rustc_graphviz/lib.rs
1//! Generate files suitable for use with [Graphviz](https://www.graphviz.org/)
2//!
3//! The `render` function generates output (e.g., an `output.dot` file) for
4//! use with [Graphviz](https://www.graphviz.org/) by walking a labeled
5//! graph. (Graphviz can then automatically lay out the nodes and edges
6//! of the graph, and also optionally render the graph as an image or
7//! other [output formats](https://www.graphviz.org/docs/outputs), such as SVG.)
8//!
9//! Rather than impose some particular graph data structure on clients,
10//! this library exposes two traits that clients can implement on their
11//! own structs before handing them over to the rendering function.
12//!
13//! Note: This library does not yet provide access to the full
14//! expressiveness of the [DOT language](https://www.graphviz.org/doc/info/lang.html).
15//! For example, there are many [attributes](https://www.graphviz.org/doc/info/attrs.html)
16//! related to providing layout hints (e.g., left-to-right versus top-down, which
17//! algorithm to use, etc). The current intention of this library is to
18//! emit a human-readable .dot file with very regular structure suitable
19//! for easy post-processing.
20//!
21//! # Examples
22//!
23//! The first example uses a very simple graph representation: a list of
24//! pairs of ints, representing the edges (the node set is implicit).
25//! Each node label is derived directly from the int representing the node,
26//! while the edge labels are all empty strings.
27//!
28//! This example also illustrates how to use `Cow<[T]>` to return
29//! an owned vector or a borrowed slice as appropriate: we construct the
30//! node vector from scratch, but borrow the edge list (rather than
31//! constructing a copy of all the edges from scratch).
32//!
33//! The output from this example renders five nodes, with the first four
34//! forming a diamond-shaped acyclic graph and then pointing to the fifth
35//! which is cyclic.
36//!
37//! ```rust
38//! #![feature(rustc_private)]
39//!
40//! use std::io::Write;
41//! use rustc_graphviz as dot;
42//!
43//! type Nd = isize;
44//! type Ed = (isize,isize);
45//! struct Edges(Vec<Ed>);
46//!
47//! pub fn render_to<W: Write>(output: &mut W) {
48//! let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]);
49//! dot::render(&edges, output).unwrap()
50//! }
51//!
52//! impl<'a> dot::Labeller<'a> for Edges {
53//! type Node = Nd;
54//! type Edge = Ed;
55//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() }
56//!
57//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
58//! dot::Id::new(format!("N{}", *n)).unwrap()
59//! }
60//! }
61//!
62//! impl<'a> dot::GraphWalk<'a> for Edges {
63//! type Node = Nd;
64//! type Edge = Ed;
65//! fn nodes(&self) -> dot::Nodes<'a,Nd> {
66//! // (assumes that |N| \approxeq |E|)
67//! let &Edges(ref v) = self;
68//! let mut nodes = Vec::with_capacity(v.len());
69//! for &(s,t) in v {
70//! nodes.push(s); nodes.push(t);
71//! }
72//! nodes.sort();
73//! nodes.dedup();
74//! nodes.into()
75//! }
76//!
77//! fn edges(&'a self) -> dot::Edges<'a,Ed> {
78//! let &Edges(ref edges) = self;
79//! (&edges[..]).into()
80//! }
81//!
82//! fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s }
83//!
84//! fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t }
85//! }
86//!
87//! # pub fn main() { render_to(&mut Vec::new()) }
88//! ```
89//!
90//! ```no_run
91//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
92//! pub fn main() {
93//! use std::fs::File;
94//! let mut f = File::create("example1.dot").unwrap();
95//! render_to(&mut f)
96//! }
97//! ```
98//!
99//! Output from first example (in `example1.dot`):
100//!
101//! ```dot
102//! digraph example1 {
103//! N0[label="N0"];
104//! N1[label="N1"];
105//! N2[label="N2"];
106//! N3[label="N3"];
107//! N4[label="N4"];
108//! N0 -> N1[label=""];
109//! N0 -> N2[label=""];
110//! N1 -> N3[label=""];
111//! N2 -> N3[label=""];
112//! N3 -> N4[label=""];
113//! N4 -> N4[label=""];
114//! }
115//! ```
116//!
117//! The second example illustrates using `node_label` and `edge_label` to
118//! add labels to the nodes and edges in the rendered graph. The graph
119//! here carries both `nodes` (the label text to use for rendering a
120//! particular node), and `edges` (again a list of `(source,target)`
121//! indices).
122//!
123//! This example also illustrates how to use a type (in this case the edge
124//! type) that shares substructure with the graph: the edge type here is a
125//! direct reference to the `(source,target)` pair stored in the graph's
126//! internal vector (rather than passing around a copy of the pair
127//! itself). Note that this implies that `fn edges(&'a self)` must
128//! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>`
129//! edges stored in `self`.
130//!
131//! Since both the set of nodes and the set of edges are always
132//! constructed from scratch via iterators, we use the `collect()` method
133//! from the `Iterator` trait to collect the nodes and edges into freshly
134//! constructed growable `Vec` values (rather than using `Cow` as in the
135//! first example above).
136//!
137//! The output from this example renders four nodes that make up the
138//! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is
139//! labeled with the ⊆ character (specified using the HTML character
140//! entity `&sube`).
141//!
142//! ```rust
143//! #![feature(rustc_private)]
144//!
145//! use std::io::Write;
146//! use rustc_graphviz as dot;
147//!
148//! type Nd = usize;
149//! type Ed<'a> = &'a (usize, usize);
150//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
151//!
152//! pub fn render_to<W: Write>(output: &mut W) {
153//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
154//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
155//! let graph = Graph { nodes: nodes, edges: edges };
156//!
157//! dot::render(&graph, output).unwrap()
158//! }
159//!
160//! impl<'a> dot::Labeller<'a> for Graph {
161//! type Node = Nd;
162//! type Edge = Ed<'a>;
163//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() }
164//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
165//! dot::Id::new(format!("N{}", n)).unwrap()
166//! }
167//! fn node_label(&self, n: &Nd) -> dot::LabelText<'_> {
168//! dot::LabelText::LabelStr(self.nodes[*n].into())
169//! }
170//! fn edge_label(&self, _: &Ed<'_>) -> dot::LabelText<'_> {
171//! dot::LabelText::LabelStr("⊆".into())
172//! }
173//! }
174//!
175//! impl<'a> dot::GraphWalk<'a> for Graph {
176//! type Node = Nd;
177//! type Edge = Ed<'a>;
178//! fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() }
179//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() }
180//! fn source(&self, e: &Ed<'_>) -> Nd { let & &(s,_) = e; s }
181//! fn target(&self, e: &Ed<'_>) -> Nd { let & &(_,t) = e; t }
182//! }
183//!
184//! # pub fn main() { render_to(&mut Vec::new()) }
185//! ```
186//!
187//! ```no_run
188//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
189//! pub fn main() {
190//! use std::fs::File;
191//! let mut f = File::create("example2.dot").unwrap();
192//! render_to(&mut f)
193//! }
194//! ```
195//!
196//! The third example is similar to the second, except now each node and
197//! edge now carries a reference to the string label for each node as well
198//! as that node's index. (This is another illustration of how to share
199//! structure with the graph itself, and why one might want to do so.)
200//!
201//! The output from this example is the same as the second example: the
202//! Hasse-diagram for the subsets of the set `{x, y}`.
203//!
204//! ```rust
205//! #![feature(rustc_private)]
206//!
207//! use std::io::Write;
208//! use rustc_graphviz as dot;
209//!
210//! type Nd<'a> = (usize, &'a str);
211//! type Ed<'a> = (Nd<'a>, Nd<'a>);
212//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
213//!
214//! pub fn render_to<W: Write>(output: &mut W) {
215//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
216//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
217//! let graph = Graph { nodes: nodes, edges: edges };
218//!
219//! dot::render(&graph, output).unwrap()
220//! }
221//!
222//! impl<'a> dot::Labeller<'a> for Graph {
223//! type Node = Nd<'a>;
224//! type Edge = Ed<'a>;
225//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() }
226//! fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> {
227//! dot::Id::new(format!("N{}", n.0)).unwrap()
228//! }
229//! fn node_label(&self, n: &Nd<'_>) -> dot::LabelText<'_> {
230//! let &(i, _) = n;
231//! dot::LabelText::LabelStr(self.nodes[i].into())
232//! }
233//! fn edge_label(&self, _: &Ed<'_>) -> dot::LabelText<'_> {
234//! dot::LabelText::LabelStr("⊆".into())
235//! }
236//! }
237//!
238//! impl<'a> dot::GraphWalk<'a> for Graph {
239//! type Node = Nd<'a>;
240//! type Edge = Ed<'a>;
241//! fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> {
242//! self.nodes.iter().map(|s| &s[..]).enumerate().collect()
243//! }
244//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> {
245//! self.edges.iter()
246//! .map(|&(i,j)|((i, &self.nodes[i][..]),
247//! (j, &self.nodes[j][..])))
248//! .collect()
249//! }
250//! fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s }
251//! fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t }
252//! }
253//!
254//! # pub fn main() { render_to(&mut Vec::new()) }
255//! ```
256//!
257//! ```no_run
258//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
259//! pub fn main() {
260//! use std::fs::File;
261//! let mut f = File::create("example3.dot").unwrap();
262//! render_to(&mut f)
263//! }
264//! ```
265//!
266//! # References
267//!
268//! * [Graphviz](https://www.graphviz.org/)
269//!
270//! * [DOT language](https://www.graphviz.org/doc/info/lang.html)
271
272// tidy-alphabetical-start
273#![doc(test(attr(allow(unused_variables), deny(warnings), allow(internal_features))))]
274// tidy-alphabetical-end
275
276use std::borrow::Cow;
277use std::io;
278use std::io::prelude::*;
279
280use LabelText::*;
281
282/// The text for a graphviz label on a node or edge.
283pub enum LabelText<'a> {
284 /// This kind of label preserves the text directly as is.
285 ///
286 /// Occurrences of backslashes (`\`) are escaped, and thus appear
287 /// as backslashes in the rendered label.
288 LabelStr(Cow<'a, str>),
289
290 /// This kind of label uses the graphviz label escString type:
291 /// <https://www.graphviz.org/docs/attr-types/escString>
292 ///
293 /// Occurrences of backslashes (`\`) are not escaped; instead they
294 /// are interpreted as initiating an escString escape sequence.
295 ///
296 /// Escape sequences of particular interest: in addition to `\n`
297 /// to break a line (centering the line preceding the `\n`), there
298 /// are also the escape sequences `\l` which left-justifies the
299 /// preceding line and `\r` which right-justifies it.
300 EscStr(Cow<'a, str>),
301
302 /// This uses a graphviz [HTML string label][html]. The string is
303 /// printed exactly as given, but between `<` and `>`. **No
304 /// escaping is performed.**
305 ///
306 /// [html]: https://www.graphviz.org/doc/info/shapes.html#html
307 HtmlStr(Cow<'a, str>),
308}
309
310/// The style for a node or edge.
311/// See <https://www.graphviz.org/docs/attr-types/style/> for descriptions.
312/// Note that some of these are not valid for edges.
313#[derive(Copy, Clone, PartialEq, Eq, Debug)]
314pub enum Style {
315 None,
316 Solid,
317 Dashed,
318 Dotted,
319 Bold,
320 Rounded,
321 Diagonals,
322 Filled,
323 Striped,
324 Wedged,
325}
326
327impl Style {
328 pub fn as_slice(self) -> &'static str {
329 match self {
330 Style::None => "",
331 Style::Solid => "solid",
332 Style::Dashed => "dashed",
333 Style::Dotted => "dotted",
334 Style::Bold => "bold",
335 Style::Rounded => "rounded",
336 Style::Diagonals => "diagonals",
337 Style::Filled => "filled",
338 Style::Striped => "striped",
339 Style::Wedged => "wedged",
340 }
341 }
342}
343
344// There is a tension in the design of the labelling API.
345//
346// For example, I considered making a `Labeller<T>` trait that
347// provides labels for `T`, and then making the graph type `G`
348// implement `Labeller<Node>` and `Labeller<Edge>`. However, this is
349// not possible without functional dependencies. (One could work
350// around that, but I did not explore that avenue heavily.)
351//
352// Another approach that I actually used for a while was to make a
353// `Label<Context>` trait that is implemented by the client-specific
354// Node and Edge types (as well as an implementation on Graph itself
355// for the overall name for the graph). The main disadvantage of this
356// second approach (compared to having the `G` type parameter
357// implement a Labelling service) that I have encountered is that it
358// makes it impossible to use types outside of the current crate
359// directly as Nodes/Edges; you need to wrap them in newtype'd
360// structs. See e.g., the `No` and `Ed` structs in the examples. (In
361// practice clients using a graph in some other crate would need to
362// provide some sort of adapter shim over the graph anyway to
363// interface with this library).
364//
365// Another approach would be to make a single `Labeller<N,E>` trait
366// that provides three methods (graph_label, node_label, edge_label),
367// and then make `G` implement `Labeller<N,E>`. At first this did not
368// appeal to me, since I had thought I would need separate methods on
369// each data variant for dot-internal identifiers versus user-visible
370// labels. However, the identifier/label distinction only arises for
371// nodes; graphs themselves only have identifiers, and edges only have
372// labels.
373//
374// So in the end I decided to use the third approach described above.
375
376/// `Id` is a Graphviz `ID`.
377pub struct Id<'a> {
378 name: Cow<'a, str>,
379}
380
381impl<'a> Id<'a> {
382 /// Creates an `Id` named `name`.
383 ///
384 /// The caller must ensure that the input conforms to an
385 /// identifier format: it must be a non-empty string made up of
386 /// alphanumeric or underscore characters, not beginning with a
387 /// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`).
388 ///
389 /// (Note: this format is a strict subset of the `ID` format
390 /// defined by the DOT language. This function may change in the
391 /// future to accept a broader subset, or the entirety, of DOT's
392 /// `ID` format.)
393 ///
394 /// Passing an invalid string (containing spaces, brackets,
395 /// quotes, ...) will return an empty `Err` value.
396 pub fn new<Name: Into<Cow<'a, str>>>(name: Name) -> Result<Id<'a>, ()> {
397 let name = name.into();
398 match name.chars().next() {
399 Some(c) if c.is_ascii_alphabetic() || c == '_' => {}
400 _ => return Err(()),
401 }
402 if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_') {
403 return Err(());
404 }
405
406 Ok(Id { name })
407 }
408
409 pub fn as_slice(&'a self) -> &'a str {
410 &self.name
411 }
412}
413
414/// Each instance of a type that implements `Label<C>` maps to a
415/// unique identifier with respect to `C`, which is used to identify
416/// it in the generated .dot file. They can also provide more
417/// elaborate (and non-unique) label text that is used in the graphviz
418/// rendered output.
419
420/// The graph instance is responsible for providing the DOT compatible
421/// identifiers for the nodes and (optionally) rendered labels for the nodes and
422/// edges, as well as an identifier for the graph itself.
423pub trait Labeller<'a> {
424 type Node;
425 type Edge;
426
427 /// Must return a DOT compatible identifier naming the graph.
428 fn graph_id(&'a self) -> Id<'a>;
429
430 /// Maps `n` to a unique identifier with respect to `self`. The
431 /// implementor is responsible for ensuring that the returned name
432 /// is a valid DOT identifier.
433 fn node_id(&'a self, n: &Self::Node) -> Id<'a>;
434
435 /// Maps `n` to one of the [graphviz `shape` names][1]. If `None`
436 /// is returned, no `shape` attribute is specified.
437 ///
438 /// [1]: https://www.graphviz.org/doc/info/shapes.html
439 fn node_shape(&'a self, _node: &Self::Node) -> Option<LabelText<'a>> {
440 None
441 }
442
443 /// Maps `n` to a label that will be used in the rendered output.
444 /// The label need not be unique, and may be the empty string; the
445 /// default is just the output from `node_id`.
446 fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> {
447 LabelStr(self.node_id(n).name)
448 }
449
450 /// Maps `e` to a label that will be used in the rendered output.
451 /// The label need not be unique, and may be the empty string; the
452 /// default is in fact the empty string.
453 fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> {
454 LabelStr("".into())
455 }
456
457 /// Maps `n` to a style that will be used in the rendered output.
458 fn node_style(&'a self, _n: &Self::Node) -> Style {
459 Style::None
460 }
461
462 /// Maps `e` to a style that will be used in the rendered output.
463 fn edge_style(&'a self, _e: &Self::Edge) -> Style {
464 Style::None
465 }
466}
467
468/// Escape tags in such a way that it is suitable for inclusion in a
469/// Graphviz HTML label.
470pub fn escape_html(s: &str) -> String {
471 s.replace('&', "&")
472 .replace('\"', """)
473 .replace('<', "<")
474 .replace('>', ">")
475 .replace('\n', "<br align=\"left\"/>")
476}
477
478impl<'a> LabelText<'a> {
479 pub fn label<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
480 LabelStr(s.into())
481 }
482
483 pub fn html<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
484 HtmlStr(s.into())
485 }
486
487 fn escape_char<F>(c: char, mut f: F)
488 where
489 F: FnMut(char),
490 {
491 match c {
492 // not escaping \\, since Graphviz escString needs to
493 // interpret backslashes; see EscStr above.
494 '\\' => f(c),
495 _ => {
496 for c in c.escape_default() {
497 f(c)
498 }
499 }
500 }
501 }
502 fn escape_str(s: &str) -> String {
503 let mut out = String::with_capacity(s.len());
504 for c in s.chars() {
505 LabelText::escape_char(c, |c| out.push(c));
506 }
507 out
508 }
509
510 /// Renders text as string suitable for a label in a .dot file.
511 /// This includes quotes or suitable delimiters.
512 pub fn to_dot_string(&self) -> String {
513 match *self {
514 LabelStr(ref s) => format!("\"{}\"", s.escape_default()),
515 EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(s)),
516 HtmlStr(ref s) => format!("<{s}>"),
517 }
518 }
519}
520
521pub type Nodes<'a, N> = Cow<'a, [N]>;
522pub type Edges<'a, E> = Cow<'a, [E]>;
523
524// (The type parameters in GraphWalk should be associated items,
525// when/if Rust supports such.)
526
527/// GraphWalk is an abstraction over a directed graph = (nodes,edges)
528/// made up of node handles `N` and edge handles `E`, where each `E`
529/// can be mapped to its source and target nodes.
530///
531/// The lifetime parameter `'a` is exposed in this trait (rather than
532/// introduced as a generic parameter on each method declaration) so
533/// that a client impl can choose `N` and `E` that have substructure
534/// that is bound by the self lifetime `'a`.
535///
536/// The `nodes` and `edges` method each return instantiations of
537/// `Cow<[T]>` to leave implementors the freedom to create
538/// entirely new vectors or to pass back slices into internally owned
539/// vectors.
540pub trait GraphWalk<'a> {
541 type Node: Clone;
542 type Edge: Clone;
543
544 /// Returns all the nodes in this graph.
545 fn nodes(&'a self) -> Nodes<'a, Self::Node>;
546 /// Returns all of the edges in this graph.
547 fn edges(&'a self) -> Edges<'a, Self::Edge>;
548 /// The source node for `edge`.
549 fn source(&'a self, edge: &Self::Edge) -> Self::Node;
550 /// The target node for `edge`.
551 fn target(&'a self, edge: &Self::Edge) -> Self::Node;
552}
553
554#[derive(Clone, PartialEq, Eq, Debug)]
555pub enum RenderOption {
556 NoEdgeLabels,
557 NoNodeLabels,
558 NoEdgeStyles,
559 NoNodeStyles,
560
561 Fontname(String),
562 DarkTheme,
563}
564
565/// Renders directed graph `g` into the writer `w` in DOT syntax.
566/// (Simple wrapper around `render_opts` that passes a default set of options.)
567pub fn render<'a, N, E, G, W>(g: &'a G, w: &mut W) -> io::Result<()>
568where
569 N: Clone + 'a,
570 E: Clone + 'a,
571 G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
572 W: Write,
573{
574 render_opts(g, w, &[])
575}
576
577/// Renders directed graph `g` into the writer `w` in DOT syntax.
578/// (Main entry point for the library.)
579pub fn render_opts<'a, N, E, G, W>(g: &'a G, w: &mut W, options: &[RenderOption]) -> io::Result<()>
580where
581 N: Clone + 'a,
582 E: Clone + 'a,
583 G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>,
584 W: Write,
585{
586 writeln!(w, "digraph {} {{", g.graph_id().as_slice())?;
587
588 // Global graph properties
589 let mut graph_attrs = Vec::new();
590 let mut content_attrs = Vec::new();
591 let font;
592 if let Some(fontname) = options.iter().find_map(|option| {
593 if let RenderOption::Fontname(fontname) = option { Some(fontname) } else { None }
594 }) {
595 font = format!(r#"fontname="{fontname}""#);
596 graph_attrs.push(&font[..]);
597 content_attrs.push(&font[..]);
598 }
599 if options.contains(&RenderOption::DarkTheme) {
600 graph_attrs.push(r#"bgcolor="black""#);
601 graph_attrs.push(r#"fontcolor="white""#);
602 content_attrs.push(r#"color="white""#);
603 content_attrs.push(r#"fontcolor="white""#);
604 }
605 if !(graph_attrs.is_empty() && content_attrs.is_empty()) {
606 writeln!(w, r#" graph[{}];"#, graph_attrs.join(" "))?;
607 let content_attrs_str = content_attrs.join(" ");
608 writeln!(w, r#" node[{content_attrs_str}];"#)?;
609 writeln!(w, r#" edge[{content_attrs_str}];"#)?;
610 }
611
612 let mut text = Vec::new();
613 for n in g.nodes().iter() {
614 write!(w, " ")?;
615 let id = g.node_id(n);
616
617 let escaped = &g.node_label(n).to_dot_string();
618
619 write!(text, "{}", id.as_slice()).unwrap();
620
621 if !options.contains(&RenderOption::NoNodeLabels) {
622 write!(text, "[label={escaped}]").unwrap();
623 }
624
625 let style = g.node_style(n);
626 if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None {
627 write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
628 }
629
630 if let Some(s) = g.node_shape(n) {
631 write!(text, "[shape={}]", &s.to_dot_string()).unwrap();
632 }
633
634 writeln!(text, ";").unwrap();
635 w.write_all(&text)?;
636
637 text.clear();
638 }
639
640 for e in g.edges().iter() {
641 let escaped_label = &g.edge_label(e).to_dot_string();
642 write!(w, " ")?;
643 let source = g.source(e);
644 let target = g.target(e);
645 let source_id = g.node_id(&source);
646 let target_id = g.node_id(&target);
647
648 write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap();
649
650 if !options.contains(&RenderOption::NoEdgeLabels) {
651 write!(text, "[label={escaped_label}]").unwrap();
652 }
653
654 let style = g.edge_style(e);
655 if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None {
656 write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
657 }
658
659 writeln!(text, ";").unwrap();
660 w.write_all(&text)?;
661
662 text.clear();
663 }
664
665 writeln!(w, "}}")
666}
667
668#[cfg(test)]
669mod tests;