parent_map = self.tcx().visible_parent_map(());
555
556        let mut cur_def_key = self.tcx().def_key(def_id);
557        debug!("try_print_visible_def_path: cur_def_key={:?}", cur_def_key);
558
559        // For a constructor, we want the name of its parent rather than <unnamed>.
560        if let DefPathData::Ctor = cur_def_key.disambiguated_data.data {
561            let parent = DefId {
562                krate: def_id.krate,
563                index: cur_def_key
564                    .parent
565                    .expect("`DefPathData::Ctor` / `VariantData` missing a parent"),
566            };
567
568            cur_def_key = self.tcx().def_key(parent);
569        }
570
571        let Some(visible_parent) = visible_parent_map.get(&def_id).cloned() else {
572            return Ok(false);
573        };
574
575        if self.tcx().is_doc_hidden(visible_parent) && with_no_visible_paths_if_doc_hidden() {
576            return Ok(false);
577        }
578
579        let actual_parent = self.tcx().opt_parent(def_id);
580        debug!(
581            "try_print_visible_def_path: visible_parent={:?} actual_parent={:?}",
582            visible_parent, actual_parent,
583        );
584
585        let mut data = cur_def_key.disambiguated_data.data;
586        debug!(
587            "try_print_visible_def_path: data={:?} visible_parent={:?} actual_parent={:?}",
588            data, visible_parent, actual_parent,
589        );
590
591        match data {
592            // In order to output a path that could actually be imported (valid and visible),
593            // we need to handle re-exports correctly.
594            //
595            // For example, take `std::os::unix::process::CommandExt`, this trait is actually
596            // defined at `std::sys::unix::ext::process::CommandExt` (at time of writing).
597            //
598            // `std::os::unix` reexports the contents of `std::sys::unix::ext`. `std::sys` is
599            // private so the "true" path to `CommandExt` isn't accessible.
600            //
601            // In this case, the `visible_parent_map` will look something like this:
602            //
603            // (child) -> (parent)
604            // `std::sys::unix::ext::process::CommandExt` -> `std::sys::unix::ext::process`
605            // `std::sys::unix::ext::process` -> `std::sys::unix::ext`
606            // `std::sys::unix::ext` -> `std::os`
607            //
608            // This is correct, as the visible parent of `std::sys::unix::ext` is in fact
609            // `std::os`.
610            //
611            // When printing the path to `CommandExt` and looking at the `cur_def_key` that
612            // corresponds to `std::sys::unix::ext`, we would normally print `ext` and then go
613            // to the parent - resulting in a mangled path like
614            // `std::os::ext::process::CommandExt`.
615            //
616            // Instead, we must detect that there was a re-export and instead print `unix`
617            // (which is the name `std::sys::unix::ext` was re-exported as in `std::os`). To
618            // do this, we compare the parent of `std::sys::unix::ext` (`std::sys::unix`) with
619            // the visible parent (`std::os`). If these do not match, then we iterate over
620            // the children of the visible parent (as was done when computing
621            // `visible_parent_map`), looking for the specific child we currently have and then
622            // have access to the re-exported name.
623            DefPathData::TypeNs(ref mut name) if Some(visible_parent) != actual_parent => {
624                // Item might be re-exported several times, but filter for the one
625                // that's public and whose identifier isn't `_`.
626                let reexport = self
627                    .tcx()
628                    // FIXME(typed_def_id): Further propagate ModDefId
629                    .module_children(ModDefId::new_unchecked(visible_parent))
630                    .iter()
631                    .filter(|child| child.res.opt_def_id() == Some(def_id))
632                    .find(|child| child.vis.is_public() && child.ident.name != kw::Underscore)
633                    .map(|child| child.ident.name);
634
635                if let Some(new_name) = reexport {
636                    *name = new_name;
637                } else {
638                    // There is no name that is public and isn't `_`, so bail.
639                    return Ok(false);
640                }
641            }
642            // Re-exported `extern crate` (#43189).
643            DefPathData::CrateRoot => {
644                data = DefPathData::TypeNs(self.tcx().crate_name(def_id.krate));
645            }
646            _ => {}
647        }
648        debug!("try_print_visible_def_path: data={:?}", data);
649
650        if callers.contains(&visible_parent) {
651            return Ok(false);
652        }
653        callers.push(visible_parent);
654        // HACK(eddyb) this bypasses `path_append`'s prefix printing to avoid
655        // knowing ahead of time whether the entire path will succeed or not.
656        // To support printers that do not implement `PrettyPrinter`, a `Vec` or
657        // linked list on the stack would need to be built, before any printing.
658        match self.try_print_visible_def_path_recur(visible_parent, callers)? {
659            false => return Ok(false),
660            true => {}
661        }
662        callers.pop();
663        self.path_append(|_| Ok(()), &DisambiguatedDefPathData { data, disambiguator: 0 })?;
664        Ok(true)
665    }
666
667    fn pretty_path_qualified(
668        &mut self,
669        self_ty: Ty<'tcx>,
670        trait_ref: Option<ty::TraitRef<'tcx>>,
671    ) -> Result<(), PrintError> {
672        if trait_ref.is_none() {
673            // Inherent impls. Try to print `Foo::bar` for an inherent
674            // impl on `Foo`, but fallback to `<Foo>::bar` if self-type is
675            // anything other than a simple path.
676            match self_ty.kind() {
677                ty::Adt(..)
678                | ty::Foreign(_)
679                | ty::Bool
680                | ty::Char
681                | ty::Str
682                | ty::Int(_)
683                | ty::Uint(_)
684                | ty::Float(_) => {
685                    return self_ty.print(self);
686                }
687
688                _ => {}
689            }
690        }
691
692        self.generic_delimiters(|cx| {
693            define_scoped_cx!(cx);
694
695            p!(print(self_ty));
696            if let Some(trait_ref) = trait_ref {
697                p!(" as ", print(trait_ref.print_only_trait_path()));
698            }
699            Ok(())
700        })
701    }
702
703    fn pretty_path_append_impl(
704        &mut self,
705        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
706        self_ty: Ty<'tcx>,
707        trait_ref: Option<ty::TraitRef<'tcx>>,
708    ) -> Result<(), PrintError> {
709        print_prefix(self)?;
710
711        self.generic_delimiters(|cx| {
712            define_scoped_cx!(cx);
713
714            p!("impl ");
715            if let Some(trait_ref) = trait_ref {
716                p!(print(trait_ref.print_only_trait_path()), " for ");
717            }
718            p!(print(self_ty));
719
720            Ok(())
721        })
722    }
723
724    fn pretty_print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError> {
725        define_scoped_cx!(self);
726
727        match *ty.kind() {
728            ty::Bool => p!("bool"),
729            ty::Char => p!("char"),
730            ty::Int(t) => p!(write("{}", t.name_str())),
731            ty::Uint(t) => p!(write("{}", t.name_str())),
732            ty::Float(t) => p!(write("{}", t.name_str())),
733            ty::Pat(ty, pat) => {
734                p!("(", print(ty), ") is ", write("{pat:?}"))
735            }
736            ty::RawPtr(ty, mutbl) => {
737                p!(write("*{} ", mutbl.ptr_str()));
738                p!(print(ty))
739            }
740            ty::Ref(r, ty, mutbl) => {
741                p!("&");
742                if self.should_print_region(r) {
743                    p!(print(r), " ");
744                }
745                p!(print(ty::TypeAndMut { ty, mutbl }))
746            }
747            ty::Never => p!("!"),
748            ty::Tuple(tys) => {
749                p!("(", comma_sep(tys.iter()));
750                if tys.len() == 1 {
751                    p!(",");
752                }
753                p!(")")
754            }
755            ty::FnDef(def_id, args) => {
756                if with_reduced_queries() {
757                    p!(print_def_path(def_id, args));
758                } else {
759                    let mut sig = self.tcx().fn_sig(def_id).instantiate(self.tcx(), args);
760                    if self.tcx().codegen_fn_attrs(def_id).safe_target_features {
761                        p!("#[target_features] ");
762                        sig = sig.map_bound(|mut sig| {
763                            sig.safety = hir::Safety::Safe;
764                            sig
765                        });
766                    }
767                    p!(print(sig), " {{", print_value_path(def_id, args), "}}");
768                }
769            }
770            ty::FnPtr(ref sig_tys, hdr) => p!(print(sig_tys.with(hdr))),
771            ty::UnsafeBinder(ref bound_ty) => {
772                self.wrap_binder(bound_ty, WrapBinderMode::Unsafe, |ty, cx| {
773                    cx.pretty_print_type(*ty)
774                })?;
775            }
776            ty::Infer(infer_ty) => {
777                if self.should_print_verbose() {
778                    p!(write("{:?}", ty.kind()));
779                    return Ok(());
780                }
781
782                if let ty::TyVar(ty_vid) = infer_ty {
783                    if let Some(name) = self.ty_infer_name(ty_vid) {
784                        p!(write("{}", name))
785                    } else {
786                        p!(write("{}", infer_ty))
787                    }
788                } else {
789                    p!(write("{}", infer_ty))
790                }
791            }
792            ty::Error(_) => p!("{{type error}}"),
793            ty::Param(ref param_ty) => p!(print(param_ty)),
794            ty::Bound(debruijn, bound_ty) => match bound_ty.kind {
795                ty::BoundTyKind::Anon => {
796                    rustc_type_ir::debug_bound_var(self, debruijn, bound_ty.var)?
797                }
798                ty::BoundTyKind::Param(_, s) => match self.should_print_verbose() {
799                    true => p!(write("{:?}", ty.kind())),
800                    false => p!(write("{s}")),
801                },
802            },
803            ty::Adt(def, args) => {
804                p!(print_def_path(def.did(), args));
805            }
806            ty::Dynamic(data, r, repr) => {
807                let print_r = self.should_print_region(r);
808                if print_r {
809                    p!("(");
810                }
811                match repr {
812                    ty::Dyn => p!("dyn "),
813                    ty::DynStar => p!("dyn* "),
814                }
815                p!(print(data));
816                if print_r {
817                    p!(" + ", print(r), ")");
818                }
819            }
820            ty::Foreign(def_id) => {
821                p!(print_def_path(def_id, &[]));
822            }
823            ty::Alias(ty::Projection | ty::Inherent | ty::Free, ref data) => {
824                p!(print(data))
825            }
826            ty::Placeholder(placeholder) => match placeholder.bound.kind {
827                ty::BoundTyKind::Anon => p!(write("{placeholder:?}")),
828                ty::BoundTyKind::Param(_, name) => match self.should_print_verbose() {
829                    true => p!(write("{:?}", ty.kind())),
830                    false => p!(write("{name}")),
831                },
832            },
833            ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
834                // We use verbose printing in 'NO_QUERIES' mode, to
835                // avoid needing to call `predicates_of`. This should
836                // only affect certain debug messages (e.g. messages printed
837                // from `rustc_middle::ty` during the computation of `tcx.predicates_of`),
838                // and should have no effect on any compiler output.
839                // [Unless `-Zverbose-internals` is used, e.g. in the output of
840                // `tests/ui/nll/ty-outlives/impl-trait-captures.rs`, for
841                // example.]
842                if self.should_print_verbose() {
843                    // FIXME(eddyb) print this with `print_def_path`.
844                    p!(write("Opaque({:?}, {})", def_id, args.print_as_list()));
845                    return Ok(());
846                }
847
848                let parent = self.tcx().parent(def_id);
849                match self.tcx().def_kind(parent) {
850                    DefKind::TyAlias | DefKind::AssocTy => {
851                        // NOTE: I know we should check for NO_QUERIES here, but it's alright.
852                        // `type_of` on a type alias or assoc type should never cause a cycle.
853                        if let ty::Alias(ty::Opaque, ty::AliasTy { def_id: d, .. }) =
854                            *self.tcx().type_of(parent).instantiate_identity().kind()
855                        {
856                            if d == def_id {
857                                // If the type alias directly starts with the `impl` of the
858                                // opaque type we're printing, then skip the `::{opaque#1}`.
859                                p!(print_def_path(parent, args));
860                                return Ok(());
861                            }
862                        }
863                        // Complex opaque type, e.g. `type Foo = (i32, impl Debug);`
864                        p!(print_def_path(def_id, args));
865                        return Ok(());
866                    }
867                    _ => {
868                        if with_reduced_queries() {
869                            p!(print_def_path(def_id, &[]));
870                            return Ok(());
871                        } else {
872                            return self.pretty_print_opaque_impl_type(def_id, args);
873                        }
874                    }
875                }
876            }
877            ty::Str => p!("str"),
878            ty::Coroutine(did, args) => {
879                p!("{{");
880                let coroutine_kind = self.tcx().coroutine_kind(did).unwrap();
881                let should_print_movability = self.should_print_verbose()
882                    || matches!(coroutine_kind, hir::CoroutineKind::Coroutine(_));
883
884                if should_print_movability {
885                    match coroutine_kind.movability() {
886                        hir::Movability::Movable => {}
887                        hir::Movability::Static => p!("static "),
888                    }
889                }
890
891                if !self.should_print_verbose() {
892                    p!(write("{}", coroutine_kind));
893                    if coroutine_kind.is_fn_like() {
894                        // If we are printing an `async fn` coroutine type, then give the path
895                        // of the fn, instead of its span, because that will in most cases be
896                        // more helpful for the reader than just a source location.
897                        //
898                        // This will look like:
899                        //    {async fn body of some_fn()}
900                        let did_of_the_fn_item = self.tcx().parent(did);
901                        p!(" of ", print_def_path(did_of_the_fn_item, args), "()");
902                    } else if let Some(local_did) = did.as_local() {
903                        let span = self.tcx().def_span(local_did);
904                        p!(write(
905                            "@{}",
906                            // This may end up in stderr diagnostics but it may also be emitted
907                            // into MIR. Hence we use the remapped path if available
908                            self.tcx().sess.source_map().span_to_embeddable_string(span)
909                        ));
910                    } else {
911                        p!("@", print_def_path(did, args));
912                    }
913                } else {
914                    p!(print_def_path(did, args));
915                    p!(
916                        " upvar_tys=",
917                        print(args.as_coroutine().tupled_upvars_ty()),
918                        " resume_ty=",
919                        print(args.as_coroutine().resume_ty()),
920                        " yield_ty=",
921                        print(args.as_coroutine().yield_ty()),
922                        " return_ty=",
923                        print(args.as_coroutine().return_ty()),
924                        " witness=",
925                        print(args.as_coroutine().witness())
926                    );
927                }
928
929                p!("}}")
930            }
931            ty::CoroutineWitness(did, args) => {
932                p!(write("{{"));
933                if !self.tcx().sess.verbose_internals() {
934                    p!("coroutine witness");
935                    if let Some(did) = did.as_local() {
936                        let span = self.tcx().def_span(did);
937                        p!(write(
938                            "@{}",
939                            // This may end up in stderr diagnostics but it may also be emitted
940                            // into MIR. Hence we use the remapped path if available
941                            self.tcx().sess.source_map().span_to_embeddable_string(span)
942                        ));
943                    } else {
944                        p!(write("@"), print_def_path(did, args));
945                    }
946                } else {
947                    p!(print_def_path(did, args));
948                }
949
950                p!("}}")
951            }
952            ty::Closure(did, args) => {
953                p!(write("{{"));
954                if !self.should_print_verbose() {
955                    p!(write("closure"));
956                    if self.should_truncate() {
957                        write!(self, "@...}}")?;
958                        return Ok(());
959                    } else {
960                        if let Some(did) = did.as_local() {
961                            if self.tcx().sess.opts.unstable_opts.span_free_formats {
962                                p!("@", print_def_path(did.to_def_id(), args));
963                            } else {
964                                let span = self.tcx().def_span(did);
965                                let preference = if with_forced_trimmed_paths() {
966                                    FileNameDisplayPreference::Short
967                                } else {
968                                    FileNameDisplayPreference::Remapped
969                                };
970                                p!(write(
971                                    "@{}",
972                                    // This may end up in stderr diagnostics but it may also be emitted
973                                    // into MIR. Hence we use the remapped path if available
974                                    self.tcx().sess.source_map().span_to_string(span, preference)
975                                ));
976                            }
977                        } else {
978                            p!(write("@"), print_def_path(did, args));
979                        }
980                    }
981                } else {
982                    p!(print_def_path(did, args));
983                    p!(
984                        " closure_kind_ty=",
985                        print(args.as_closure().kind_ty()),
986                        " closure_sig_as_fn_ptr_ty=",
987                        print(args.as_closure().sig_as_fn_ptr_ty()),
988                        " upvar_tys=",
989                        print(args.as_closure().tupled_upvars_ty())
990                    );
991                }
992                p!("}}");
993            }
994            ty::CoroutineClosure(did, args) => {
995                p!(write("{{"));
996                if !self.should_print_verbose() {
997                    match self.tcx().coroutine_kind(self.tcx().coroutine_for_closure(did)).unwrap()
998                    {
999                        hir::CoroutineKind::Desugared(
1000                            hir::CoroutineDesugaring::Async,
1001                            hir::CoroutineSource::Closure,
1002                        ) => p!("async closure"),
1003                        hir::CoroutineKind::Desugared(
1004                            hir::CoroutineDesugaring::AsyncGen,
1005                            hir::CoroutineSource::Closure,
1006                        ) => p!("async gen closure"),
1007                        hir::CoroutineKind::Desugared(
1008                            hir::CoroutineDesugaring::Gen,
1009                            hir::CoroutineSource::Closure,
1010                        ) => p!("gen closure"),
1011                        _ => unreachable!(
1012                            "coroutine from coroutine-closure should have CoroutineSource::Closure"
1013                        ),
1014                    }
1015                    if let Some(did) = did.as_local() {
1016                        if self.tcx().sess.opts.unstable_opts.span_free_formats {
1017                            p!("@", print_def_path(did.to_def_id(), args));
1018                        } else {
1019                            let span = self.tcx().def_span(did);
1020                            let preference = if with_forced_trimmed_paths() {
1021                                FileNameDisplayPreference::Short
1022                            } else {
1023                                FileNameDisplayPreference::Remapped
1024                            };
1025                            p!(write(
1026                                "@{}",
1027                                // This may end up in stderr diagnostics but it may also be emitted
1028                                // into MIR. Hence we use the remapped path if available
1029                                self.tcx().sess.source_map().span_to_string(span, preference)
1030                            ));
1031                        }
1032                    } else {
1033                        p!(write("@"), print_def_path(did, args));
1034                    }
1035                } else {
1036                    p!(print_def_path(did, args));
1037                    p!(
1038                        " closure_kind_ty=",
1039                        print(args.as_coroutine_closure().kind_ty()),
1040                        " signature_parts_ty=",
1041                        print(args.as_coroutine_closure().signature_parts_ty()),
1042                        " upvar_tys=",
1043                        print(args.as_coroutine_closure().tupled_upvars_ty()),
1044                        " coroutine_captures_by_ref_ty=",
1045                        print(args.as_coroutine_closure().coroutine_captures_by_ref_ty()),
1046                        " coroutine_witness_ty=",
1047                        print(args.as_coroutine_closure().coroutine_witness_ty())
1048                    );
1049                }
1050                p!("}}");
1051            }
1052            ty::Array(ty, sz) => p!("[", print(ty), "; ", print(sz), "]"),
1053            ty::Slice(ty) => p!("[", print(ty), "]"),
1054        }
1055
1056        Ok(())
1057    }
1058
1059    fn pretty_print_opaque_impl_type(
1060        &mut self,
1061        def_id: DefId,
1062        args: ty::GenericArgsRef<'tcx>,
1063    ) -> Result<(), PrintError> {
1064        let tcx = self.tcx();
1065
1066        // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
1067        // by looking up the projections associated with the def_id.
1068        let bounds = tcx.explicit_item_bounds(def_id);
1069
1070        let mut traits = FxIndexMap::default();
1071        let mut fn_traits = FxIndexMap::default();
1072        let mut has_sized_bound = false;
1073        let mut has_negative_sized_bound = false;
1074        let mut lifetimes = SmallVec::<[ty::Region<'tcx>; 1]>::new();
1075
1076        for (predicate, _) in bounds.iter_instantiated_copied(tcx, args) {
1077            let bound_predicate = predicate.kind();
1078
1079            match bound_predicate.skip_binder() {
1080                ty::ClauseKind::Trait(pred) => {
1081                    // Don't print `+ Sized`, but rather `+ ?Sized` if absent.
1082                    if tcx.is_lang_item(pred.def_id(), LangItem::Sized) {
1083                        match pred.polarity {
1084                            ty::PredicatePolarity::Positive => {
1085                                has_sized_bound = true;
1086                                continue;
1087                            }
1088                            ty::PredicatePolarity::Negative => has_negative_sized_bound = true,
1089                        }
1090                    }
1091
1092                    self.insert_trait_and_projection(
1093                        bound_predicate.rebind(pred),
1094                        None,
1095                        &mut traits,
1096                        &mut fn_traits,
1097                    );
1098                }
1099                ty::ClauseKind::Projection(pred) => {
1100                    let proj = bound_predicate.rebind(pred);
1101                    let trait_ref = proj.map_bound(|proj| TraitPredicate {
1102                        trait_ref: proj.projection_term.trait_ref(tcx),
1103                        polarity: ty::PredicatePolarity::Positive,
1104                    });
1105
1106                    self.insert_trait_and_projection(
1107                        trait_ref,
1108                        Some((proj.item_def_id(), proj.term())),
1109                        &mut traits,
1110                        &mut fn_traits,
1111                    );
1112                }
1113                ty::ClauseKind::TypeOutlives(outlives) => {
1114                    lifetimes.push(outlives.1);
1115                }
1116                _ => {}
1117            }
1118        }
1119
1120        write!(self, "impl ")?;
1121
1122        let mut first = true;
1123        // Insert parenthesis around (Fn(A, B) -> C) if the opaque ty has more than one other trait
1124        let paren_needed = fn_traits.len() > 1 || traits.len() > 0 || !has_sized_bound;
1125
1126        for ((bound_args_and_self_ty, is_async), entry) in fn_traits {
1127            write!(self, "{}", if first { "" } else { " + " })?;
1128            write!(self, "{}", if paren_needed { "(" } else { "" })?;
1129
1130            let trait_def_id = if is_async {
1131                tcx.async_fn_trait_kind_to_def_id(entry.kind).expect("expected AsyncFn lang items")
1132            } else {
1133                tcx.fn_trait_kind_to_def_id(entry.kind).expect("expected Fn lang items")
1134            };
1135
1136            if let Some(return_ty) = entry.return_ty {
1137                self.wrap_binder(
1138                    &bound_args_and_self_ty,
1139                    WrapBinderMode::ForAll,
1140                    |(args, _), cx| {
1141                        define_scoped_cx!(cx);
1142                        p!(write("{}", tcx.item_name(trait_def_id)));
1143                        p!("(");
1144
1145                        for (idx, ty) in args.iter().enumerate() {
1146                            if idx > 0 {
1147                                p!(", ");
1148                            }
1149                            p!(print(ty));
1150                        }
1151
1152                        p!(")");
1153                        if let Some(ty) = return_ty.skip_binder().as_type() {
1154                            if !ty.is_unit() {
1155                                p!(" -> ", print(return_ty));
1156                            }
1157                        }
1158                        p!(write("{}", if paren_needed { ")" } else { "" }));
1159
1160                        first = false;
1161                        Ok(())
1162                    },
1163                )?;
1164            } else {
1165                // Otherwise, render this like a regular trait.
1166                traits.insert(
1167                    bound_args_and_self_ty.map_bound(|(args, self_ty)| ty::TraitPredicate {
1168                        polarity: ty::PredicatePolarity::Positive,
1169                        trait_ref: ty::TraitRef::new(
1170                            tcx,
1171                            trait_def_id,
1172                            [self_ty, Ty::new_tup(tcx, args)],
1173                        ),
1174                    }),
1175                    FxIndexMap::default(),
1176                );
1177            }
1178        }
1179
1180        // Print the rest of the trait types (that aren't Fn* family of traits)
1181        for (trait_pred, assoc_items) in traits {
1182            write!(self, "{}", if first { "" } else { " + " })?;
1183
1184            self.wrap_binder(&trait_pred, WrapBinderMode::ForAll, |trait_pred, cx| {
1185                define_scoped_cx!(cx);
1186
1187                if trait_pred.polarity == ty::PredicatePolarity::Negative {
1188                    p!("!");
1189                }
1190                p!(print(trait_pred.trait_ref.print_only_trait_name()));
1191
1192                let generics = tcx.generics_of(trait_pred.def_id());
1193                let own_args = generics.own_args_no_defaults(tcx, trait_pred.trait_ref.args);
1194
1195                if !own_args.is_empty() || !assoc_items.is_empty() {
1196                    let mut first = true;
1197
1198                    for ty in own_args {
1199                        if first {
1200                            p!("<");
1201                            first = false;
1202                        } else {
1203                            p!(", ");
1204                        }
1205                        p!(print(ty));
1206                    }
1207
1208                    for (assoc_item_def_id, term) in assoc_items {
1209                        // Skip printing `<{coroutine@} as Coroutine<_>>::Return` from async blocks,
1210                        // unless we can find out what coroutine return type it comes from.
1211                        let term = if let Some(ty) = term.skip_binder().as_type()
1212                            && let ty::Alias(ty::Projection, proj) = ty.kind()
1213                            && let Some(assoc) = tcx.opt_associated_item(proj.def_id)
1214                            && assoc
1215                                .trait_container(tcx)
1216                                .is_some_and(|def_id| tcx.is_lang_item(def_id, LangItem::Coroutine))
1217                            && assoc.opt_name() == Some(rustc_span::sym::Return)
1218                        {
1219                            if let ty::Coroutine(_, args) = args.type_at(0).kind() {
1220                                let return_ty = args.as_coroutine().return_ty();
1221                                if !return_ty.is_ty_var() {
1222                                    return_ty.into()
1223                                } else {
1224                                    continue;
1225                                }
1226                            } else {
1227                                continue;
1228                            }
1229                        } else {
1230                            term.skip_binder()
1231                        };
1232
1233                        if first {
1234                            p!("<");
1235                            first = false;
1236                        } else {
1237                            p!(", ");
1238                        }
1239
1240                        p!(write("{} = ", tcx.associated_item(assoc_item_def_id).name()));
1241
1242                        match term.unpack() {
1243                            TermKind::Ty(ty) => p!(print(ty)),
1244                            TermKind::Const(c) => p!(print(c)),
1245                        };
1246                    }
1247
1248                    if !first {
1249                        p!(">");
1250                    }
1251                }
1252
1253                first = false;
1254                Ok(())
1255            })?;
1256        }
1257
1258        let add_sized = has_sized_bound && (first || has_negative_sized_bound);
1259        let add_maybe_sized = !has_sized_bound && !has_negative_sized_bound;
1260        if add_sized || add_maybe_sized {
1261            if !first {
1262                write!(self, " + ")?;
1263            }
1264            if add_maybe_sized {
1265                write!(self, "?")?;
1266            }
1267            write!(self, "Sized")?;
1268        }
1269
1270        if !with_forced_trimmed_paths() {
1271            for re in lifetimes {
1272                write!(self, " + ")?;
1273                self.print_region(re)?;
1274            }
1275        }
1276
1277        Ok(())
1278    }
1279
1280    /// Insert the trait ref and optionally a projection type associated with it into either the
1281    /// traits map or fn_traits map, depending on if the trait is in the Fn* family of traits.
1282    fn insert_trait_and_projection(
1283        &mut self,
1284        trait_pred: ty::PolyTraitPredicate<'tcx>,
1285        proj_ty: Option<(DefId, ty::Binder<'tcx, Term<'tcx>>)>,
1286        traits: &mut FxIndexMap<
1287            ty::PolyTraitPredicate<'tcx>,
1288            FxIndexMap<DefId, ty::Binder<'tcx, Term<'tcx>>>,
1289        >,
1290        fn_traits: &mut FxIndexMap<
1291            (ty::Binder<'tcx, (&'tcx ty::List<Ty<'tcx>>, Ty<'tcx>)>, bool),
1292            OpaqueFnEntry<'tcx>,
1293        >,
1294    ) {
1295        let tcx = self.tcx();
1296        let trait_def_id = trait_pred.def_id();
1297
1298        let fn_trait_and_async = if let Some(kind) = tcx.fn_trait_kind_from_def_id(trait_def_id) {
1299            Some((kind, false))
1300        } else if let Some(kind) = tcx.async_fn_trait_kind_from_def_id(trait_def_id) {
1301            Some((kind, true))
1302        } else {
1303            None
1304        };
1305
1306        if trait_pred.polarity() == ty::PredicatePolarity::Positive
1307            && let Some((kind, is_async)) = fn_trait_and_async
1308            && let ty::Tuple(types) = *trait_pred.skip_binder().trait_ref.args.type_at(1).kind()
1309        {
1310            let entry = fn_traits
1311                .entry((trait_pred.rebind((types, trait_pred.skip_binder().self_ty())), is_async))
1312                .or_insert_with(|| OpaqueFnEntry { kind, return_ty: None });
1313            if kind.extends(entry.kind) {
1314                entry.kind = kind;
1315            }
1316            if let Some((proj_def_id, proj_ty)) = proj_ty
1317                && tcx.item_name(proj_def_id) == sym::Output
1318            {
1319                entry.return_ty = Some(proj_ty);
1320            }
1321            return;
1322        }
1323
1324        // Otherwise, just group our traits and projection types.
1325        traits.entry(trait_pred).or_default().extend(proj_ty);
1326    }
1327
1328    fn pretty_print_inherent_projection(
1329        &mut self,
1330        alias_ty: ty::AliasTerm<'tcx>,
1331    ) -> Result<(), PrintError> {
1332        let def_key = self.tcx().def_key(alias_ty.def_id);
1333        self.path_generic_args(
1334            |cx| {
1335                cx.path_append(
1336                    |cx| cx.path_qualified(alias_ty.self_ty(), None),
1337                    &def_key.disambiguated_data,
1338                )
1339            },
1340            &alias_ty.args[1..],
1341        )
1342    }
1343
1344    fn pretty_print_rpitit(
1345        &mut self,
1346        def_id: DefId,
1347        args: ty::GenericArgsRef<'tcx>,
1348    ) -> Result<(), PrintError> {
1349        let fn_args = if self.tcx().features().return_type_notation()
1350            && let Some(ty::ImplTraitInTraitData::Trait { fn_def_id, .. }) =
1351                self.tcx().opt_rpitit_info(def_id)
1352            && let ty::Alias(_, alias_ty) =
1353                self.tcx().fn_sig(fn_def_id).skip_binder().output().skip_binder().kind()
1354            && alias_ty.def_id == def_id
1355            && let generics = self.tcx().generics_of(fn_def_id)
1356            // FIXME(return_type_notation): We only support lifetime params for now.
1357            && generics.own_params.iter().all(|param| matches!(param.kind, ty::GenericParamDefKind::Lifetime))
1358        {
1359            let num_args = generics.count();
1360            Some((fn_def_id, &args[..num_args]))
1361        } else {
1362            None
1363        };
1364
1365        match (fn_args, RTN_MODE.with(|c| c.get())) {
1366            (Some((fn_def_id, fn_args)), RtnMode::ForDiagnostic) => {
1367                self.pretty_print_opaque_impl_type(def_id, args)?;
1368                write!(self, " {{ ")?;
1369                self.print_def_path(fn_def_id, fn_args)?;
1370                write!(self, "(..) }}")?;
1371            }
1372            (Some((fn_def_id, fn_args)), RtnMode::ForSuggestion) => {
1373                self.print_def_path(fn_def_id, fn_args)?;
1374                write!(self, "(..)")?;
1375            }
1376            _ => {
1377                self.pretty_print_opaque_impl_type(def_id, args)?;
1378            }
1379        }
1380
1381        Ok(())
1382    }
1383
1384    fn ty_infer_name(&self, _: ty::TyVid) -> Option<Symbol> {
1385        None
1386    }
1387
1388    fn const_infer_name(&self, _: ty::ConstVid) -> Option<Symbol> {
1389        None
1390    }
1391
1392    fn pretty_print_dyn_existential(
1393        &mut self,
1394        predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1395    ) -> Result<(), PrintError> {
1396        // Generate the main trait ref, including associated types.
1397        let mut first = true;
1398
1399        if let Some(bound_principal) = predicates.principal() {
1400            self.wrap_binder(&bound_principal, WrapBinderMode::ForAll, |principal, cx| {
1401                define_scoped_cx!(cx);
1402                p!(print_def_path(principal.def_id, &[]));
1403
1404                let mut resugared = false;
1405
1406                // Special-case `Fn(...) -> ...` and re-sugar it.
1407                let fn_trait_kind = cx.tcx().fn_trait_kind_from_def_id(principal.def_id);
1408                if !cx.should_print_verbose() && fn_trait_kind.is_some() {
1409                    if let ty::Tuple(tys) = principal.args.type_at(0).kind() {
1410                        let mut projections = predicates.projection_bounds();
1411                        if let (Some(proj), None) = (projections.next(), projections.next()) {
1412                            p!(pretty_fn_sig(
1413                                tys,
1414                                false,
1415                                proj.skip_binder().term.as_type().expect("Return type was a const")
1416                            ));
1417                            resugared = true;
1418                        }
1419                    }
1420                }
1421
1422                // HACK(eddyb) this duplicates `FmtPrinter`'s `path_generic_args`,
1423                // in order to place the projections inside the `<...>`.
1424                if !resugared {
1425                    let principal_with_self =
1426                        principal.with_self_ty(cx.tcx(), cx.tcx().types.trait_object_dummy_self);
1427
1428                    let args = cx
1429                        .tcx()
1430                        .generics_of(principal_with_self.def_id)
1431                        .own_args_no_defaults(cx.tcx(), principal_with_self.args);
1432
1433                    let bound_principal_with_self = bound_principal
1434                        .with_self_ty(cx.tcx(), cx.tcx().types.trait_object_dummy_self);
1435
1436                    let clause: ty::Clause<'tcx> = bound_principal_with_self.upcast(cx.tcx());
1437                    let super_projections: Vec<_> = elaborate::elaborate(cx.tcx(), [clause])
1438                        .filter_only_self()
1439                        .filter_map(|clause| clause.as_projection_clause())
1440                        .collect();
1441
1442                    let mut projections: Vec<_> = predicates
1443                        .projection_bounds()
1444                        .filter(|&proj| {
1445                            // Filter out projections that are implied by the super predicates.
1446                            let proj_is_implied = super_projections.iter().any(|&super_proj| {
1447                                let super_proj = super_proj.map_bound(|super_proj| {
1448                                    ty::ExistentialProjection::erase_self_ty(cx.tcx(), super_proj)
1449                                });
1450
1451                                // This function is sometimes called on types with erased and
1452                                // anonymized regions, but the super projections can still
1453                                // contain named regions. So we erase and anonymize everything
1454                                // here to compare the types modulo regions below.
1455                                let proj = cx.tcx().erase_regions(proj);
1456                                let super_proj = cx.tcx().erase_regions(super_proj);
1457
1458                                proj == super_proj
1459                            });
1460                            !proj_is_implied
1461                        })
1462                        .map(|proj| {
1463                            // Skip the binder, because we don't want to print the binder in
1464                            // front of the associated item.
1465                            proj.skip_binder()
1466                        })
1467                        .collect();
1468
1469                    projections
1470                        .sort_by_cached_key(|proj| cx.tcx().item_name(proj.def_id).to_string());
1471
1472                    if !args.is_empty() || !projections.is_empty() {
1473                        p!(generic_delimiters(|cx| {
1474                            cx.comma_sep(args.iter().copied())?;
1475                            if !args.is_empty() && !projections.is_empty() {
1476                                write!(cx, ", ")?;
1477                            }
1478                            cx.comma_sep(projections.iter().copied())
1479                        }));
1480                    }
1481                }
1482                Ok(())
1483            })?;
1484
1485            first = false;
1486        }
1487
1488        define_scoped_cx!(self);
1489
1490        // Builtin bounds.
1491        // FIXME(eddyb) avoid printing twice (needed to ensure
1492        // that the auto traits are sorted *and* printed via cx).
1493        let mut auto_traits: Vec<_> = predicates.auto_traits().collect();
1494
1495        // The auto traits come ordered by `DefPathHash`. While
1496        // `DefPathHash` is *stable* in the sense that it depends on
1497        // neither the host nor the phase of the moon, it depends
1498        // "pseudorandomly" on the compiler version and the target.
1499        //
1500        // To avoid causing instabilities in compiletest
1501        // output, sort the auto-traits alphabetically.
1502        auto_traits.sort_by_cached_key(|did| with_no_trimmed_paths!(self.tcx().def_path_str(*did)));
1503
1504        for def_id in auto_traits {
1505            if !first {
1506                p!(" + ");
1507            }
1508            first = false;
1509
1510            p!(print_def_path(def_id, &[]));
1511        }
1512
1513        Ok(())
1514    }
1515
1516    fn pretty_fn_sig(
1517        &mut self,
1518        inputs: &[Ty<'tcx>],
1519        c_variadic: bool,
1520        output: Ty<'tcx>,
1521    ) -> Result<(), PrintError> {
1522        define_scoped_cx!(self);
1523
1524        p!("(", comma_sep(inputs.iter().copied()));
1525        if c_variadic {
1526            if !inputs.is_empty() {
1527                p!(", ");
1528            }
1529            p!("...");
1530        }
1531        p!(")");
1532        if !output.is_unit() {
1533            p!(" -> ", print(output));
1534        }
1535
1536        Ok(())
1537    }
1538
1539    fn pretty_print_const(
1540        &mut self,
1541        ct: ty::Const<'tcx>,
1542        print_ty: bool,
1543    ) -> Result<(), PrintError> {
1544        define_scoped_cx!(self);
1545
1546        if self.should_print_verbose() {
1547            p!(write("{:?}", ct));
1548            return Ok(());
1549        }
1550
1551        match ct.kind() {
1552            ty::ConstKind::Unevaluated(ty::UnevaluatedConst { def, args }) => {
1553                match self.tcx().def_kind(def) {
1554                    DefKind::Const | DefKind::AssocConst => {
1555                        p!(print_value_path(def, args))
1556                    }
1557                    DefKind::AnonConst => {
1558                        if def.is_local()
1559                            && let span = self.tcx().def_span(def)
1560                            && let Ok(snip) = self.tcx().sess.source_map().span_to_snippet(span)
1561                        {
1562                            p!(write("{}", snip))
1563                        } else {
1564                            // Do not call `print_value_path` as if a parent of this anon const is an impl it will
1565                            // attempt to print out the impl trait ref i.e. `<T as Trait>::{constant#0}`. This would
1566                            // cause printing to enter an infinite recursion if the anon const is in the self type i.e.
1567                            // `impl<T: Default> Default for [T; 32 - 1 - 1 - 1] {`
1568                            // where we would try to print `<[T; /* print `constant#0` again */] as Default>::{constant#0}`
1569                            p!(write(
1570                                "{}::{}",
1571                                self.tcx().crate_name(def.krate),
1572                                self.tcx().def_path(def).to_string_no_crate_verbose()
1573                            ))
1574                        }
1575                    }
1576                    defkind => bug!("`{:?}` has unexpected defkind {:?}", ct, defkind),
1577                }
1578            }
1579            ty::ConstKind::Infer(infer_ct) => match infer_ct {
1580                ty::InferConst::Var(ct_vid) if let Some(name) = self.const_infer_name(ct_vid) => {
1581                    p!(write("{}", name))
1582                }
1583                _ => write!(self, "_")?,
1584            },
1585            ty::ConstKind::Param(ParamConst { name, .. }) => p!(write("{}", name)),
1586            ty::ConstKind::Value(cv) => {
1587                return self.pretty_print_const_valtree(cv, print_ty);
1588            }
1589
1590            ty::ConstKind::Bound(debruijn, bound_var) => {
1591                rustc_type_ir::debug_bound_var(self, debruijn, bound_var)?
1592            }
1593            ty::ConstKind::Placeholder(placeholder) => p!(write("{placeholder:?}")),
1594            // FIXME(generic_const_exprs):
1595            // write out some legible representation of an abstract const?
1596            ty::ConstKind::Expr(expr) => self.pretty_print_const_expr(expr, print_ty)?,
1597            ty::ConstKind::Error(_) => p!("{{const error}}"),
1598        };
1599        Ok(())
1600    }
1601
1602    fn pretty_print_const_expr(
1603        &mut self,
1604        expr: Expr<'tcx>,
1605        print_ty: bool,
1606    ) -> Result<(), PrintError> {
1607        define_scoped_cx!(self);
1608        match expr.kind {
1609            ty::ExprKind::Binop(op) => {
1610                let (_, _, c1, c2) = expr.binop_args();
1611
1612                let precedence = |binop: crate::mir::BinOp| binop.to_hir_binop().precedence();
1613                let op_precedence = precedence(op);
1614                let formatted_op = op.to_hir_binop().as_str();
1615                let (lhs_parenthesized, rhs_parenthesized) = match (c1.kind(), c2.kind()) {
1616                    (
1617                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(lhs_op), .. }),
1618                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(rhs_op), .. }),
1619                    ) => (precedence(lhs_op) < op_precedence, precedence(rhs_op) < op_precedence),
1620                    (
1621                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(lhs_op), .. }),
1622                        ty::ConstKind::Expr(_),
1623                    ) => (precedence(lhs_op) < op_precedence, true),
1624                    (
1625                        ty::ConstKind::Expr(_),
1626                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(rhs_op), .. }),
1627                    ) => (true, precedence(rhs_op) < op_precedence),
1628                    (ty::ConstKind::Expr(_), ty::ConstKind::Expr(_)) => (true, true),
1629                    (
1630                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(lhs_op), .. }),
1631                        _,
1632                    ) => (precedence(lhs_op) < op_precedence, false),
1633                    (
1634                        _,
1635                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(rhs_op), .. }),
1636                    ) => (false, precedence(rhs_op) < op_precedence),
1637                    (ty::ConstKind::Expr(_), _) => (true, false),
1638                    (_, ty::ConstKind::Expr(_)) => (false, true),
1639                    _ => (false, false),
1640                };
1641
1642                self.maybe_parenthesized(
1643                    |this| this.pretty_print_const(c1, print_ty),
1644                    lhs_parenthesized,
1645                )?;
1646                p!(write(" {formatted_op} "));
1647                self.maybe_parenthesized(
1648                    |this| this.pretty_print_const(c2, print_ty),
1649                    rhs_parenthesized,
1650                )?;
1651            }
1652            ty::ExprKind::UnOp(op) => {
1653                let (_, ct) = expr.unop_args();
1654
1655                use crate::mir::UnOp;
1656                let formatted_op = match op {
1657                    UnOp::Not => "!",
1658                    UnOp::Neg => "-",
1659                    UnOp::PtrMetadata => "PtrMetadata",
1660                };
1661                let parenthesized = match ct.kind() {
1662                    _ if op == UnOp::PtrMetadata => true,
1663                    ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::UnOp(c_op), .. }) => {
1664                        c_op != op
1665                    }
1666                    ty::ConstKind::Expr(_) => true,
1667                    _ => false,
1668                };
1669                p!(write("{formatted_op}"));
1670                self.maybe_parenthesized(
1671                    |this| this.pretty_print_const(ct, print_ty),
1672                    parenthesized,
1673                )?
1674            }
1675            ty::ExprKind::FunctionCall => {
1676                let (_, fn_def, fn_args) = expr.call_args();
1677
1678                write!(self, "(")?;
1679                self.pretty_print_const(fn_def, print_ty)?;
1680                p!(")(", comma_sep(fn_args), ")");
1681            }
1682            ty::ExprKind::Cast(kind) => {
1683                let (_, value, to_ty) = expr.cast_args();
1684
1685                use ty::abstract_const::CastKind;
1686                if kind == CastKind::As || (kind == CastKind::Use && self.should_print_verbose()) {
1687                    let parenthesized = match value.kind() {
1688                        ty::ConstKind::Expr(ty::Expr {
1689                            kind: ty::ExprKind::Cast { .. }, ..
1690                        }) => false,
1691                        ty::ConstKind::Expr(_) => true,
1692                        _ => false,
1693                    };
1694                    self.maybe_parenthesized(
1695                        |this| {
1696                            this.typed_value(
1697                                |this| this.pretty_print_const(value, print_ty),
1698                                |this| this.pretty_print_type(to_ty),
1699                                " as ",
1700                            )
1701                        },
1702                        parenthesized,
1703                    )?;
1704                } else {
1705                    self.pretty_print_const(value, print_ty)?
1706                }
1707            }
1708        }
1709        Ok(())
1710    }
1711
1712    fn pretty_print_const_scalar(
1713        &mut self,
1714        scalar: Scalar,
1715        ty: Ty<'tcx>,
1716    ) -> Result<(), PrintError> {
1717        match scalar {
1718            Scalar::Ptr(ptr, _size) => self.pretty_print_const_scalar_ptr(ptr, ty),
1719            Scalar::Int(int) => {
1720                self.pretty_print_const_scalar_int(int, ty, /* print_ty */ true)
1721            }
1722        }
1723    }
1724
1725    fn pretty_print_const_scalar_ptr(
1726        &mut self,
1727        ptr: Pointer,
1728        ty: Ty<'tcx>,
1729    ) -> Result<(), PrintError> {
1730        define_scoped_cx!(self);
1731
1732        let (prov, offset) = ptr.into_parts();
1733        match ty.kind() {
1734            // Byte strings (&[u8; N])
1735            ty::Ref(_, inner, _) => {
1736                if let ty::Array(elem, ct_len) = inner.kind()
1737                    && let ty::Uint(ty::UintTy::U8) = elem.kind()
1738                    && let Some(len) = ct_len.try_to_target_usize(self.tcx())
1739                {
1740                    match self.tcx().try_get_global_alloc(prov.alloc_id()) {
1741                        Some(GlobalAlloc::Memory(alloc)) => {
1742                            let range = AllocRange { start: offset, size: Size::from_bytes(len) };
1743                            if let Ok(byte_str) =
1744                                alloc.inner().get_bytes_strip_provenance(&self.tcx(), range)
1745                            {
1746                                p!(pretty_print_byte_str(byte_str))
1747                            } else {
1748                                p!("<too short allocation>")
1749                            }
1750                        }
1751                        // FIXME: for statics, vtables, and functions, we could in principle print more detail.
1752                        Some(GlobalAlloc::Static(def_id)) => {
1753                            p!(write("<static({:?})>", def_id))
1754                        }
1755                        Some(GlobalAlloc::Function { .. }) => p!("<function>"),
1756                        Some(GlobalAlloc::VTable(..)) => p!("<vtable>"),
1757                        None => p!("<dangling pointer>"),
1758                    }
1759                    return Ok(());
1760                }
1761            }
1762            ty::FnPtr(..) => {
1763                // FIXME: We should probably have a helper method to share code with the "Byte strings"
1764                // printing above (which also has to handle pointers to all sorts of things).
1765                if let Some(GlobalAlloc::Function { instance, .. }) =
1766                    self.tcx().try_get_global_alloc(prov.alloc_id())
1767                {
1768                    self.typed_value(
1769                        |this| this.print_value_path(instance.def_id(), instance.args),
1770                        |this| this.print_type(ty),
1771                        " as ",
1772                    )?;
1773                    return Ok(());
1774                }
1775            }
1776            _ => {}
1777        }
1778        // Any pointer values not covered by a branch above
1779        self.pretty_print_const_pointer(ptr, ty)?;
1780        Ok(())
1781    }
1782
1783    fn pretty_print_const_scalar_int(
1784        &mut self,
1785        int: ScalarInt,
1786        ty: Ty<'tcx>,
1787        print_ty: bool,
1788    ) -> Result<(), PrintError> {
1789        define_scoped_cx!(self);
1790
1791        match ty.kind() {
1792            // Bool
1793            ty::Bool if int == ScalarInt::FALSE => p!("false"),
1794            ty::Bool if int == ScalarInt::TRUE => p!("true"),
1795            // Float
1796            ty::Float(fty) => match fty {
1797                ty::FloatTy::F16 => {
1798                    let val = Half::try_from(int).unwrap();
1799                    p!(write("{}{}f16", val, if val.is_finite() { "" } else { "_" }))
1800                }
1801                ty::FloatTy::F32 => {
1802                    let val = Single::try_from(int).unwrap();
1803                    p!(write("{}{}f32", val, if val.is_finite() { "" } else { "_" }))
1804                }
1805                ty::FloatTy::F64 => {
1806                    let val = Double::try_from(int).unwrap();
1807                    p!(write("{}{}f64", val, if val.is_finite() { "" } else { "_" }))
1808                }
1809                ty::FloatTy::F128 => {
1810                    let val = Quad::try_from(int).unwrap();
1811                    p!(write("{}{}f128", val, if val.is_finite() { "" } else { "_" }))
1812                }
1813            },
1814            // Int
1815            ty::Uint(_) | ty::Int(_) => {
1816                let int =
1817                    ConstInt::new(int, matches!(ty.kind(), ty::Int(_)), ty.is_ptr_sized_integral());
1818                if print_ty { p!(write("{:#?}", int)) } else { p!(write("{:?}", int)) }
1819            }
1820            // Char
1821            ty::Char if char::try_from(int).is_ok() => {
1822                p!(write("{:?}", char::try_from(int).unwrap()))
1823            }
1824            // Pointer types
1825            ty::Ref(..) | ty::RawPtr(_, _) | ty::FnPtr(..) => {
1826                let data = int.to_bits(self.tcx().data_layout.pointer_size);
1827                self.typed_value(
1828                    |this| {
1829                        write!(this, "0x{data:x}")?;
1830                        Ok(())
1831                    },
1832                    |this| this.print_type(ty),
1833                    " as ",
1834                )?;
1835            }
1836            ty::Pat(base_ty, pat) if self.tcx().validate_scalar_in_layout(int, ty) => {
1837                self.pretty_print_const_scalar_int(int, *base_ty, print_ty)?;
1838                p!(write(" is {pat:?}"));
1839            }
1840            // Nontrivial types with scalar bit representation
1841            _ => {
1842                let print = |this: &mut Self| {
1843                    if int.size() == Size::ZERO {
1844                        write!(this, "transmute(())")?;
1845                    } else {
1846                        write!(this, "transmute(0x{int:x})")?;
1847                    }
1848                    Ok(())
1849                };
1850                if print_ty {
1851                    self.typed_value(print, |this| this.print_type(ty), ": ")?
1852                } else {
1853                    print(self)?
1854                };
1855            }
1856        }
1857        Ok(())
1858    }
1859
1860    /// This is overridden for MIR printing because we only want to hide alloc ids from users, not
1861    /// from MIR where it is actually useful.
1862    fn pretty_print_const_pointer<Prov: Provenance>(
1863        &mut self,
1864        _: Pointer<Prov>,
1865        ty: Ty<'tcx>,
1866    ) -> Result<(), PrintError> {
1867        self.typed_value(
1868            |this| {
1869                this.write_str("&_")?;
1870                Ok(())
1871            },
1872            |this| this.print_type(ty),
1873            ": ",
1874        )
1875    }
1876
1877    fn pretty_print_byte_str(&mut self, byte_str: &'tcx [u8]) -> Result<(), PrintError> {
1878        write!(self, "b\"{}\"", byte_str.escape_ascii())?;
1879        Ok(())
1880    }
1881
1882    fn pretty_print_const_valtree(
1883        &mut self,
1884        cv: ty::Value<'tcx>,
1885        print_ty: bool,
1886    ) -> Result<(), PrintError> {
1887        define_scoped_cx!(self);
1888
1889        if self.should_print_verbose() {
1890            p!(write("ValTree({:?}: ", cv.valtree), print(cv.ty), ")");
1891            return Ok(());
1892        }
1893
1894        let u8_type = self.tcx().types.u8;
1895        match (*cv.valtree, *cv.ty.kind()) {
1896            (ty::ValTreeKind::Branch(_), ty::Ref(_, inner_ty, _)) => match inner_ty.kind() {
1897                ty::Slice(t) if *t == u8_type => {
1898                    let bytes = cv.try_to_raw_bytes(self.tcx()).unwrap_or_else(|| {
1899                        bug!(
1900                            "expected to convert valtree {:?} to raw bytes for type {:?}",
1901                            cv.valtree,
1902                            t
1903                        )
1904                    });
1905                    return self.pretty_print_byte_str(bytes);
1906                }
1907                ty::Str => {
1908                    let bytes = cv.try_to_raw_bytes(self.tcx()).unwrap_or_else(|| {
1909                        bug!("expected to convert valtree to raw bytes for type {:?}", cv.ty)
1910                    });
1911                    p!(write("{:?}", String::from_utf8_lossy(bytes)));
1912                    return Ok(());
1913                }
1914                _ => {
1915                    let cv = ty::Value { valtree: cv.valtree, ty: inner_ty };
1916                    p!("&");
1917                    p!(pretty_print_const_valtree(cv, print_ty));
1918                    return Ok(());
1919                }
1920            },
1921            (ty::ValTreeKind::Branch(_), ty::Array(t, _)) if t == u8_type => {
1922                let bytes = cv.try_to_raw_bytes(self.tcx()).unwrap_or_else(|| {
1923                    bug!("expected to convert valtree to raw bytes for type {:?}", t)
1924                });
1925                p!("*");
1926                p!(pretty_print_byte_str(bytes));
1927                return Ok(());
1928            }
1929            // Aggregates, printed as array/tuple/struct/variant construction syntax.
1930            (ty::ValTreeKind::Branch(_), ty::Array(..) | ty::Tuple(..) | ty::Adt(..)) => {
1931                let contents = self.tcx().destructure_const(ty::Const::new_value(
1932                    self.tcx(),
1933                    cv.valtree,
1934                    cv.ty,
1935                ));
1936                let fields = contents.fields.iter().copied();
1937                match *cv.ty.kind() {
1938                    ty::Array(..) => {
1939                        p!("[", comma_sep(fields), "]");
1940                    }
1941                    ty::Tuple(..) => {
1942                        p!("(", comma_sep(fields));
1943                        if contents.fields.len() == 1 {
1944                            p!(",");
1945                        }
1946                        p!(")");
1947                    }
1948                    ty::Adt(def, _) if def.variants().is_empty() => {
1949                        self.typed_value(
1950                            |this| {
1951                                write!(this, "unreachable()")?;
1952                                Ok(())
1953                            },
1954                            |this| this.print_type(cv.ty),
1955                            ": ",
1956                        )?;
1957                    }
1958                    ty::Adt(def, args) => {
1959                        let variant_idx =
1960                            contents.variant.expect("destructed const of adt without variant idx");
1961                        let variant_def = &def.variant(variant_idx);
1962                        p!(print_value_path(variant_def.def_id, args));
1963                        match variant_def.ctor_kind() {
1964                            Some(CtorKind::Const) => {}
1965                            Some(CtorKind::Fn) => {
1966                                p!("(", comma_sep(fields), ")");
1967                            }
1968                            None => {
1969                                p!(" {{ ");
1970                                let mut first = true;
1971                                for (field_def, field) in iter::zip(&variant_def.fields, fields) {
1972                                    if !first {
1973                                        p!(", ");
1974                                    }
1975                                    p!(write("{}: ", field_def.name), print(field));
1976                                    first = false;
1977                                }
1978                                p!(" }}");
1979                            }
1980                        }
1981                    }
1982                    _ => unreachable!(),
1983                }
1984                return Ok(());
1985            }
1986            (ty::ValTreeKind::Leaf(leaf), ty::Ref(_, inner_ty, _)) => {
1987                p!(write("&"));
1988                return self.pretty_print_const_scalar_int(*leaf, inner_ty, print_ty);
1989            }
1990            (ty::ValTreeKind::Leaf(leaf), _) => {
1991                return self.pretty_print_const_scalar_int(*leaf, cv.ty, print_ty);
1992            }
1993            (_, ty::FnDef(def_id, args)) => {
1994                // Never allowed today, but we still encounter them in invalid const args.
1995                p!(print_value_path(def_id, args));
1996                return Ok(());
1997            }
1998            // FIXME(oli-obk): also pretty print arrays and other aggregate constants by reading
1999            // their fields instead of just dumping the memory.
2000            _ => {}
2001        }
2002
2003        // fallback
2004        if cv.valtree.is_zst() {
2005            p!(write("<ZST>"));
2006        } else {
2007            p!(write("{:?}", cv.valtree));
2008        }
2009        if print_ty {
2010            p!(": ", print(cv.ty));
2011        }
2012        Ok(())
2013    }
2014
2015    fn pretty_closure_as_impl(
2016        &mut self,
2017        closure: ty::ClosureArgs<TyCtxt<'tcx>>,
2018    ) -> Result<(), PrintError> {
2019        let sig = closure.sig();
2020        let kind = closure.kind_ty().to_opt_closure_kind().unwrap_or(ty::ClosureKind::Fn);
2021
2022        write!(self, "impl ")?;
2023        self.wrap_binder(&sig, WrapBinderMode::ForAll, |sig, cx| {
2024            define_scoped_cx!(cx);
2025
2026            p!(write("{kind}("));
2027            for (i, arg) in sig.inputs()[0].tuple_fields().iter().enumerate() {
2028                if i > 0 {
2029                    p!(", ");
2030                }
2031                p!(print(arg));
2032            }
2033            p!(")");
2034
2035            if !sig.output().is_unit() {
2036                p!(" -> ", print(sig.output()));
2037            }
2038
2039            Ok(())
2040        })
2041    }
2042
2043    fn pretty_print_bound_constness(
2044        &mut self,
2045        constness: ty::BoundConstness,
2046    ) -> Result<(), PrintError> {
2047        define_scoped_cx!(self);
2048
2049        match constness {
2050            ty::BoundConstness::Const => {
2051                p!("const ");
2052            }
2053            ty::BoundConstness::Maybe => {
2054                p!("~const ");
2055            }
2056        }
2057        Ok(())
2058    }
2059
2060    fn should_print_verbose(&self) -> bool {
2061        self.tcx().sess.verbose_internals()
2062    }
2063}
2064
2065pub(crate) fn pretty_print_const<'tcx>(
2066    c: ty::Const<'tcx>,
2067    fmt: &mut fmt::Formatter<'_>,
2068    print_types: bool,
2069) -> fmt::Result {
2070    ty::tls::with(|tcx| {
2071        let literal = tcx.lift(c).unwrap();
2072        let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
2073        cx.print_alloc_ids = true;
2074        cx.pretty_print_const(literal, print_types)?;
2075        fmt.write_str(&cx.into_buffer())?;
2076        Ok(())
2077    })
2078}
2079
2080// HACK(eddyb) boxed to avoid moving around a large struct by-value.
2081pub struct FmtPrinter<'a, 'tcx>(Box<FmtPrinterData<'a, 'tcx>>);
2082
2083pub struct FmtPrinterData<'a, 'tcx> {
2084    tcx: TyCtxt<'tcx>,
2085    fmt: String,
2086
2087    empty_path: bool,
2088    in_value: bool,
2089    pub print_alloc_ids: bool,
2090
2091    // set of all named (non-anonymous) region names
2092    used_region_names: FxHashSet<Symbol>,
2093
2094    region_index: usize,
2095    binder_depth: usize,
2096    printed_type_count: usize,
2097    type_length_limit: Limit,
2098
2099    pub region_highlight_mode: RegionHighlightMode<'tcx>,
2100
2101    pub ty_infer_name_resolver: Option<Box<dyn Fn(ty::TyVid) -> Option<Symbol> + 'a>>,
2102    pub const_infer_name_resolver: Option<Box<dyn Fn(ty::ConstVid) -> Option<Symbol> + 'a>>,
2103}
2104
2105impl<'a, 'tcx> Deref for FmtPrinter<'a, 'tcx> {
2106    type Target = FmtPrinterData<'a, 'tcx>;
2107    fn deref(&self) -> &Self::Target {
2108        &self.0
2109    }
2110}
2111
2112impl DerefMut for FmtPrinter<'_, '_> {
2113    fn deref_mut(&mut self) -> &mut Self::Target {
2114        &mut self.0
2115    }
2116}
2117
2118impl<'a, 'tcx> FmtPrinter<'a, 'tcx> {
2119    pub fn new(tcx: TyCtxt<'tcx>, ns: Namespace) -> Self {
2120        let limit =
2121            if with_reduced_queries() { Limit::new(1048576) } else { tcx.type_length_limit() };
2122        Self::new_with_limit(tcx, ns, limit)
2123    }
2124
2125    pub fn print_string(
2126        tcx: TyCtxt<'tcx>,
2127        ns: Namespace,
2128        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2129    ) -> Result<String, PrintError> {
2130        let mut c = FmtPrinter::new(tcx, ns);
2131        f(&mut c)?;
2132        Ok(c.into_buffer())
2133    }
2134
2135    pub fn new_with_limit(tcx: TyCtxt<'tcx>, ns: Namespace, type_length_limit: Limit) -> Self {
2136        FmtPrinter(Box::new(FmtPrinterData {
2137            tcx,
2138            // Estimated reasonable capacity to allocate upfront based on a few
2139            // benchmarks.
2140            fmt: String::with_capacity(64),
2141            empty_path: false,
2142            in_value: ns == Namespace::ValueNS,
2143            print_alloc_ids: false,
2144            used_region_names: Default::default(),
2145            region_index: 0,
2146            binder_depth: 0,
2147            printed_type_count: 0,
2148            type_length_limit,
2149            region_highlight_mode: RegionHighlightMode::default(),
2150            ty_infer_name_resolver: None,
2151            const_infer_name_resolver: None,
2152        }))
2153    }
2154
2155    pub fn into_buffer(self) -> String {
2156        self.0.fmt
2157    }
2158}
2159
2160// HACK(eddyb) get rid of `def_path_str` and/or pass `Namespace` explicitly always
2161// (but also some things just print a `DefId` generally so maybe we need this?)
2162fn guess_def_namespace(tcx: TyCtxt<'_>, def_id: DefId) -> Namespace {
2163    match tcx.def_key(def_id).disambiguated_data.data {
2164        DefPathData::TypeNs(..) | DefPathData::CrateRoot | DefPathData::OpaqueTy => {
2165            Namespace::TypeNS
2166        }
2167
2168        DefPathData::ValueNs(..)
2169        | DefPathData::AnonConst
2170        | DefPathData::Closure
2171        | DefPathData::Ctor => Namespace::ValueNS,
2172
2173        DefPathData::MacroNs(..) => Namespace::MacroNS,
2174
2175        _ => Namespace::TypeNS,
2176    }
2177}
2178
2179impl<'t> TyCtxt<'t> {
2180    /// Returns a string identifying this `DefId`. This string is
2181    /// suitable for user output.
2182    pub fn def_path_str(self, def_id: impl IntoQueryParam<DefId>) -> String {
2183        self.def_path_str_with_args(def_id, &[])
2184    }
2185
2186    pub fn def_path_str_with_args(
2187        self,
2188        def_id: impl IntoQueryParam<DefId>,
2189        args: &'t [GenericArg<'t>],
2190    ) -> String {
2191        let def_id = def_id.into_query_param();
2192        let ns = guess_def_namespace(self, def_id);
2193        debug!("def_path_str: def_id={:?}, ns={:?}", def_id, ns);
2194
2195        FmtPrinter::print_string(self, ns, |cx| cx.print_def_path(def_id, args)).unwrap()
2196    }
2197
2198    pub fn value_path_str_with_args(
2199        self,
2200        def_id: impl IntoQueryParam<DefId>,
2201        args: &'t [GenericArg<'t>],
2202    ) -> String {
2203        let def_id = def_id.into_query_param();
2204        let ns = guess_def_namespace(self, def_id);
2205        debug!("value_path_str: def_id={:?}, ns={:?}", def_id, ns);
2206
2207        FmtPrinter::print_string(self, ns, |cx| cx.print_value_path(def_id, args)).unwrap()
2208    }
2209}
2210
2211impl fmt::Write for FmtPrinter<'_, '_> {
2212    fn write_str(&mut self, s: &str) -> fmt::Result {
2213        self.fmt.push_str(s);
2214        Ok(())
2215    }
2216}
2217
2218impl<'tcx> Printer<'tcx> for FmtPrinter<'_, 'tcx> {
2219    fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
2220        self.tcx
2221    }
2222
2223    fn print_def_path(
2224        &mut self,
2225        def_id: DefId,
2226        args: &'tcx [GenericArg<'tcx>],
2227    ) -> Result<(), PrintError> {
2228        if args.is_empty() {
2229            match self.try_print_trimmed_def_path(def_id)? {
2230                true => return Ok(()),
2231                false => {}
2232            }
2233
2234            match self.try_print_visible_def_path(def_id)? {
2235                true => return Ok(()),
2236                false => {}
2237            }
2238        }
2239
2240        let key = self.tcx.def_key(def_id);
2241        if let DefPathData::Impl = key.disambiguated_data.data {
2242            // Always use types for non-local impls, where types are always
2243            // available, and filename/line-number is mostly uninteresting.
2244            let use_types = !def_id.is_local() || {
2245                // Otherwise, use filename/line-number if forced.
2246                let force_no_types = with_forced_impl_filename_line();
2247                !force_no_types
2248            };
2249
2250            if !use_types {
2251                // If no type info is available, fall back to
2252                // pretty printing some span information. This should
2253                // only occur very early in the compiler pipeline.
2254                let parent_def_id = DefId { index: key.parent.unwrap(), ..def_id };
2255                let span = self.tcx.def_span(def_id);
2256
2257                self.print_def_path(parent_def_id, &[])?;
2258
2259                // HACK(eddyb) copy of `path_append` to avoid
2260                // constructing a `DisambiguatedDefPathData`.
2261                if !self.empty_path {
2262                    write!(self, "::")?;
2263                }
2264                write!(
2265                    self,
2266                    "<impl at {}>",
2267                    // This may end up in stderr diagnostics but it may also be emitted
2268                    // into MIR. Hence we use the remapped path if available
2269                    self.tcx.sess.source_map().span_to_embeddable_string(span)
2270                )?;
2271                self.empty_path = false;
2272
2273                return Ok(());
2274            }
2275        }
2276
2277        self.default_print_def_path(def_id, args)
2278    }
2279
2280    fn print_region(&mut self, region: ty::Region<'tcx>) -> Result<(), PrintError> {
2281        self.pretty_print_region(region)
2282    }
2283
2284    fn print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError> {
2285        match ty.kind() {
2286            ty::Tuple(tys) if tys.len() == 0 && self.should_truncate() => {
2287                // Don't truncate `()`.
2288                self.printed_type_count += 1;
2289                self.pretty_print_type(ty)
2290            }
2291            ty::Adt(..)
2292            | ty::Foreign(_)
2293            | ty::Pat(..)
2294            | ty::RawPtr(..)
2295            | ty::Ref(..)
2296            | ty::FnDef(..)
2297            | ty::FnPtr(..)
2298            | ty::UnsafeBinder(..)
2299            | ty::Dynamic(..)
2300            | ty::Closure(..)
2301            | ty::CoroutineClosure(..)
2302            | ty::Coroutine(..)
2303            | ty::CoroutineWitness(..)
2304            | ty::Tuple(_)
2305            | ty::Alias(..)
2306            | ty::Param(_)
2307            | ty::Bound(..)
2308            | ty::Placeholder(_)
2309            | ty::Error(_)
2310                if self.should_truncate() =>
2311            {
2312                // We only truncate types that we know are likely to be much longer than 3 chars.
2313                // There's no point in replacing `i32` or `!`.
2314                write!(self, "...")?;
2315                Ok(())
2316            }
2317            _ => {
2318                self.printed_type_count += 1;
2319                self.pretty_print_type(ty)
2320            }
2321        }
2322    }
2323
2324    fn should_truncate(&mut self) -> bool {
2325        !self.type_length_limit.value_within_limit(self.printed_type_count)
2326    }
2327
2328    fn print_dyn_existential(
2329        &mut self,
2330        predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2331    ) -> Result<(), PrintError> {
2332        self.pretty_print_dyn_existential(predicates)
2333    }
2334
2335    fn print_const(&mut self, ct: ty::Const<'tcx>) -> Result<(), PrintError> {
2336        self.pretty_print_const(ct, false)
2337    }
2338
2339    fn path_crate(&mut self, cnum: CrateNum) -> Result<(), PrintError> {
2340        self.empty_path = true;
2341        if cnum == LOCAL_CRATE {
2342            if self.tcx.sess.at_least_rust_2018() {
2343                // We add the `crate::` keyword on Rust 2018, only when desired.
2344                if with_crate_prefix() {
2345                    write!(self, "{}", kw::Crate)?;
2346                    self.empty_path = false;
2347                }
2348            }
2349        } else {
2350            write!(self, "{}", self.tcx.crate_name(cnum))?;
2351            self.empty_path = false;
2352        }
2353        Ok(())
2354    }
2355
2356    fn path_qualified(
2357        &mut self,
2358        self_ty: Ty<'tcx>,
2359        trait_ref: Option<ty::TraitRef<'tcx>>,
2360    ) -> Result<(), PrintError> {
2361        self.pretty_path_qualified(self_ty, trait_ref)?;
2362        self.empty_path = false;
2363        Ok(())
2364    }
2365
2366    fn path_append_impl(
2367        &mut self,
2368        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2369        _disambiguated_data: &DisambiguatedDefPathData,
2370        self_ty: Ty<'tcx>,
2371        trait_ref: Option<ty::TraitRef<'tcx>>,
2372    ) -> Result<(), PrintError> {
2373        self.pretty_path_append_impl(
2374            |cx| {
2375                print_prefix(cx)?;
2376                if !cx.empty_path {
2377                    write!(cx, "::")?;
2378                }
2379
2380                Ok(())
2381            },
2382            self_ty,
2383            trait_ref,
2384        )?;
2385        self.empty_path = false;
2386        Ok(())
2387    }
2388
2389    fn path_append(
2390        &mut self,
2391        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2392        disambiguated_data: &DisambiguatedDefPathData,
2393    ) -> Result<(), PrintError> {
2394        print_prefix(self)?;
2395
2396        // Skip `::{{extern}}` blocks and `::{{constructor}}` on tuple/unit structs.
2397        if let DefPathData::ForeignMod | DefPathData::Ctor = disambiguated_data.data {
2398            return Ok(());
2399        }
2400
2401        let name = disambiguated_data.data.name();
2402        if !self.empty_path {
2403            write!(self, "::")?;
2404        }
2405
2406        if let DefPathDataName::Named(name) = name {
2407            if Ident::with_dummy_span(name).is_raw_guess() {
2408                write!(self, "r#")?;
2409            }
2410        }
2411
2412        let verbose = self.should_print_verbose();
2413        disambiguated_data.fmt_maybe_verbose(self, verbose)?;
2414
2415        self.empty_path = false;
2416
2417        Ok(())
2418    }
2419
2420    fn path_generic_args(
2421        &mut self,
2422        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2423        args: &[GenericArg<'tcx>],
2424    ) -> Result<(), PrintError> {
2425        print_prefix(self)?;
2426
2427        if !args.is_empty() {
2428            if self.in_value {
2429                write!(self, "::")?;
2430            }
2431            self.generic_delimiters(|cx| cx.comma_sep(args.iter().copied()))
2432        } else {
2433            Ok(())
2434        }
2435    }
2436}
2437
2438impl<'tcx> PrettyPrinter<'tcx> for FmtPrinter<'_, 'tcx> {
2439    fn ty_infer_name(&self, id: ty::TyVid) -> Option<Symbol> {
2440        self.0.ty_infer_name_resolver.as_ref().and_then(|func| func(id))
2441    }
2442
2443    fn reset_type_limit(&mut self) {
2444        self.printed_type_count = 0;
2445    }
2446
2447    fn const_infer_name(&self, id: ty::ConstVid) -> Option<Symbol> {
2448        self.0.const_infer_name_resolver.as_ref().and_then(|func| func(id))
2449    }
2450
2451    fn print_value_path(
2452        &mut self,
2453        def_id: DefId,
2454        args: &'tcx [GenericArg<'tcx>],
2455    ) -> Result<(), PrintError> {
2456        let was_in_value = std::mem::replace(&mut self.in_value, true);
2457        self.print_def_path(def_id, args)?;
2458        self.in_value = was_in_value;
2459
2460        Ok(())
2461    }
2462
2463    fn print_in_binder<T>(&mut self, value: &ty::Binder<'tcx, T>) -> Result<(), PrintError>
2464    where
2465        T: Print<'tcx, Self> + TypeFoldable<TyCtxt<'tcx>>,
2466    {
2467        self.pretty_print_in_binder(value)
2468    }
2469
2470    fn wrap_binder<T, C: FnOnce(&T, &mut Self) -> Result<(), PrintError>>(
2471        &mut self,
2472        value: &ty::Binder<'tcx, T>,
2473        mode: WrapBinderMode,
2474        f: C,
2475    ) -> Result<(), PrintError>
2476    where
2477        T: TypeFoldable<TyCtxt<'tcx>>,
2478    {
2479        self.pretty_wrap_binder(value, mode, f)
2480    }
2481
2482    fn typed_value(
2483        &mut self,
2484        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2485        t: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2486        conversion: &str,
2487    ) -> Result<(), PrintError> {
2488        self.write_str("{")?;
2489        f(self)?;
2490        self.write_str(conversion)?;
2491        let was_in_value = std::mem::replace(&mut self.in_value, false);
2492        t(self)?;
2493        self.in_value = was_in_value;
2494        self.write_str("}")?;
2495        Ok(())
2496    }
2497
2498    fn generic_delimiters(
2499        &mut self,
2500        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2501    ) -> Result<(), PrintError> {
2502        write!(self, "<")?;
2503
2504        let was_in_value = std::mem::replace(&mut self.in_value, false);
2505        f(self)?;
2506        self.in_value = was_in_value;
2507
2508        write!(self, ">")?;
2509        Ok(())
2510    }
2511
2512    fn should_print_region(&self, region: ty::Region<'tcx>) -> bool {
2513        let highlight = self.region_highlight_mode;
2514        if highlight.region_highlighted(region).is_some() {
2515            return true;
2516        }
2517
2518        if self.should_print_verbose() {
2519            return true;
2520        }
2521
2522        if with_forced_trimmed_paths() {
2523            return false;
2524        }
2525
2526        let identify_regions = self.tcx.sess.opts.unstable_opts.identify_regions;
2527
2528        match region.kind() {
2529            ty::ReEarlyParam(ref data) => data.has_name(),
2530
2531            ty::ReLateParam(ty::LateParamRegion { kind, .. }) => kind.is_named(),
2532            ty::ReBound(_, ty::BoundRegion { kind: br, .. })
2533            | ty::RePlaceholder(ty::Placeholder {
2534                bound: ty::BoundRegion { kind: br, .. }, ..
2535            }) => {
2536                if br.is_named() {
2537                    return true;
2538                }
2539
2540                if let Some((region, _)) = highlight.highlight_bound_region {
2541                    if br == region {
2542                        return true;
2543                    }
2544                }
2545
2546                false
2547            }
2548
2549            ty::ReVar(_) if identify_regions => true,
2550
2551            ty::ReVar(_) | ty::ReErased | ty::ReError(_) => false,
2552
2553            ty::ReStatic => true,
2554        }
2555    }
2556
2557    fn pretty_print_const_pointer<Prov: Provenance>(
2558        &mut self,
2559        p: Pointer<Prov>,
2560        ty: Ty<'tcx>,
2561    ) -> Result<(), PrintError> {
2562        let print = |this: &mut Self| {
2563            define_scoped_cx!(this);
2564            if this.print_alloc_ids {
2565                p!(write("{:?}", p));
2566            } else {
2567                p!("&_");
2568            }
2569            Ok(())
2570        };
2571        self.typed_value(print, |this| this.print_type(ty), ": ")
2572    }
2573}
2574
2575// HACK(eddyb) limited to `FmtPrinter` because of `region_highlight_mode`.
2576impl<'tcx> FmtPrinter<'_, 'tcx> {
2577    pub fn pretty_print_region(&mut self, region: ty::Region<'tcx>) -> Result<(), fmt::Error> {
2578        define_scoped_cx!(self);
2579
2580        // Watch out for region highlights.
2581        let highlight = self.region_highlight_mode;
2582        if let Some(n) = highlight.region_highlighted(region) {
2583            p!(write("'{}", n));
2584            return Ok(());
2585        }
2586
2587        if self.should_print_verbose() {
2588            p!(write("{:?}", region));
2589            return Ok(());
2590        }
2591
2592        let identify_regions = self.tcx.sess.opts.unstable_opts.identify_regions;
2593
2594        // These printouts are concise. They do not contain all the information
2595        // the user might want to diagnose an error, but there is basically no way
2596        // to fit that into a short string. Hence the recommendation to use
2597        // `explain_region()` or `note_and_explain_region()`.
2598        match region.kind() {
2599            ty::ReEarlyParam(data) => {
2600                p!(write("{}", data.name));
2601                return Ok(());
2602            }
2603            ty::ReLateParam(ty::LateParamRegion { kind, .. }) => {
2604                if let Some(name) = kind.get_name() {
2605                    p!(write("{}", name));
2606                    return Ok(());
2607                }
2608            }
2609            ty::ReBound(_, ty::BoundRegion { kind: br, .. })
2610            | ty::RePlaceholder(ty::Placeholder {
2611                bound: ty::BoundRegion { kind: br, .. }, ..
2612            }) => {
2613                if let ty::BoundRegionKind::Named(_, name) = br
2614                    && br.is_named()
2615                {
2616                    p!(write("{}", name));
2617                    return Ok(());
2618                }
2619
2620                if let Some((region, counter)) = highlight.highlight_bound_region {
2621                    if br == region {
2622                        p!(write("'{}", counter));
2623                        return Ok(());
2624                    }
2625                }
2626            }
2627            ty::ReVar(region_vid) if identify_regions => {
2628                p!(write("{:?}", region_vid));
2629                return Ok(());
2630            }
2631            ty::ReVar(_) => {}
2632            ty::ReErased => {}
2633            ty::ReError(_) => {}
2634            ty::ReStatic => {
2635                p!("'static");
2636                return Ok(());
2637            }
2638        }
2639
2640        p!("'_");
2641
2642        Ok(())
2643    }
2644}
2645
2646/// Folds through bound vars and placeholders, naming them
2647struct RegionFolder<'a, 'tcx> {
2648    tcx: TyCtxt<'tcx>,
2649    current_index: ty::DebruijnIndex,
2650    region_map: UnordMap<ty::BoundRegion, ty::Region<'tcx>>,
2651    name: &'a mut (
2652                dyn FnMut(
2653        Option<ty::DebruijnIndex>, // Debruijn index of the folded late-bound region
2654        ty::DebruijnIndex,         // Index corresponding to binder level
2655        ty::BoundRegion,
2656    ) -> ty::Region<'tcx>
2657                    + 'a
2658            ),
2659}
2660
2661impl<'a, 'tcx> ty::TypeFolder<TyCtxt<'tcx>> for RegionFolder<'a, 'tcx> {
2662    fn cx(&self) -> TyCtxt<'tcx> {
2663        self.tcx
2664    }
2665
2666    fn fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
2667        &mut self,
2668        t: ty::Binder<'tcx, T>,
2669    ) -> ty::Binder<'tcx, T> {
2670        self.current_index.shift_in(1);
2671        let t = t.super_fold_with(self);
2672        self.current_index.shift_out(1);
2673        t
2674    }
2675
2676    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
2677        match *t.kind() {
2678            _ if t.has_vars_bound_at_or_above(self.current_index) || t.has_placeholders() => {
2679                return t.super_fold_with(self);
2680            }
2681            _ => {}
2682        }
2683        t
2684    }
2685
2686    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
2687        let name = &mut self.name;
2688        let region = match r.kind() {
2689            ty::ReBound(db, br) if db >= self.current_index => {
2690                *self.region_map.entry(br).or_insert_with(|| name(Some(db), self.current_index, br))
2691            }
2692            ty::RePlaceholder(ty::PlaceholderRegion {
2693                bound: ty::BoundRegion { kind, .. },
2694                ..
2695            }) => {
2696                // If this is an anonymous placeholder, don't rename. Otherwise, in some
2697                // async fns, we get a `for<'r> Send` bound
2698                match kind {
2699                    ty::BoundRegionKind::Anon | ty::BoundRegionKind::ClosureEnv => r,
2700                    _ => {
2701                        // Index doesn't matter, since this is just for naming and these never get bound
2702                        let br = ty::BoundRegion { var: ty::BoundVar::ZERO, kind };
2703                        *self
2704                            .region_map
2705                            .entry(br)
2706                            .or_insert_with(|| name(None, self.current_index, br))
2707                    }
2708                }
2709            }
2710            _ => return r,
2711        };
2712        if let ty::ReBound(debruijn1, br) = region.kind() {
2713            assert_eq!(debruijn1, ty::INNERMOST);
2714            ty::Region::new_bound(self.tcx, self.current_index, br)
2715        } else {
2716            region
2717        }
2718    }
2719}
2720
2721// HACK(eddyb) limited to `FmtPrinter` because of `binder_depth`,
2722// `region_index` and `used_region_names`.
2723impl<'tcx> FmtPrinter<'_, 'tcx> {
2724    pub fn name_all_regions<T>(
2725        &mut self,
2726        value: &ty::Binder<'tcx, T>,
2727        mode: WrapBinderMode,
2728    ) -> Result<(T, UnordMap<ty::BoundRegion, ty::Region<'tcx>>), fmt::Error>
2729    where
2730        T: TypeFoldable<TyCtxt<'tcx>>,
2731    {
2732        fn name_by_region_index(
2733            index: usize,
2734            available_names: &mut Vec<Symbol>,
2735            num_available: usize,
2736        ) -> Symbol {
2737            if let Some(name) = available_names.pop() {
2738                name
2739            } else {
2740                Symbol::intern(&format!("'z{}", index - num_available))
2741            }
2742        }
2743
2744        debug!("name_all_regions");
2745
2746        // Replace any anonymous late-bound regions with named
2747        // variants, using new unique identifiers, so that we can
2748        // clearly differentiate between named and unnamed regions in
2749        // the output. We'll probably want to tweak this over time to
2750        // decide just how much information to give.
2751        if self.binder_depth == 0 {
2752            self.prepare_region_info(value);
2753        }
2754
2755        debug!("self.used_region_names: {:?}", self.used_region_names);
2756
2757        let mut empty = true;
2758        let mut start_or_continue = |cx: &mut Self, start: &str, cont: &str| {
2759            let w = if empty {
2760                empty = false;
2761                start
2762            } else {
2763                cont
2764            };
2765            let _ = write!(cx, "{w}");
2766        };
2767        let do_continue = |cx: &mut Self, cont: Symbol| {
2768            let _ = write!(cx, "{cont}");
2769        };
2770
2771        let possible_names = ('a'..='z').rev().map(|s| Symbol::intern(&format!("'{s}")));
2772
2773        let mut available_names = possible_names
2774            .filter(|name| !self.used_region_names.contains(name))
2775            .collect::<Vec<_>>();
2776        debug!(?available_names);
2777        let num_available = available_names.len();
2778
2779        let mut region_index = self.region_index;
2780        let mut next_name = |this: &Self| {
2781            let mut name;
2782
2783            loop {
2784                name = name_by_region_index(region_index, &mut available_names, num_available);
2785                region_index += 1;
2786
2787                if !this.used_region_names.contains(&name) {
2788                    break;
2789                }
2790            }
2791
2792            name
2793        };
2794
2795        // If we want to print verbosely, then print *all* binders, even if they
2796        // aren't named. Eventually, we might just want this as the default, but
2797        // this is not *quite* right and changes the ordering of some output
2798        // anyways.
2799        let (new_value, map) = if self.should_print_verbose() {
2800            for var in value.bound_vars().iter() {
2801                start_or_continue(self, mode.start_str(), ", ");
2802                write!(self, "{var:?}")?;
2803            }
2804            // Unconditionally render `unsafe<>`.
2805            if value.bound_vars().is_empty() && mode == WrapBinderMode::Unsafe {
2806                start_or_continue(self, mode.start_str(), "");
2807            }
2808            start_or_continue(self, "", "> ");
2809            (value.clone().skip_binder(), UnordMap::default())
2810        } else {
2811            let tcx = self.tcx;
2812
2813            let trim_path = with_forced_trimmed_paths();
2814            // Closure used in `RegionFolder` to create names for anonymous late-bound
2815            // regions. We use two `DebruijnIndex`es (one for the currently folded
2816            // late-bound region and the other for the binder level) to determine
2817            // whether a name has already been created for the currently folded region,
2818            // see issue #102392.
2819            let mut name = |lifetime_idx: Option<ty::DebruijnIndex>,
2820                            binder_level_idx: ty::DebruijnIndex,
2821                            br: ty::BoundRegion| {
2822                let (name, kind) = match br.kind {
2823                    ty::BoundRegionKind::Anon | ty::BoundRegionKind::ClosureEnv => {
2824                        let name = next_name(self);
2825
2826                        if let Some(lt_idx) = lifetime_idx {
2827                            if lt_idx > binder_level_idx {
2828                                let kind =
2829                                    ty::BoundRegionKind::Named(CRATE_DEF_ID.to_def_id(), name);
2830                                return ty::Region::new_bound(
2831                                    tcx,
2832                                    ty::INNERMOST,
2833                                    ty::BoundRegion { var: br.var, kind },
2834                                );
2835                            }
2836                        }
2837
2838                        (name, ty::BoundRegionKind::Named(CRATE_DEF_ID.to_def_id(), name))
2839                    }
2840                    ty::BoundRegionKind::Named(def_id, kw::UnderscoreLifetime) => {
2841                        let name = next_name(self);
2842
2843                        if let Some(lt_idx) = lifetime_idx {
2844                            if lt_idx > binder_level_idx {
2845                                let kind = ty::BoundRegionKind::Named(def_id, name);
2846                                return ty::Region::new_bound(
2847                                    tcx,
2848                                    ty::INNERMOST,
2849                                    ty::BoundRegion { var: br.var, kind },
2850                                );
2851                            }
2852                        }
2853
2854                        (name, ty::BoundRegionKind::Named(def_id, name))
2855                    }
2856                    ty::BoundRegionKind::Named(_, name) => {
2857                        if let Some(lt_idx) = lifetime_idx {
2858                            if lt_idx > binder_level_idx {
2859                                let kind = br.kind;
2860                                return ty::Region::new_bound(
2861                                    tcx,
2862                                    ty::INNERMOST,
2863                                    ty::BoundRegion { var: br.var, kind },
2864                                );
2865                            }
2866                        }
2867
2868                        (name, br.kind)
2869                    }
2870                };
2871
2872                // Unconditionally render `unsafe<>`.
2873                if !trim_path || mode == WrapBinderMode::Unsafe {
2874                    start_or_continue(self, mode.start_str(), ", ");
2875                    do_continue(self, name);
2876                }
2877                ty::Region::new_bound(tcx, ty::INNERMOST, ty::BoundRegion { var: br.var, kind })
2878            };
2879            let mut folder = RegionFolder {
2880                tcx,
2881                current_index: ty::INNERMOST,
2882                name: &mut name,
2883                region_map: UnordMap::default(),
2884            };
2885            let new_value = value.clone().skip_binder().fold_with(&mut folder);
2886            let region_map = folder.region_map;
2887
2888            if mode == WrapBinderMode::Unsafe && region_map.is_empty() {
2889                start_or_continue(self, mode.start_str(), "");
2890            }
2891            start_or_continue(self, "", "> ");
2892
2893            (new_value, region_map)
2894        };
2895
2896        self.binder_depth += 1;
2897        self.region_index = region_index;
2898        Ok((new_value, map))
2899    }
2900
2901    pub fn pretty_print_in_binder<T>(
2902        &mut self,
2903        value: &ty::Binder<'tcx, T>,
2904    ) -> Result<(), fmt::Error>
2905    where
2906        T: Print<'tcx, Self> + TypeFoldable<TyCtxt<'tcx>>,
2907    {
2908        let old_region_index = self.region_index;
2909        let (new_value, _) = self.name_all_regions(value, WrapBinderMode::ForAll)?;
2910        new_value.print(self)?;
2911        self.region_index = old_region_index;
2912        self.binder_depth -= 1;
2913        Ok(())
2914    }
2915
2916    pub fn pretty_wrap_binder<T, C: FnOnce(&T, &mut Self) -> Result<(), fmt::Error>>(
2917        &mut self,
2918        value: &ty::Binder<'tcx, T>,
2919        mode: WrapBinderMode,
2920        f: C,
2921    ) -> Result<(), fmt::Error>
2922    where
2923        T: TypeFoldable<TyCtxt<'tcx>>,
2924    {
2925        let old_region_index = self.region_index;
2926        let (new_value, _) = self.name_all_regions(value, mode)?;
2927        f(&new_value, self)?;
2928        self.region_index = old_region_index;
2929        self.binder_depth -= 1;
2930        Ok(())
2931    }
2932
2933    fn prepare_region_info<T>(&mut self, value: &ty::Binder<'tcx, T>)
2934    where
2935        T: TypeFoldable<TyCtxt<'tcx>>,
2936    {
2937        struct RegionNameCollector<'tcx> {
2938            used_region_names: FxHashSet<Symbol>,
2939            type_collector: SsoHashSet<Ty<'tcx>>,
2940        }
2941
2942        impl<'tcx> RegionNameCollector<'tcx> {
2943            fn new() -> Self {
2944                RegionNameCollector {
2945                    used_region_names: Default::default(),
2946                    type_collector: SsoHashSet::new(),
2947                }
2948            }
2949        }
2950
2951        impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for RegionNameCollector<'tcx> {
2952            fn visit_region(&mut self, r: ty::Region<'tcx>) {
2953                trace!("address: {:p}", r.0.0);
2954
2955                // Collect all named lifetimes. These allow us to prevent duplication
2956                // of already existing lifetime names when introducing names for
2957                // anonymous late-bound regions.
2958                if let Some(name) = r.get_name() {
2959                    self.used_region_names.insert(name);
2960                }
2961            }
2962
2963            // We collect types in order to prevent really large types from compiling for
2964            // a really long time. See issue #83150 for why this is necessary.
2965            fn visit_ty(&mut self, ty: Ty<'tcx>) {
2966                let not_previously_inserted = self.type_collector.insert(ty);
2967                if not_previously_inserted {
2968                    ty.super_visit_with(self)
2969                }
2970            }
2971        }
2972
2973        let mut collector = RegionNameCollector::new();
2974        value.visit_with(&mut collector);
2975        self.used_region_names = collector.used_region_names;
2976        self.region_index = 0;
2977    }
2978}
2979
2980impl<'tcx, T, P: PrettyPrinter<'tcx>> Print<'tcx, P> for ty::Binder<'tcx, T>
2981where
2982    T: Print<'tcx, P> + TypeFoldable<TyCtxt<'tcx>>,
2983{
2984    fn print(&self, cx: &mut P) -> Result<(), PrintError> {
2985        cx.print_in_binder(self)
2986    }
2987}
2988
2989impl<'tcx, T, P: PrettyPrinter<'tcx>> Print<'tcx, P> for ty::OutlivesPredicate<'tcx, T>
2990where
2991    T: Print<'tcx, P>,
2992{
2993    fn print(&self, cx: &mut P) -> Result<(), PrintError> {
2994        define_scoped_cx!(cx);
2995        p!(print(self.0), ": ", print(self.1));
2996        Ok(())
2997    }
2998}
2999
3000/// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
3001/// the trait path. That is, it will print `Trait<U>` instead of
3002/// `<T as Trait<U>>`.
3003#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
3004pub struct TraitRefPrintOnlyTraitPath<'tcx>(ty::TraitRef<'tcx>);
3005
3006impl<'tcx> rustc_errors::IntoDiagArg for TraitRefPrintOnlyTraitPath<'tcx> {
3007    fn into_diag_arg(self, path: &mut Option<std::path::PathBuf>) -> rustc_errors::DiagArgValue {
3008        ty::tls::with(|tcx| {
3009            let trait_ref = tcx.short_string(self, path);
3010            rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(trait_ref))
3011        })
3012    }
3013}
3014
3015impl<'tcx> fmt::Debug for TraitRefPrintOnlyTraitPath<'tcx> {
3016    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3017        fmt::Display::fmt(self, f)
3018    }
3019}
3020
3021/// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
3022/// the trait path, and additionally tries to "sugar" `Fn(...)` trait bounds.
3023#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
3024pub struct TraitRefPrintSugared<'tcx>(ty::TraitRef<'tcx>);
3025
3026impl<'tcx> rustc_errors::IntoDiagArg for TraitRefPrintSugared<'tcx> {
3027    fn into_diag_arg(self, path: &mut Option<std::path::PathBuf>) -> rustc_errors::DiagArgValue {
3028        ty::tls::with(|tcx| {
3029            let trait_ref = tcx.short_string(self, path);
3030            rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(trait_ref))
3031        })
3032    }
3033}
3034
3035impl<'tcx> fmt::Debug for TraitRefPrintSugared<'tcx> {
3036    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3037        fmt::Display::fmt(self, f)
3038    }
3039}
3040
3041/// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
3042/// the trait name. That is, it will print `Trait` instead of
3043/// `<T as Trait<U>>`.
3044#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift)]
3045pub struct TraitRefPrintOnlyTraitName<'tcx>(ty::TraitRef<'tcx>);
3046
3047impl<'tcx> fmt::Debug for TraitRefPrintOnlyTraitName<'tcx> {
3048    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3049        fmt::Display::fmt(self, f)
3050    }
3051}
3052
3053#[extension(pub trait PrintTraitRefExt<'tcx>)]
3054impl<'tcx> ty::TraitRef<'tcx> {
3055    fn print_only_trait_path(self) -> TraitRefPrintOnlyTraitPath<'tcx> {
3056        TraitRefPrintOnlyTraitPath(self)
3057    }
3058
3059    fn print_trait_sugared(self) -> TraitRefPrintSugared<'tcx> {
3060        TraitRefPrintSugared(self)
3061    }
3062
3063    fn print_only_trait_name(self) -> TraitRefPrintOnlyTraitName<'tcx> {
3064        TraitRefPrintOnlyTraitName(self)
3065    }
3066}
3067
3068#[extension(pub trait PrintPolyTraitRefExt<'tcx>)]
3069impl<'tcx> ty::Binder<'tcx, ty::TraitRef<'tcx>> {
3070    fn print_only_trait_path(self) -> ty::Binder<'tcx, TraitRefPrintOnlyTraitPath<'tcx>> {
3071        self.map_bound(|tr| tr.print_only_trait_path())
3072    }
3073
3074    fn print_trait_sugared(self) -> ty::Binder<'tcx, TraitRefPrintSugared<'tcx>> {
3075        self.map_bound(|tr| tr.print_trait_sugared())
3076    }
3077}
3078
3079#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift)]
3080pub struct TraitPredPrintModifiersAndPath<'tcx>(ty::TraitPredicate<'tcx>);
3081
3082impl<'tcx> fmt::Debug for TraitPredPrintModifiersAndPath<'tcx> {
3083    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3084        fmt::Display::fmt(self, f)
3085    }
3086}
3087
3088#[extension(pub trait PrintTraitPredicateExt<'tcx>)]
3089impl<'tcx> ty::TraitPredicate<'tcx> {
3090    fn print_modifiers_and_trait_path(self) -> TraitPredPrintModifiersAndPath<'tcx> {
3091        TraitPredPrintModifiersAndPath(self)
3092    }
3093}
3094
3095#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
3096pub struct TraitPredPrintWithBoundConstness<'tcx>(
3097    ty::TraitPredicate<'tcx>,
3098    Option<ty::BoundConstness>,
3099);
3100
3101impl<'tcx> fmt::Debug for TraitPredPrintWithBoundConstness<'tcx> {
3102    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3103        fmt::Display::fmt(self, f)
3104    }
3105}
3106
3107#[extension(pub trait PrintPolyTraitPredicateExt<'tcx>)]
3108impl<'tcx> ty::PolyTraitPredicate<'tcx> {
3109    fn print_modifiers_and_trait_path(
3110        self,
3111    ) -> ty::Binder<'tcx, TraitPredPrintModifiersAndPath<'tcx>> {
3112        self.map_bound(TraitPredPrintModifiersAndPath)
3113    }
3114
3115    fn print_with_bound_constness(
3116        self,
3117        constness: Option<ty::BoundConstness>,
3118    ) -> ty::Binder<'tcx, TraitPredPrintWithBoundConstness<'tcx>> {
3119        self.map_bound(|trait_pred| TraitPredPrintWithBoundConstness(trait_pred, constness))
3120    }
3121}
3122
3123#[derive(Debug, Copy, Clone, Lift)]
3124pub struct PrintClosureAsImpl<'tcx> {
3125    pub closure: ty::ClosureArgs<TyCtxt<'tcx>>,
3126}
3127
3128macro_rules! forward_display_to_print {
3129    ($($ty:ty),+) => {
3130        // Some of the $ty arguments may not actually use 'tcx
3131        $(#[allow(unused_lifetimes)] impl<'tcx> fmt::Display for $ty {
3132            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3133                ty::tls::with(|tcx| {
3134                    let mut cx = FmtPrinter::new(tcx, Namespace::TypeNS);
3135                    tcx.lift(*self)
3136                        .expect("could not lift for printing")
3137                        .print(&mut cx)?;
3138                    f.write_str(&cx.into_buffer())?;
3139                    Ok(())
3140                })
3141            }
3142        })+
3143    };
3144}
3145
3146macro_rules! define_print {
3147    (($self:ident, $cx:ident): $($ty:ty $print:block)+) => {
3148        $(impl<'tcx, P: PrettyPrinter<'tcx>> Print<'tcx, P> for $ty {
3149            fn print(&$self, $cx: &mut P) -> Result<(), PrintError> {
3150                define_scoped_cx!($cx);
3151                let _: () = $print;
3152                Ok(())
3153            }
3154        })+
3155    };
3156}
3157
3158macro_rules! define_print_and_forward_display {
3159    (($self:ident, $cx:ident): $($ty:ty $print:block)+) => {
3160        define_print!(($self, $cx): $($ty $print)*);
3161        forward_display_to_print!($($ty),+);
3162    };
3163}
3164
3165forward_display_to_print! {
3166    ty::Region<'tcx>,
3167    Ty<'tcx>,
3168    &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
3169    ty::Const<'tcx>
3170}
3171
3172define_print! {
3173    (self, cx):
3174
3175    ty::FnSig<'tcx> {
3176        p!(write("{}", self.safety.prefix_str()));
3177
3178        if self.abi != ExternAbi::Rust {
3179            p!(write("extern {} ", self.abi));
3180        }
3181
3182        p!("fn", pretty_fn_sig(self.inputs(), self.c_variadic, self.output()));
3183    }
3184
3185    ty::TraitRef<'tcx> {
3186        p!(write("<{} as {}>", self.self_ty(), self.print_only_trait_path()))
3187    }
3188
3189    ty::AliasTy<'tcx> {
3190        let alias_term: ty::AliasTerm<'tcx> = (*self).into();
3191        p!(print(alias_term))
3192    }
3193
3194    ty::AliasTerm<'tcx> {
3195        match self.kind(cx.tcx()) {
3196            ty::AliasTermKind::InherentTy | ty::AliasTermKind::InherentConst => p!(pretty_print_inherent_projection(*self)),
3197            ty::AliasTermKind::ProjectionTy => {
3198                if !(cx.should_print_verbose() || with_reduced_queries())
3199                    && cx.tcx().is_impl_trait_in_trait(self.def_id)
3200                {
3201                    p!(pretty_print_rpitit(self.def_id, self.args))
3202                } else {
3203                    p!(print_def_path(self.def_id, self.args));
3204                }
3205            }
3206            ty::AliasTermKind::FreeTy
3207            | ty::AliasTermKind::FreeConst
3208            | ty::AliasTermKind::OpaqueTy
3209            | ty::AliasTermKind::UnevaluatedConst
3210            | ty::AliasTermKind::ProjectionConst => {
3211                p!(print_def_path(self.def_id, self.args));
3212            }
3213        }
3214    }
3215
3216    ty::TraitPredicate<'tcx> {
3217        p!(print(self.trait_ref.self_ty()), ": ");
3218        if let ty::PredicatePolarity::Negative = self.polarity {
3219            p!("!");
3220        }
3221        p!(print(self.trait_ref.print_trait_sugared()))
3222    }
3223
3224    ty::HostEffectPredicate<'tcx> {
3225        let constness = match self.constness {
3226            ty::BoundConstness::Const => { "const" }
3227            ty::BoundConstness::Maybe => { "~const" }
3228        };
3229        p!(print(self.trait_ref.self_ty()), ": {constness} ");
3230        p!(print(self.trait_ref.print_trait_sugared()))
3231    }
3232
3233    ty::TypeAndMut<'tcx> {
3234        p!(write("{}", self.mutbl.prefix_str()), print(self.ty))
3235    }
3236
3237    ty::ClauseKind<'tcx> {
3238        match *self {
3239            ty::ClauseKind::Trait(ref data) => {
3240                p!(print(data))
3241            }
3242            ty::ClauseKind::RegionOutlives(predicate) => p!(print(predicate)),
3243            ty::ClauseKind::TypeOutlives(predicate) => p!(print(predicate)),
3244            ty::ClauseKind::Projection(predicate) => p!(print(predicate)),
3245            ty::ClauseKind::HostEffect(predicate) => p!(print(predicate)),
3246            ty::ClauseKind::ConstArgHasType(ct, ty) => {
3247                p!("the constant `", print(ct), "` has type `", print(ty), "`")
3248            },
3249            ty::ClauseKind::WellFormed(term) => p!(print(term), " well-formed"),
3250            ty::ClauseKind::ConstEvaluatable(ct) => {
3251                p!("the constant `", print(ct), "` can be evaluated")
3252            }
3253        }
3254    }
3255
3256    ty::PredicateKind<'tcx> {
3257        match *self {
3258            ty::PredicateKind::Clause(data) => {
3259                p!(print(data))
3260            }
3261            ty::PredicateKind::Subtype(predicate) => p!(print(predicate)),
3262            ty::PredicateKind::Coerce(predicate) => p!(print(predicate)),
3263            ty::PredicateKind::DynCompatible(trait_def_id) => {
3264                p!("the trait `", print_def_path(trait_def_id, &[]), "` is dyn-compatible")
3265            }
3266            ty::PredicateKind::ConstEquate(c1, c2) => {
3267                p!("the constant `", print(c1), "` equals `", print(c2), "`")
3268            }
3269            ty::PredicateKind::Ambiguous => p!("ambiguous"),
3270            ty::PredicateKind::NormalizesTo(data) => p!(print(data)),
3271            ty::PredicateKind::AliasRelate(t1, t2, dir) => p!(print(t1), write(" {} ", dir), print(t2)),
3272        }
3273    }
3274
3275    ty::ExistentialPredicate<'tcx> {
3276        match *self {
3277            ty::ExistentialPredicate::Trait(x) => p!(print(x)),
3278            ty::ExistentialPredicate::Projection(x) => p!(print(x)),
3279            ty::ExistentialPredicate::AutoTrait(def_id) => {
3280                p!(print_def_path(def_id, &[]));
3281            }
3282        }
3283    }
3284
3285    ty::ExistentialTraitRef<'tcx> {
3286        // Use a type that can't appear in defaults of type parameters.
3287        let dummy_self = Ty::new_fresh(cx.tcx(), 0);
3288        let trait_ref = self.with_self_ty(cx.tcx(), dummy_self);
3289        p!(print(trait_ref.print_only_trait_path()))
3290    }
3291
3292    ty::ExistentialProjection<'tcx> {
3293        let name = cx.tcx().associated_item(self.def_id).name();
3294        // The args don't contain the self ty (as it has been erased) but the corresp.
3295        // generics do as the trait always has a self ty param. We need to offset.
3296        let args = &self.args[cx.tcx().generics_of(self.def_id).parent_count - 1..];
3297        p!(path_generic_args(|cx| write!(cx, "{name}"), args), " = ", print(self.term))
3298    }
3299
3300    ty::ProjectionPredicate<'tcx> {
3301        p!(print(self.projection_term), " == ");
3302        cx.reset_type_limit();
3303        p!(print(self.term))
3304    }
3305
3306    ty::SubtypePredicate<'tcx> {
3307        p!(print(self.a), " <: ");
3308        cx.reset_type_limit();
3309        p!(print(self.b))
3310    }
3311
3312    ty::CoercePredicate<'tcx> {
3313        p!(print(self.a), " -> ");
3314        cx.reset_type_limit();
3315        p!(print(self.b))
3316    }
3317
3318    ty::NormalizesTo<'tcx> {
3319        p!(print(self.alias), " normalizes-to ");
3320        cx.reset_type_limit();
3321        p!(print(self.term))
3322    }
3323}
3324
3325define_print_and_forward_display! {
3326    (self, cx):
3327
3328    &'tcx ty::List<Ty<'tcx>> {
3329        p!("{{", comma_sep(self.iter()), "}}")
3330    }
3331
3332    TraitRefPrintOnlyTraitPath<'tcx> {
3333        p!(print_def_path(self.0.def_id, self.0.args));
3334    }
3335
3336    TraitRefPrintSugared<'tcx> {
3337        if !with_reduced_queries()
3338            && cx.tcx().trait_def(self.0.def_id).paren_sugar
3339            && let ty::Tuple(args) = self.0.args.type_at(1).kind()
3340        {
3341            p!(write("{}", cx.tcx().item_name(self.0.def_id)), "(");
3342            for (i, arg) in args.iter().enumerate() {
3343                if i > 0 {
3344                    p!(", ");
3345                }
3346                p!(print(arg));
3347            }
3348            p!(")");
3349        } else {
3350            p!(print_def_path(self.0.def_id, self.0.args));
3351        }
3352    }
3353
3354    TraitRefPrintOnlyTraitName<'tcx> {
3355        p!(print_def_path(self.0.def_id, &[]));
3356    }
3357
3358    TraitPredPrintModifiersAndPath<'tcx> {
3359        if let ty::PredicatePolarity::Negative = self.0.polarity {
3360            p!("!")
3361        }
3362        p!(print(self.0.trait_ref.print_trait_sugared()));
3363    }
3364
3365    TraitPredPrintWithBoundConstness<'tcx> {
3366        p!(print(self.0.trait_ref.self_ty()), ": ");
3367        if let Some(constness) = self.1 {
3368            p!(pretty_print_bound_constness(constness));
3369        }
3370        if let ty::PredicatePolarity::Negative = self.0.polarity {
3371            p!("!");
3372        }
3373        p!(print(self.0.trait_ref.print_trait_sugared()))
3374    }
3375
3376    PrintClosureAsImpl<'tcx> {
3377        p!(pretty_closure_as_impl(self.closure))
3378    }
3379
3380    ty::ParamTy {
3381        p!(write("{}", self.name))
3382    }
3383
3384    ty::ParamConst {
3385        p!(write("{}", self.name))
3386    }
3387
3388    ty::Term<'tcx> {
3389      match self.unpack() {
3390        ty::TermKind::Ty(ty) => p!(print(ty)),
3391        ty::TermKind::Const(c) => p!(print(c)),
3392      }
3393    }
3394
3395    ty::Predicate<'tcx> {
3396        p!(print(self.kind()))
3397    }
3398
3399    ty::Clause<'tcx> {
3400        p!(print(self.kind()))
3401    }
3402
3403    GenericArg<'tcx> {
3404        match self.unpack() {
3405            GenericArgKind::Lifetime(lt) => p!(print(lt)),
3406            GenericArgKind::Type(ty) => p!(print(ty)),
3407            GenericArgKind::Const(ct) => p!(print(ct)),
3408        }
3409    }
3410}
3411
3412fn for_each_def(tcx: TyCtxt<'_>, mut collect_fn: impl for<'b> FnMut(&'b Ident, Namespace, DefId)) {
3413    // Iterate all (non-anonymous) local crate items no matter where they are defined.
3414    for id in tcx.hir_free_items() {
3415        if matches!(tcx.def_kind(id.owner_id), DefKind::Use) {
3416            continue;
3417        }
3418
3419        let item = tcx.hir_item(id);
3420        let Some(ident) = item.kind.ident() else { continue };
3421
3422        let def_id = item.owner_id.to_def_id();
3423        let ns = tcx.def_kind(def_id).ns().unwrap_or(Namespace::TypeNS);
3424        collect_fn(&ident, ns, def_id);
3425    }
3426
3427    // Now take care of extern crate items.
3428    let queue = &mut Vec::new();
3429    let mut seen_defs: DefIdSet = Default::default();
3430
3431    for &cnum in tcx.crates(()).iter() {
3432        // Ignore crates that are not direct dependencies.
3433        match tcx.extern_crate(cnum) {
3434            None => continue,
3435            Some(extern_crate) => {
3436                if !extern_crate.is_direct() {
3437                    continue;
3438                }
3439            }
3440        }
3441
3442        queue.push(cnum.as_def_id());
3443    }
3444
3445    // Iterate external crate defs but be mindful about visibility
3446    while let Some(def) = queue.pop() {
3447        for child in tcx.module_children(def).iter() {
3448            if !child.vis.is_public() {
3449                continue;
3450            }
3451
3452            match child.res {
3453                def::Res::Def(DefKind::AssocTy, _) => {}
3454                def::Res::Def(DefKind::TyAlias, _) => {}
3455                def::Res::Def(defkind, def_id) => {
3456                    if let Some(ns) = defkind.ns() {
3457                        collect_fn(&child.ident, ns, def_id);
3458                    }
3459
3460                    if matches!(defkind, DefKind::Mod | DefKind::Enum | DefKind::Trait)
3461                        && seen_defs.insert(def_id)
3462                    {
3463                        queue.push(def_id);
3464                    }
3465                }
3466                _ => {}
3467            }
3468        }
3469    }
3470}
3471
3472/// The purpose of this function is to collect public symbols names that are unique across all
3473/// crates in the build. Later, when printing about types we can use those names instead of the
3474/// full exported path to them.
3475///
3476/// So essentially, if a symbol name can only be imported from one place for a type, and as
3477/// long as it was not glob-imported anywhere in the current crate, we can trim its printed
3478/// path and print only the name.
3479///
3480/// This has wide implications on error messages with types, for example, shortening
3481/// `std::vec::Vec` to just `Vec`, as long as there is no other `Vec` importable anywhere.
3482///
3483/// The implementation uses similar import discovery logic to that of 'use' suggestions.
3484///
3485/// See also [`with_no_trimmed_paths!`].
3486// this is pub to be able to intra-doc-link it
3487pub fn trimmed_def_paths(tcx: TyCtxt<'_>, (): ()) -> DefIdMap<Symbol> {
3488    // Trimming paths is expensive and not optimized, since we expect it to only be used for error
3489    // reporting. Record the fact that we did it, so we can abort if we later found it was
3490    // unnecessary.
3491    //
3492    // The `rustc_middle::ty::print::with_no_trimmed_paths` wrapper can be used to suppress this
3493    // checking, in exchange for full paths being formatted.
3494    tcx.sess.record_trimmed_def_paths();
3495
3496    // Once constructed, unique namespace+symbol pairs will have a `Some(_)` entry, while
3497    // non-unique pairs will have a `None` entry.
3498    let unique_symbols_rev: &mut FxIndexMap<(Namespace, Symbol), Option<DefId>> =
3499        &mut FxIndexMap::default();
3500
3501    for symbol_set in tcx.resolutions(()).glob_map.values() {
3502        for symbol in symbol_set {
3503            unique_symbols_rev.insert((Namespace::TypeNS, *symbol), None);
3504            unique_symbols_rev.insert((Namespace::ValueNS, *symbol), None);
3505            unique_symbols_rev.insert((Namespace::MacroNS, *symbol), None);
3506        }
3507    }
3508
3509    for_each_def(tcx, |ident, ns, def_id| match unique_symbols_rev.entry((ns, ident.name)) {
3510        IndexEntry::Occupied(mut v) => match v.get() {
3511            None => {}
3512            Some(existing) => {
3513                if *existing != def_id {
3514                    v.insert(None);
3515                }
3516            }
3517        },
3518        IndexEntry::Vacant(v) => {
3519            v.insert(Some(def_id));
3520        }
3521    });
3522
3523    // Put the symbol from all the unique namespace+symbol pairs into `map`.
3524    let mut map: DefIdMap<Symbol> = Default::default();
3525    for ((_, symbol), opt_def_id) in unique_symbols_rev.drain(..) {
3526        use std::collections::hash_map::Entry::{Occupied, Vacant};
3527
3528        if let Some(def_id) = opt_def_id {
3529            match map.entry(def_id) {
3530                Occupied(mut v) => {
3531                    // A single DefId can be known under multiple names (e.g.,
3532                    // with a `pub use ... as ...;`). We need to ensure that the
3533                    // name placed in this map is chosen deterministically, so
3534                    // if we find multiple names (`symbol`) resolving to the
3535                    // same `def_id`, we prefer the lexicographically smallest
3536                    // name.
3537                    //
3538                    // Any stable ordering would be fine here though.
3539                    if *v.get() != symbol && v.get().as_str() > symbol.as_str() {
3540                        v.insert(symbol);
3541                    }
3542                }
3543                Vacant(v) => {
3544                    v.insert(symbol);
3545                }
3546            }
3547        }
3548    }
3549
3550    map
3551}
3552
3553pub fn provide(providers: &mut Providers) {
3554    *providers = Providers { trimmed_def_paths, ..*providers };
3555}
3556
3557pub struct OpaqueFnEntry<'tcx> {
3558    kind: ty::ClosureKind,
3559    return_ty: Option<ty::Binder<'tcx, Term<'tcx>>>,
3560}