rustc_middle/ty/print/
pretty.rs

1use std::cell::Cell;
2use std::fmt::{self, Write as _};
3use std::iter;
4use std::ops::{Deref, DerefMut};
5
6use rustc_abi::{ExternAbi, Size};
7use rustc_apfloat::Float;
8use rustc_apfloat::ieee::{Double, Half, Quad, Single};
9use rustc_data_structures::fx::{FxIndexMap, IndexEntry};
10use rustc_data_structures::unord::UnordMap;
11use rustc_hir as hir;
12use rustc_hir::LangItem;
13use rustc_hir::def::{self, CtorKind, DefKind, Namespace};
14use rustc_hir::def_id::{DefIdMap, DefIdSet, LOCAL_CRATE, ModDefId};
15use rustc_hir::definitions::{DefKey, DefPathDataName};
16use rustc_hir::limit::Limit;
17use rustc_macros::{Lift, extension};
18use rustc_session::cstore::{ExternCrate, ExternCrateSource};
19use rustc_span::{FileNameDisplayPreference, Ident, Symbol, kw, sym};
20use rustc_type_ir::{Upcast as _, elaborate};
21use smallvec::SmallVec;
22
23// `pretty` is a separate module only for organization.
24use super::*;
25use crate::mir::interpret::{AllocRange, GlobalAlloc, Pointer, Provenance, Scalar};
26use crate::query::{IntoQueryParam, Providers};
27use crate::ty::{
28    ConstInt, Expr, GenericArgKind, ParamConst, ScalarInt, Term, TermKind, TraitPredicate,
29    TypeFoldable, TypeSuperFoldable, TypeSuperVisitable, TypeVisitable, TypeVisitableExt,
30};
31
32thread_local! {
33    static FORCE_IMPL_FILENAME_LINE: Cell<bool> = const { Cell::new(false) };
34    static SHOULD_PREFIX_WITH_CRATE_NAME: Cell<bool> = const { Cell::new(false) };
35    static SHOULD_PREFIX_WITH_CRATE: Cell<bool> = const { Cell::new(false) };
36    static NO_TRIMMED_PATH: Cell<bool> = const { Cell::new(false) };
37    static FORCE_TRIMMED_PATH: Cell<bool> = const { Cell::new(false) };
38    static REDUCED_QUERIES: Cell<bool> = const { Cell::new(false) };
39    static NO_VISIBLE_PATH: Cell<bool> = const { Cell::new(false) };
40    static NO_VISIBLE_PATH_IF_DOC_HIDDEN: Cell<bool> = const { Cell::new(false) };
41    static RTN_MODE: Cell<RtnMode> = const { Cell::new(RtnMode::ForDiagnostic) };
42}
43
44/// Rendering style for RTN types.
45#[derive(Copy, Clone, PartialEq, Eq, Debug)]
46pub enum RtnMode {
47    /// Print the RTN type as an impl trait with its path, i.e.e `impl Sized { T::method(..) }`.
48    ForDiagnostic,
49    /// Print the RTN type as an impl trait, i.e. `impl Sized`.
50    ForSignature,
51    /// Print the RTN type as a value path, i.e. `T::method(..): ...`.
52    ForSuggestion,
53}
54
55macro_rules! define_helper {
56    ($($(#[$a:meta])* fn $name:ident($helper:ident, $tl:ident);)+) => {
57        $(
58            #[must_use]
59            pub struct $helper(bool);
60
61            impl $helper {
62                pub fn new() -> $helper {
63                    $helper($tl.replace(true))
64                }
65            }
66
67            $(#[$a])*
68            pub macro $name($e:expr) {
69                {
70                    let _guard = $helper::new();
71                    $e
72                }
73            }
74
75            impl Drop for $helper {
76                fn drop(&mut self) {
77                    $tl.set(self.0)
78                }
79            }
80
81            pub fn $name() -> bool {
82                $tl.get()
83            }
84        )+
85    }
86}
87
88define_helper!(
89    /// Avoids running select queries during any prints that occur
90    /// during the closure. This may alter the appearance of some
91    /// types (e.g. forcing verbose printing for opaque types).
92    /// This method is used during some queries (e.g. `explicit_item_bounds`
93    /// for opaque types), to ensure that any debug printing that
94    /// occurs during the query computation does not end up recursively
95    /// calling the same query.
96    fn with_reduced_queries(ReducedQueriesGuard, REDUCED_QUERIES);
97    /// Force us to name impls with just the filename/line number. We
98    /// normally try to use types. But at some points, notably while printing
99    /// cycle errors, this can result in extra or suboptimal error output,
100    /// so this variable disables that check.
101    fn with_forced_impl_filename_line(ForcedImplGuard, FORCE_IMPL_FILENAME_LINE);
102    /// Adds the crate name prefix to paths where appropriate.
103    /// Unlike `with_crate_prefix`, this unconditionally uses `tcx.crate_name` instead of sometimes
104    /// using `crate::` for local items.
105    ///
106    /// Overrides `with_crate_prefix`.
107
108    // This function is not currently used in-tree, but it's used by a downstream rustc-driver in
109    // Ferrocene. Please check with them before removing it.
110    fn with_resolve_crate_name(CrateNamePrefixGuard, SHOULD_PREFIX_WITH_CRATE_NAME);
111    /// Adds the `crate::` prefix to paths where appropriate.
112    ///
113    /// Ignored if `with_resolve_crate_name` is active.
114    fn with_crate_prefix(CratePrefixGuard, SHOULD_PREFIX_WITH_CRATE);
115    /// Prevent path trimming if it is turned on. Path trimming affects `Display` impl
116    /// of various rustc types, for example `std::vec::Vec` would be trimmed to `Vec`,
117    /// if no other `Vec` is found.
118    fn with_no_trimmed_paths(NoTrimmedGuard, NO_TRIMMED_PATH);
119    fn with_forced_trimmed_paths(ForceTrimmedGuard, FORCE_TRIMMED_PATH);
120    /// Prevent selection of visible paths. `Display` impl of DefId will prefer
121    /// visible (public) reexports of types as paths.
122    fn with_no_visible_paths(NoVisibleGuard, NO_VISIBLE_PATH);
123    /// Prevent selection of visible paths if the paths are through a doc hidden path.
124    fn with_no_visible_paths_if_doc_hidden(NoVisibleIfDocHiddenGuard, NO_VISIBLE_PATH_IF_DOC_HIDDEN);
125);
126
127#[must_use]
128pub struct RtnModeHelper(RtnMode);
129
130impl RtnModeHelper {
131    pub fn with(mode: RtnMode) -> RtnModeHelper {
132        RtnModeHelper(RTN_MODE.with(|c| c.replace(mode)))
133    }
134}
135
136impl Drop for RtnModeHelper {
137    fn drop(&mut self) {
138        RTN_MODE.with(|c| c.set(self.0))
139    }
140}
141
142/// Print types for the purposes of a suggestion.
143///
144/// Specifically, this will render RPITITs as `T::method(..)` which is suitable for
145/// things like where-clauses.
146pub macro with_types_for_suggestion($e:expr) {{
147    let _guard = $crate::ty::print::pretty::RtnModeHelper::with(RtnMode::ForSuggestion);
148    $e
149}}
150
151/// Print types for the purposes of a signature suggestion.
152///
153/// Specifically, this will render RPITITs as `impl Trait` rather than `T::method(..)`.
154pub macro with_types_for_signature($e:expr) {{
155    let _guard = $crate::ty::print::pretty::RtnModeHelper::with(RtnMode::ForSignature);
156    $e
157}}
158
159/// Avoids running any queries during prints.
160pub macro with_no_queries($e:expr) {{
161    $crate::ty::print::with_reduced_queries!($crate::ty::print::with_forced_impl_filename_line!(
162        $crate::ty::print::with_no_trimmed_paths!($crate::ty::print::with_no_visible_paths!(
163            $crate::ty::print::with_forced_impl_filename_line!($e)
164        ))
165    ))
166}}
167
168#[derive(Copy, Clone, Debug, PartialEq, Eq)]
169pub enum WrapBinderMode {
170    ForAll,
171    Unsafe,
172}
173impl WrapBinderMode {
174    pub fn start_str(self) -> &'static str {
175        match self {
176            WrapBinderMode::ForAll => "for<",
177            WrapBinderMode::Unsafe => "unsafe<",
178        }
179    }
180}
181
182/// The "region highlights" are used to control region printing during
183/// specific error messages. When a "region highlight" is enabled, it
184/// gives an alternate way to print specific regions. For now, we
185/// always print those regions using a number, so something like "`'0`".
186///
187/// Regions not selected by the region highlight mode are presently
188/// unaffected.
189#[derive(Copy, Clone, Default)]
190pub struct RegionHighlightMode<'tcx> {
191    /// If enabled, when we see the selected region, use "`'N`"
192    /// instead of the ordinary behavior.
193    highlight_regions: [Option<(ty::Region<'tcx>, usize)>; 3],
194
195    /// If enabled, when printing a "free region" that originated from
196    /// the given `ty::BoundRegionKind`, print it as "`'1`". Free regions that would ordinarily
197    /// have names print as normal.
198    ///
199    /// This is used when you have a signature like `fn foo(x: &u32,
200    /// y: &'a u32)` and we want to give a name to the region of the
201    /// reference `x`.
202    highlight_bound_region: Option<(ty::BoundRegionKind, usize)>,
203}
204
205impl<'tcx> RegionHighlightMode<'tcx> {
206    /// If `region` and `number` are both `Some`, invokes
207    /// `highlighting_region`.
208    pub fn maybe_highlighting_region(
209        &mut self,
210        region: Option<ty::Region<'tcx>>,
211        number: Option<usize>,
212    ) {
213        if let Some(k) = region
214            && let Some(n) = number
215        {
216            self.highlighting_region(k, n);
217        }
218    }
219
220    /// Highlights the region inference variable `vid` as `'N`.
221    pub fn highlighting_region(&mut self, region: ty::Region<'tcx>, number: usize) {
222        let num_slots = self.highlight_regions.len();
223        let first_avail_slot =
224            self.highlight_regions.iter_mut().find(|s| s.is_none()).unwrap_or_else(|| {
225                bug!("can only highlight {} placeholders at a time", num_slots,)
226            });
227        *first_avail_slot = Some((region, number));
228    }
229
230    /// Convenience wrapper for `highlighting_region`.
231    pub fn highlighting_region_vid(
232        &mut self,
233        tcx: TyCtxt<'tcx>,
234        vid: ty::RegionVid,
235        number: usize,
236    ) {
237        self.highlighting_region(ty::Region::new_var(tcx, vid), number)
238    }
239
240    /// Returns `Some(n)` with the number to use for the given region, if any.
241    fn region_highlighted(&self, region: ty::Region<'tcx>) -> Option<usize> {
242        self.highlight_regions.iter().find_map(|h| match h {
243            Some((r, n)) if *r == region => Some(*n),
244            _ => None,
245        })
246    }
247
248    /// Highlight the given bound region.
249    /// We can only highlight one bound region at a time. See
250    /// the field `highlight_bound_region` for more detailed notes.
251    pub fn highlighting_bound_region(&mut self, br: ty::BoundRegionKind, number: usize) {
252        assert!(self.highlight_bound_region.is_none());
253        self.highlight_bound_region = Some((br, number));
254    }
255}
256
257/// Trait for printers that pretty-print using `fmt::Write` to the printer.
258pub trait PrettyPrinter<'tcx>: Printer<'tcx> + fmt::Write {
259    /// Like `print_def_path` but for value paths.
260    fn pretty_print_value_path(
261        &mut self,
262        def_id: DefId,
263        args: &'tcx [GenericArg<'tcx>],
264    ) -> Result<(), PrintError> {
265        self.print_def_path(def_id, args)
266    }
267
268    fn pretty_print_in_binder<T>(&mut self, value: &ty::Binder<'tcx, T>) -> Result<(), PrintError>
269    where
270        T: Print<'tcx, Self> + TypeFoldable<TyCtxt<'tcx>>,
271    {
272        value.as_ref().skip_binder().print(self)
273    }
274
275    fn wrap_binder<T, F: FnOnce(&T, &mut Self) -> Result<(), fmt::Error>>(
276        &mut self,
277        value: &ty::Binder<'tcx, T>,
278        _mode: WrapBinderMode,
279        f: F,
280    ) -> Result<(), PrintError>
281    where
282        T: TypeFoldable<TyCtxt<'tcx>>,
283    {
284        f(value.as_ref().skip_binder(), self)
285    }
286
287    /// Prints comma-separated elements.
288    fn comma_sep<T>(&mut self, mut elems: impl Iterator<Item = T>) -> Result<(), PrintError>
289    where
290        T: Print<'tcx, Self>,
291    {
292        if let Some(first) = elems.next() {
293            first.print(self)?;
294            for elem in elems {
295                self.write_str(", ")?;
296                elem.print(self)?;
297            }
298        }
299        Ok(())
300    }
301
302    /// Prints `{f: t}` or `{f as t}` depending on the `cast` argument
303    fn typed_value(
304        &mut self,
305        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
306        t: impl FnOnce(&mut Self) -> Result<(), PrintError>,
307        conversion: &str,
308    ) -> Result<(), PrintError> {
309        self.write_str("{")?;
310        f(self)?;
311        self.write_str(conversion)?;
312        t(self)?;
313        self.write_str("}")?;
314        Ok(())
315    }
316
317    /// Prints `(...)` around what `f` prints.
318    fn parenthesized(
319        &mut self,
320        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
321    ) -> Result<(), PrintError> {
322        self.write_str("(")?;
323        f(self)?;
324        self.write_str(")")?;
325        Ok(())
326    }
327
328    /// Prints `(...)` around what `f` prints if `parenthesized` is true, otherwise just prints `f`.
329    fn maybe_parenthesized(
330        &mut self,
331        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
332        parenthesized: bool,
333    ) -> Result<(), PrintError> {
334        if parenthesized {
335            self.parenthesized(f)?;
336        } else {
337            f(self)?;
338        }
339        Ok(())
340    }
341
342    /// Prints `<...>` around what `f` prints.
343    fn generic_delimiters(
344        &mut self,
345        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
346    ) -> Result<(), PrintError>;
347
348    fn should_truncate(&mut self) -> bool {
349        false
350    }
351
352    /// Returns `true` if the region should be printed in optional positions,
353    /// e.g., `&'a T` or `dyn Tr + 'b`. (Regions like the one in `Cow<'static, T>`
354    /// will always be printed.)
355    fn should_print_optional_region(&self, region: ty::Region<'tcx>) -> bool;
356
357    fn reset_type_limit(&mut self) {}
358
359    // Defaults (should not be overridden):
360
361    /// If possible, this returns a global path resolving to `def_id` that is visible
362    /// from at least one local module, and returns `true`. If the crate defining `def_id` is
363    /// declared with an `extern crate`, the path is guaranteed to use the `extern crate`.
364    fn try_print_visible_def_path(&mut self, def_id: DefId) -> Result<bool, PrintError> {
365        if with_no_visible_paths() {
366            return Ok(false);
367        }
368
369        let mut callers = Vec::new();
370        self.try_print_visible_def_path_recur(def_id, &mut callers)
371    }
372
373    // Given a `DefId`, produce a short name. For types and traits, it prints *only* its name,
374    // For associated items on traits it prints out the trait's name and the associated item's name.
375    // For enum variants, if they have an unique name, then we only print the name, otherwise we
376    // print the enum name and the variant name. Otherwise, we do not print anything and let the
377    // caller use the `print_def_path` fallback.
378    fn force_print_trimmed_def_path(&mut self, def_id: DefId) -> Result<bool, PrintError> {
379        let key = self.tcx().def_key(def_id);
380        let visible_parent_map = self.tcx().visible_parent_map(());
381        let kind = self.tcx().def_kind(def_id);
382
383        let get_local_name = |this: &Self, name, def_id, key: DefKey| {
384            if let Some(visible_parent) = visible_parent_map.get(&def_id)
385                && let actual_parent = this.tcx().opt_parent(def_id)
386                && let DefPathData::TypeNs(_) = key.disambiguated_data.data
387                && Some(*visible_parent) != actual_parent
388            {
389                this.tcx()
390                    // FIXME(typed_def_id): Further propagate ModDefId
391                    .module_children(ModDefId::new_unchecked(*visible_parent))
392                    .iter()
393                    .filter(|child| child.res.opt_def_id() == Some(def_id))
394                    .find(|child| child.vis.is_public() && child.ident.name != kw::Underscore)
395                    .map(|child| child.ident.name)
396                    .unwrap_or(name)
397            } else {
398                name
399            }
400        };
401        if let DefKind::Variant = kind
402            && let Some(symbol) = self.tcx().trimmed_def_paths(()).get(&def_id)
403        {
404            // If `Assoc` is unique, we don't want to talk about `Trait::Assoc`.
405            self.write_str(get_local_name(self, *symbol, def_id, key).as_str())?;
406            return Ok(true);
407        }
408        if let Some(symbol) = key.get_opt_name() {
409            if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = kind
410                && let Some(parent) = self.tcx().opt_parent(def_id)
411                && let parent_key = self.tcx().def_key(parent)
412                && let Some(symbol) = parent_key.get_opt_name()
413            {
414                // Trait
415                self.write_str(get_local_name(self, symbol, parent, parent_key).as_str())?;
416                self.write_str("::")?;
417            } else if let DefKind::Variant = kind
418                && let Some(parent) = self.tcx().opt_parent(def_id)
419                && let parent_key = self.tcx().def_key(parent)
420                && let Some(symbol) = parent_key.get_opt_name()
421            {
422                // Enum
423
424                // For associated items and variants, we want the "full" path, namely, include
425                // the parent type in the path. For example, `Iterator::Item`.
426                self.write_str(get_local_name(self, symbol, parent, parent_key).as_str())?;
427                self.write_str("::")?;
428            } else if let DefKind::Struct
429            | DefKind::Union
430            | DefKind::Enum
431            | DefKind::Trait
432            | DefKind::TyAlias
433            | DefKind::Fn
434            | DefKind::Const
435            | DefKind::Static { .. } = kind
436            {
437            } else {
438                // If not covered above, like for example items out of `impl` blocks, fallback.
439                return Ok(false);
440            }
441            self.write_str(get_local_name(self, symbol, def_id, key).as_str())?;
442            return Ok(true);
443        }
444        Ok(false)
445    }
446
447    /// Try to see if this path can be trimmed to a unique symbol name.
448    fn try_print_trimmed_def_path(&mut self, def_id: DefId) -> Result<bool, PrintError> {
449        if with_forced_trimmed_paths() && self.force_print_trimmed_def_path(def_id)? {
450            return Ok(true);
451        }
452        if self.tcx().sess.opts.unstable_opts.trim_diagnostic_paths
453            && self.tcx().sess.opts.trimmed_def_paths
454            && !with_no_trimmed_paths()
455            && !with_crate_prefix()
456            && let Some(symbol) = self.tcx().trimmed_def_paths(()).get(&def_id)
457        {
458            write!(self, "{}", Ident::with_dummy_span(*symbol))?;
459            Ok(true)
460        } else {
461            Ok(false)
462        }
463    }
464
465    /// Does the work of `try_print_visible_def_path`, building the
466    /// full definition path recursively before attempting to
467    /// post-process it into the valid and visible version that
468    /// accounts for re-exports.
469    ///
470    /// This method should only be called by itself or
471    /// `try_print_visible_def_path`.
472    ///
473    /// `callers` is a chain of visible_parent's leading to `def_id`,
474    /// to support cycle detection during recursion.
475    ///
476    /// This method returns false if we can't print the visible path, so
477    /// `print_def_path` can fall back on the item's real definition path.
478    fn try_print_visible_def_path_recur(
479        &mut self,
480        def_id: DefId,
481        callers: &mut Vec<DefId>,
482    ) -> Result<bool, PrintError> {
483        debug!("try_print_visible_def_path: def_id={:?}", def_id);
484
485        // If `def_id` is a direct or injected extern crate, return the
486        // path to the crate followed by the path to the item within the crate.
487        if let Some(cnum) = def_id.as_crate_root() {
488            if cnum == LOCAL_CRATE {
489                self.print_crate_name(cnum)?;
490                return Ok(true);
491            }
492
493            // In local mode, when we encounter a crate other than
494            // LOCAL_CRATE, execution proceeds in one of two ways:
495            //
496            // 1. For a direct dependency, where user added an
497            //    `extern crate` manually, we put the `extern
498            //    crate` as the parent. So you wind up with
499            //    something relative to the current crate.
500            // 2. For an extern inferred from a path or an indirect crate,
501            //    where there is no explicit `extern crate`, we just prepend
502            //    the crate name.
503            match self.tcx().extern_crate(cnum) {
504                Some(&ExternCrate { src, dependency_of, span, .. }) => match (src, dependency_of) {
505                    (ExternCrateSource::Extern(def_id), LOCAL_CRATE) => {
506                        // NOTE(eddyb) the only reason `span` might be dummy,
507                        // that we're aware of, is that it's the `std`/`core`
508                        // `extern crate` injected by default.
509                        // FIXME(eddyb) find something better to key this on,
510                        // or avoid ending up with `ExternCrateSource::Extern`,
511                        // for the injected `std`/`core`.
512                        if span.is_dummy() {
513                            self.print_crate_name(cnum)?;
514                            return Ok(true);
515                        }
516
517                        // Disable `try_print_trimmed_def_path` behavior within
518                        // the `print_def_path` call, to avoid infinite recursion
519                        // in cases where the `extern crate foo` has non-trivial
520                        // parents, e.g. it's nested in `impl foo::Trait for Bar`
521                        // (see also issues #55779 and #87932).
522                        with_no_visible_paths!(self.print_def_path(def_id, &[])?);
523
524                        return Ok(true);
525                    }
526                    (ExternCrateSource::Path, LOCAL_CRATE) => {
527                        self.print_crate_name(cnum)?;
528                        return Ok(true);
529                    }
530                    _ => {}
531                },
532                None => {
533                    self.print_crate_name(cnum)?;
534                    return Ok(true);
535                }
536            }
537        }
538
539        if def_id.is_local() {
540            return Ok(false);
541        }
542
543        let visible_parent_map = self.tcx().visible_parent_map(());
544
545        let mut cur_def_key = self.tcx().def_key(def_id);
546        debug!("try_print_visible_def_path: cur_def_key={:?}", cur_def_key);
547
548        // For a constructor, we want the name of its parent rather than <unnamed>.
549        if let DefPathData::Ctor = cur_def_key.disambiguated_data.data {
550            let parent = DefId {
551                krate: def_id.krate,
552                index: cur_def_key
553                    .parent
554                    .expect("`DefPathData::Ctor` / `VariantData` missing a parent"),
555            };
556
557            cur_def_key = self.tcx().def_key(parent);
558        }
559
560        let Some(visible_parent) = visible_parent_map.get(&def_id).cloned() else {
561            return Ok(false);
562        };
563
564        if self.tcx().is_doc_hidden(visible_parent) && with_no_visible_paths_if_doc_hidden() {
565            return Ok(false);
566        }
567
568        let actual_parent = self.tcx().opt_parent(def_id);
569        debug!(
570            "try_print_visible_def_path: visible_parent={:?} actual_parent={:?}",
571            visible_parent, actual_parent,
572        );
573
574        let mut data = cur_def_key.disambiguated_data.data;
575        debug!(
576            "try_print_visible_def_path: data={:?} visible_parent={:?} actual_parent={:?}",
577            data, visible_parent, actual_parent,
578        );
579
580        match data {
581            // In order to output a path that could actually be imported (valid and visible),
582            // we need to handle re-exports correctly.
583            //
584            // For example, take `std::os::unix::process::CommandExt`, this trait is actually
585            // defined at `std::sys::unix::ext::process::CommandExt` (at time of writing).
586            //
587            // `std::os::unix` reexports the contents of `std::sys::unix::ext`. `std::sys` is
588            // private so the "true" path to `CommandExt` isn't accessible.
589            //
590            // In this case, the `visible_parent_map` will look something like this:
591            //
592            // (child) -> (parent)
593            // `std::sys::unix::ext::process::CommandExt` -> `std::sys::unix::ext::process`
594            // `std::sys::unix::ext::process` -> `std::sys::unix::ext`
595            // `std::sys::unix::ext` -> `std::os`
596            //
597            // This is correct, as the visible parent of `std::sys::unix::ext` is in fact
598            // `std::os`.
599            //
600            // When printing the path to `CommandExt` and looking at the `cur_def_key` that
601            // corresponds to `std::sys::unix::ext`, we would normally print `ext` and then go
602            // to the parent - resulting in a mangled path like
603            // `std::os::ext::process::CommandExt`.
604            //
605            // Instead, we must detect that there was a re-export and instead print `unix`
606            // (which is the name `std::sys::unix::ext` was re-exported as in `std::os`). To
607            // do this, we compare the parent of `std::sys::unix::ext` (`std::sys::unix`) with
608            // the visible parent (`std::os`). If these do not match, then we iterate over
609            // the children of the visible parent (as was done when computing
610            // `visible_parent_map`), looking for the specific child we currently have and then
611            // have access to the re-exported name.
612            DefPathData::TypeNs(ref mut name) if Some(visible_parent) != actual_parent => {
613                // Item might be re-exported several times, but filter for the one
614                // that's public and whose identifier isn't `_`.
615                let reexport = self
616                    .tcx()
617                    // FIXME(typed_def_id): Further propagate ModDefId
618                    .module_children(ModDefId::new_unchecked(visible_parent))
619                    .iter()
620                    .filter(|child| child.res.opt_def_id() == Some(def_id))
621                    .find(|child| child.vis.is_public() && child.ident.name != kw::Underscore)
622                    .map(|child| child.ident.name);
623
624                if let Some(new_name) = reexport {
625                    *name = new_name;
626                } else {
627                    // There is no name that is public and isn't `_`, so bail.
628                    return Ok(false);
629                }
630            }
631            // Re-exported `extern crate` (#43189).
632            DefPathData::CrateRoot => {
633                data = DefPathData::TypeNs(self.tcx().crate_name(def_id.krate));
634            }
635            _ => {}
636        }
637        debug!("try_print_visible_def_path: data={:?}", data);
638
639        if callers.contains(&visible_parent) {
640            return Ok(false);
641        }
642        callers.push(visible_parent);
643        // HACK(eddyb) this bypasses `print_path_with_simple`'s prefix printing to avoid
644        // knowing ahead of time whether the entire path will succeed or not.
645        // To support printers that do not implement `PrettyPrinter`, a `Vec` or
646        // linked list on the stack would need to be built, before any printing.
647        match self.try_print_visible_def_path_recur(visible_parent, callers)? {
648            false => return Ok(false),
649            true => {}
650        }
651        callers.pop();
652        self.print_path_with_simple(
653            |_| Ok(()),
654            &DisambiguatedDefPathData { data, disambiguator: 0 },
655        )?;
656        Ok(true)
657    }
658
659    fn pretty_print_path_with_qualified(
660        &mut self,
661        self_ty: Ty<'tcx>,
662        trait_ref: Option<ty::TraitRef<'tcx>>,
663    ) -> Result<(), PrintError> {
664        if trait_ref.is_none() {
665            // Inherent impls. Try to print `Foo::bar` for an inherent
666            // impl on `Foo`, but fallback to `<Foo>::bar` if self-type is
667            // anything other than a simple path.
668            match self_ty.kind() {
669                ty::Adt(..)
670                | ty::Foreign(_)
671                | ty::Bool
672                | ty::Char
673                | ty::Str
674                | ty::Int(_)
675                | ty::Uint(_)
676                | ty::Float(_) => {
677                    return self_ty.print(self);
678                }
679
680                _ => {}
681            }
682        }
683
684        self.generic_delimiters(|p| {
685            self_ty.print(p)?;
686            if let Some(trait_ref) = trait_ref {
687                write!(p, " as ")?;
688                trait_ref.print_only_trait_path().print(p)?;
689            }
690            Ok(())
691        })
692    }
693
694    fn pretty_print_path_with_impl(
695        &mut self,
696        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
697        self_ty: Ty<'tcx>,
698        trait_ref: Option<ty::TraitRef<'tcx>>,
699    ) -> Result<(), PrintError> {
700        print_prefix(self)?;
701
702        self.generic_delimiters(|p| {
703            write!(p, "impl ")?;
704            if let Some(trait_ref) = trait_ref {
705                trait_ref.print_only_trait_path().print(p)?;
706                write!(p, " for ")?;
707            }
708            self_ty.print(p)?;
709
710            Ok(())
711        })
712    }
713
714    fn pretty_print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError> {
715        match *ty.kind() {
716            ty::Bool => write!(self, "bool")?,
717            ty::Char => write!(self, "char")?,
718            ty::Int(t) => write!(self, "{}", t.name_str())?,
719            ty::Uint(t) => write!(self, "{}", t.name_str())?,
720            ty::Float(t) => write!(self, "{}", t.name_str())?,
721            ty::Pat(ty, pat) => {
722                write!(self, "(")?;
723                ty.print(self)?;
724                write!(self, ") is {pat:?}")?;
725            }
726            ty::RawPtr(ty, mutbl) => {
727                write!(self, "*{} ", mutbl.ptr_str())?;
728                ty.print(self)?;
729            }
730            ty::Ref(r, ty, mutbl) => {
731                write!(self, "&")?;
732                if self.should_print_optional_region(r) {
733                    r.print(self)?;
734                    write!(self, " ")?;
735                }
736                ty::TypeAndMut { ty, mutbl }.print(self)?;
737            }
738            ty::Never => write!(self, "!")?,
739            ty::Tuple(tys) => {
740                write!(self, "(")?;
741                self.comma_sep(tys.iter())?;
742                if tys.len() == 1 {
743                    write!(self, ",")?;
744                }
745                write!(self, ")")?;
746            }
747            ty::FnDef(def_id, args) => {
748                if with_reduced_queries() {
749                    self.print_def_path(def_id, args)?;
750                } else {
751                    let mut sig = self.tcx().fn_sig(def_id).instantiate(self.tcx(), args);
752                    if self.tcx().codegen_fn_attrs(def_id).safe_target_features {
753                        write!(self, "#[target_features] ")?;
754                        sig = sig.map_bound(|mut sig| {
755                            sig.safety = hir::Safety::Safe;
756                            sig
757                        });
758                    }
759                    sig.print(self)?;
760                    write!(self, " {{")?;
761                    self.pretty_print_value_path(def_id, args)?;
762                    write!(self, "}}")?;
763                }
764            }
765            ty::FnPtr(ref sig_tys, hdr) => sig_tys.with(hdr).print(self)?,
766            ty::UnsafeBinder(ref bound_ty) => {
767                self.wrap_binder(bound_ty, WrapBinderMode::Unsafe, |ty, p| {
768                    p.pretty_print_type(*ty)
769                })?;
770            }
771            ty::Infer(infer_ty) => {
772                if self.should_print_verbose() {
773                    write!(self, "{:?}", ty.kind())?;
774                    return Ok(());
775                }
776
777                if let ty::TyVar(ty_vid) = infer_ty {
778                    if let Some(name) = self.ty_infer_name(ty_vid) {
779                        write!(self, "{name}")?;
780                    } else {
781                        write!(self, "{infer_ty}")?;
782                    }
783                } else {
784                    write!(self, "{infer_ty}")?;
785                }
786            }
787            ty::Error(_) => write!(self, "{{type error}}")?,
788            ty::Param(ref param_ty) => param_ty.print(self)?,
789            ty::Bound(debruijn, bound_ty) => match bound_ty.kind {
790                ty::BoundTyKind::Anon => {
791                    rustc_type_ir::debug_bound_var(self, debruijn, bound_ty.var)?
792                }
793                ty::BoundTyKind::Param(def_id) => match self.should_print_verbose() {
794                    true => write!(self, "{:?}", ty.kind())?,
795                    false => write!(self, "{}", self.tcx().item_name(def_id))?,
796                },
797            },
798            ty::Adt(def, args) => self.print_def_path(def.did(), args)?,
799            ty::Dynamic(data, r) => {
800                let print_r = self.should_print_optional_region(r);
801                if print_r {
802                    write!(self, "(")?;
803                }
804                write!(self, "dyn ")?;
805                data.print(self)?;
806                if print_r {
807                    write!(self, " + ")?;
808                    r.print(self)?;
809                    write!(self, ")")?;
810                }
811            }
812            ty::Foreign(def_id) => self.print_def_path(def_id, &[])?,
813            ty::Alias(ty::Projection | ty::Inherent | ty::Free, ref data) => data.print(self)?,
814            ty::Placeholder(placeholder) => placeholder.print(self)?,
815            ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
816                // We use verbose printing in 'NO_QUERIES' mode, to
817                // avoid needing to call `predicates_of`. This should
818                // only affect certain debug messages (e.g. messages printed
819                // from `rustc_middle::ty` during the computation of `tcx.predicates_of`),
820                // and should have no effect on any compiler output.
821                // [Unless `-Zverbose-internals` is used, e.g. in the output of
822                // `tests/ui/nll/ty-outlives/impl-trait-captures.rs`, for
823                // example.]
824                if self.should_print_verbose() {
825                    // FIXME(eddyb) print this with `print_def_path`.
826                    write!(self, "Opaque({:?}, {})", def_id, args.print_as_list())?;
827                    return Ok(());
828                }
829
830                let parent = self.tcx().parent(def_id);
831                match self.tcx().def_kind(parent) {
832                    DefKind::TyAlias | DefKind::AssocTy => {
833                        // NOTE: I know we should check for NO_QUERIES here, but it's alright.
834                        // `type_of` on a type alias or assoc type should never cause a cycle.
835                        if let ty::Alias(ty::Opaque, ty::AliasTy { def_id: d, .. }) =
836                            *self.tcx().type_of(parent).instantiate_identity().kind()
837                        {
838                            if d == def_id {
839                                // If the type alias directly starts with the `impl` of the
840                                // opaque type we're printing, then skip the `::{opaque#1}`.
841                                self.print_def_path(parent, args)?;
842                                return Ok(());
843                            }
844                        }
845                        // Complex opaque type, e.g. `type Foo = (i32, impl Debug);`
846                        self.print_def_path(def_id, args)?;
847                        return Ok(());
848                    }
849                    _ => {
850                        if with_reduced_queries() {
851                            self.print_def_path(def_id, &[])?;
852                            return Ok(());
853                        } else {
854                            return self.pretty_print_opaque_impl_type(def_id, args);
855                        }
856                    }
857                }
858            }
859            ty::Str => write!(self, "str")?,
860            ty::Coroutine(did, args) => {
861                write!(self, "{{")?;
862                let coroutine_kind = self.tcx().coroutine_kind(did).unwrap();
863                let should_print_movability = self.should_print_verbose()
864                    || matches!(coroutine_kind, hir::CoroutineKind::Coroutine(_));
865
866                if should_print_movability {
867                    match coroutine_kind.movability() {
868                        hir::Movability::Movable => {}
869                        hir::Movability::Static => write!(self, "static ")?,
870                    }
871                }
872
873                if !self.should_print_verbose() {
874                    write!(self, "{coroutine_kind}")?;
875                    if coroutine_kind.is_fn_like() {
876                        // If we are printing an `async fn` coroutine type, then give the path
877                        // of the fn, instead of its span, because that will in most cases be
878                        // more helpful for the reader than just a source location.
879                        //
880                        // This will look like:
881                        //    {async fn body of some_fn()}
882                        let did_of_the_fn_item = self.tcx().parent(did);
883                        write!(self, " of ")?;
884                        self.print_def_path(did_of_the_fn_item, args)?;
885                        write!(self, "()")?;
886                    } else if let Some(local_did) = did.as_local() {
887                        let span = self.tcx().def_span(local_did);
888                        write!(
889                            self,
890                            "@{}",
891                            // This may end up in stderr diagnostics but it may also be emitted
892                            // into MIR. Hence we use the remapped path if available
893                            self.tcx().sess.source_map().span_to_embeddable_string(span)
894                        )?;
895                    } else {
896                        write!(self, "@")?;
897                        self.print_def_path(did, args)?;
898                    }
899                } else {
900                    self.print_def_path(did, args)?;
901                    write!(self, " upvar_tys=")?;
902                    args.as_coroutine().tupled_upvars_ty().print(self)?;
903                    write!(self, " resume_ty=")?;
904                    args.as_coroutine().resume_ty().print(self)?;
905                    write!(self, " yield_ty=")?;
906                    args.as_coroutine().yield_ty().print(self)?;
907                    write!(self, " return_ty=")?;
908                    args.as_coroutine().return_ty().print(self)?;
909                }
910
911                write!(self, "}}")?
912            }
913            ty::CoroutineWitness(did, args) => {
914                write!(self, "{{")?;
915                if !self.tcx().sess.verbose_internals() {
916                    write!(self, "coroutine witness")?;
917                    if let Some(did) = did.as_local() {
918                        let span = self.tcx().def_span(did);
919                        write!(
920                            self,
921                            "@{}",
922                            // This may end up in stderr diagnostics but it may also be emitted
923                            // into MIR. Hence we use the remapped path if available
924                            self.tcx().sess.source_map().span_to_embeddable_string(span)
925                        )?;
926                    } else {
927                        write!(self, "@")?;
928                        self.print_def_path(did, args)?;
929                    }
930                } else {
931                    self.print_def_path(did, args)?;
932                }
933
934                write!(self, "}}")?
935            }
936            ty::Closure(did, args) => {
937                write!(self, "{{")?;
938                if !self.should_print_verbose() {
939                    write!(self, "closure")?;
940                    if self.should_truncate() {
941                        write!(self, "@...}}")?;
942                        return Ok(());
943                    } else {
944                        if let Some(did) = did.as_local() {
945                            if self.tcx().sess.opts.unstable_opts.span_free_formats {
946                                write!(self, "@")?;
947                                self.print_def_path(did.to_def_id(), args)?;
948                            } else {
949                                let span = self.tcx().def_span(did);
950                                let preference = if with_forced_trimmed_paths() {
951                                    FileNameDisplayPreference::Short
952                                } else {
953                                    FileNameDisplayPreference::Remapped
954                                };
955                                write!(
956                                    self,
957                                    "@{}",
958                                    // This may end up in stderr diagnostics but it may also be
959                                    // emitted into MIR. Hence we use the remapped path if
960                                    // available
961                                    self.tcx().sess.source_map().span_to_string(span, preference)
962                                )?;
963                            }
964                        } else {
965                            write!(self, "@")?;
966                            self.print_def_path(did, args)?;
967                        }
968                    }
969                } else {
970                    self.print_def_path(did, args)?;
971                    write!(self, " closure_kind_ty=")?;
972                    args.as_closure().kind_ty().print(self)?;
973                    write!(self, " closure_sig_as_fn_ptr_ty=")?;
974                    args.as_closure().sig_as_fn_ptr_ty().print(self)?;
975                    write!(self, " upvar_tys=")?;
976                    args.as_closure().tupled_upvars_ty().print(self)?;
977                }
978                write!(self, "}}")?;
979            }
980            ty::CoroutineClosure(did, args) => {
981                write!(self, "{{")?;
982                if !self.should_print_verbose() {
983                    match self.tcx().coroutine_kind(self.tcx().coroutine_for_closure(did)).unwrap()
984                    {
985                        hir::CoroutineKind::Desugared(
986                            hir::CoroutineDesugaring::Async,
987                            hir::CoroutineSource::Closure,
988                        ) => write!(self, "async closure")?,
989                        hir::CoroutineKind::Desugared(
990                            hir::CoroutineDesugaring::AsyncGen,
991                            hir::CoroutineSource::Closure,
992                        ) => write!(self, "async gen closure")?,
993                        hir::CoroutineKind::Desugared(
994                            hir::CoroutineDesugaring::Gen,
995                            hir::CoroutineSource::Closure,
996                        ) => write!(self, "gen closure")?,
997                        _ => unreachable!(
998                            "coroutine from coroutine-closure should have CoroutineSource::Closure"
999                        ),
1000                    }
1001                    if let Some(did) = did.as_local() {
1002                        if self.tcx().sess.opts.unstable_opts.span_free_formats {
1003                            write!(self, "@")?;
1004                            self.print_def_path(did.to_def_id(), args)?;
1005                        } else {
1006                            let span = self.tcx().def_span(did);
1007                            let preference = if with_forced_trimmed_paths() {
1008                                FileNameDisplayPreference::Short
1009                            } else {
1010                                FileNameDisplayPreference::Remapped
1011                            };
1012                            write!(
1013                                self,
1014                                "@{}",
1015                                // This may end up in stderr diagnostics but it may also be emitted
1016                                // into MIR. Hence we use the remapped path if available
1017                                self.tcx().sess.source_map().span_to_string(span, preference)
1018                            )?;
1019                        }
1020                    } else {
1021                        write!(self, "@")?;
1022                        self.print_def_path(did, args)?;
1023                    }
1024                } else {
1025                    self.print_def_path(did, args)?;
1026                    write!(self, " closure_kind_ty=")?;
1027                    args.as_coroutine_closure().kind_ty().print(self)?;
1028                    write!(self, " signature_parts_ty=")?;
1029                    args.as_coroutine_closure().signature_parts_ty().print(self)?;
1030                    write!(self, " upvar_tys=")?;
1031                    args.as_coroutine_closure().tupled_upvars_ty().print(self)?;
1032                    write!(self, " coroutine_captures_by_ref_ty=")?;
1033                    args.as_coroutine_closure().coroutine_captures_by_ref_ty().print(self)?;
1034                }
1035                write!(self, "}}")?;
1036            }
1037            ty::Array(ty, sz) => {
1038                write!(self, "[")?;
1039                ty.print(self)?;
1040                write!(self, "; ")?;
1041                sz.print(self)?;
1042                write!(self, "]")?;
1043            }
1044            ty::Slice(ty) => {
1045                write!(self, "[")?;
1046                ty.print(self)?;
1047                write!(self, "]")?;
1048            }
1049        }
1050
1051        Ok(())
1052    }
1053
1054    fn pretty_print_opaque_impl_type(
1055        &mut self,
1056        def_id: DefId,
1057        args: ty::GenericArgsRef<'tcx>,
1058    ) -> Result<(), PrintError> {
1059        let tcx = self.tcx();
1060
1061        // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
1062        // by looking up the projections associated with the def_id.
1063        let bounds = tcx.explicit_item_bounds(def_id);
1064
1065        let mut traits = FxIndexMap::default();
1066        let mut fn_traits = FxIndexMap::default();
1067        let mut lifetimes = SmallVec::<[ty::Region<'tcx>; 1]>::new();
1068
1069        let mut has_sized_bound = false;
1070        let mut has_negative_sized_bound = false;
1071        let mut has_meta_sized_bound = false;
1072
1073        for (predicate, _) in bounds.iter_instantiated_copied(tcx, args) {
1074            let bound_predicate = predicate.kind();
1075
1076            match bound_predicate.skip_binder() {
1077                ty::ClauseKind::Trait(pred) => {
1078                    // With `feature(sized_hierarchy)`, don't print `?Sized` as an alias for
1079                    // `MetaSized`, and skip sizedness bounds to be added at the end.
1080                    match tcx.as_lang_item(pred.def_id()) {
1081                        Some(LangItem::Sized) => match pred.polarity {
1082                            ty::PredicatePolarity::Positive => {
1083                                has_sized_bound = true;
1084                                continue;
1085                            }
1086                            ty::PredicatePolarity::Negative => has_negative_sized_bound = true,
1087                        },
1088                        Some(LangItem::MetaSized) => {
1089                            has_meta_sized_bound = true;
1090                            continue;
1091                        }
1092                        Some(LangItem::PointeeSized) => {
1093                            bug!("`PointeeSized` is removed during lowering");
1094                        }
1095                        _ => (),
1096                    }
1097
1098                    self.insert_trait_and_projection(
1099                        bound_predicate.rebind(pred),
1100                        None,
1101                        &mut traits,
1102                        &mut fn_traits,
1103                    );
1104                }
1105                ty::ClauseKind::Projection(pred) => {
1106                    let proj = bound_predicate.rebind(pred);
1107                    let trait_ref = proj.map_bound(|proj| TraitPredicate {
1108                        trait_ref: proj.projection_term.trait_ref(tcx),
1109                        polarity: ty::PredicatePolarity::Positive,
1110                    });
1111
1112                    self.insert_trait_and_projection(
1113                        trait_ref,
1114                        Some((proj.item_def_id(), proj.term())),
1115                        &mut traits,
1116                        &mut fn_traits,
1117                    );
1118                }
1119                ty::ClauseKind::TypeOutlives(outlives) => {
1120                    lifetimes.push(outlives.1);
1121                }
1122                _ => {}
1123            }
1124        }
1125
1126        write!(self, "impl ")?;
1127
1128        let mut first = true;
1129        // Insert parenthesis around (Fn(A, B) -> C) if the opaque ty has more than one other trait
1130        let paren_needed = fn_traits.len() > 1 || traits.len() > 0 || !has_sized_bound;
1131
1132        for ((bound_args_and_self_ty, is_async), entry) in fn_traits {
1133            write!(self, "{}", if first { "" } else { " + " })?;
1134            write!(self, "{}", if paren_needed { "(" } else { "" })?;
1135
1136            let trait_def_id = if is_async {
1137                tcx.async_fn_trait_kind_to_def_id(entry.kind).expect("expected AsyncFn lang items")
1138            } else {
1139                tcx.fn_trait_kind_to_def_id(entry.kind).expect("expected Fn lang items")
1140            };
1141
1142            if let Some(return_ty) = entry.return_ty {
1143                self.wrap_binder(
1144                    &bound_args_and_self_ty,
1145                    WrapBinderMode::ForAll,
1146                    |(args, _), p| {
1147                        write!(p, "{}", tcx.item_name(trait_def_id))?;
1148                        write!(p, "(")?;
1149
1150                        for (idx, ty) in args.iter().enumerate() {
1151                            if idx > 0 {
1152                                write!(p, ", ")?;
1153                            }
1154                            ty.print(p)?;
1155                        }
1156
1157                        write!(p, ")")?;
1158                        if let Some(ty) = return_ty.skip_binder().as_type() {
1159                            if !ty.is_unit() {
1160                                write!(p, " -> ")?;
1161                                return_ty.print(p)?;
1162                            }
1163                        }
1164                        write!(p, "{}", if paren_needed { ")" } else { "" })?;
1165
1166                        first = false;
1167                        Ok(())
1168                    },
1169                )?;
1170            } else {
1171                // Otherwise, render this like a regular trait.
1172                traits.insert(
1173                    bound_args_and_self_ty.map_bound(|(args, self_ty)| ty::TraitPredicate {
1174                        polarity: ty::PredicatePolarity::Positive,
1175                        trait_ref: ty::TraitRef::new(
1176                            tcx,
1177                            trait_def_id,
1178                            [self_ty, Ty::new_tup(tcx, args)],
1179                        ),
1180                    }),
1181                    FxIndexMap::default(),
1182                );
1183            }
1184        }
1185
1186        // Print the rest of the trait types (that aren't Fn* family of traits)
1187        for (trait_pred, assoc_items) in traits {
1188            write!(self, "{}", if first { "" } else { " + " })?;
1189
1190            self.wrap_binder(&trait_pred, WrapBinderMode::ForAll, |trait_pred, p| {
1191                if trait_pred.polarity == ty::PredicatePolarity::Negative {
1192                    write!(p, "!")?;
1193                }
1194                trait_pred.trait_ref.print_only_trait_name().print(p)?;
1195
1196                let generics = tcx.generics_of(trait_pred.def_id());
1197                let own_args = generics.own_args_no_defaults(tcx, trait_pred.trait_ref.args);
1198
1199                if !own_args.is_empty() || !assoc_items.is_empty() {
1200                    let mut first = true;
1201
1202                    for ty in own_args {
1203                        if first {
1204                            write!(p, "<")?;
1205                            first = false;
1206                        } else {
1207                            write!(p, ", ")?;
1208                        }
1209                        ty.print(p)?;
1210                    }
1211
1212                    for (assoc_item_def_id, term) in assoc_items {
1213                        if first {
1214                            write!(p, "<")?;
1215                            first = false;
1216                        } else {
1217                            write!(p, ", ")?;
1218                        }
1219
1220                        write!(p, "{} = ", tcx.associated_item(assoc_item_def_id).name())?;
1221
1222                        match term.skip_binder().kind() {
1223                            TermKind::Ty(ty) => ty.print(p)?,
1224                            TermKind::Const(c) => c.print(p)?,
1225                        };
1226                    }
1227
1228                    if !first {
1229                        write!(p, ">")?;
1230                    }
1231                }
1232
1233                first = false;
1234                Ok(())
1235            })?;
1236        }
1237
1238        let using_sized_hierarchy = self.tcx().features().sized_hierarchy();
1239        let add_sized = has_sized_bound && (first || has_negative_sized_bound);
1240        let add_maybe_sized =
1241            has_meta_sized_bound && !has_negative_sized_bound && !using_sized_hierarchy;
1242        // Set `has_pointee_sized_bound` if there were no `Sized` or `MetaSized` bounds.
1243        let has_pointee_sized_bound =
1244            !has_sized_bound && !has_meta_sized_bound && !has_negative_sized_bound;
1245        if add_sized || add_maybe_sized {
1246            if !first {
1247                write!(self, " + ")?;
1248            }
1249            if add_maybe_sized {
1250                write!(self, "?")?;
1251            }
1252            write!(self, "Sized")?;
1253        } else if has_meta_sized_bound && using_sized_hierarchy {
1254            if !first {
1255                write!(self, " + ")?;
1256            }
1257            write!(self, "MetaSized")?;
1258        } else if has_pointee_sized_bound && using_sized_hierarchy {
1259            if !first {
1260                write!(self, " + ")?;
1261            }
1262            write!(self, "PointeeSized")?;
1263        }
1264
1265        if !with_forced_trimmed_paths() {
1266            for re in lifetimes {
1267                write!(self, " + ")?;
1268                self.print_region(re)?;
1269            }
1270        }
1271
1272        Ok(())
1273    }
1274
1275    /// Insert the trait ref and optionally a projection type associated with it into either the
1276    /// traits map or fn_traits map, depending on if the trait is in the Fn* family of traits.
1277    fn insert_trait_and_projection(
1278        &mut self,
1279        trait_pred: ty::PolyTraitPredicate<'tcx>,
1280        proj_ty: Option<(DefId, ty::Binder<'tcx, Term<'tcx>>)>,
1281        traits: &mut FxIndexMap<
1282            ty::PolyTraitPredicate<'tcx>,
1283            FxIndexMap<DefId, ty::Binder<'tcx, Term<'tcx>>>,
1284        >,
1285        fn_traits: &mut FxIndexMap<
1286            (ty::Binder<'tcx, (&'tcx ty::List<Ty<'tcx>>, Ty<'tcx>)>, bool),
1287            OpaqueFnEntry<'tcx>,
1288        >,
1289    ) {
1290        let tcx = self.tcx();
1291        let trait_def_id = trait_pred.def_id();
1292
1293        let fn_trait_and_async = if let Some(kind) = tcx.fn_trait_kind_from_def_id(trait_def_id) {
1294            Some((kind, false))
1295        } else if let Some(kind) = tcx.async_fn_trait_kind_from_def_id(trait_def_id) {
1296            Some((kind, true))
1297        } else {
1298            None
1299        };
1300
1301        if trait_pred.polarity() == ty::PredicatePolarity::Positive
1302            && let Some((kind, is_async)) = fn_trait_and_async
1303            && let ty::Tuple(types) = *trait_pred.skip_binder().trait_ref.args.type_at(1).kind()
1304        {
1305            let entry = fn_traits
1306                .entry((trait_pred.rebind((types, trait_pred.skip_binder().self_ty())), is_async))
1307                .or_insert_with(|| OpaqueFnEntry { kind, return_ty: None });
1308            if kind.extends(entry.kind) {
1309                entry.kind = kind;
1310            }
1311            if let Some((proj_def_id, proj_ty)) = proj_ty
1312                && tcx.item_name(proj_def_id) == sym::Output
1313            {
1314                entry.return_ty = Some(proj_ty);
1315            }
1316            return;
1317        }
1318
1319        // Otherwise, just group our traits and projection types.
1320        traits.entry(trait_pred).or_default().extend(proj_ty);
1321    }
1322
1323    fn pretty_print_inherent_projection(
1324        &mut self,
1325        alias_ty: ty::AliasTerm<'tcx>,
1326    ) -> Result<(), PrintError> {
1327        let def_key = self.tcx().def_key(alias_ty.def_id);
1328        self.print_path_with_generic_args(
1329            |p| {
1330                p.print_path_with_simple(
1331                    |p| p.print_path_with_qualified(alias_ty.self_ty(), None),
1332                    &def_key.disambiguated_data,
1333                )
1334            },
1335            &alias_ty.args[1..],
1336        )
1337    }
1338
1339    fn pretty_print_rpitit(
1340        &mut self,
1341        def_id: DefId,
1342        args: ty::GenericArgsRef<'tcx>,
1343    ) -> Result<(), PrintError> {
1344        let fn_args = if self.tcx().features().return_type_notation()
1345            && let Some(ty::ImplTraitInTraitData::Trait { fn_def_id, .. }) =
1346                self.tcx().opt_rpitit_info(def_id)
1347            && let ty::Alias(_, alias_ty) =
1348                self.tcx().fn_sig(fn_def_id).skip_binder().output().skip_binder().kind()
1349            && alias_ty.def_id == def_id
1350            && let generics = self.tcx().generics_of(fn_def_id)
1351            // FIXME(return_type_notation): We only support lifetime params for now.
1352            && generics.own_params.iter().all(|param| matches!(param.kind, ty::GenericParamDefKind::Lifetime))
1353        {
1354            let num_args = generics.count();
1355            Some((fn_def_id, &args[..num_args]))
1356        } else {
1357            None
1358        };
1359
1360        match (fn_args, RTN_MODE.with(|c| c.get())) {
1361            (Some((fn_def_id, fn_args)), RtnMode::ForDiagnostic) => {
1362                self.pretty_print_opaque_impl_type(def_id, args)?;
1363                write!(self, " {{ ")?;
1364                self.print_def_path(fn_def_id, fn_args)?;
1365                write!(self, "(..) }}")?;
1366            }
1367            (Some((fn_def_id, fn_args)), RtnMode::ForSuggestion) => {
1368                self.print_def_path(fn_def_id, fn_args)?;
1369                write!(self, "(..)")?;
1370            }
1371            _ => {
1372                self.pretty_print_opaque_impl_type(def_id, args)?;
1373            }
1374        }
1375
1376        Ok(())
1377    }
1378
1379    fn ty_infer_name(&self, _: ty::TyVid) -> Option<Symbol> {
1380        None
1381    }
1382
1383    fn const_infer_name(&self, _: ty::ConstVid) -> Option<Symbol> {
1384        None
1385    }
1386
1387    fn pretty_print_dyn_existential(
1388        &mut self,
1389        predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1390    ) -> Result<(), PrintError> {
1391        // Generate the main trait ref, including associated types.
1392        let mut first = true;
1393
1394        if let Some(bound_principal) = predicates.principal() {
1395            self.wrap_binder(&bound_principal, WrapBinderMode::ForAll, |principal, p| {
1396                p.print_def_path(principal.def_id, &[])?;
1397
1398                let mut resugared = false;
1399
1400                // Special-case `Fn(...) -> ...` and re-sugar it.
1401                let fn_trait_kind = p.tcx().fn_trait_kind_from_def_id(principal.def_id);
1402                if !p.should_print_verbose() && fn_trait_kind.is_some() {
1403                    if let ty::Tuple(tys) = principal.args.type_at(0).kind() {
1404                        let mut projections = predicates.projection_bounds();
1405                        if let (Some(proj), None) = (projections.next(), projections.next()) {
1406                            p.pretty_print_fn_sig(
1407                                tys,
1408                                false,
1409                                proj.skip_binder().term.as_type().expect("Return type was a const"),
1410                            )?;
1411                            resugared = true;
1412                        }
1413                    }
1414                }
1415
1416                // HACK(eddyb) this duplicates `FmtPrinter`'s `print_path_with_generic_args`,
1417                // in order to place the projections inside the `<...>`.
1418                if !resugared {
1419                    let principal_with_self =
1420                        principal.with_self_ty(p.tcx(), p.tcx().types.trait_object_dummy_self);
1421
1422                    let args = p
1423                        .tcx()
1424                        .generics_of(principal_with_self.def_id)
1425                        .own_args_no_defaults(p.tcx(), principal_with_self.args);
1426
1427                    let bound_principal_with_self = bound_principal
1428                        .with_self_ty(p.tcx(), p.tcx().types.trait_object_dummy_self);
1429
1430                    let clause: ty::Clause<'tcx> = bound_principal_with_self.upcast(p.tcx());
1431                    let super_projections: Vec<_> = elaborate::elaborate(p.tcx(), [clause])
1432                        .filter_only_self()
1433                        .filter_map(|clause| clause.as_projection_clause())
1434                        .collect();
1435
1436                    let mut projections: Vec<_> = predicates
1437                        .projection_bounds()
1438                        .filter(|&proj| {
1439                            // Filter out projections that are implied by the super predicates.
1440                            let proj_is_implied = super_projections.iter().any(|&super_proj| {
1441                                let super_proj = super_proj.map_bound(|super_proj| {
1442                                    ty::ExistentialProjection::erase_self_ty(p.tcx(), super_proj)
1443                                });
1444
1445                                // This function is sometimes called on types with erased and
1446                                // anonymized regions, but the super projections can still
1447                                // contain named regions. So we erase and anonymize everything
1448                                // here to compare the types modulo regions below.
1449                                let proj = p.tcx().erase_and_anonymize_regions(proj);
1450                                let super_proj = p.tcx().erase_and_anonymize_regions(super_proj);
1451
1452                                proj == super_proj
1453                            });
1454                            !proj_is_implied
1455                        })
1456                        .map(|proj| {
1457                            // Skip the binder, because we don't want to print the binder in
1458                            // front of the associated item.
1459                            proj.skip_binder()
1460                        })
1461                        .collect();
1462
1463                    projections
1464                        .sort_by_cached_key(|proj| p.tcx().item_name(proj.def_id).to_string());
1465
1466                    if !args.is_empty() || !projections.is_empty() {
1467                        p.generic_delimiters(|p| {
1468                            p.comma_sep(args.iter().copied())?;
1469                            if !args.is_empty() && !projections.is_empty() {
1470                                write!(p, ", ")?;
1471                            }
1472                            p.comma_sep(projections.iter().copied())
1473                        })?;
1474                    }
1475                }
1476                Ok(())
1477            })?;
1478
1479            first = false;
1480        }
1481
1482        // Builtin bounds.
1483        // FIXME(eddyb) avoid printing twice (needed to ensure
1484        // that the auto traits are sorted *and* printed via p).
1485        let mut auto_traits: Vec<_> = predicates.auto_traits().collect();
1486
1487        // The auto traits come ordered by `DefPathHash`. While
1488        // `DefPathHash` is *stable* in the sense that it depends on
1489        // neither the host nor the phase of the moon, it depends
1490        // "pseudorandomly" on the compiler version and the target.
1491        //
1492        // To avoid causing instabilities in compiletest
1493        // output, sort the auto-traits alphabetically.
1494        auto_traits.sort_by_cached_key(|did| with_no_trimmed_paths!(self.tcx().def_path_str(*did)));
1495
1496        for def_id in auto_traits {
1497            if !first {
1498                write!(self, " + ")?;
1499            }
1500            first = false;
1501
1502            self.print_def_path(def_id, &[])?;
1503        }
1504
1505        Ok(())
1506    }
1507
1508    fn pretty_print_fn_sig(
1509        &mut self,
1510        inputs: &[Ty<'tcx>],
1511        c_variadic: bool,
1512        output: Ty<'tcx>,
1513    ) -> Result<(), PrintError> {
1514        write!(self, "(")?;
1515        self.comma_sep(inputs.iter().copied())?;
1516        if c_variadic {
1517            if !inputs.is_empty() {
1518                write!(self, ", ")?;
1519            }
1520            write!(self, "...")?;
1521        }
1522        write!(self, ")")?;
1523        if !output.is_unit() {
1524            write!(self, " -> ")?;
1525            output.print(self)?;
1526        }
1527
1528        Ok(())
1529    }
1530
1531    fn pretty_print_const(
1532        &mut self,
1533        ct: ty::Const<'tcx>,
1534        print_ty: bool,
1535    ) -> Result<(), PrintError> {
1536        if self.should_print_verbose() {
1537            write!(self, "{ct:?}")?;
1538            return Ok(());
1539        }
1540
1541        match ct.kind() {
1542            ty::ConstKind::Unevaluated(ty::UnevaluatedConst { def, args }) => {
1543                match self.tcx().def_kind(def) {
1544                    DefKind::Const | DefKind::AssocConst => {
1545                        self.pretty_print_value_path(def, args)?;
1546                    }
1547                    DefKind::AnonConst => {
1548                        if def.is_local()
1549                            && let span = self.tcx().def_span(def)
1550                            && let Ok(snip) = self.tcx().sess.source_map().span_to_snippet(span)
1551                        {
1552                            write!(self, "{snip}")?;
1553                        } else {
1554                            // Do not call `pretty_print_value_path` as if a parent of this anon
1555                            // const is an impl it will attempt to print out the impl trait ref
1556                            // i.e. `<T as Trait>::{constant#0}`. This would cause printing to
1557                            // enter an infinite recursion if the anon const is in the self type
1558                            // i.e. `impl<T: Default> Default for [T; 32 - 1 - 1 - 1] {` where we
1559                            // would try to print `<[T; /* print constant#0 again */] as //
1560                            // Default>::{constant#0}`.
1561                            write!(
1562                                self,
1563                                "{}::{}",
1564                                self.tcx().crate_name(def.krate),
1565                                self.tcx().def_path(def).to_string_no_crate_verbose()
1566                            )?;
1567                        }
1568                    }
1569                    defkind => bug!("`{:?}` has unexpected defkind {:?}", ct, defkind),
1570                }
1571            }
1572            ty::ConstKind::Infer(infer_ct) => match infer_ct {
1573                ty::InferConst::Var(ct_vid) if let Some(name) = self.const_infer_name(ct_vid) => {
1574                    write!(self, "{name}")?;
1575                }
1576                _ => write!(self, "_")?,
1577            },
1578            ty::ConstKind::Param(ParamConst { name, .. }) => write!(self, "{name}")?,
1579            ty::ConstKind::Value(cv) => {
1580                return self.pretty_print_const_valtree(cv, print_ty);
1581            }
1582
1583            ty::ConstKind::Bound(debruijn, bound_var) => {
1584                rustc_type_ir::debug_bound_var(self, debruijn, bound_var)?
1585            }
1586            ty::ConstKind::Placeholder(placeholder) => write!(self, "{placeholder:?}")?,
1587            // FIXME(generic_const_exprs):
1588            // write out some legible representation of an abstract const?
1589            ty::ConstKind::Expr(expr) => self.pretty_print_const_expr(expr, print_ty)?,
1590            ty::ConstKind::Error(_) => write!(self, "{{const error}}")?,
1591        };
1592        Ok(())
1593    }
1594
1595    fn pretty_print_const_expr(
1596        &mut self,
1597        expr: Expr<'tcx>,
1598        print_ty: bool,
1599    ) -> Result<(), PrintError> {
1600        match expr.kind {
1601            ty::ExprKind::Binop(op) => {
1602                let (_, _, c1, c2) = expr.binop_args();
1603
1604                let precedence = |binop: crate::mir::BinOp| binop.to_hir_binop().precedence();
1605                let op_precedence = precedence(op);
1606                let formatted_op = op.to_hir_binop().as_str();
1607                let (lhs_parenthesized, rhs_parenthesized) = match (c1.kind(), c2.kind()) {
1608                    (
1609                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(lhs_op), .. }),
1610                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(rhs_op), .. }),
1611                    ) => (precedence(lhs_op) < op_precedence, precedence(rhs_op) < op_precedence),
1612                    (
1613                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(lhs_op), .. }),
1614                        ty::ConstKind::Expr(_),
1615                    ) => (precedence(lhs_op) < op_precedence, true),
1616                    (
1617                        ty::ConstKind::Expr(_),
1618                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(rhs_op), .. }),
1619                    ) => (true, precedence(rhs_op) < op_precedence),
1620                    (ty::ConstKind::Expr(_), ty::ConstKind::Expr(_)) => (true, true),
1621                    (
1622                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(lhs_op), .. }),
1623                        _,
1624                    ) => (precedence(lhs_op) < op_precedence, false),
1625                    (
1626                        _,
1627                        ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::Binop(rhs_op), .. }),
1628                    ) => (false, precedence(rhs_op) < op_precedence),
1629                    (ty::ConstKind::Expr(_), _) => (true, false),
1630                    (_, ty::ConstKind::Expr(_)) => (false, true),
1631                    _ => (false, false),
1632                };
1633
1634                self.maybe_parenthesized(
1635                    |this| this.pretty_print_const(c1, print_ty),
1636                    lhs_parenthesized,
1637                )?;
1638                write!(self, " {formatted_op} ")?;
1639                self.maybe_parenthesized(
1640                    |this| this.pretty_print_const(c2, print_ty),
1641                    rhs_parenthesized,
1642                )?;
1643            }
1644            ty::ExprKind::UnOp(op) => {
1645                let (_, ct) = expr.unop_args();
1646
1647                use crate::mir::UnOp;
1648                let formatted_op = match op {
1649                    UnOp::Not => "!",
1650                    UnOp::Neg => "-",
1651                    UnOp::PtrMetadata => "PtrMetadata",
1652                };
1653                let parenthesized = match ct.kind() {
1654                    _ if op == UnOp::PtrMetadata => true,
1655                    ty::ConstKind::Expr(ty::Expr { kind: ty::ExprKind::UnOp(c_op), .. }) => {
1656                        c_op != op
1657                    }
1658                    ty::ConstKind::Expr(_) => true,
1659                    _ => false,
1660                };
1661                write!(self, "{formatted_op}")?;
1662                self.maybe_parenthesized(
1663                    |this| this.pretty_print_const(ct, print_ty),
1664                    parenthesized,
1665                )?
1666            }
1667            ty::ExprKind::FunctionCall => {
1668                let (_, fn_def, fn_args) = expr.call_args();
1669
1670                write!(self, "(")?;
1671                self.pretty_print_const(fn_def, print_ty)?;
1672                write!(self, ")(")?;
1673                self.comma_sep(fn_args)?;
1674                write!(self, ")")?;
1675            }
1676            ty::ExprKind::Cast(kind) => {
1677                let (_, value, to_ty) = expr.cast_args();
1678
1679                use ty::abstract_const::CastKind;
1680                if kind == CastKind::As || (kind == CastKind::Use && self.should_print_verbose()) {
1681                    let parenthesized = match value.kind() {
1682                        ty::ConstKind::Expr(ty::Expr {
1683                            kind: ty::ExprKind::Cast { .. }, ..
1684                        }) => false,
1685                        ty::ConstKind::Expr(_) => true,
1686                        _ => false,
1687                    };
1688                    self.maybe_parenthesized(
1689                        |this| {
1690                            this.typed_value(
1691                                |this| this.pretty_print_const(value, print_ty),
1692                                |this| this.pretty_print_type(to_ty),
1693                                " as ",
1694                            )
1695                        },
1696                        parenthesized,
1697                    )?;
1698                } else {
1699                    self.pretty_print_const(value, print_ty)?
1700                }
1701            }
1702        }
1703        Ok(())
1704    }
1705
1706    fn pretty_print_const_scalar(
1707        &mut self,
1708        scalar: Scalar,
1709        ty: Ty<'tcx>,
1710    ) -> Result<(), PrintError> {
1711        match scalar {
1712            Scalar::Ptr(ptr, _size) => self.pretty_print_const_scalar_ptr(ptr, ty),
1713            Scalar::Int(int) => {
1714                self.pretty_print_const_scalar_int(int, ty, /* print_ty */ true)
1715            }
1716        }
1717    }
1718
1719    fn pretty_print_const_scalar_ptr(
1720        &mut self,
1721        ptr: Pointer,
1722        ty: Ty<'tcx>,
1723    ) -> Result<(), PrintError> {
1724        let (prov, offset) = ptr.prov_and_relative_offset();
1725        match ty.kind() {
1726            // Byte strings (&[u8; N])
1727            ty::Ref(_, inner, _) => {
1728                if let ty::Array(elem, ct_len) = inner.kind()
1729                    && let ty::Uint(ty::UintTy::U8) = elem.kind()
1730                    && let Some(len) = ct_len.try_to_target_usize(self.tcx())
1731                {
1732                    match self.tcx().try_get_global_alloc(prov.alloc_id()) {
1733                        Some(GlobalAlloc::Memory(alloc)) => {
1734                            let range = AllocRange { start: offset, size: Size::from_bytes(len) };
1735                            if let Ok(byte_str) =
1736                                alloc.inner().get_bytes_strip_provenance(&self.tcx(), range)
1737                            {
1738                                self.pretty_print_byte_str(byte_str)?;
1739                            } else {
1740                                write!(self, "<too short allocation>")?;
1741                            }
1742                        }
1743                        // FIXME: for statics, vtables, and functions, we could in principle print more detail.
1744                        Some(GlobalAlloc::Static(def_id)) => {
1745                            write!(self, "<static({def_id:?})>")?;
1746                        }
1747                        Some(GlobalAlloc::Function { .. }) => write!(self, "<function>")?,
1748                        Some(GlobalAlloc::VTable(..)) => write!(self, "<vtable>")?,
1749                        Some(GlobalAlloc::TypeId { .. }) => write!(self, "<typeid>")?,
1750                        None => write!(self, "<dangling pointer>")?,
1751                    }
1752                    return Ok(());
1753                }
1754            }
1755            ty::FnPtr(..) => {
1756                // FIXME: We should probably have a helper method to share code with the "Byte strings"
1757                // printing above (which also has to handle pointers to all sorts of things).
1758                if let Some(GlobalAlloc::Function { instance, .. }) =
1759                    self.tcx().try_get_global_alloc(prov.alloc_id())
1760                {
1761                    self.typed_value(
1762                        |this| this.pretty_print_value_path(instance.def_id(), instance.args),
1763                        |this| this.print_type(ty),
1764                        " as ",
1765                    )?;
1766                    return Ok(());
1767                }
1768            }
1769            _ => {}
1770        }
1771        // Any pointer values not covered by a branch above
1772        self.pretty_print_const_pointer(ptr, ty)?;
1773        Ok(())
1774    }
1775
1776    fn pretty_print_const_scalar_int(
1777        &mut self,
1778        int: ScalarInt,
1779        ty: Ty<'tcx>,
1780        print_ty: bool,
1781    ) -> Result<(), PrintError> {
1782        match ty.kind() {
1783            // Bool
1784            ty::Bool if int == ScalarInt::FALSE => write!(self, "false")?,
1785            ty::Bool if int == ScalarInt::TRUE => write!(self, "true")?,
1786            // Float
1787            ty::Float(fty) => match fty {
1788                ty::FloatTy::F16 => {
1789                    let val = Half::try_from(int).unwrap();
1790                    write!(self, "{}{}f16", val, if val.is_finite() { "" } else { "_" })?;
1791                }
1792                ty::FloatTy::F32 => {
1793                    let val = Single::try_from(int).unwrap();
1794                    write!(self, "{}{}f32", val, if val.is_finite() { "" } else { "_" })?;
1795                }
1796                ty::FloatTy::F64 => {
1797                    let val = Double::try_from(int).unwrap();
1798                    write!(self, "{}{}f64", val, if val.is_finite() { "" } else { "_" })?;
1799                }
1800                ty::FloatTy::F128 => {
1801                    let val = Quad::try_from(int).unwrap();
1802                    write!(self, "{}{}f128", val, if val.is_finite() { "" } else { "_" })?;
1803                }
1804            },
1805            // Int
1806            ty::Uint(_) | ty::Int(_) => {
1807                let int =
1808                    ConstInt::new(int, matches!(ty.kind(), ty::Int(_)), ty.is_ptr_sized_integral());
1809                if print_ty { write!(self, "{int:#?}")? } else { write!(self, "{int:?}")? }
1810            }
1811            // Char
1812            ty::Char if char::try_from(int).is_ok() => {
1813                write!(self, "{:?}", char::try_from(int).unwrap())?;
1814            }
1815            // Pointer types
1816            ty::Ref(..) | ty::RawPtr(_, _) | ty::FnPtr(..) => {
1817                let data = int.to_bits(self.tcx().data_layout.pointer_size());
1818                self.typed_value(
1819                    |this| {
1820                        write!(this, "0x{data:x}")?;
1821                        Ok(())
1822                    },
1823                    |this| this.print_type(ty),
1824                    " as ",
1825                )?;
1826            }
1827            ty::Pat(base_ty, pat) if self.tcx().validate_scalar_in_layout(int, ty) => {
1828                self.pretty_print_const_scalar_int(int, *base_ty, print_ty)?;
1829                write!(self, " is {pat:?}")?;
1830            }
1831            // Nontrivial types with scalar bit representation
1832            _ => {
1833                let print = |this: &mut Self| {
1834                    if int.size() == Size::ZERO {
1835                        write!(this, "transmute(())")?;
1836                    } else {
1837                        write!(this, "transmute(0x{int:x})")?;
1838                    }
1839                    Ok(())
1840                };
1841                if print_ty {
1842                    self.typed_value(print, |this| this.print_type(ty), ": ")?
1843                } else {
1844                    print(self)?
1845                };
1846            }
1847        }
1848        Ok(())
1849    }
1850
1851    /// This is overridden for MIR printing because we only want to hide alloc ids from users, not
1852    /// from MIR where it is actually useful.
1853    fn pretty_print_const_pointer<Prov: Provenance>(
1854        &mut self,
1855        _: Pointer<Prov>,
1856        ty: Ty<'tcx>,
1857    ) -> Result<(), PrintError> {
1858        self.typed_value(
1859            |this| {
1860                this.write_str("&_")?;
1861                Ok(())
1862            },
1863            |this| this.print_type(ty),
1864            ": ",
1865        )
1866    }
1867
1868    fn pretty_print_byte_str(&mut self, byte_str: &'tcx [u8]) -> Result<(), PrintError> {
1869        write!(self, "b\"{}\"", byte_str.escape_ascii())?;
1870        Ok(())
1871    }
1872
1873    fn pretty_print_const_valtree(
1874        &mut self,
1875        cv: ty::Value<'tcx>,
1876        print_ty: bool,
1877    ) -> Result<(), PrintError> {
1878        if with_reduced_queries() || self.should_print_verbose() {
1879            write!(self, "ValTree({:?}: ", cv.valtree)?;
1880            cv.ty.print(self)?;
1881            write!(self, ")")?;
1882            return Ok(());
1883        }
1884
1885        let u8_type = self.tcx().types.u8;
1886        match (*cv.valtree, *cv.ty.kind()) {
1887            (ty::ValTreeKind::Branch(_), ty::Ref(_, inner_ty, _)) => match inner_ty.kind() {
1888                ty::Slice(t) if *t == u8_type => {
1889                    let bytes = cv.try_to_raw_bytes(self.tcx()).unwrap_or_else(|| {
1890                        bug!(
1891                            "expected to convert valtree {:?} to raw bytes for type {:?}",
1892                            cv.valtree,
1893                            t
1894                        )
1895                    });
1896                    return self.pretty_print_byte_str(bytes);
1897                }
1898                ty::Str => {
1899                    let bytes = cv.try_to_raw_bytes(self.tcx()).unwrap_or_else(|| {
1900                        bug!("expected to convert valtree to raw bytes for type {:?}", cv.ty)
1901                    });
1902                    write!(self, "{:?}", String::from_utf8_lossy(bytes))?;
1903                    return Ok(());
1904                }
1905                _ => {
1906                    let cv = ty::Value { valtree: cv.valtree, ty: inner_ty };
1907                    write!(self, "&")?;
1908                    self.pretty_print_const_valtree(cv, print_ty)?;
1909                    return Ok(());
1910                }
1911            },
1912            (ty::ValTreeKind::Branch(_), ty::Array(t, _)) if t == u8_type => {
1913                let bytes = cv.try_to_raw_bytes(self.tcx()).unwrap_or_else(|| {
1914                    bug!("expected to convert valtree to raw bytes for type {:?}", t)
1915                });
1916                write!(self, "*")?;
1917                self.pretty_print_byte_str(bytes)?;
1918                return Ok(());
1919            }
1920            // Aggregates, printed as array/tuple/struct/variant construction syntax.
1921            (ty::ValTreeKind::Branch(_), ty::Array(..) | ty::Tuple(..) | ty::Adt(..)) => {
1922                let contents = self.tcx().destructure_const(ty::Const::new_value(
1923                    self.tcx(),
1924                    cv.valtree,
1925                    cv.ty,
1926                ));
1927                let fields = contents.fields.iter().copied();
1928                match *cv.ty.kind() {
1929                    ty::Array(..) => {
1930                        write!(self, "[")?;
1931                        self.comma_sep(fields)?;
1932                        write!(self, "]")?;
1933                    }
1934                    ty::Tuple(..) => {
1935                        write!(self, "(")?;
1936                        self.comma_sep(fields)?;
1937                        if contents.fields.len() == 1 {
1938                            write!(self, ",")?;
1939                        }
1940                        write!(self, ")")?;
1941                    }
1942                    ty::Adt(def, _) if def.variants().is_empty() => {
1943                        self.typed_value(
1944                            |this| {
1945                                write!(this, "unreachable()")?;
1946                                Ok(())
1947                            },
1948                            |this| this.print_type(cv.ty),
1949                            ": ",
1950                        )?;
1951                    }
1952                    ty::Adt(def, args) => {
1953                        let variant_idx =
1954                            contents.variant.expect("destructed const of adt without variant idx");
1955                        let variant_def = &def.variant(variant_idx);
1956                        self.pretty_print_value_path(variant_def.def_id, args)?;
1957                        match variant_def.ctor_kind() {
1958                            Some(CtorKind::Const) => {}
1959                            Some(CtorKind::Fn) => {
1960                                write!(self, "(")?;
1961                                self.comma_sep(fields)?;
1962                                write!(self, ")")?;
1963                            }
1964                            None => {
1965                                write!(self, " {{ ")?;
1966                                let mut first = true;
1967                                for (field_def, field) in iter::zip(&variant_def.fields, fields) {
1968                                    if !first {
1969                                        write!(self, ", ")?;
1970                                    }
1971                                    write!(self, "{}: ", field_def.name)?;
1972                                    field.print(self)?;
1973                                    first = false;
1974                                }
1975                                write!(self, " }}")?;
1976                            }
1977                        }
1978                    }
1979                    _ => unreachable!(),
1980                }
1981                return Ok(());
1982            }
1983            (ty::ValTreeKind::Leaf(leaf), ty::Ref(_, inner_ty, _)) => {
1984                write!(self, "&")?;
1985                return self.pretty_print_const_scalar_int(*leaf, inner_ty, print_ty);
1986            }
1987            (ty::ValTreeKind::Leaf(leaf), _) => {
1988                return self.pretty_print_const_scalar_int(*leaf, cv.ty, print_ty);
1989            }
1990            (_, ty::FnDef(def_id, args)) => {
1991                // Never allowed today, but we still encounter them in invalid const args.
1992                self.pretty_print_value_path(def_id, args)?;
1993                return Ok(());
1994            }
1995            // FIXME(oli-obk): also pretty print arrays and other aggregate constants by reading
1996            // their fields instead of just dumping the memory.
1997            _ => {}
1998        }
1999
2000        // fallback
2001        if cv.valtree.is_zst() {
2002            write!(self, "<ZST>")?;
2003        } else {
2004            write!(self, "{:?}", cv.valtree)?;
2005        }
2006        if print_ty {
2007            write!(self, ": ")?;
2008            cv.ty.print(self)?;
2009        }
2010        Ok(())
2011    }
2012
2013    fn pretty_print_closure_as_impl(
2014        &mut self,
2015        closure: ty::ClosureArgs<TyCtxt<'tcx>>,
2016    ) -> Result<(), PrintError> {
2017        let sig = closure.sig();
2018        let kind = closure.kind_ty().to_opt_closure_kind().unwrap_or(ty::ClosureKind::Fn);
2019
2020        write!(self, "impl ")?;
2021        self.wrap_binder(&sig, WrapBinderMode::ForAll, |sig, p| {
2022            write!(p, "{kind}(")?;
2023            for (i, arg) in sig.inputs()[0].tuple_fields().iter().enumerate() {
2024                if i > 0 {
2025                    write!(p, ", ")?;
2026                }
2027                arg.print(p)?;
2028            }
2029            write!(p, ")")?;
2030
2031            if !sig.output().is_unit() {
2032                write!(p, " -> ")?;
2033                sig.output().print(p)?;
2034            }
2035
2036            Ok(())
2037        })
2038    }
2039
2040    fn pretty_print_bound_constness(
2041        &mut self,
2042        constness: ty::BoundConstness,
2043    ) -> Result<(), PrintError> {
2044        match constness {
2045            ty::BoundConstness::Const => write!(self, "const ")?,
2046            ty::BoundConstness::Maybe => write!(self, "[const] ")?,
2047        }
2048        Ok(())
2049    }
2050
2051    fn should_print_verbose(&self) -> bool {
2052        self.tcx().sess.verbose_internals()
2053    }
2054}
2055
2056pub(crate) fn pretty_print_const<'tcx>(
2057    c: ty::Const<'tcx>,
2058    fmt: &mut fmt::Formatter<'_>,
2059    print_types: bool,
2060) -> fmt::Result {
2061    ty::tls::with(|tcx| {
2062        let literal = tcx.lift(c).unwrap();
2063        let mut p = FmtPrinter::new(tcx, Namespace::ValueNS);
2064        p.print_alloc_ids = true;
2065        p.pretty_print_const(literal, print_types)?;
2066        fmt.write_str(&p.into_buffer())?;
2067        Ok(())
2068    })
2069}
2070
2071// HACK(eddyb) boxed to avoid moving around a large struct by-value.
2072pub struct FmtPrinter<'a, 'tcx>(Box<FmtPrinterData<'a, 'tcx>>);
2073
2074pub struct FmtPrinterData<'a, 'tcx> {
2075    tcx: TyCtxt<'tcx>,
2076    fmt: String,
2077
2078    empty_path: bool,
2079    in_value: bool,
2080    pub print_alloc_ids: bool,
2081
2082    // set of all named (non-anonymous) region names
2083    used_region_names: FxHashSet<Symbol>,
2084
2085    region_index: usize,
2086    binder_depth: usize,
2087    printed_type_count: usize,
2088    type_length_limit: Limit,
2089
2090    pub region_highlight_mode: RegionHighlightMode<'tcx>,
2091
2092    pub ty_infer_name_resolver: Option<Box<dyn Fn(ty::TyVid) -> Option<Symbol> + 'a>>,
2093    pub const_infer_name_resolver: Option<Box<dyn Fn(ty::ConstVid) -> Option<Symbol> + 'a>>,
2094}
2095
2096impl<'a, 'tcx> Deref for FmtPrinter<'a, 'tcx> {
2097    type Target = FmtPrinterData<'a, 'tcx>;
2098    fn deref(&self) -> &Self::Target {
2099        &self.0
2100    }
2101}
2102
2103impl DerefMut for FmtPrinter<'_, '_> {
2104    fn deref_mut(&mut self) -> &mut Self::Target {
2105        &mut self.0
2106    }
2107}
2108
2109impl<'a, 'tcx> FmtPrinter<'a, 'tcx> {
2110    pub fn new(tcx: TyCtxt<'tcx>, ns: Namespace) -> Self {
2111        let limit =
2112            if with_reduced_queries() { Limit::new(1048576) } else { tcx.type_length_limit() };
2113        Self::new_with_limit(tcx, ns, limit)
2114    }
2115
2116    pub fn print_string(
2117        tcx: TyCtxt<'tcx>,
2118        ns: Namespace,
2119        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2120    ) -> Result<String, PrintError> {
2121        let mut c = FmtPrinter::new(tcx, ns);
2122        f(&mut c)?;
2123        Ok(c.into_buffer())
2124    }
2125
2126    pub fn new_with_limit(tcx: TyCtxt<'tcx>, ns: Namespace, type_length_limit: Limit) -> Self {
2127        FmtPrinter(Box::new(FmtPrinterData {
2128            tcx,
2129            // Estimated reasonable capacity to allocate upfront based on a few
2130            // benchmarks.
2131            fmt: String::with_capacity(64),
2132            empty_path: false,
2133            in_value: ns == Namespace::ValueNS,
2134            print_alloc_ids: false,
2135            used_region_names: Default::default(),
2136            region_index: 0,
2137            binder_depth: 0,
2138            printed_type_count: 0,
2139            type_length_limit,
2140            region_highlight_mode: RegionHighlightMode::default(),
2141            ty_infer_name_resolver: None,
2142            const_infer_name_resolver: None,
2143        }))
2144    }
2145
2146    pub fn into_buffer(self) -> String {
2147        self.0.fmt
2148    }
2149}
2150
2151fn guess_def_namespace(tcx: TyCtxt<'_>, def_id: DefId) -> Namespace {
2152    match tcx.def_key(def_id).disambiguated_data.data {
2153        DefPathData::TypeNs(..) | DefPathData::CrateRoot | DefPathData::OpaqueTy => {
2154            Namespace::TypeNS
2155        }
2156
2157        DefPathData::ValueNs(..)
2158        | DefPathData::AnonConst
2159        | DefPathData::LateAnonConst
2160        | DefPathData::Closure
2161        | DefPathData::Ctor => Namespace::ValueNS,
2162
2163        DefPathData::MacroNs(..) => Namespace::MacroNS,
2164
2165        _ => Namespace::TypeNS,
2166    }
2167}
2168
2169impl<'t> TyCtxt<'t> {
2170    /// Returns a string identifying this `DefId`. This string is
2171    /// suitable for user output.
2172    pub fn def_path_str(self, def_id: impl IntoQueryParam<DefId>) -> String {
2173        self.def_path_str_with_args(def_id, &[])
2174    }
2175
2176    /// For this one we determine the appropriate namespace for the `def_id`.
2177    pub fn def_path_str_with_args(
2178        self,
2179        def_id: impl IntoQueryParam<DefId>,
2180        args: &'t [GenericArg<'t>],
2181    ) -> String {
2182        let def_id = def_id.into_query_param();
2183        let ns = guess_def_namespace(self, def_id);
2184        debug!("def_path_str: def_id={:?}, ns={:?}", def_id, ns);
2185
2186        FmtPrinter::print_string(self, ns, |p| p.print_def_path(def_id, args)).unwrap()
2187    }
2188
2189    /// For this one we always use value namespace.
2190    pub fn value_path_str_with_args(
2191        self,
2192        def_id: impl IntoQueryParam<DefId>,
2193        args: &'t [GenericArg<'t>],
2194    ) -> String {
2195        let def_id = def_id.into_query_param();
2196        let ns = Namespace::ValueNS;
2197        debug!("value_path_str: def_id={:?}, ns={:?}", def_id, ns);
2198
2199        FmtPrinter::print_string(self, ns, |p| p.print_def_path(def_id, args)).unwrap()
2200    }
2201}
2202
2203impl fmt::Write for FmtPrinter<'_, '_> {
2204    fn write_str(&mut self, s: &str) -> fmt::Result {
2205        self.fmt.push_str(s);
2206        Ok(())
2207    }
2208}
2209
2210impl<'tcx> Printer<'tcx> for FmtPrinter<'_, 'tcx> {
2211    fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
2212        self.tcx
2213    }
2214
2215    fn print_def_path(
2216        &mut self,
2217        def_id: DefId,
2218        args: &'tcx [GenericArg<'tcx>],
2219    ) -> Result<(), PrintError> {
2220        if args.is_empty() {
2221            match self.try_print_trimmed_def_path(def_id)? {
2222                true => return Ok(()),
2223                false => {}
2224            }
2225
2226            match self.try_print_visible_def_path(def_id)? {
2227                true => return Ok(()),
2228                false => {}
2229            }
2230        }
2231
2232        let key = self.tcx.def_key(def_id);
2233        if let DefPathData::Impl = key.disambiguated_data.data {
2234            // Always use types for non-local impls, where types are always
2235            // available, and filename/line-number is mostly uninteresting.
2236            let use_types = !def_id.is_local() || {
2237                // Otherwise, use filename/line-number if forced.
2238                let force_no_types = with_forced_impl_filename_line();
2239                !force_no_types
2240            };
2241
2242            if !use_types {
2243                // If no type info is available, fall back to
2244                // pretty printing some span information. This should
2245                // only occur very early in the compiler pipeline.
2246                let parent_def_id = DefId { index: key.parent.unwrap(), ..def_id };
2247                let span = self.tcx.def_span(def_id);
2248
2249                self.print_def_path(parent_def_id, &[])?;
2250
2251                // HACK(eddyb) copy of `print_path_with_simple` to avoid
2252                // constructing a `DisambiguatedDefPathData`.
2253                if !self.empty_path {
2254                    write!(self, "::")?;
2255                }
2256                write!(
2257                    self,
2258                    "<impl at {}>",
2259                    // This may end up in stderr diagnostics but it may also be emitted
2260                    // into MIR. Hence we use the remapped path if available
2261                    self.tcx.sess.source_map().span_to_embeddable_string(span)
2262                )?;
2263                self.empty_path = false;
2264
2265                return Ok(());
2266            }
2267        }
2268
2269        self.default_print_def_path(def_id, args)
2270    }
2271
2272    fn print_region(&mut self, region: ty::Region<'tcx>) -> Result<(), PrintError> {
2273        self.pretty_print_region(region)
2274    }
2275
2276    fn print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError> {
2277        match ty.kind() {
2278            ty::Tuple(tys) if tys.len() == 0 && self.should_truncate() => {
2279                // Don't truncate `()`.
2280                self.printed_type_count += 1;
2281                self.pretty_print_type(ty)
2282            }
2283            ty::Adt(..)
2284            | ty::Foreign(_)
2285            | ty::Pat(..)
2286            | ty::RawPtr(..)
2287            | ty::Ref(..)
2288            | ty::FnDef(..)
2289            | ty::FnPtr(..)
2290            | ty::UnsafeBinder(..)
2291            | ty::Dynamic(..)
2292            | ty::Closure(..)
2293            | ty::CoroutineClosure(..)
2294            | ty::Coroutine(..)
2295            | ty::CoroutineWitness(..)
2296            | ty::Tuple(_)
2297            | ty::Alias(..)
2298            | ty::Param(_)
2299            | ty::Bound(..)
2300            | ty::Placeholder(_)
2301            | ty::Error(_)
2302                if self.should_truncate() =>
2303            {
2304                // We only truncate types that we know are likely to be much longer than 3 chars.
2305                // There's no point in replacing `i32` or `!`.
2306                write!(self, "...")?;
2307                Ok(())
2308            }
2309            _ => {
2310                self.printed_type_count += 1;
2311                self.pretty_print_type(ty)
2312            }
2313        }
2314    }
2315
2316    fn print_dyn_existential(
2317        &mut self,
2318        predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2319    ) -> Result<(), PrintError> {
2320        self.pretty_print_dyn_existential(predicates)
2321    }
2322
2323    fn print_const(&mut self, ct: ty::Const<'tcx>) -> Result<(), PrintError> {
2324        self.pretty_print_const(ct, false)
2325    }
2326
2327    fn print_crate_name(&mut self, cnum: CrateNum) -> Result<(), PrintError> {
2328        self.empty_path = true;
2329        if cnum == LOCAL_CRATE && !with_resolve_crate_name() {
2330            if self.tcx.sess.at_least_rust_2018() {
2331                // We add the `crate::` keyword on Rust 2018, only when desired.
2332                if with_crate_prefix() {
2333                    write!(self, "{}", kw::Crate)?;
2334                    self.empty_path = false;
2335                }
2336            }
2337        } else {
2338            write!(self, "{}", self.tcx.crate_name(cnum))?;
2339            self.empty_path = false;
2340        }
2341        Ok(())
2342    }
2343
2344    fn print_path_with_qualified(
2345        &mut self,
2346        self_ty: Ty<'tcx>,
2347        trait_ref: Option<ty::TraitRef<'tcx>>,
2348    ) -> Result<(), PrintError> {
2349        self.pretty_print_path_with_qualified(self_ty, trait_ref)?;
2350        self.empty_path = false;
2351        Ok(())
2352    }
2353
2354    fn print_path_with_impl(
2355        &mut self,
2356        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2357        self_ty: Ty<'tcx>,
2358        trait_ref: Option<ty::TraitRef<'tcx>>,
2359    ) -> Result<(), PrintError> {
2360        self.pretty_print_path_with_impl(
2361            |p| {
2362                print_prefix(p)?;
2363                if !p.empty_path {
2364                    write!(p, "::")?;
2365                }
2366
2367                Ok(())
2368            },
2369            self_ty,
2370            trait_ref,
2371        )?;
2372        self.empty_path = false;
2373        Ok(())
2374    }
2375
2376    fn print_path_with_simple(
2377        &mut self,
2378        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2379        disambiguated_data: &DisambiguatedDefPathData,
2380    ) -> Result<(), PrintError> {
2381        print_prefix(self)?;
2382
2383        // Skip `::{{extern}}` blocks and `::{{constructor}}` on tuple/unit structs.
2384        if let DefPathData::ForeignMod | DefPathData::Ctor = disambiguated_data.data {
2385            return Ok(());
2386        }
2387
2388        let name = disambiguated_data.data.name();
2389        if !self.empty_path {
2390            write!(self, "::")?;
2391        }
2392
2393        if let DefPathDataName::Named(name) = name {
2394            if Ident::with_dummy_span(name).is_raw_guess() {
2395                write!(self, "r#")?;
2396            }
2397        }
2398
2399        let verbose = self.should_print_verbose();
2400        write!(self, "{}", disambiguated_data.as_sym(verbose))?;
2401
2402        self.empty_path = false;
2403
2404        Ok(())
2405    }
2406
2407    fn print_path_with_generic_args(
2408        &mut self,
2409        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2410        args: &[GenericArg<'tcx>],
2411    ) -> Result<(), PrintError> {
2412        print_prefix(self)?;
2413
2414        if !args.is_empty() {
2415            if self.in_value {
2416                write!(self, "::")?;
2417            }
2418            self.generic_delimiters(|p| p.comma_sep(args.iter().copied()))
2419        } else {
2420            Ok(())
2421        }
2422    }
2423}
2424
2425impl<'tcx> PrettyPrinter<'tcx> for FmtPrinter<'_, 'tcx> {
2426    fn ty_infer_name(&self, id: ty::TyVid) -> Option<Symbol> {
2427        self.0.ty_infer_name_resolver.as_ref().and_then(|func| func(id))
2428    }
2429
2430    fn reset_type_limit(&mut self) {
2431        self.printed_type_count = 0;
2432    }
2433
2434    fn const_infer_name(&self, id: ty::ConstVid) -> Option<Symbol> {
2435        self.0.const_infer_name_resolver.as_ref().and_then(|func| func(id))
2436    }
2437
2438    fn pretty_print_value_path(
2439        &mut self,
2440        def_id: DefId,
2441        args: &'tcx [GenericArg<'tcx>],
2442    ) -> Result<(), PrintError> {
2443        let was_in_value = std::mem::replace(&mut self.in_value, true);
2444        self.print_def_path(def_id, args)?;
2445        self.in_value = was_in_value;
2446
2447        Ok(())
2448    }
2449
2450    fn pretty_print_in_binder<T>(&mut self, value: &ty::Binder<'tcx, T>) -> Result<(), PrintError>
2451    where
2452        T: Print<'tcx, Self> + TypeFoldable<TyCtxt<'tcx>>,
2453    {
2454        self.wrap_binder(value, WrapBinderMode::ForAll, |new_value, this| new_value.print(this))
2455    }
2456
2457    fn wrap_binder<T, C: FnOnce(&T, &mut Self) -> Result<(), PrintError>>(
2458        &mut self,
2459        value: &ty::Binder<'tcx, T>,
2460        mode: WrapBinderMode,
2461        f: C,
2462    ) -> Result<(), PrintError>
2463    where
2464        T: TypeFoldable<TyCtxt<'tcx>>,
2465    {
2466        let old_region_index = self.region_index;
2467        let (new_value, _) = self.name_all_regions(value, mode)?;
2468        f(&new_value, self)?;
2469        self.region_index = old_region_index;
2470        self.binder_depth -= 1;
2471        Ok(())
2472    }
2473
2474    fn typed_value(
2475        &mut self,
2476        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2477        t: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2478        conversion: &str,
2479    ) -> Result<(), PrintError> {
2480        self.write_str("{")?;
2481        f(self)?;
2482        self.write_str(conversion)?;
2483        let was_in_value = std::mem::replace(&mut self.in_value, false);
2484        t(self)?;
2485        self.in_value = was_in_value;
2486        self.write_str("}")?;
2487        Ok(())
2488    }
2489
2490    fn generic_delimiters(
2491        &mut self,
2492        f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
2493    ) -> Result<(), PrintError> {
2494        write!(self, "<")?;
2495
2496        let was_in_value = std::mem::replace(&mut self.in_value, false);
2497        f(self)?;
2498        self.in_value = was_in_value;
2499
2500        write!(self, ">")?;
2501        Ok(())
2502    }
2503
2504    fn should_truncate(&mut self) -> bool {
2505        !self.type_length_limit.value_within_limit(self.printed_type_count)
2506    }
2507
2508    fn should_print_optional_region(&self, region: ty::Region<'tcx>) -> bool {
2509        let highlight = self.region_highlight_mode;
2510        if highlight.region_highlighted(region).is_some() {
2511            return true;
2512        }
2513
2514        if self.should_print_verbose() {
2515            return true;
2516        }
2517
2518        if with_forced_trimmed_paths() {
2519            return false;
2520        }
2521
2522        let identify_regions = self.tcx.sess.opts.unstable_opts.identify_regions;
2523
2524        match region.kind() {
2525            ty::ReEarlyParam(ref data) => data.is_named(),
2526
2527            ty::ReLateParam(ty::LateParamRegion { kind, .. }) => kind.is_named(self.tcx),
2528            ty::ReBound(_, ty::BoundRegion { kind: br, .. })
2529            | ty::RePlaceholder(ty::Placeholder {
2530                bound: ty::BoundRegion { kind: br, .. }, ..
2531            }) => {
2532                if br.is_named(self.tcx) {
2533                    return true;
2534                }
2535
2536                if let Some((region, _)) = highlight.highlight_bound_region {
2537                    if br == region {
2538                        return true;
2539                    }
2540                }
2541
2542                false
2543            }
2544
2545            ty::ReVar(_) if identify_regions => true,
2546
2547            ty::ReVar(_) | ty::ReErased | ty::ReError(_) => false,
2548
2549            ty::ReStatic => true,
2550        }
2551    }
2552
2553    fn pretty_print_const_pointer<Prov: Provenance>(
2554        &mut self,
2555        p: Pointer<Prov>,
2556        ty: Ty<'tcx>,
2557    ) -> Result<(), PrintError> {
2558        let print = |this: &mut Self| {
2559            if this.print_alloc_ids {
2560                write!(this, "{p:?}")?;
2561            } else {
2562                write!(this, "&_")?;
2563            }
2564            Ok(())
2565        };
2566        self.typed_value(print, |this| this.print_type(ty), ": ")
2567    }
2568}
2569
2570// HACK(eddyb) limited to `FmtPrinter` because of `region_highlight_mode`.
2571impl<'tcx> FmtPrinter<'_, 'tcx> {
2572    pub fn pretty_print_region(&mut self, region: ty::Region<'tcx>) -> Result<(), fmt::Error> {
2573        // Watch out for region highlights.
2574        let highlight = self.region_highlight_mode;
2575        if let Some(n) = highlight.region_highlighted(region) {
2576            write!(self, "'{n}")?;
2577            return Ok(());
2578        }
2579
2580        if self.should_print_verbose() {
2581            write!(self, "{region:?}")?;
2582            return Ok(());
2583        }
2584
2585        let identify_regions = self.tcx.sess.opts.unstable_opts.identify_regions;
2586
2587        // These printouts are concise. They do not contain all the information
2588        // the user might want to diagnose an error, but there is basically no way
2589        // to fit that into a short string. Hence the recommendation to use
2590        // `explain_region()` or `note_and_explain_region()`.
2591        match region.kind() {
2592            ty::ReEarlyParam(data) => {
2593                write!(self, "{}", data.name)?;
2594                return Ok(());
2595            }
2596            ty::ReLateParam(ty::LateParamRegion { kind, .. }) => {
2597                if let Some(name) = kind.get_name(self.tcx) {
2598                    write!(self, "{name}")?;
2599                    return Ok(());
2600                }
2601            }
2602            ty::ReBound(_, ty::BoundRegion { kind: br, .. })
2603            | ty::RePlaceholder(ty::Placeholder {
2604                bound: ty::BoundRegion { kind: br, .. }, ..
2605            }) => {
2606                if let Some(name) = br.get_name(self.tcx) {
2607                    write!(self, "{name}")?;
2608                    return Ok(());
2609                }
2610
2611                if let Some((region, counter)) = highlight.highlight_bound_region {
2612                    if br == region {
2613                        write!(self, "'{counter}")?;
2614                        return Ok(());
2615                    }
2616                }
2617            }
2618            ty::ReVar(region_vid) if identify_regions => {
2619                write!(self, "{region_vid:?}")?;
2620                return Ok(());
2621            }
2622            ty::ReVar(_) => {}
2623            ty::ReErased => {}
2624            ty::ReError(_) => {}
2625            ty::ReStatic => {
2626                write!(self, "'static")?;
2627                return Ok(());
2628            }
2629        }
2630
2631        write!(self, "'_")?;
2632
2633        Ok(())
2634    }
2635}
2636
2637/// Folds through bound vars and placeholders, naming them
2638struct RegionFolder<'a, 'tcx> {
2639    tcx: TyCtxt<'tcx>,
2640    current_index: ty::DebruijnIndex,
2641    region_map: UnordMap<ty::BoundRegion, ty::Region<'tcx>>,
2642    name: &'a mut (
2643                dyn FnMut(
2644        Option<ty::DebruijnIndex>, // Debruijn index of the folded late-bound region
2645        ty::DebruijnIndex,         // Index corresponding to binder level
2646        ty::BoundRegion,
2647    ) -> ty::Region<'tcx>
2648                    + 'a
2649            ),
2650}
2651
2652impl<'a, 'tcx> ty::TypeFolder<TyCtxt<'tcx>> for RegionFolder<'a, 'tcx> {
2653    fn cx(&self) -> TyCtxt<'tcx> {
2654        self.tcx
2655    }
2656
2657    fn fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
2658        &mut self,
2659        t: ty::Binder<'tcx, T>,
2660    ) -> ty::Binder<'tcx, T> {
2661        self.current_index.shift_in(1);
2662        let t = t.super_fold_with(self);
2663        self.current_index.shift_out(1);
2664        t
2665    }
2666
2667    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
2668        match *t.kind() {
2669            _ if t.has_vars_bound_at_or_above(self.current_index) || t.has_placeholders() => {
2670                return t.super_fold_with(self);
2671            }
2672            _ => {}
2673        }
2674        t
2675    }
2676
2677    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
2678        let name = &mut self.name;
2679        let region = match r.kind() {
2680            ty::ReBound(ty::BoundVarIndexKind::Bound(db), br) if db >= self.current_index => {
2681                *self.region_map.entry(br).or_insert_with(|| name(Some(db), self.current_index, br))
2682            }
2683            ty::RePlaceholder(ty::PlaceholderRegion {
2684                bound: ty::BoundRegion { kind, .. },
2685                ..
2686            }) => {
2687                // If this is an anonymous placeholder, don't rename. Otherwise, in some
2688                // async fns, we get a `for<'r> Send` bound
2689                match kind {
2690                    ty::BoundRegionKind::Anon | ty::BoundRegionKind::ClosureEnv => r,
2691                    _ => {
2692                        // Index doesn't matter, since this is just for naming and these never get bound
2693                        let br = ty::BoundRegion { var: ty::BoundVar::ZERO, kind };
2694                        *self
2695                            .region_map
2696                            .entry(br)
2697                            .or_insert_with(|| name(None, self.current_index, br))
2698                    }
2699                }
2700            }
2701            _ => return r,
2702        };
2703        if let ty::ReBound(ty::BoundVarIndexKind::Bound(debruijn1), br) = region.kind() {
2704            assert_eq!(debruijn1, ty::INNERMOST);
2705            ty::Region::new_bound(self.tcx, self.current_index, br)
2706        } else {
2707            region
2708        }
2709    }
2710}
2711
2712// HACK(eddyb) limited to `FmtPrinter` because of `binder_depth`,
2713// `region_index` and `used_region_names`.
2714impl<'tcx> FmtPrinter<'_, 'tcx> {
2715    pub fn name_all_regions<T>(
2716        &mut self,
2717        value: &ty::Binder<'tcx, T>,
2718        mode: WrapBinderMode,
2719    ) -> Result<(T, UnordMap<ty::BoundRegion, ty::Region<'tcx>>), fmt::Error>
2720    where
2721        T: TypeFoldable<TyCtxt<'tcx>>,
2722    {
2723        fn name_by_region_index(
2724            index: usize,
2725            available_names: &mut Vec<Symbol>,
2726            num_available: usize,
2727        ) -> Symbol {
2728            if let Some(name) = available_names.pop() {
2729                name
2730            } else {
2731                Symbol::intern(&format!("'z{}", index - num_available))
2732            }
2733        }
2734
2735        debug!("name_all_regions");
2736
2737        // Replace any anonymous late-bound regions with named
2738        // variants, using new unique identifiers, so that we can
2739        // clearly differentiate between named and unnamed regions in
2740        // the output. We'll probably want to tweak this over time to
2741        // decide just how much information to give.
2742        if self.binder_depth == 0 {
2743            self.prepare_region_info(value);
2744        }
2745
2746        debug!("self.used_region_names: {:?}", self.used_region_names);
2747
2748        let mut empty = true;
2749        let mut start_or_continue = |p: &mut Self, start: &str, cont: &str| {
2750            let w = if empty {
2751                empty = false;
2752                start
2753            } else {
2754                cont
2755            };
2756            let _ = write!(p, "{w}");
2757        };
2758        let do_continue = |p: &mut Self, cont: Symbol| {
2759            let _ = write!(p, "{cont}");
2760        };
2761
2762        let possible_names = ('a'..='z').rev().map(|s| Symbol::intern(&format!("'{s}")));
2763
2764        let mut available_names = possible_names
2765            .filter(|name| !self.used_region_names.contains(name))
2766            .collect::<Vec<_>>();
2767        debug!(?available_names);
2768        let num_available = available_names.len();
2769
2770        let mut region_index = self.region_index;
2771        let mut next_name = |this: &Self| {
2772            let mut name;
2773
2774            loop {
2775                name = name_by_region_index(region_index, &mut available_names, num_available);
2776                region_index += 1;
2777
2778                if !this.used_region_names.contains(&name) {
2779                    break;
2780                }
2781            }
2782
2783            name
2784        };
2785
2786        // If we want to print verbosely, then print *all* binders, even if they
2787        // aren't named. Eventually, we might just want this as the default, but
2788        // this is not *quite* right and changes the ordering of some output
2789        // anyways.
2790        let (new_value, map) = if self.should_print_verbose() {
2791            for var in value.bound_vars().iter() {
2792                start_or_continue(self, mode.start_str(), ", ");
2793                write!(self, "{var:?}")?;
2794            }
2795            // Unconditionally render `unsafe<>`.
2796            if value.bound_vars().is_empty() && mode == WrapBinderMode::Unsafe {
2797                start_or_continue(self, mode.start_str(), "");
2798            }
2799            start_or_continue(self, "", "> ");
2800            (value.clone().skip_binder(), UnordMap::default())
2801        } else {
2802            let tcx = self.tcx;
2803
2804            let trim_path = with_forced_trimmed_paths();
2805            // Closure used in `RegionFolder` to create names for anonymous late-bound
2806            // regions. We use two `DebruijnIndex`es (one for the currently folded
2807            // late-bound region and the other for the binder level) to determine
2808            // whether a name has already been created for the currently folded region,
2809            // see issue #102392.
2810            let mut name = |lifetime_idx: Option<ty::DebruijnIndex>,
2811                            binder_level_idx: ty::DebruijnIndex,
2812                            br: ty::BoundRegion| {
2813                let (name, kind) = if let Some(name) = br.kind.get_name(tcx) {
2814                    (name, br.kind)
2815                } else {
2816                    let name = next_name(self);
2817                    (name, ty::BoundRegionKind::NamedAnon(name))
2818                };
2819
2820                if let Some(lt_idx) = lifetime_idx {
2821                    if lt_idx > binder_level_idx {
2822                        return ty::Region::new_bound(
2823                            tcx,
2824                            ty::INNERMOST,
2825                            ty::BoundRegion { var: br.var, kind },
2826                        );
2827                    }
2828                }
2829
2830                // Unconditionally render `unsafe<>`.
2831                if !trim_path || mode == WrapBinderMode::Unsafe {
2832                    start_or_continue(self, mode.start_str(), ", ");
2833                    do_continue(self, name);
2834                }
2835                ty::Region::new_bound(tcx, ty::INNERMOST, ty::BoundRegion { var: br.var, kind })
2836            };
2837            let mut folder = RegionFolder {
2838                tcx,
2839                current_index: ty::INNERMOST,
2840                name: &mut name,
2841                region_map: UnordMap::default(),
2842            };
2843            let new_value = value.clone().skip_binder().fold_with(&mut folder);
2844            let region_map = folder.region_map;
2845
2846            if mode == WrapBinderMode::Unsafe && region_map.is_empty() {
2847                start_or_continue(self, mode.start_str(), "");
2848            }
2849            start_or_continue(self, "", "> ");
2850
2851            (new_value, region_map)
2852        };
2853
2854        self.binder_depth += 1;
2855        self.region_index = region_index;
2856        Ok((new_value, map))
2857    }
2858
2859    fn prepare_region_info<T>(&mut self, value: &ty::Binder<'tcx, T>)
2860    where
2861        T: TypeFoldable<TyCtxt<'tcx>>,
2862    {
2863        struct RegionNameCollector<'tcx> {
2864            tcx: TyCtxt<'tcx>,
2865            used_region_names: FxHashSet<Symbol>,
2866            type_collector: SsoHashSet<Ty<'tcx>>,
2867        }
2868
2869        impl<'tcx> RegionNameCollector<'tcx> {
2870            fn new(tcx: TyCtxt<'tcx>) -> Self {
2871                RegionNameCollector {
2872                    tcx,
2873                    used_region_names: Default::default(),
2874                    type_collector: SsoHashSet::new(),
2875                }
2876            }
2877        }
2878
2879        impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for RegionNameCollector<'tcx> {
2880            fn visit_region(&mut self, r: ty::Region<'tcx>) {
2881                trace!("address: {:p}", r.0.0);
2882
2883                // Collect all named lifetimes. These allow us to prevent duplication
2884                // of already existing lifetime names when introducing names for
2885                // anonymous late-bound regions.
2886                if let Some(name) = r.get_name(self.tcx) {
2887                    self.used_region_names.insert(name);
2888                }
2889            }
2890
2891            // We collect types in order to prevent really large types from compiling for
2892            // a really long time. See issue #83150 for why this is necessary.
2893            fn visit_ty(&mut self, ty: Ty<'tcx>) {
2894                let not_previously_inserted = self.type_collector.insert(ty);
2895                if not_previously_inserted {
2896                    ty.super_visit_with(self)
2897                }
2898            }
2899        }
2900
2901        let mut collector = RegionNameCollector::new(self.tcx());
2902        value.visit_with(&mut collector);
2903        self.used_region_names = collector.used_region_names;
2904        self.region_index = 0;
2905    }
2906}
2907
2908impl<'tcx, T, P: PrettyPrinter<'tcx>> Print<'tcx, P> for ty::Binder<'tcx, T>
2909where
2910    T: Print<'tcx, P> + TypeFoldable<TyCtxt<'tcx>>,
2911{
2912    fn print(&self, p: &mut P) -> Result<(), PrintError> {
2913        p.pretty_print_in_binder(self)
2914    }
2915}
2916
2917impl<'tcx, T, P: PrettyPrinter<'tcx>> Print<'tcx, P> for ty::OutlivesPredicate<'tcx, T>
2918where
2919    T: Print<'tcx, P>,
2920{
2921    fn print(&self, p: &mut P) -> Result<(), PrintError> {
2922        self.0.print(p)?;
2923        write!(p, ": ")?;
2924        self.1.print(p)?;
2925        Ok(())
2926    }
2927}
2928
2929/// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
2930/// the trait path. That is, it will print `Trait<U>` instead of
2931/// `<T as Trait<U>>`.
2932#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
2933pub struct TraitRefPrintOnlyTraitPath<'tcx>(ty::TraitRef<'tcx>);
2934
2935impl<'tcx> rustc_errors::IntoDiagArg for TraitRefPrintOnlyTraitPath<'tcx> {
2936    fn into_diag_arg(self, path: &mut Option<std::path::PathBuf>) -> rustc_errors::DiagArgValue {
2937        ty::tls::with(|tcx| {
2938            let trait_ref = tcx.short_string(self, path);
2939            rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(trait_ref))
2940        })
2941    }
2942}
2943
2944impl<'tcx> fmt::Debug for TraitRefPrintOnlyTraitPath<'tcx> {
2945    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2946        fmt::Display::fmt(self, f)
2947    }
2948}
2949
2950/// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
2951/// the trait path, and additionally tries to "sugar" `Fn(...)` trait bounds.
2952#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
2953pub struct TraitRefPrintSugared<'tcx>(ty::TraitRef<'tcx>);
2954
2955impl<'tcx> rustc_errors::IntoDiagArg for TraitRefPrintSugared<'tcx> {
2956    fn into_diag_arg(self, path: &mut Option<std::path::PathBuf>) -> rustc_errors::DiagArgValue {
2957        ty::tls::with(|tcx| {
2958            let trait_ref = tcx.short_string(self, path);
2959            rustc_errors::DiagArgValue::Str(std::borrow::Cow::Owned(trait_ref))
2960        })
2961    }
2962}
2963
2964impl<'tcx> fmt::Debug for TraitRefPrintSugared<'tcx> {
2965    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2966        fmt::Display::fmt(self, f)
2967    }
2968}
2969
2970/// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
2971/// the trait name. That is, it will print `Trait` instead of
2972/// `<T as Trait<U>>`.
2973#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift)]
2974pub struct TraitRefPrintOnlyTraitName<'tcx>(ty::TraitRef<'tcx>);
2975
2976impl<'tcx> fmt::Debug for TraitRefPrintOnlyTraitName<'tcx> {
2977    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2978        fmt::Display::fmt(self, f)
2979    }
2980}
2981
2982#[extension(pub trait PrintTraitRefExt<'tcx>)]
2983impl<'tcx> ty::TraitRef<'tcx> {
2984    fn print_only_trait_path(self) -> TraitRefPrintOnlyTraitPath<'tcx> {
2985        TraitRefPrintOnlyTraitPath(self)
2986    }
2987
2988    fn print_trait_sugared(self) -> TraitRefPrintSugared<'tcx> {
2989        TraitRefPrintSugared(self)
2990    }
2991
2992    fn print_only_trait_name(self) -> TraitRefPrintOnlyTraitName<'tcx> {
2993        TraitRefPrintOnlyTraitName(self)
2994    }
2995}
2996
2997#[extension(pub trait PrintPolyTraitRefExt<'tcx>)]
2998impl<'tcx> ty::Binder<'tcx, ty::TraitRef<'tcx>> {
2999    fn print_only_trait_path(self) -> ty::Binder<'tcx, TraitRefPrintOnlyTraitPath<'tcx>> {
3000        self.map_bound(|tr| tr.print_only_trait_path())
3001    }
3002
3003    fn print_trait_sugared(self) -> ty::Binder<'tcx, TraitRefPrintSugared<'tcx>> {
3004        self.map_bound(|tr| tr.print_trait_sugared())
3005    }
3006}
3007
3008#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
3009pub struct TraitPredPrintModifiersAndPath<'tcx>(ty::TraitPredicate<'tcx>);
3010
3011impl<'tcx> fmt::Debug for TraitPredPrintModifiersAndPath<'tcx> {
3012    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3013        fmt::Display::fmt(self, f)
3014    }
3015}
3016
3017#[extension(pub trait PrintTraitPredicateExt<'tcx>)]
3018impl<'tcx> ty::TraitPredicate<'tcx> {
3019    fn print_modifiers_and_trait_path(self) -> TraitPredPrintModifiersAndPath<'tcx> {
3020        TraitPredPrintModifiersAndPath(self)
3021    }
3022}
3023
3024#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Lift, Hash)]
3025pub struct TraitPredPrintWithBoundConstness<'tcx>(
3026    ty::TraitPredicate<'tcx>,
3027    Option<ty::BoundConstness>,
3028);
3029
3030impl<'tcx> fmt::Debug for TraitPredPrintWithBoundConstness<'tcx> {
3031    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3032        fmt::Display::fmt(self, f)
3033    }
3034}
3035
3036#[extension(pub trait PrintPolyTraitPredicateExt<'tcx>)]
3037impl<'tcx> ty::PolyTraitPredicate<'tcx> {
3038    fn print_modifiers_and_trait_path(
3039        self,
3040    ) -> ty::Binder<'tcx, TraitPredPrintModifiersAndPath<'tcx>> {
3041        self.map_bound(TraitPredPrintModifiersAndPath)
3042    }
3043
3044    fn print_with_bound_constness(
3045        self,
3046        constness: Option<ty::BoundConstness>,
3047    ) -> ty::Binder<'tcx, TraitPredPrintWithBoundConstness<'tcx>> {
3048        self.map_bound(|trait_pred| TraitPredPrintWithBoundConstness(trait_pred, constness))
3049    }
3050}
3051
3052#[derive(Debug, Copy, Clone, Lift)]
3053pub struct PrintClosureAsImpl<'tcx> {
3054    pub closure: ty::ClosureArgs<TyCtxt<'tcx>>,
3055}
3056
3057macro_rules! forward_display_to_print {
3058    ($($ty:ty),+) => {
3059        // Some of the $ty arguments may not actually use 'tcx
3060        $(#[allow(unused_lifetimes)] impl<'tcx> fmt::Display for $ty {
3061            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3062                ty::tls::with(|tcx| {
3063                    let mut p = FmtPrinter::new(tcx, Namespace::TypeNS);
3064                    tcx.lift(*self)
3065                        .expect("could not lift for printing")
3066                        .print(&mut p)?;
3067                    f.write_str(&p.into_buffer())?;
3068                    Ok(())
3069                })
3070            }
3071        })+
3072    };
3073}
3074
3075macro_rules! define_print {
3076    (($self:ident, $p:ident): $($ty:ty $print:block)+) => {
3077        $(impl<'tcx, P: PrettyPrinter<'tcx>> Print<'tcx, P> for $ty {
3078            fn print(&$self, $p: &mut P) -> Result<(), PrintError> {
3079                let _: () = $print;
3080                Ok(())
3081            }
3082        })+
3083    };
3084}
3085
3086macro_rules! define_print_and_forward_display {
3087    (($self:ident, $p:ident): $($ty:ty $print:block)+) => {
3088        define_print!(($self, $p): $($ty $print)*);
3089        forward_display_to_print!($($ty),+);
3090    };
3091}
3092
3093forward_display_to_print! {
3094    ty::Region<'tcx>,
3095    Ty<'tcx>,
3096    &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
3097    ty::Const<'tcx>
3098}
3099
3100define_print! {
3101    (self, p):
3102
3103    ty::FnSig<'tcx> {
3104        write!(p, "{}", self.safety.prefix_str())?;
3105
3106        if self.abi != ExternAbi::Rust {
3107            write!(p, "extern {} ", self.abi)?;
3108        }
3109
3110        write!(p, "fn")?;
3111        p.pretty_print_fn_sig(self.inputs(), self.c_variadic, self.output())?;
3112    }
3113
3114    ty::TraitRef<'tcx> {
3115        write!(p, "<{} as {}>", self.self_ty(), self.print_only_trait_path())?;
3116    }
3117
3118    ty::AliasTy<'tcx> {
3119        let alias_term: ty::AliasTerm<'tcx> = (*self).into();
3120        alias_term.print(p)?;
3121    }
3122
3123    ty::AliasTerm<'tcx> {
3124        match self.kind(p.tcx()) {
3125            ty::AliasTermKind::InherentTy | ty::AliasTermKind::InherentConst => p.pretty_print_inherent_projection(*self)?,
3126            ty::AliasTermKind::ProjectionTy => {
3127                if !(p.should_print_verbose() || with_reduced_queries())
3128                    && p.tcx().is_impl_trait_in_trait(self.def_id)
3129                {
3130                    p.pretty_print_rpitit(self.def_id, self.args)?;
3131                } else {
3132                    p.print_def_path(self.def_id, self.args)?;
3133                }
3134            }
3135            ty::AliasTermKind::FreeTy
3136            | ty::AliasTermKind::FreeConst
3137            | ty::AliasTermKind::OpaqueTy
3138            | ty::AliasTermKind::UnevaluatedConst
3139            | ty::AliasTermKind::ProjectionConst => {
3140                p.print_def_path(self.def_id, self.args)?;
3141            }
3142        }
3143    }
3144
3145    ty::TraitPredicate<'tcx> {
3146        self.trait_ref.self_ty().print(p)?;
3147        write!(p, ": ")?;
3148        if let ty::PredicatePolarity::Negative = self.polarity {
3149            write!(p, "!")?;
3150        }
3151        self.trait_ref.print_trait_sugared().print(p)?;
3152    }
3153
3154    ty::HostEffectPredicate<'tcx> {
3155        let constness = match self.constness {
3156            ty::BoundConstness::Const => { "const" }
3157            ty::BoundConstness::Maybe => { "[const]" }
3158        };
3159        self.trait_ref.self_ty().print(p)?;
3160        write!(p, ": {constness} ")?;
3161        self.trait_ref.print_trait_sugared().print(p)?;
3162    }
3163
3164    ty::TypeAndMut<'tcx> {
3165        write!(p, "{}", self.mutbl.prefix_str())?;
3166        self.ty.print(p)?;
3167    }
3168
3169    ty::ClauseKind<'tcx> {
3170        match *self {
3171            ty::ClauseKind::Trait(ref data) => data.print(p)?,
3172            ty::ClauseKind::RegionOutlives(predicate) => predicate.print(p)?,
3173            ty::ClauseKind::TypeOutlives(predicate) => predicate.print(p)?,
3174            ty::ClauseKind::Projection(predicate) => predicate.print(p)?,
3175            ty::ClauseKind::HostEffect(predicate) => predicate.print(p)?,
3176            ty::ClauseKind::ConstArgHasType(ct, ty) => {
3177                write!(p, "the constant `")?;
3178                ct.print(p)?;
3179                write!(p, "` has type `")?;
3180                ty.print(p)?;
3181                write!(p, "`")?;
3182            },
3183            ty::ClauseKind::WellFormed(term) => {
3184                term.print(p)?;
3185                write!(p, " well-formed")?;
3186            }
3187            ty::ClauseKind::ConstEvaluatable(ct) => {
3188                write!(p, "the constant `")?;
3189                ct.print(p)?;
3190                write!(p, "` can be evaluated")?;
3191            }
3192            ty::ClauseKind::UnstableFeature(symbol) => {
3193                write!(p, "feature({symbol}) is enabled")?;
3194            }
3195        }
3196    }
3197
3198    ty::PredicateKind<'tcx> {
3199        match *self {
3200            ty::PredicateKind::Clause(data) => data.print(p)?,
3201            ty::PredicateKind::Subtype(predicate) => predicate.print(p)?,
3202            ty::PredicateKind::Coerce(predicate) => predicate.print(p)?,
3203            ty::PredicateKind::DynCompatible(trait_def_id) => {
3204                write!(p, "the trait `")?;
3205                p.print_def_path(trait_def_id, &[])?;
3206                write!(p, "` is dyn-compatible")?;
3207            }
3208            ty::PredicateKind::ConstEquate(c1, c2) => {
3209                write!(p, "the constant `")?;
3210                c1.print(p)?;
3211                write!(p, "` equals `")?;
3212                c2.print(p)?;
3213                write!(p, "`")?;
3214            }
3215            ty::PredicateKind::Ambiguous => write!(p, "ambiguous")?,
3216            ty::PredicateKind::NormalizesTo(data) => data.print(p)?,
3217            ty::PredicateKind::AliasRelate(t1, t2, dir) => {
3218                t1.print(p)?;
3219                write!(p, " {dir} ")?;
3220                t2.print(p)?;
3221            }
3222        }
3223    }
3224
3225    ty::ExistentialPredicate<'tcx> {
3226        match *self {
3227            ty::ExistentialPredicate::Trait(x) => x.print(p)?,
3228            ty::ExistentialPredicate::Projection(x) => x.print(p)?,
3229            ty::ExistentialPredicate::AutoTrait(def_id) => p.print_def_path(def_id, &[])?,
3230        }
3231    }
3232
3233    ty::ExistentialTraitRef<'tcx> {
3234        // Use a type that can't appear in defaults of type parameters.
3235        let dummy_self = Ty::new_fresh(p.tcx(), 0);
3236        let trait_ref = self.with_self_ty(p.tcx(), dummy_self);
3237        trait_ref.print_only_trait_path().print(p)?;
3238    }
3239
3240    ty::ExistentialProjection<'tcx> {
3241        let name = p.tcx().associated_item(self.def_id).name();
3242        // The args don't contain the self ty (as it has been erased) but the corresp.
3243        // generics do as the trait always has a self ty param. We need to offset.
3244        let args = &self.args[p.tcx().generics_of(self.def_id).parent_count - 1..];
3245        p.print_path_with_generic_args(|p| write!(p, "{name}"), args)?;
3246        write!(p, " = ")?;
3247        self.term.print(p)?;
3248    }
3249
3250    ty::ProjectionPredicate<'tcx> {
3251        self.projection_term.print(p)?;
3252        write!(p, " == ")?;
3253        p.reset_type_limit();
3254        self.term.print(p)?;
3255    }
3256
3257    ty::SubtypePredicate<'tcx> {
3258        self.a.print(p)?;
3259        write!(p, " <: ")?;
3260        p.reset_type_limit();
3261        self.b.print(p)?;
3262    }
3263
3264    ty::CoercePredicate<'tcx> {
3265        self.a.print(p)?;
3266        write!(p, " -> ")?;
3267        p.reset_type_limit();
3268        self.b.print(p)?;
3269    }
3270
3271    ty::NormalizesTo<'tcx> {
3272        self.alias.print(p)?;
3273        write!(p, " normalizes-to ")?;
3274        p.reset_type_limit();
3275        self.term.print(p)?;
3276    }
3277}
3278
3279define_print_and_forward_display! {
3280    (self, p):
3281
3282    &'tcx ty::List<Ty<'tcx>> {
3283        write!(p, "{{")?;
3284        p.comma_sep(self.iter())?;
3285        write!(p, "}}")?;
3286    }
3287
3288    TraitRefPrintOnlyTraitPath<'tcx> {
3289        p.print_def_path(self.0.def_id, self.0.args)?;
3290    }
3291
3292    TraitRefPrintSugared<'tcx> {
3293        if !with_reduced_queries()
3294            && p.tcx().trait_def(self.0.def_id).paren_sugar
3295            && let ty::Tuple(args) = self.0.args.type_at(1).kind()
3296        {
3297            write!(p, "{}(", p.tcx().item_name(self.0.def_id))?;
3298            for (i, arg) in args.iter().enumerate() {
3299                if i > 0 {
3300                    write!(p, ", ")?;
3301                }
3302                arg.print(p)?;
3303            }
3304            write!(p, ")")?;
3305        } else {
3306            p.print_def_path(self.0.def_id, self.0.args)?;
3307        }
3308    }
3309
3310    TraitRefPrintOnlyTraitName<'tcx> {
3311        p.print_def_path(self.0.def_id, &[])?;
3312    }
3313
3314    TraitPredPrintModifiersAndPath<'tcx> {
3315        if let ty::PredicatePolarity::Negative = self.0.polarity {
3316            write!(p, "!")?;
3317        }
3318        self.0.trait_ref.print_trait_sugared().print(p)?;
3319    }
3320
3321    TraitPredPrintWithBoundConstness<'tcx> {
3322        self.0.trait_ref.self_ty().print(p)?;
3323        write!(p, ": ")?;
3324        if let Some(constness) = self.1 {
3325            p.pretty_print_bound_constness(constness)?;
3326        }
3327        if let ty::PredicatePolarity::Negative = self.0.polarity {
3328            write!(p, "!")?;
3329        }
3330        self.0.trait_ref.print_trait_sugared().print(p)?;
3331    }
3332
3333    PrintClosureAsImpl<'tcx> {
3334        p.pretty_print_closure_as_impl(self.closure)?;
3335    }
3336
3337    ty::ParamTy {
3338        write!(p, "{}", self.name)?;
3339    }
3340
3341    ty::PlaceholderType {
3342        match self.bound.kind {
3343            ty::BoundTyKind::Anon => write!(p, "{self:?}")?,
3344            ty::BoundTyKind::Param(def_id) => match p.should_print_verbose() {
3345                true => write!(p, "{self:?}")?,
3346                false => write!(p, "{}", p.tcx().item_name(def_id))?,
3347            },
3348        }
3349    }
3350
3351    ty::ParamConst {
3352        write!(p, "{}", self.name)?;
3353    }
3354
3355    ty::Term<'tcx> {
3356      match self.kind() {
3357        ty::TermKind::Ty(ty) => ty.print(p)?,
3358        ty::TermKind::Const(c) => c.print(p)?,
3359      }
3360    }
3361
3362    ty::Predicate<'tcx> {
3363        self.kind().print(p)?;
3364    }
3365
3366    ty::Clause<'tcx> {
3367        self.kind().print(p)?;
3368    }
3369
3370    GenericArg<'tcx> {
3371        match self.kind() {
3372            GenericArgKind::Lifetime(lt) => lt.print(p)?,
3373            GenericArgKind::Type(ty) => ty.print(p)?,
3374            GenericArgKind::Const(ct) => ct.print(p)?,
3375        }
3376    }
3377}
3378
3379fn for_each_def(tcx: TyCtxt<'_>, mut collect_fn: impl for<'b> FnMut(&'b Ident, Namespace, DefId)) {
3380    // Iterate all (non-anonymous) local crate items no matter where they are defined.
3381    for id in tcx.hir_free_items() {
3382        if matches!(tcx.def_kind(id.owner_id), DefKind::Use) {
3383            continue;
3384        }
3385
3386        let item = tcx.hir_item(id);
3387        let Some(ident) = item.kind.ident() else { continue };
3388
3389        let def_id = item.owner_id.to_def_id();
3390        let ns = tcx.def_kind(def_id).ns().unwrap_or(Namespace::TypeNS);
3391        collect_fn(&ident, ns, def_id);
3392    }
3393
3394    // Now take care of extern crate items.
3395    let queue = &mut Vec::new();
3396    let mut seen_defs: DefIdSet = Default::default();
3397
3398    for &cnum in tcx.crates(()).iter() {
3399        // Ignore crates that are not direct dependencies.
3400        match tcx.extern_crate(cnum) {
3401            None => continue,
3402            Some(extern_crate) => {
3403                if !extern_crate.is_direct() {
3404                    continue;
3405                }
3406            }
3407        }
3408
3409        queue.push(cnum.as_def_id());
3410    }
3411
3412    // Iterate external crate defs but be mindful about visibility
3413    while let Some(def) = queue.pop() {
3414        for child in tcx.module_children(def).iter() {
3415            if !child.vis.is_public() {
3416                continue;
3417            }
3418
3419            match child.res {
3420                def::Res::Def(DefKind::AssocTy, _) => {}
3421                def::Res::Def(DefKind::TyAlias, _) => {}
3422                def::Res::Def(defkind, def_id) => {
3423                    if let Some(ns) = defkind.ns() {
3424                        collect_fn(&child.ident, ns, def_id);
3425                    }
3426
3427                    if defkind.is_module_like() && seen_defs.insert(def_id) {
3428                        queue.push(def_id);
3429                    }
3430                }
3431                _ => {}
3432            }
3433        }
3434    }
3435}
3436
3437/// The purpose of this function is to collect public symbols names that are unique across all
3438/// crates in the build. Later, when printing about types we can use those names instead of the
3439/// full exported path to them.
3440///
3441/// So essentially, if a symbol name can only be imported from one place for a type, and as
3442/// long as it was not glob-imported anywhere in the current crate, we can trim its printed
3443/// path and print only the name.
3444///
3445/// This has wide implications on error messages with types, for example, shortening
3446/// `std::vec::Vec` to just `Vec`, as long as there is no other `Vec` importable anywhere.
3447///
3448/// The implementation uses similar import discovery logic to that of 'use' suggestions.
3449///
3450/// See also [`with_no_trimmed_paths!`].
3451// this is pub to be able to intra-doc-link it
3452pub fn trimmed_def_paths(tcx: TyCtxt<'_>, (): ()) -> DefIdMap<Symbol> {
3453    // Trimming paths is expensive and not optimized, since we expect it to only be used for error
3454    // reporting. Record the fact that we did it, so we can abort if we later found it was
3455    // unnecessary.
3456    //
3457    // The `rustc_middle::ty::print::with_no_trimmed_paths` wrapper can be used to suppress this
3458    // checking, in exchange for full paths being formatted.
3459    tcx.sess.record_trimmed_def_paths();
3460
3461    // Once constructed, unique namespace+symbol pairs will have a `Some(_)` entry, while
3462    // non-unique pairs will have a `None` entry.
3463    let unique_symbols_rev: &mut FxIndexMap<(Namespace, Symbol), Option<DefId>> =
3464        &mut FxIndexMap::default();
3465
3466    for symbol_set in tcx.resolutions(()).glob_map.values() {
3467        for symbol in symbol_set {
3468            unique_symbols_rev.insert((Namespace::TypeNS, *symbol), None);
3469            unique_symbols_rev.insert((Namespace::ValueNS, *symbol), None);
3470            unique_symbols_rev.insert((Namespace::MacroNS, *symbol), None);
3471        }
3472    }
3473
3474    for_each_def(tcx, |ident, ns, def_id| match unique_symbols_rev.entry((ns, ident.name)) {
3475        IndexEntry::Occupied(mut v) => match v.get() {
3476            None => {}
3477            Some(existing) => {
3478                if *existing != def_id {
3479                    v.insert(None);
3480                }
3481            }
3482        },
3483        IndexEntry::Vacant(v) => {
3484            v.insert(Some(def_id));
3485        }
3486    });
3487
3488    // Put the symbol from all the unique namespace+symbol pairs into `map`.
3489    let mut map: DefIdMap<Symbol> = Default::default();
3490    for ((_, symbol), opt_def_id) in unique_symbols_rev.drain(..) {
3491        use std::collections::hash_map::Entry::{Occupied, Vacant};
3492
3493        if let Some(def_id) = opt_def_id {
3494            match map.entry(def_id) {
3495                Occupied(mut v) => {
3496                    // A single DefId can be known under multiple names (e.g.,
3497                    // with a `pub use ... as ...;`). We need to ensure that the
3498                    // name placed in this map is chosen deterministically, so
3499                    // if we find multiple names (`symbol`) resolving to the
3500                    // same `def_id`, we prefer the lexicographically smallest
3501                    // name.
3502                    //
3503                    // Any stable ordering would be fine here though.
3504                    if *v.get() != symbol && v.get().as_str() > symbol.as_str() {
3505                        v.insert(symbol);
3506                    }
3507                }
3508                Vacant(v) => {
3509                    v.insert(symbol);
3510                }
3511            }
3512        }
3513    }
3514
3515    map
3516}
3517
3518pub fn provide(providers: &mut Providers) {
3519    *providers = Providers { trimmed_def_paths, ..*providers };
3520}
3521
3522pub struct OpaqueFnEntry<'tcx> {
3523    kind: ty::ClosureKind,
3524    return_ty: Option<ty::Binder<'tcx, Term<'tcx>>>,
3525}