rustc_trait_selection/solve/
select.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use std::ops::ControlFlow;

use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::solve::inspect::ProbeKind;
use rustc_infer::traits::solve::{CandidateSource, Certainty, Goal};
use rustc_infer::traits::{
    BuiltinImplSource, ImplSource, ImplSourceUserDefinedData, Obligation, ObligationCause,
    PolyTraitObligation, Selection, SelectionError, SelectionResult,
};
use rustc_macros::extension;
use rustc_middle::{bug, span_bug};
use rustc_span::Span;

use crate::solve::inspect::{self, ProofTreeInferCtxtExt};

#[extension(pub trait InferCtxtSelectExt<'tcx>)]
impl<'tcx> InferCtxt<'tcx> {
    fn select_in_new_trait_solver(
        &self,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> SelectionResult<'tcx, Selection<'tcx>> {
        assert!(self.next_trait_solver());

        self.visit_proof_tree(
            Goal::new(self.tcx, obligation.param_env, obligation.predicate),
            &mut Select { span: obligation.cause.span },
        )
        .break_value()
        .unwrap()
    }
}

struct Select {
    span: Span,
}

impl<'tcx> inspect::ProofTreeVisitor<'tcx> for Select {
    type Result = ControlFlow<SelectionResult<'tcx, Selection<'tcx>>>;

    fn span(&self) -> Span {
        self.span
    }

    fn visit_goal(&mut self, goal: &inspect::InspectGoal<'_, 'tcx>) -> Self::Result {
        let mut candidates = goal.candidates();
        candidates.retain(|cand| cand.result().is_ok());

        // No candidates -- not implemented.
        if candidates.is_empty() {
            return ControlFlow::Break(Err(SelectionError::Unimplemented));
        }

        // One candidate, no need to winnow.
        if candidates.len() == 1 {
            return ControlFlow::Break(Ok(to_selection(
                self.span,
                candidates.into_iter().next().unwrap(),
            )));
        }

        // Don't winnow until `Certainty::Yes` -- we don't need to winnow until
        // codegen, and only on the good path.
        if matches!(goal.result().unwrap(), Certainty::Maybe(..)) {
            return ControlFlow::Break(Ok(None));
        }

        // We need to winnow. See comments on `candidate_should_be_dropped_in_favor_of`.
        let mut i = 0;
        while i < candidates.len() {
            let should_drop_i = (0..candidates.len())
                .filter(|&j| i != j)
                .any(|j| candidate_should_be_dropped_in_favor_of(&candidates[i], &candidates[j]));
            if should_drop_i {
                candidates.swap_remove(i);
            } else {
                i += 1;
                if i > 1 {
                    return ControlFlow::Break(Ok(None));
                }
            }
        }

        ControlFlow::Break(Ok(to_selection(self.span, candidates.into_iter().next().unwrap())))
    }
}

/// This is a lot more limited than the old solver's equivalent method. This may lead to more `Ok(None)`
/// results when selecting traits in polymorphic contexts, but we should never rely on the lack of ambiguity,
/// and should always just gracefully fail here. We shouldn't rely on this incompleteness.
fn candidate_should_be_dropped_in_favor_of<'tcx>(
    victim: &inspect::InspectCandidate<'_, 'tcx>,
    other: &inspect::InspectCandidate<'_, 'tcx>,
) -> bool {
    // Don't winnow until `Certainty::Yes` -- we don't need to winnow until
    // codegen, and only on the good path.
    if matches!(other.result().unwrap(), Certainty::Maybe(..)) {
        return false;
    }

    let inspect::ProbeKind::TraitCandidate { source: victim_source, result: _ } = victim.kind()
    else {
        return false;
    };
    let inspect::ProbeKind::TraitCandidate { source: other_source, result: _ } = other.kind()
    else {
        return false;
    };

    match (victim_source, other_source) {
        (_, CandidateSource::CoherenceUnknowable) | (CandidateSource::CoherenceUnknowable, _) => {
            bug!("should not have assembled a CoherenceUnknowable candidate")
        }

        // In the old trait solver, we arbitrarily choose lower vtable candidates
        // over higher ones.
        (
            CandidateSource::BuiltinImpl(BuiltinImplSource::Object(a)),
            CandidateSource::BuiltinImpl(BuiltinImplSource::Object(b)),
        ) => a >= b,
        // Prefer dyn candidates over non-dyn candidates. This is necessary to
        // handle the unsoundness between `impl<T: ?Sized> Any for T` and `dyn Any: Any`.
        (
            CandidateSource::Impl(_) | CandidateSource::ParamEnv(_) | CandidateSource::AliasBound,
            CandidateSource::BuiltinImpl(BuiltinImplSource::Object { .. }),
        ) => true,

        // Prefer specializing candidates over specialized candidates.
        (CandidateSource::Impl(victim_def_id), CandidateSource::Impl(other_def_id)) => {
            victim.goal().infcx().tcx.specializes((other_def_id, victim_def_id))
        }

        _ => false,
    }
}

fn to_selection<'tcx>(
    span: Span,
    cand: inspect::InspectCandidate<'_, 'tcx>,
) -> Option<Selection<'tcx>> {
    if let Certainty::Maybe(..) = cand.shallow_certainty() {
        return None;
    }

    let (nested, impl_args) = cand.instantiate_nested_goals_and_opt_impl_args(span);
    let nested = nested
        .into_iter()
        .map(|nested| {
            Obligation::new(
                nested.infcx().tcx,
                ObligationCause::dummy_with_span(span),
                nested.goal().param_env,
                nested.goal().predicate,
            )
        })
        .collect();

    Some(match cand.kind() {
        ProbeKind::TraitCandidate { source, result: _ } => match source {
            CandidateSource::Impl(impl_def_id) => {
                // FIXME: Remove this in favor of storing this in the tree
                // For impl candidates, we do the rematch manually to compute the args.
                ImplSource::UserDefined(ImplSourceUserDefinedData {
                    impl_def_id,
                    args: impl_args.expect("expected recorded impl args for impl candidate"),
                    nested,
                })
            }
            CandidateSource::BuiltinImpl(builtin) => ImplSource::Builtin(builtin, nested),
            CandidateSource::ParamEnv(_) | CandidateSource::AliasBound => ImplSource::Param(nested),
            CandidateSource::CoherenceUnknowable => {
                span_bug!(span, "didn't expect to select an unknowable candidate")
            }
        },
        ProbeKind::TryNormalizeNonRigid { result: _ }
        | ProbeKind::NormalizedSelfTyAssembly
        | ProbeKind::UnsizeAssembly
        | ProbeKind::UpcastProjectionCompatibility
        | ProbeKind::OpaqueTypeStorageLookup { result: _ }
        | ProbeKind::Root { result: _ }
        | ProbeKind::ShadowedEnvProbing
        | ProbeKind::RigidAlias { result: _ } => {
            span_bug!(span, "didn't expect to assemble trait candidate from {:#?}", cand.kind())
        }
    })
}