rustc_ty_utils/
ty.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::LangItem;
use rustc_hir::def::DefKind;
use rustc_index::bit_set::BitSet;
use rustc_middle::bug;
use rustc_middle::query::Providers;
use rustc_middle::ty::fold::fold_regions;
use rustc_middle::ty::{
    self, EarlyBinder, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor, Upcast,
};
use rustc_span::DUMMY_SP;
use rustc_span::def_id::{CRATE_DEF_ID, DefId, LocalDefId};
use rustc_trait_selection::traits;
use tracing::{debug, instrument};

#[instrument(level = "debug", skip(tcx), ret)]
fn sized_constraint_for_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
    use rustc_type_ir::TyKind::*;

    match ty.kind() {
        // these are always sized
        Bool
        | Char
        | Int(..)
        | Uint(..)
        | Float(..)
        | RawPtr(..)
        | Ref(..)
        | FnDef(..)
        | FnPtr(..)
        | Array(..)
        | Closure(..)
        | CoroutineClosure(..)
        | Coroutine(..)
        | CoroutineWitness(..)
        | Never
        | Dynamic(_, _, ty::DynStar) => None,

        UnsafeBinder(_) => todo!(),

        // these are never sized
        Str | Slice(..) | Dynamic(_, _, ty::Dyn) | Foreign(..) => Some(ty),

        Pat(ty, _) => sized_constraint_for_ty(tcx, *ty),

        Tuple(tys) => tys.last().and_then(|&ty| sized_constraint_for_ty(tcx, ty)),

        // recursive case
        Adt(adt, args) => adt.sized_constraint(tcx).and_then(|intermediate| {
            let ty = intermediate.instantiate(tcx, args);
            sized_constraint_for_ty(tcx, ty)
        }),

        // these can be sized or unsized
        Param(..) | Alias(..) | Error(_) => Some(ty),

        Placeholder(..) | Bound(..) | Infer(..) => {
            bug!("unexpected type `{ty:?}` in sized_constraint_for_ty")
        }
    }
}

fn defaultness(tcx: TyCtxt<'_>, def_id: LocalDefId) -> hir::Defaultness {
    match tcx.hir_node_by_def_id(def_id) {
        hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(impl_), .. }) => impl_.defaultness,
        hir::Node::ImplItem(hir::ImplItem { defaultness, .. })
        | hir::Node::TraitItem(hir::TraitItem { defaultness, .. }) => *defaultness,
        node => {
            bug!("`defaultness` called on {:?}", node);
        }
    }
}

/// Calculates the `Sized` constraint.
///
/// In fact, there are only a few options for the types in the constraint:
///     - an obviously-unsized type
///     - a type parameter or projection whose sizedness can't be known
#[instrument(level = "debug", skip(tcx), ret)]
fn adt_sized_constraint<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: DefId,
) -> Option<ty::EarlyBinder<'tcx, Ty<'tcx>>> {
    if let Some(def_id) = def_id.as_local() {
        if let ty::Representability::Infinite(_) = tcx.representability(def_id) {
            return None;
        }
    }
    let def = tcx.adt_def(def_id);

    if !def.is_struct() {
        bug!("`adt_sized_constraint` called on non-struct type: {def:?}");
    }

    let tail_def = def.non_enum_variant().tail_opt()?;
    let tail_ty = tcx.type_of(tail_def.did).instantiate_identity();

    let constraint_ty = sized_constraint_for_ty(tcx, tail_ty)?;

    // perf hack: if there is a `constraint_ty: Sized` bound, then we know
    // that the type is sized and do not need to check it on the impl.
    let sized_trait_def_id = tcx.require_lang_item(LangItem::Sized, None);
    let predicates = tcx.predicates_of(def.did()).predicates;
    if predicates.iter().any(|(p, _)| {
        p.as_trait_clause().is_some_and(|trait_pred| {
            trait_pred.def_id() == sized_trait_def_id
                && trait_pred.self_ty().skip_binder() == constraint_ty
        })
    }) {
        return None;
    }

    Some(ty::EarlyBinder::bind(constraint_ty))
}

/// See `ParamEnv` struct definition for details.
fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
    // Compute the bounds on Self and the type parameters.
    let ty::InstantiatedPredicates { mut predicates, .. } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of an "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so outside of type inference you can be
    // sure that this will succeed without errors anyway.

    if tcx.def_kind(def_id) == DefKind::AssocFn
        && let assoc_item = tcx.associated_item(def_id)
        && assoc_item.container == ty::AssocItemContainer::Trait
        && assoc_item.defaultness(tcx).has_value()
    {
        let sig = tcx.fn_sig(def_id).instantiate_identity();
        // We accounted for the binder of the fn sig, so skip the binder.
        sig.skip_binder().visit_with(&mut ImplTraitInTraitFinder {
            tcx,
            fn_def_id: def_id,
            bound_vars: sig.bound_vars(),
            predicates: &mut predicates,
            seen: FxHashSet::default(),
            depth: ty::INNERMOST,
        });
    }

    // We extend the param-env of our item with the const conditions of the item,
    // since we're allowed to assume `~const` bounds hold within the item itself.
    if tcx.is_conditionally_const(def_id) {
        predicates.extend(
            tcx.const_conditions(def_id).instantiate_identity(tcx).into_iter().map(
                |(trait_ref, _)| trait_ref.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
            ),
        );
    }

    let local_did = def_id.as_local();

    let unnormalized_env = ty::ParamEnv::new(tcx.mk_clauses(&predicates));

    let body_id = local_did.unwrap_or(CRATE_DEF_ID);
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, unnormalized_env, cause)
}

/// Walk through a function type, gathering all RPITITs and installing a
/// `NormalizesTo(Projection(RPITIT) -> Opaque(RPITIT))` predicate into the
/// predicates list. This allows us to observe that an RPITIT projects to
/// its corresponding opaque within the body of a default-body trait method.
struct ImplTraitInTraitFinder<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    predicates: &'a mut Vec<ty::Clause<'tcx>>,
    fn_def_id: DefId,
    bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
    seen: FxHashSet<DefId>,
    depth: ty::DebruijnIndex,
}

impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ImplTraitInTraitFinder<'_, 'tcx> {
    fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(&mut self, binder: &ty::Binder<'tcx, T>) {
        self.depth.shift_in(1);
        binder.super_visit_with(self);
        self.depth.shift_out(1);
    }

    fn visit_ty(&mut self, ty: Ty<'tcx>) {
        if let ty::Alias(ty::Projection, unshifted_alias_ty) = *ty.kind()
            && let Some(
                ty::ImplTraitInTraitData::Trait { fn_def_id, .. }
                | ty::ImplTraitInTraitData::Impl { fn_def_id, .. },
            ) = self.tcx.opt_rpitit_info(unshifted_alias_ty.def_id)
            && fn_def_id == self.fn_def_id
            && self.seen.insert(unshifted_alias_ty.def_id)
        {
            // We have entered some binders as we've walked into the
            // bounds of the RPITIT. Shift these binders back out when
            // constructing the top-level projection predicate.
            let shifted_alias_ty = fold_regions(self.tcx, unshifted_alias_ty, |re, depth| {
                if let ty::ReBound(index, bv) = re.kind() {
                    if depth != ty::INNERMOST {
                        return ty::Region::new_error_with_message(
                            self.tcx,
                            DUMMY_SP,
                            "we shouldn't walk non-predicate binders with `impl Trait`...",
                        );
                    }
                    ty::Region::new_bound(self.tcx, index.shifted_out_to_binder(self.depth), bv)
                } else {
                    re
                }
            });

            // If we're lowering to associated item, install the opaque type which is just
            // the `type_of` of the trait's associated item. If we're using the old lowering
            // strategy, then just reinterpret the associated type like an opaque :^)
            let default_ty = self
                .tcx
                .type_of(shifted_alias_ty.def_id)
                .instantiate(self.tcx, shifted_alias_ty.args);

            self.predicates.push(
                ty::Binder::bind_with_vars(
                    ty::ProjectionPredicate {
                        projection_term: shifted_alias_ty.into(),
                        term: default_ty.into(),
                    },
                    self.bound_vars,
                )
                .upcast(self.tcx),
            );

            // We walk the *un-shifted* alias ty, because we're tracking the de bruijn
            // binder depth, and if we were to walk `shifted_alias_ty` instead, we'd
            // have to reset `self.depth` back to `ty::INNERMOST` or something. It's
            // easier to just do this.
            for bound in self
                .tcx
                .item_bounds(unshifted_alias_ty.def_id)
                .iter_instantiated(self.tcx, unshifted_alias_ty.args)
            {
                bound.visit_with(self);
            }
        }

        ty.super_visit_with(self)
    }
}

fn param_env_normalized_for_post_analysis(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
    // This is a bit ugly but the easiest way to avoid code duplication.
    let typing_env = ty::TypingEnv::non_body_analysis(tcx, def_id);
    typing_env.with_post_analysis_normalized(tcx).param_env
}

/// If the given trait impl enables exploiting the former order dependence of trait objects,
/// returns its self type; otherwise, returns `None`.
///
/// See [`ty::ImplOverlapKind::FutureCompatOrderDepTraitObjects`] for more details.
#[instrument(level = "debug", skip(tcx))]
fn self_ty_of_trait_impl_enabling_order_dep_trait_object_hack(
    tcx: TyCtxt<'_>,
    def_id: DefId,
) -> Option<EarlyBinder<'_, Ty<'_>>> {
    let impl_ =
        tcx.impl_trait_header(def_id).unwrap_or_else(|| bug!("called on inherent impl {def_id:?}"));

    let trait_ref = impl_.trait_ref.skip_binder();
    debug!(?trait_ref);

    let is_marker_like = impl_.polarity == ty::ImplPolarity::Positive
        && tcx.associated_item_def_ids(trait_ref.def_id).is_empty();

    // Check whether these impls would be ok for a marker trait.
    if !is_marker_like {
        debug!("not marker-like!");
        return None;
    }

    // impl must be `impl Trait for dyn Marker1 + Marker2 + ...`
    if trait_ref.args.len() != 1 {
        debug!("impl has args!");
        return None;
    }

    let predicates = tcx.predicates_of(def_id);
    if predicates.parent.is_some() || !predicates.predicates.is_empty() {
        debug!(?predicates, "impl has predicates!");
        return None;
    }

    let self_ty = trait_ref.self_ty();
    let self_ty_matches = match self_ty.kind() {
        ty::Dynamic(data, re, _) if re.is_static() => data.principal().is_none(),
        _ => false,
    };

    if self_ty_matches {
        debug!("MATCHES!");
        Some(EarlyBinder::bind(self_ty))
    } else {
        debug!("non-matching self type");
        None
    }
}

/// Check if a function is async.
fn asyncness(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Asyncness {
    let node = tcx.hir_node_by_def_id(def_id);
    node.fn_sig().map_or(ty::Asyncness::No, |sig| match sig.header.asyncness {
        hir::IsAsync::Async(_) => ty::Asyncness::Yes,
        hir::IsAsync::NotAsync => ty::Asyncness::No,
    })
}

fn unsizing_params_for_adt<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> BitSet<u32> {
    let def = tcx.adt_def(def_id);
    let num_params = tcx.generics_of(def_id).count();

    let maybe_unsizing_param_idx = |arg: ty::GenericArg<'tcx>| match arg.unpack() {
        ty::GenericArgKind::Type(ty) => match ty.kind() {
            ty::Param(p) => Some(p.index),
            _ => None,
        },

        // We can't unsize a lifetime
        ty::GenericArgKind::Lifetime(_) => None,

        ty::GenericArgKind::Const(ct) => match ct.kind() {
            ty::ConstKind::Param(p) => Some(p.index),
            _ => None,
        },
    };

    // The last field of the structure has to exist and contain type/const parameters.
    let Some((tail_field, prefix_fields)) = def.non_enum_variant().fields.raw.split_last() else {
        return BitSet::new_empty(num_params);
    };

    let mut unsizing_params = BitSet::new_empty(num_params);
    for arg in tcx.type_of(tail_field.did).instantiate_identity().walk() {
        if let Some(i) = maybe_unsizing_param_idx(arg) {
            unsizing_params.insert(i);
        }
    }

    // Ensure none of the other fields mention the parameters used
    // in unsizing.
    for field in prefix_fields {
        for arg in tcx.type_of(field.did).instantiate_identity().walk() {
            if let Some(i) = maybe_unsizing_param_idx(arg) {
                unsizing_params.remove(i);
            }
        }
    }

    unsizing_params
}

pub(crate) fn provide(providers: &mut Providers) {
    *providers = Providers {
        asyncness,
        adt_sized_constraint,
        param_env,
        param_env_normalized_for_post_analysis,
        self_ty_of_trait_impl_enabling_order_dep_trait_object_hack,
        defaultness,
        unsizing_params_for_adt,
        ..*providers
    };
}