Skip to main content

clippy_utils/
hir_utils.rs

1use crate::consts::ConstEvalCtxt;
2use crate::macros::macro_backtrace;
3use crate::source::{SpanRange, SpanRangeExt, walk_span_to_context};
4use crate::tokenize_with_text;
5use rustc_ast::ast;
6use rustc_ast::ast::InlineAsmTemplatePiece;
7use rustc_data_structures::fx::{FxHasher, FxIndexMap};
8use rustc_hir::MatchSource::TryDesugar;
9use rustc_hir::def::{DefKind, Res};
10use rustc_hir::def_id::DefId;
11use rustc_hir::{
12    AssocItemConstraint, BinOpKind, BindingMode, Block, BodyId, ByRef, Closure, ConstArg, ConstArgKind, ConstItemRhs,
13    Expr, ExprField, ExprKind, FnDecl, FnRetTy, FnSig, GenericArg, GenericArgs, GenericBound, GenericBounds,
14    GenericParam, GenericParamKind, GenericParamSource, Generics, HirId, HirIdMap, InlineAsmOperand, ItemId, ItemKind,
15    LetExpr, Lifetime, LifetimeKind, LifetimeParamKind, Node, ParamName, Pat, PatExpr, PatExprKind, PatField, PatKind,
16    Path, PathSegment, PreciseCapturingArgKind, PrimTy, QPath, Stmt, StmtKind, StructTailExpr, TraitBoundModifiers, Ty,
17    TyKind, TyPat, TyPatKind, UseKind, WherePredicate, WherePredicateKind,
18};
19use rustc_lexer::{FrontmatterAllowed, TokenKind, tokenize};
20use rustc_lint::LateContext;
21use rustc_middle::ty::TypeckResults;
22use rustc_span::{BytePos, ExpnKind, MacroKind, Symbol, SyntaxContext, sym};
23use std::hash::{Hash, Hasher};
24use std::ops::Range;
25use std::slice;
26
27/// Callback that is called when two expressions are not equal in the sense of `SpanlessEq`, but
28/// other conditions would make them equal.
29type SpanlessEqCallback<'a> = dyn FnMut(&Expr<'_>, &Expr<'_>) -> bool + 'a;
30
31/// Determines how paths are hashed and compared for equality.
32#[derive(Copy, Clone, Debug, Default)]
33pub enum PathCheck {
34    /// Paths must match exactly and are hashed by their exact HIR tree.
35    ///
36    /// Thus, `std::iter::Iterator` and `Iterator` are not considered equal even though they refer
37    /// to the same item.
38    #[default]
39    Exact,
40    /// Paths are compared and hashed based on their resolution.
41    ///
42    /// They can appear different in the HIR tree but are still considered equal
43    /// and have equal hashes as long as they refer to the same item.
44    ///
45    /// Note that this is currently only partially implemented specifically for paths that are
46    /// resolved before type-checking, i.e. the final segment must have a non-error resolution.
47    /// If a path with an error resolution is encountered, it falls back to the default exact
48    /// matching behavior.
49    Resolution,
50}
51
52/// Type used to check whether two ast are the same. This is different from the
53/// operator `==` on ast types as this operator would compare true equality with
54/// ID and span.
55///
56/// Note that some expressions kinds are not considered but could be added.
57pub struct SpanlessEq<'a, 'tcx> {
58    /// Context used to evaluate constant expressions.
59    cx: &'a LateContext<'tcx>,
60    maybe_typeck_results: Option<(&'tcx TypeckResults<'tcx>, &'tcx TypeckResults<'tcx>)>,
61    allow_side_effects: bool,
62    expr_fallback: Option<Box<SpanlessEqCallback<'a>>>,
63    path_check: PathCheck,
64}
65
66impl<'a, 'tcx> SpanlessEq<'a, 'tcx> {
67    pub fn new(cx: &'a LateContext<'tcx>) -> Self {
68        Self {
69            cx,
70            maybe_typeck_results: cx.maybe_typeck_results().map(|x| (x, x)),
71            allow_side_effects: true,
72            expr_fallback: None,
73            path_check: PathCheck::default(),
74        }
75    }
76
77    /// Consider expressions containing potential side effects as not equal.
78    #[must_use]
79    pub fn deny_side_effects(self) -> Self {
80        Self {
81            allow_side_effects: false,
82            ..self
83        }
84    }
85
86    /// Check paths by their resolution instead of exact equality. See [`PathCheck`] for more
87    /// details.
88    #[must_use]
89    pub fn paths_by_resolution(self) -> Self {
90        Self {
91            path_check: PathCheck::Resolution,
92            ..self
93        }
94    }
95
96    #[must_use]
97    pub fn expr_fallback(self, expr_fallback: impl FnMut(&Expr<'_>, &Expr<'_>) -> bool + 'a) -> Self {
98        Self {
99            expr_fallback: Some(Box::new(expr_fallback)),
100            ..self
101        }
102    }
103
104    /// Use this method to wrap comparisons that may involve inter-expression context.
105    /// See `self.locals`.
106    pub fn inter_expr(&mut self) -> HirEqInterExpr<'_, 'a, 'tcx> {
107        HirEqInterExpr {
108            inner: self,
109            left_ctxt: SyntaxContext::root(),
110            right_ctxt: SyntaxContext::root(),
111            locals: HirIdMap::default(),
112            local_items: FxIndexMap::default(),
113        }
114    }
115
116    pub fn eq_block(&mut self, left: &Block<'_>, right: &Block<'_>) -> bool {
117        self.inter_expr().eq_block(left, right)
118    }
119
120    pub fn eq_expr(&mut self, left: &Expr<'_>, right: &Expr<'_>) -> bool {
121        self.inter_expr().eq_expr(left, right)
122    }
123
124    pub fn eq_path(&mut self, left: &Path<'_>, right: &Path<'_>) -> bool {
125        self.inter_expr().eq_path(left, right)
126    }
127
128    pub fn eq_path_segment(&mut self, left: &PathSegment<'_>, right: &PathSegment<'_>) -> bool {
129        self.inter_expr().eq_path_segment(left, right)
130    }
131
132    pub fn eq_path_segments(&mut self, left: &[PathSegment<'_>], right: &[PathSegment<'_>]) -> bool {
133        self.inter_expr().eq_path_segments(left, right)
134    }
135
136    pub fn eq_modifiers(left: TraitBoundModifiers, right: TraitBoundModifiers) -> bool {
137        std::mem::discriminant(&left.constness) == std::mem::discriminant(&right.constness)
138            && std::mem::discriminant(&left.polarity) == std::mem::discriminant(&right.polarity)
139    }
140}
141
142pub struct HirEqInterExpr<'a, 'b, 'tcx> {
143    inner: &'a mut SpanlessEq<'b, 'tcx>,
144    left_ctxt: SyntaxContext,
145    right_ctxt: SyntaxContext,
146
147    // When binding are declared, the binding ID in the left expression is mapped to the one on the
148    // right. For example, when comparing `{ let x = 1; x + 2 }` and `{ let y = 1; y + 2 }`,
149    // these blocks are considered equal since `x` is mapped to `y`.
150    pub locals: HirIdMap<HirId>,
151    pub local_items: FxIndexMap<DefId, DefId>,
152}
153
154impl HirEqInterExpr<'_, '_, '_> {
155    pub fn eq_stmt(&mut self, left: &Stmt<'_>, right: &Stmt<'_>) -> bool {
156        match (&left.kind, &right.kind) {
157            (StmtKind::Let(l), StmtKind::Let(r)) => {
158                // This additional check ensures that the type of the locals are equivalent even if the init
159                // expression or type have some inferred parts.
160                if let Some((typeck_lhs, typeck_rhs)) = self.inner.maybe_typeck_results {
161                    let l_ty = typeck_lhs.pat_ty(l.pat);
162                    let r_ty = typeck_rhs.pat_ty(r.pat);
163                    if l_ty != r_ty {
164                        return false;
165                    }
166                }
167
168                // eq_pat adds the HirIds to the locals map. We therefore call it last to make sure that
169                // these only get added if the init and type is equal.
170                both(l.init.as_ref(), r.init.as_ref(), |l, r| self.eq_expr(l, r))
171                    && both(l.ty.as_ref(), r.ty.as_ref(), |l, r| self.eq_ty(l, r))
172                    && both(l.els.as_ref(), r.els.as_ref(), |l, r| self.eq_block(l, r))
173                    && self.eq_pat(l.pat, r.pat)
174            },
175            (StmtKind::Expr(l), StmtKind::Expr(r)) | (StmtKind::Semi(l), StmtKind::Semi(r)) => self.eq_expr(l, r),
176            (StmtKind::Item(l), StmtKind::Item(r)) => self.eq_item(*l, *r),
177            _ => false,
178        }
179    }
180
181    pub fn eq_item(&mut self, l: ItemId, r: ItemId) -> bool {
182        let left = self.inner.cx.tcx.hir_item(l);
183        let right = self.inner.cx.tcx.hir_item(r);
184        let eq = match (left.kind, right.kind) {
185            (
186                ItemKind::Const(l_ident, l_generics, l_ty, ConstItemRhs::Body(l_body)),
187                ItemKind::Const(r_ident, r_generics, r_ty, ConstItemRhs::Body(r_body)),
188            ) => {
189                l_ident.name == r_ident.name
190                    && self.eq_generics(l_generics, r_generics)
191                    && self.eq_ty(l_ty, r_ty)
192                    && self.eq_body(l_body, r_body)
193            },
194            (ItemKind::Static(l_mut, l_ident, l_ty, l_body), ItemKind::Static(r_mut, r_ident, r_ty, r_body)) => {
195                l_mut == r_mut && l_ident.name == r_ident.name && self.eq_ty(l_ty, r_ty) && self.eq_body(l_body, r_body)
196            },
197            (
198                ItemKind::Fn {
199                    sig: l_sig,
200                    ident: l_ident,
201                    generics: l_generics,
202                    body: l_body,
203                    has_body: l_has_body,
204                },
205                ItemKind::Fn {
206                    sig: r_sig,
207                    ident: r_ident,
208                    generics: r_generics,
209                    body: r_body,
210                    has_body: r_has_body,
211                },
212            ) => {
213                l_ident.name == r_ident.name
214                    && (l_has_body == r_has_body)
215                    && self.eq_fn_sig(&l_sig, &r_sig)
216                    && self.eq_generics(l_generics, r_generics)
217                    && self.eq_body(l_body, r_body)
218            },
219            (ItemKind::TyAlias(l_ident, l_generics, l_ty), ItemKind::TyAlias(r_ident, r_generics, r_ty)) => {
220                l_ident.name == r_ident.name && self.eq_generics(l_generics, r_generics) && self.eq_ty(l_ty, r_ty)
221            },
222            (ItemKind::Use(l_path, l_kind), ItemKind::Use(r_path, r_kind)) => {
223                self.eq_path_segments(l_path.segments, r_path.segments)
224                    && match (l_kind, r_kind) {
225                        (UseKind::Single(l_ident), UseKind::Single(r_ident)) => l_ident.name == r_ident.name,
226                        (UseKind::Glob, UseKind::Glob) | (UseKind::ListStem, UseKind::ListStem) => true,
227                        _ => false,
228                    }
229            },
230            (ItemKind::Mod(l_ident, l_mod), ItemKind::Mod(r_ident, r_mod)) => {
231                l_ident.name == r_ident.name && over(l_mod.item_ids, r_mod.item_ids, |l, r| self.eq_item(*l, *r))
232            },
233            _ => false,
234        };
235        if eq {
236            self.local_items.insert(l.owner_id.to_def_id(), r.owner_id.to_def_id());
237        }
238        eq
239    }
240
241    fn eq_fn_sig(&mut self, left: &FnSig<'_>, right: &FnSig<'_>) -> bool {
242        left.header.safety == right.header.safety
243            && left.header.constness == right.header.constness
244            && left.header.asyncness == right.header.asyncness
245            && left.header.abi == right.header.abi
246            && self.eq_fn_decl(left.decl, right.decl)
247    }
248
249    fn eq_fn_decl(&mut self, left: &FnDecl<'_>, right: &FnDecl<'_>) -> bool {
250        over(left.inputs, right.inputs, |l, r| self.eq_ty(l, r))
251            && (match (left.output, right.output) {
252                (FnRetTy::DefaultReturn(_), FnRetTy::DefaultReturn(_)) => true,
253                (FnRetTy::Return(l_ty), FnRetTy::Return(r_ty)) => self.eq_ty(l_ty, r_ty),
254                _ => false,
255            })
256            && left.c_variadic == right.c_variadic
257            && left.implicit_self == right.implicit_self
258            && left.lifetime_elision_allowed == right.lifetime_elision_allowed
259    }
260
261    fn eq_generics(&mut self, left: &Generics<'_>, right: &Generics<'_>) -> bool {
262        self.eq_generics_param(left.params, right.params)
263            && self.eq_generics_predicate(left.predicates, right.predicates)
264    }
265
266    fn eq_generics_predicate(&mut self, left: &[WherePredicate<'_>], right: &[WherePredicate<'_>]) -> bool {
267        over(left, right, |l, r| match (l.kind, r.kind) {
268            (WherePredicateKind::BoundPredicate(l_bound), WherePredicateKind::BoundPredicate(r_bound)) => {
269                l_bound.origin == r_bound.origin
270                    && self.eq_ty(l_bound.bounded_ty, r_bound.bounded_ty)
271                    && self.eq_generics_param(l_bound.bound_generic_params, r_bound.bound_generic_params)
272                    && self.eq_generics_bound(l_bound.bounds, r_bound.bounds)
273            },
274            (WherePredicateKind::RegionPredicate(l_region), WherePredicateKind::RegionPredicate(r_region)) => {
275                Self::eq_lifetime(l_region.lifetime, r_region.lifetime)
276                    && self.eq_generics_bound(l_region.bounds, r_region.bounds)
277            },
278            (WherePredicateKind::EqPredicate(l_eq), WherePredicateKind::EqPredicate(r_eq)) => {
279                self.eq_ty(l_eq.lhs_ty, r_eq.lhs_ty)
280            },
281            _ => false,
282        })
283    }
284
285    fn eq_generics_bound(&mut self, left: GenericBounds<'_>, right: GenericBounds<'_>) -> bool {
286        over(left, right, |l, r| match (l, r) {
287            (GenericBound::Trait(l_trait), GenericBound::Trait(r_trait)) => {
288                l_trait.modifiers == r_trait.modifiers
289                    && self.eq_path(l_trait.trait_ref.path, r_trait.trait_ref.path)
290                    && self.eq_generics_param(l_trait.bound_generic_params, r_trait.bound_generic_params)
291            },
292            (GenericBound::Outlives(l_lifetime), GenericBound::Outlives(r_lifetime)) => {
293                Self::eq_lifetime(l_lifetime, r_lifetime)
294            },
295            (GenericBound::Use(l_capture, _), GenericBound::Use(r_capture, _)) => {
296                over(l_capture, r_capture, |l, r| match (l, r) {
297                    (PreciseCapturingArgKind::Lifetime(l_lifetime), PreciseCapturingArgKind::Lifetime(r_lifetime)) => {
298                        Self::eq_lifetime(l_lifetime, r_lifetime)
299                    },
300                    (PreciseCapturingArgKind::Param(l_param), PreciseCapturingArgKind::Param(r_param)) => {
301                        l_param.ident == r_param.ident && l_param.res == r_param.res
302                    },
303                    _ => false,
304                })
305            },
306            _ => false,
307        })
308    }
309
310    fn eq_generics_param(&mut self, left: &[GenericParam<'_>], right: &[GenericParam<'_>]) -> bool {
311        over(left, right, |l, r| {
312            (match (l.name, r.name) {
313                (ParamName::Plain(l_ident), ParamName::Plain(r_ident))
314                | (ParamName::Error(l_ident), ParamName::Error(r_ident)) => l_ident.name == r_ident.name,
315                (ParamName::Fresh, ParamName::Fresh) => true,
316                _ => false,
317            }) && l.pure_wrt_drop == r.pure_wrt_drop
318                && self.eq_generics_param_kind(&l.kind, &r.kind)
319                && (matches!(
320                    (l.source, r.source),
321                    (GenericParamSource::Generics, GenericParamSource::Generics)
322                        | (GenericParamSource::Binder, GenericParamSource::Binder)
323                ))
324        })
325    }
326
327    fn eq_generics_param_kind(&mut self, left: &GenericParamKind<'_>, right: &GenericParamKind<'_>) -> bool {
328        match (left, right) {
329            (GenericParamKind::Lifetime { kind: l_kind }, GenericParamKind::Lifetime { kind: r_kind }) => {
330                match (l_kind, r_kind) {
331                    (LifetimeParamKind::Explicit, LifetimeParamKind::Explicit)
332                    | (LifetimeParamKind::Error, LifetimeParamKind::Error) => true,
333                    (LifetimeParamKind::Elided(l_lifetime_kind), LifetimeParamKind::Elided(r_lifetime_kind)) => {
334                        l_lifetime_kind == r_lifetime_kind
335                    },
336                    _ => false,
337                }
338            },
339            (
340                GenericParamKind::Type {
341                    default: l_default,
342                    synthetic: l_synthetic,
343                },
344                GenericParamKind::Type {
345                    default: r_default,
346                    synthetic: r_synthetic,
347                },
348            ) => both(*l_default, *r_default, |l, r| self.eq_ty(l, r)) && l_synthetic == r_synthetic,
349            (
350                GenericParamKind::Const {
351                    ty: l_ty,
352                    default: l_default,
353                },
354                GenericParamKind::Const {
355                    ty: r_ty,
356                    default: r_default,
357                },
358            ) => self.eq_ty(l_ty, r_ty) && both(*l_default, *r_default, |l, r| self.eq_const_arg(l, r)),
359            _ => false,
360        }
361    }
362
363    /// Checks whether two blocks are the same.
364    fn eq_block(&mut self, left: &Block<'_>, right: &Block<'_>) -> bool {
365        use TokenKind::{Semi, Whitespace};
366        if left.stmts.len() != right.stmts.len() {
367            return false;
368        }
369        let lspan = left.span.data();
370        let rspan = right.span.data();
371        if lspan.ctxt != SyntaxContext::root() && rspan.ctxt != SyntaxContext::root() {
372            // Don't try to check in between statements inside macros.
373            return over(left.stmts, right.stmts, |left, right| self.eq_stmt(left, right))
374                && both(left.expr.as_ref(), right.expr.as_ref(), |left, right| {
375                    self.eq_expr(left, right)
376                });
377        }
378        if lspan.ctxt != rspan.ctxt {
379            return false;
380        }
381
382        let mut lstart = lspan.lo;
383        let mut rstart = rspan.lo;
384
385        for (left, right) in left.stmts.iter().zip(right.stmts) {
386            if !self.eq_stmt(left, right) {
387                return false;
388            }
389
390            // Try to detect any `cfg`ed statements or empty macro expansions.
391            let Some(lstmt_span) = walk_span_to_context(left.span, lspan.ctxt) else {
392                return false;
393            };
394            let Some(rstmt_span) = walk_span_to_context(right.span, rspan.ctxt) else {
395                return false;
396            };
397            let lstmt_span = lstmt_span.data();
398            let rstmt_span = rstmt_span.data();
399
400            if lstmt_span.lo < lstart && rstmt_span.lo < rstart {
401                // Can happen when macros expand to multiple statements, or rearrange statements.
402                // Nothing in between the statements to check in this case.
403                continue;
404            }
405            if lstmt_span.lo < lstart || rstmt_span.lo < rstart {
406                // Only one of the blocks had a weird macro.
407                return false;
408            }
409            if !eq_span_tokens(self.inner.cx, lstart..lstmt_span.lo, rstart..rstmt_span.lo, |t| {
410                !matches!(t, Whitespace | Semi)
411            }) {
412                return false;
413            }
414
415            lstart = lstmt_span.hi;
416            rstart = rstmt_span.hi;
417        }
418
419        let (lend, rend) = match (left.expr, right.expr) {
420            (Some(left), Some(right)) => {
421                if !self.eq_expr(left, right) {
422                    return false;
423                }
424                let Some(lexpr_span) = walk_span_to_context(left.span, lspan.ctxt) else {
425                    return false;
426                };
427                let Some(rexpr_span) = walk_span_to_context(right.span, rspan.ctxt) else {
428                    return false;
429                };
430                (lexpr_span.lo(), rexpr_span.lo())
431            },
432            (None, None) => (lspan.hi, rspan.hi),
433            (Some(_), None) | (None, Some(_)) => return false,
434        };
435
436        if lend < lstart && rend < rstart {
437            // Can happen when macros rearrange the input.
438            // Nothing in between the statements to check in this case.
439            return true;
440        } else if lend < lstart || rend < rstart {
441            // Only one of the blocks had a weird macro
442            return false;
443        }
444        eq_span_tokens(self.inner.cx, lstart..lend, rstart..rend, |t| {
445            !matches!(t, Whitespace | Semi)
446        })
447    }
448
449    fn should_ignore(&self, expr: &Expr<'_>) -> bool {
450        macro_backtrace(expr.span).last().is_some_and(|macro_call| {
451            matches!(
452                self.inner.cx.tcx.get_diagnostic_name(macro_call.def_id),
453                Some(sym::todo_macro | sym::unimplemented_macro)
454            )
455        })
456    }
457
458    pub fn eq_body(&mut self, left: BodyId, right: BodyId) -> bool {
459        // swap out TypeckResults when hashing a body
460        let old_maybe_typeck_results = self.inner.maybe_typeck_results.replace((
461            self.inner.cx.tcx.typeck_body(left),
462            self.inner.cx.tcx.typeck_body(right),
463        ));
464        let res = self.eq_expr(
465            self.inner.cx.tcx.hir_body(left).value,
466            self.inner.cx.tcx.hir_body(right).value,
467        );
468        self.inner.maybe_typeck_results = old_maybe_typeck_results;
469        res
470    }
471
472    #[expect(clippy::too_many_lines)]
473    pub fn eq_expr(&mut self, left: &Expr<'_>, right: &Expr<'_>) -> bool {
474        if !self.check_ctxt(left.span.ctxt(), right.span.ctxt()) {
475            return false;
476        }
477
478        if let Some((typeck_lhs, typeck_rhs)) = self.inner.maybe_typeck_results
479            && typeck_lhs.expr_ty(left) == typeck_rhs.expr_ty(right)
480            && let (Some(l), Some(r)) = (
481                ConstEvalCtxt::with_env(self.inner.cx.tcx, self.inner.cx.typing_env(), typeck_lhs)
482                    .eval_local(left, self.left_ctxt),
483                ConstEvalCtxt::with_env(self.inner.cx.tcx, self.inner.cx.typing_env(), typeck_rhs)
484                    .eval_local(right, self.right_ctxt),
485            )
486            && l == r
487        {
488            return true;
489        }
490
491        let is_eq = match (
492            reduce_exprkind(self.inner.cx, &left.kind),
493            reduce_exprkind(self.inner.cx, &right.kind),
494        ) {
495            (ExprKind::AddrOf(lb, l_mut, le), ExprKind::AddrOf(rb, r_mut, re)) => {
496                lb == rb && l_mut == r_mut && self.eq_expr(le, re)
497            },
498            (ExprKind::Array(l), ExprKind::Array(r)) => self.eq_exprs(l, r),
499            (ExprKind::Assign(ll, lr, _), ExprKind::Assign(rl, rr, _)) => {
500                self.inner.allow_side_effects && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
501            },
502            (ExprKind::AssignOp(lo, ll, lr), ExprKind::AssignOp(ro, rl, rr)) => {
503                self.inner.allow_side_effects && lo.node == ro.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
504            },
505            (ExprKind::Block(l, _), ExprKind::Block(r, _)) => self.eq_block(l, r),
506            (ExprKind::Binary(l_op, ll, lr), ExprKind::Binary(r_op, rl, rr)) => {
507                l_op.node == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
508                    || swap_binop(self.inner.cx, l_op.node, ll, lr).is_some_and(|(l_op, ll, lr)| {
509                        l_op == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
510                    })
511            },
512            (ExprKind::Break(li, le), ExprKind::Break(ri, re)) => {
513                both(li.label.as_ref(), ri.label.as_ref(), |l, r| l.ident.name == r.ident.name)
514                    && both(le.as_ref(), re.as_ref(), |l, r| self.eq_expr(l, r))
515            },
516            (ExprKind::Call(l_fun, l_args), ExprKind::Call(r_fun, r_args)) => {
517                self.inner.allow_side_effects && self.eq_expr(l_fun, r_fun) && self.eq_exprs(l_args, r_args)
518            },
519            (ExprKind::Cast(lx, lt), ExprKind::Cast(rx, rt)) => {
520                self.eq_expr(lx, rx) && self.eq_ty(lt, rt)
521            },
522            (ExprKind::Closure(_l), ExprKind::Closure(_r)) => false,
523            (ExprKind::ConstBlock(lb), ExprKind::ConstBlock(rb)) => self.eq_body(lb.body, rb.body),
524            (ExprKind::Continue(li), ExprKind::Continue(ri)) => {
525                both(li.label.as_ref(), ri.label.as_ref(), |l, r| l.ident.name == r.ident.name)
526            },
527            (ExprKind::DropTemps(le), ExprKind::DropTemps(re)) => self.eq_expr(le, re),
528            (ExprKind::Field(l_f_exp, l_f_ident), ExprKind::Field(r_f_exp, r_f_ident)) => {
529                l_f_ident.name == r_f_ident.name && self.eq_expr(l_f_exp, r_f_exp)
530            },
531            (ExprKind::Index(la, li, _), ExprKind::Index(ra, ri, _)) => self.eq_expr(la, ra) && self.eq_expr(li, ri),
532            (ExprKind::If(lc, lt, le), ExprKind::If(rc, rt, re)) => {
533                self.eq_expr(lc, rc) && self.eq_expr(lt, rt)
534                    && both(le.as_ref(), re.as_ref(), |l, r| self.eq_expr(l, r))
535            },
536            (ExprKind::Let(l), ExprKind::Let(r)) => {
537                self.eq_pat(l.pat, r.pat)
538                    && both(l.ty.as_ref(), r.ty.as_ref(), |l, r| self.eq_ty(l, r))
539                    && self.eq_expr(l.init, r.init)
540            },
541            (ExprKind::Lit(l), ExprKind::Lit(r)) => l.node == r.node,
542            (ExprKind::Loop(lb, ll, lls, _), ExprKind::Loop(rb, rl, rls, _)) => {
543                lls == rls && self.eq_block(lb, rb)
544                    && both(ll.as_ref(), rl.as_ref(), |l, r| l.ident.name == r.ident.name)
545            },
546            (ExprKind::Match(le, la, ls), ExprKind::Match(re, ra, rs)) => {
547                (ls == rs || (matches!((ls, rs), (TryDesugar(_), TryDesugar(_)))))
548                    && self.eq_expr(le, re)
549                    && over(la, ra, |l, r| {
550                        self.eq_pat(l.pat, r.pat)
551                            && both(l.guard.as_ref(), r.guard.as_ref(), |l, r| self.eq_expr(l, r))
552                            && self.eq_expr(l.body, r.body)
553                    })
554            },
555            (
556                ExprKind::MethodCall(l_path, l_receiver, l_args, _),
557                ExprKind::MethodCall(r_path, r_receiver, r_args, _),
558            ) => {
559                self.inner.allow_side_effects
560                    && self.eq_path_segment(l_path, r_path)
561                    && self.eq_expr(l_receiver, r_receiver)
562                    && self.eq_exprs(l_args, r_args)
563            },
564            (ExprKind::UnsafeBinderCast(lkind, le, None), ExprKind::UnsafeBinderCast(rkind, re, None)) =>
565                lkind == rkind && self.eq_expr(le, re),
566            (ExprKind::UnsafeBinderCast(lkind, le, Some(lt)), ExprKind::UnsafeBinderCast(rkind, re, Some(rt))) =>
567                lkind == rkind && self.eq_expr(le, re) && self.eq_ty(lt, rt),
568            (ExprKind::OffsetOf(l_container, l_fields), ExprKind::OffsetOf(r_container, r_fields)) => {
569                self.eq_ty(l_container, r_container) && over(l_fields, r_fields, |l, r| l.name == r.name)
570            },
571            (ExprKind::Path(l), ExprKind::Path(r)) => self.eq_qpath(l, r),
572            (ExprKind::Repeat(le, ll), ExprKind::Repeat(re, rl)) => {
573                self.eq_expr(le, re) && self.eq_const_arg(ll, rl)
574            },
575            (ExprKind::Ret(l), ExprKind::Ret(r)) => both(l.as_ref(), r.as_ref(), |l, r| self.eq_expr(l, r)),
576            (ExprKind::Struct(l_path, lf, lo), ExprKind::Struct(r_path, rf, ro)) => {
577                self.eq_qpath(l_path, r_path)
578                    && match (lo, ro) {
579                        (StructTailExpr::Base(l),StructTailExpr::Base(r)) => self.eq_expr(l, r),
580                        (StructTailExpr::None, StructTailExpr::None) |
581                        (StructTailExpr::DefaultFields(_), StructTailExpr::DefaultFields(_)) => true,
582                        _ => false,
583                    }
584                    && over(lf, rf, |l, r| self.eq_expr_field(l, r))
585            },
586            (ExprKind::Tup(l_tup), ExprKind::Tup(r_tup)) => self.eq_exprs(l_tup, r_tup),
587            (ExprKind::Use(l_expr, _), ExprKind::Use(r_expr, _)) => self.eq_expr(l_expr, r_expr),
588            (ExprKind::Type(le, lt), ExprKind::Type(re, rt)) => self.eq_expr(le, re) && self.eq_ty(lt, rt),
589            (ExprKind::Unary(l_op, le), ExprKind::Unary(r_op, re)) => l_op == r_op && self.eq_expr(le, re),
590            (ExprKind::Yield(le, _), ExprKind::Yield(re, _)) => return self.eq_expr(le, re),
591            (
592                // Else branches for branches above, grouped as per `match_same_arms`.
593                | ExprKind::AddrOf(..)
594                | ExprKind::Array(..)
595                | ExprKind::Assign(..)
596                | ExprKind::AssignOp(..)
597                | ExprKind::Binary(..)
598                | ExprKind::Become(..)
599                | ExprKind::Block(..)
600                | ExprKind::Break(..)
601                | ExprKind::Call(..)
602                | ExprKind::Cast(..)
603                | ExprKind::ConstBlock(..)
604                | ExprKind::Continue(..)
605                | ExprKind::DropTemps(..)
606                | ExprKind::Field(..)
607                | ExprKind::Index(..)
608                | ExprKind::If(..)
609                | ExprKind::Let(..)
610                | ExprKind::Lit(..)
611                | ExprKind::Loop(..)
612                | ExprKind::Match(..)
613                | ExprKind::MethodCall(..)
614                | ExprKind::OffsetOf(..)
615                | ExprKind::Path(..)
616                | ExprKind::Repeat(..)
617                | ExprKind::Ret(..)
618                | ExprKind::Struct(..)
619                | ExprKind::Tup(..)
620                | ExprKind::Use(..)
621                | ExprKind::Type(..)
622                | ExprKind::Unary(..)
623                | ExprKind::Yield(..)
624                | ExprKind::UnsafeBinderCast(..)
625
626                // --- Special cases that do not have a positive branch.
627
628                // `Err` represents an invalid expression, so let's never assume that
629                // an invalid expressions is equal to anything.
630                | ExprKind::Err(..)
631
632                // For the time being, we always consider that two closures are unequal.
633                // This behavior may change in the future.
634                | ExprKind::Closure(..)
635                // For the time being, we always consider that two instances of InlineAsm are different.
636                // This behavior may change in the future.
637                | ExprKind::InlineAsm(_)
638                , _
639            ) => false,
640        };
641        (is_eq && (!self.should_ignore(left) || !self.should_ignore(right)))
642            || self.inner.expr_fallback.as_mut().is_some_and(|f| f(left, right))
643    }
644
645    fn eq_exprs(&mut self, left: &[Expr<'_>], right: &[Expr<'_>]) -> bool {
646        over(left, right, |l, r| self.eq_expr(l, r))
647    }
648
649    fn eq_expr_field(&mut self, left: &ExprField<'_>, right: &ExprField<'_>) -> bool {
650        left.ident.name == right.ident.name && self.eq_expr(left.expr, right.expr)
651    }
652
653    fn eq_generic_arg(&mut self, left: &GenericArg<'_>, right: &GenericArg<'_>) -> bool {
654        match (left, right) {
655            (GenericArg::Const(l), GenericArg::Const(r)) => self.eq_const_arg(l.as_unambig_ct(), r.as_unambig_ct()),
656            (GenericArg::Lifetime(l_lt), GenericArg::Lifetime(r_lt)) => Self::eq_lifetime(l_lt, r_lt),
657            (GenericArg::Type(l_ty), GenericArg::Type(r_ty)) => self.eq_ty(l_ty.as_unambig_ty(), r_ty.as_unambig_ty()),
658            (GenericArg::Infer(l_inf), GenericArg::Infer(r_inf)) => self.eq_ty(&l_inf.to_ty(), &r_inf.to_ty()),
659            _ => false,
660        }
661    }
662
663    fn eq_const_arg(&mut self, left: &ConstArg<'_>, right: &ConstArg<'_>) -> bool {
664        if !self.check_ctxt(left.span.ctxt(), right.span.ctxt()) {
665            return false;
666        }
667
668        match (&left.kind, &right.kind) {
669            (ConstArgKind::Tup(l_t), ConstArgKind::Tup(r_t)) => {
670                l_t.len() == r_t.len() && l_t.iter().zip(*r_t).all(|(l_c, r_c)| self.eq_const_arg(l_c, r_c))
671            },
672            (ConstArgKind::Path(l_p), ConstArgKind::Path(r_p)) => self.eq_qpath(l_p, r_p),
673            (ConstArgKind::Anon(l_an), ConstArgKind::Anon(r_an)) => self.eq_body(l_an.body, r_an.body),
674            (ConstArgKind::Infer(..), ConstArgKind::Infer(..)) => true,
675            (ConstArgKind::Struct(path_a, inits_a), ConstArgKind::Struct(path_b, inits_b)) => {
676                self.eq_qpath(path_a, path_b)
677                    && inits_a
678                        .iter()
679                        .zip(*inits_b)
680                        .all(|(init_a, init_b)| self.eq_const_arg(init_a.expr, init_b.expr))
681            },
682            (ConstArgKind::TupleCall(path_a, args_a), ConstArgKind::TupleCall(path_b, args_b)) => {
683                self.eq_qpath(path_a, path_b)
684                    && args_a
685                        .iter()
686                        .zip(*args_b)
687                        .all(|(arg_a, arg_b)| self.eq_const_arg(arg_a, arg_b))
688            },
689            (ConstArgKind::Literal(kind_l), ConstArgKind::Literal(kind_r)) => kind_l == kind_r,
690            (ConstArgKind::Array(l_arr), ConstArgKind::Array(r_arr)) => {
691                l_arr.elems.len() == r_arr.elems.len()
692                    && l_arr
693                        .elems
694                        .iter()
695                        .zip(r_arr.elems.iter())
696                        .all(|(l_elem, r_elem)| self.eq_const_arg(l_elem, r_elem))
697            },
698            // Use explicit match for now since ConstArg is undergoing flux.
699            (
700                ConstArgKind::Path(..)
701                | ConstArgKind::Tup(..)
702                | ConstArgKind::Anon(..)
703                | ConstArgKind::TupleCall(..)
704                | ConstArgKind::Infer(..)
705                | ConstArgKind::Struct(..)
706                | ConstArgKind::Literal(..)
707                | ConstArgKind::Array(..)
708                | ConstArgKind::Error(..),
709                _,
710            ) => false,
711        }
712    }
713
714    fn eq_lifetime(left: &Lifetime, right: &Lifetime) -> bool {
715        left.kind == right.kind
716    }
717
718    fn eq_pat_field(&mut self, left: &PatField<'_>, right: &PatField<'_>) -> bool {
719        let (PatField { ident: li, pat: lp, .. }, PatField { ident: ri, pat: rp, .. }) = (&left, &right);
720        li.name == ri.name && self.eq_pat(lp, rp)
721    }
722
723    fn eq_pat_expr(&mut self, left: &PatExpr<'_>, right: &PatExpr<'_>) -> bool {
724        match (&left.kind, &right.kind) {
725            (
726                PatExprKind::Lit {
727                    lit: left,
728                    negated: left_neg,
729                },
730                PatExprKind::Lit {
731                    lit: right,
732                    negated: right_neg,
733                },
734            ) => left_neg == right_neg && left.node == right.node,
735            (PatExprKind::Path(left), PatExprKind::Path(right)) => self.eq_qpath(left, right),
736            (PatExprKind::Lit { .. } | PatExprKind::Path(..), _) => false,
737        }
738    }
739
740    /// Checks whether two patterns are the same.
741    fn eq_pat(&mut self, left: &Pat<'_>, right: &Pat<'_>) -> bool {
742        match (&left.kind, &right.kind) {
743            (PatKind::Box(l), PatKind::Box(r)) => self.eq_pat(l, r),
744            (PatKind::Struct(lp, la, ..), PatKind::Struct(rp, ra, ..)) => {
745                self.eq_qpath(lp, rp) && over(la, ra, |l, r| self.eq_pat_field(l, r))
746            },
747            (PatKind::TupleStruct(lp, la, ls), PatKind::TupleStruct(rp, ra, rs)) => {
748                self.eq_qpath(lp, rp) && over(la, ra, |l, r| self.eq_pat(l, r)) && ls == rs
749            },
750            (PatKind::Binding(lb, li, _, lp), PatKind::Binding(rb, ri, _, rp)) => {
751                let eq = lb == rb && both(lp.as_ref(), rp.as_ref(), |l, r| self.eq_pat(l, r));
752                if eq {
753                    self.locals.insert(*li, *ri);
754                }
755                eq
756            },
757            (PatKind::Expr(l), PatKind::Expr(r)) => self.eq_pat_expr(l, r),
758            (PatKind::Tuple(l, ls), PatKind::Tuple(r, rs)) => ls == rs && over(l, r, |l, r| self.eq_pat(l, r)),
759            (PatKind::Range(ls, le, li), PatKind::Range(rs, re, ri)) => {
760                both(ls.as_ref(), rs.as_ref(), |a, b| self.eq_pat_expr(a, b))
761                    && both(le.as_ref(), re.as_ref(), |a, b| self.eq_pat_expr(a, b))
762                    && (li == ri)
763            },
764            (PatKind::Ref(le, lp, lm), PatKind::Ref(re, rp, rm)) => lp == rp && lm == rm && self.eq_pat(le, re),
765            (PatKind::Slice(ls, li, le), PatKind::Slice(rs, ri, re)) => {
766                over(ls, rs, |l, r| self.eq_pat(l, r))
767                    && over(le, re, |l, r| self.eq_pat(l, r))
768                    && both(li.as_ref(), ri.as_ref(), |l, r| self.eq_pat(l, r))
769            },
770            (PatKind::Wild, PatKind::Wild) => true,
771            _ => false,
772        }
773    }
774
775    fn eq_qpath(&mut self, left: &QPath<'_>, right: &QPath<'_>) -> bool {
776        match (left, right) {
777            (QPath::Resolved(lty, lpath), QPath::Resolved(rty, rpath)) => {
778                both(lty.as_ref(), rty.as_ref(), |l, r| self.eq_ty(l, r)) && self.eq_path(lpath, rpath)
779            },
780            (QPath::TypeRelative(lty, lseg), QPath::TypeRelative(rty, rseg)) => {
781                self.eq_ty(lty, rty) && self.eq_path_segment(lseg, rseg)
782            },
783            _ => false,
784        }
785    }
786
787    pub fn eq_path(&mut self, left: &Path<'_>, right: &Path<'_>) -> bool {
788        match (left.res, right.res) {
789            (Res::Local(l), Res::Local(r)) => l == r || self.locals.get(&l) == Some(&r),
790            (Res::Local(_), _) | (_, Res::Local(_)) => false,
791            (Res::Def(l_kind, l), Res::Def(r_kind, r))
792                if l_kind == r_kind
793                    && let DefKind::Const
794                    | DefKind::Static { .. }
795                    | DefKind::Fn
796                    | DefKind::TyAlias
797                    | DefKind::Use
798                    | DefKind::Mod = l_kind =>
799            {
800                (l == r || self.local_items.get(&l) == Some(&r)) && self.eq_path_segments(left.segments, right.segments)
801            },
802            _ => self.eq_path_segments(left.segments, right.segments),
803        }
804    }
805
806    fn eq_path_parameters(&mut self, left: &GenericArgs<'_>, right: &GenericArgs<'_>) -> bool {
807        if left.parenthesized == right.parenthesized {
808            over(left.args, right.args, |l, r| self.eq_generic_arg(l, r)) // FIXME(flip1995): may not work
809                && over(left.constraints, right.constraints, |l, r| self.eq_assoc_eq_constraint(l, r))
810        } else {
811            false
812        }
813    }
814
815    pub fn eq_path_segments<'tcx>(
816        &mut self,
817        mut left: &'tcx [PathSegment<'tcx>],
818        mut right: &'tcx [PathSegment<'tcx>],
819    ) -> bool {
820        if let PathCheck::Resolution = self.inner.path_check
821            && let Some(left_seg) = generic_path_segments(left)
822            && let Some(right_seg) = generic_path_segments(right)
823        {
824            // If we compare by resolution, then only check the last segments that could possibly have generic
825            // arguments
826            left = left_seg;
827            right = right_seg;
828        }
829
830        over(left, right, |l, r| self.eq_path_segment(l, r))
831    }
832
833    pub fn eq_path_segment(&mut self, left: &PathSegment<'_>, right: &PathSegment<'_>) -> bool {
834        if !self.eq_path_parameters(left.args(), right.args()) {
835            return false;
836        }
837
838        if let PathCheck::Resolution = self.inner.path_check
839            && left.res != Res::Err
840            && right.res != Res::Err
841        {
842            left.res == right.res
843        } else {
844            // The == of idents doesn't work with different contexts,
845            // we have to be explicit about hygiene
846            left.ident.name == right.ident.name
847        }
848    }
849
850    pub fn eq_ty(&mut self, left: &Ty<'_>, right: &Ty<'_>) -> bool {
851        match (&left.kind, &right.kind) {
852            (TyKind::Slice(l_vec), TyKind::Slice(r_vec)) => self.eq_ty(l_vec, r_vec),
853            (TyKind::Array(lt, ll), TyKind::Array(rt, rl)) => self.eq_ty(lt, rt) && self.eq_const_arg(ll, rl),
854            (TyKind::Ptr(l_mut), TyKind::Ptr(r_mut)) => l_mut.mutbl == r_mut.mutbl && self.eq_ty(l_mut.ty, r_mut.ty),
855            (TyKind::Ref(_, l_rmut), TyKind::Ref(_, r_rmut)) => {
856                l_rmut.mutbl == r_rmut.mutbl && self.eq_ty(l_rmut.ty, r_rmut.ty)
857            },
858            (TyKind::Path(l), TyKind::Path(r)) => self.eq_qpath(l, r),
859            (TyKind::Tup(l), TyKind::Tup(r)) => over(l, r, |l, r| self.eq_ty(l, r)),
860            (TyKind::Infer(()), TyKind::Infer(())) => true,
861            _ => false,
862        }
863    }
864
865    /// Checks whether two constraints designate the same equality constraint (same name, and same
866    /// type or const).
867    fn eq_assoc_eq_constraint(&mut self, left: &AssocItemConstraint<'_>, right: &AssocItemConstraint<'_>) -> bool {
868        // TODO: this could be extended to check for identical associated item bound constraints
869        left.ident.name == right.ident.name
870            && (both_some_and(left.ty(), right.ty(), |l, r| self.eq_ty(l, r))
871                || both_some_and(left.ct(), right.ct(), |l, r| self.eq_const_arg(l, r)))
872    }
873
874    fn check_ctxt(&mut self, left: SyntaxContext, right: SyntaxContext) -> bool {
875        if self.left_ctxt == left && self.right_ctxt == right {
876            return true;
877        } else if self.left_ctxt == left || self.right_ctxt == right {
878            // Only one context has changed. This can only happen if the two nodes are written differently.
879            return false;
880        } else if left != SyntaxContext::root() {
881            let mut left_data = left.outer_expn_data();
882            let mut right_data = right.outer_expn_data();
883            loop {
884                use TokenKind::{BlockComment, LineComment, Whitespace};
885                if left_data.macro_def_id != right_data.macro_def_id
886                    || (matches!(
887                        left_data.kind,
888                        ExpnKind::Macro(MacroKind::Bang, name)
889                        if name == sym::cfg || name == sym::option_env
890                    ) && !eq_span_tokens(self.inner.cx, left_data.call_site, right_data.call_site, |t| {
891                        !matches!(t, Whitespace | LineComment { .. } | BlockComment { .. })
892                    }))
893                {
894                    // Either a different chain of macro calls, or different arguments to the `cfg` macro.
895                    return false;
896                }
897                let left_ctxt = left_data.call_site.ctxt();
898                let right_ctxt = right_data.call_site.ctxt();
899                if left_ctxt == SyntaxContext::root() && right_ctxt == SyntaxContext::root() {
900                    break;
901                }
902                if left_ctxt == SyntaxContext::root() || right_ctxt == SyntaxContext::root() {
903                    // Different lengths for the expansion stack. This can only happen if nodes are written differently,
904                    // or shouldn't be compared to start with.
905                    return false;
906                }
907                left_data = left_ctxt.outer_expn_data();
908                right_data = right_ctxt.outer_expn_data();
909            }
910        }
911        self.left_ctxt = left;
912        self.right_ctxt = right;
913        true
914    }
915}
916
917/// Some simple reductions like `{ return }` => `return`
918fn reduce_exprkind<'hir>(cx: &LateContext<'_>, kind: &'hir ExprKind<'hir>) -> &'hir ExprKind<'hir> {
919    if let ExprKind::Block(block, _) = kind {
920        match (block.stmts, block.expr) {
921            // From an `if let` expression without an `else` block. The arm for the implicit wild pattern is an empty
922            // block with an empty span.
923            ([], None) if block.span.is_empty() => &ExprKind::Tup(&[]),
924            // `{}` => `()`
925            ([], None)
926                if block.span.check_source_text(cx, |src| {
927                    tokenize(src, FrontmatterAllowed::No)
928                        .map(|t| t.kind)
929                        .filter(|t| {
930                            !matches!(
931                                t,
932                                TokenKind::LineComment { .. } | TokenKind::BlockComment { .. } | TokenKind::Whitespace
933                            )
934                        })
935                        .eq([TokenKind::OpenBrace, TokenKind::CloseBrace].iter().copied())
936                }) =>
937            {
938                &ExprKind::Tup(&[])
939            },
940            ([], Some(expr)) => match expr.kind {
941                // `{ return .. }` => `return ..`
942                ExprKind::Ret(..) => &expr.kind,
943                _ => kind,
944            },
945            ([stmt], None) => match stmt.kind {
946                StmtKind::Expr(expr) | StmtKind::Semi(expr) => match expr.kind {
947                    // `{ return ..; }` => `return ..`
948                    ExprKind::Ret(..) => &expr.kind,
949                    _ => kind,
950                },
951                _ => kind,
952            },
953            _ => kind,
954        }
955    } else {
956        kind
957    }
958}
959
960fn swap_binop<'a>(
961    cx: &LateContext<'_>,
962    binop: BinOpKind,
963    lhs: &'a Expr<'a>,
964    rhs: &'a Expr<'a>,
965) -> Option<(BinOpKind, &'a Expr<'a>, &'a Expr<'a>)> {
966    match binop {
967        // `==` and `!=`, are commutative
968        BinOpKind::Eq | BinOpKind::Ne => Some((binop, rhs, lhs)),
969        // Comparisons can be reversed
970        BinOpKind::Lt => Some((BinOpKind::Gt, rhs, lhs)),
971        BinOpKind::Le => Some((BinOpKind::Ge, rhs, lhs)),
972        BinOpKind::Ge => Some((BinOpKind::Le, rhs, lhs)),
973        BinOpKind::Gt => Some((BinOpKind::Lt, rhs, lhs)),
974        // Non-commutative operators
975        BinOpKind::Shl | BinOpKind::Shr | BinOpKind::Rem | BinOpKind::Sub | BinOpKind::Div => None,
976        // We know that those operators are commutative for primitive types,
977        // and we don't assume anything for other types
978        BinOpKind::Mul
979        | BinOpKind::Add
980        | BinOpKind::And
981        | BinOpKind::Or
982        | BinOpKind::BitAnd
983        | BinOpKind::BitXor
984        | BinOpKind::BitOr => cx
985            .typeck_results()
986            .expr_ty_adjusted(lhs)
987            .peel_refs()
988            .is_primitive()
989            .then_some((binop, rhs, lhs)),
990    }
991}
992
993/// Checks if the two `Option`s are both `None` or some equal values as per
994/// `eq_fn`.
995pub fn both<X>(l: Option<&X>, r: Option<&X>, mut eq_fn: impl FnMut(&X, &X) -> bool) -> bool {
996    l.as_ref()
997        .map_or_else(|| r.is_none(), |x| r.as_ref().is_some_and(|y| eq_fn(x, y)))
998}
999
1000/// Checks if the two `Option`s are both `Some` and pass the predicate function.
1001pub fn both_some_and<X, Y>(l: Option<X>, r: Option<Y>, mut pred: impl FnMut(X, Y) -> bool) -> bool {
1002    l.is_some_and(|l| r.is_some_and(|r| pred(l, r)))
1003}
1004
1005/// Checks if two slices are equal as per `eq_fn`.
1006pub fn over<X, Y>(left: &[X], right: &[Y], mut eq_fn: impl FnMut(&X, &Y) -> bool) -> bool {
1007    left.len() == right.len() && left.iter().zip(right).all(|(x, y)| eq_fn(x, y))
1008}
1009
1010/// Counts how many elements of the slices are equal as per `eq_fn`.
1011pub fn count_eq<X: Sized>(
1012    left: &mut dyn Iterator<Item = X>,
1013    right: &mut dyn Iterator<Item = X>,
1014    mut eq_fn: impl FnMut(&X, &X) -> bool,
1015) -> usize {
1016    left.zip(right).take_while(|(l, r)| eq_fn(l, r)).count()
1017}
1018
1019/// Checks if two expressions evaluate to the same value, and don't contain any side effects.
1020pub fn eq_expr_value(cx: &LateContext<'_>, left: &Expr<'_>, right: &Expr<'_>) -> bool {
1021    SpanlessEq::new(cx).deny_side_effects().eq_expr(left, right)
1022}
1023
1024/// Returns the segments of a path that might have generic parameters.
1025/// Usually just the last segment for free items, except for when the path resolves to an associated
1026/// item, in which case it is the last two
1027fn generic_path_segments<'tcx>(segments: &'tcx [PathSegment<'tcx>]) -> Option<&'tcx [PathSegment<'tcx>]> {
1028    match segments.last()?.res {
1029        Res::Def(DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy, _) => {
1030            // <Ty as module::Trait<T>>::assoc::<U>
1031            //        ^^^^^^^^^^^^^^^^   ^^^^^^^^^^ segments: [module, Trait<T>, assoc<U>]
1032            Some(&segments[segments.len().checked_sub(2)?..])
1033        },
1034        Res::Err => None,
1035        _ => Some(slice::from_ref(segments.last()?)),
1036    }
1037}
1038
1039/// Type used to hash an ast element. This is different from the `Hash` trait
1040/// on ast types as this
1041/// trait would consider IDs and spans.
1042///
1043/// All expressions kind are hashed, but some might have a weaker hash.
1044pub struct SpanlessHash<'a, 'tcx> {
1045    /// Context used to evaluate constant expressions.
1046    cx: &'a LateContext<'tcx>,
1047    maybe_typeck_results: Option<&'tcx TypeckResults<'tcx>>,
1048    s: FxHasher,
1049    path_check: PathCheck,
1050}
1051
1052impl<'a, 'tcx> SpanlessHash<'a, 'tcx> {
1053    pub fn new(cx: &'a LateContext<'tcx>) -> Self {
1054        Self {
1055            cx,
1056            maybe_typeck_results: cx.maybe_typeck_results(),
1057            s: FxHasher::default(),
1058            path_check: PathCheck::default(),
1059        }
1060    }
1061
1062    /// Check paths by their resolution instead of exact equality. See [`PathCheck`] for more
1063    /// details.
1064    #[must_use]
1065    pub fn paths_by_resolution(self) -> Self {
1066        Self {
1067            path_check: PathCheck::Resolution,
1068            ..self
1069        }
1070    }
1071
1072    pub fn finish(self) -> u64 {
1073        self.s.finish()
1074    }
1075
1076    pub fn hash_block(&mut self, b: &Block<'_>) {
1077        for s in b.stmts {
1078            self.hash_stmt(s);
1079        }
1080
1081        if let Some(e) = b.expr {
1082            self.hash_expr(e);
1083        }
1084
1085        std::mem::discriminant(&b.rules).hash(&mut self.s);
1086    }
1087
1088    #[expect(clippy::too_many_lines)]
1089    pub fn hash_expr(&mut self, e: &Expr<'_>) {
1090        let simple_const = self.maybe_typeck_results.and_then(|typeck_results| {
1091            ConstEvalCtxt::with_env(self.cx.tcx, self.cx.typing_env(), typeck_results).eval_local(e, e.span.ctxt())
1092        });
1093
1094        // const hashing may result in the same hash as some unrelated node, so add a sort of
1095        // discriminant depending on which path we're choosing next
1096        simple_const.hash(&mut self.s);
1097        if simple_const.is_some() {
1098            return;
1099        }
1100
1101        std::mem::discriminant(&e.kind).hash(&mut self.s);
1102
1103        match &e.kind {
1104            ExprKind::AddrOf(kind, m, e) => {
1105                std::mem::discriminant(kind).hash(&mut self.s);
1106                m.hash(&mut self.s);
1107                self.hash_expr(e);
1108            },
1109            ExprKind::Continue(i) => {
1110                if let Some(i) = i.label {
1111                    self.hash_name(i.ident.name);
1112                }
1113            },
1114            ExprKind::Array(v) => {
1115                self.hash_exprs(v);
1116            },
1117            ExprKind::Assign(l, r, _) => {
1118                self.hash_expr(l);
1119                self.hash_expr(r);
1120            },
1121            ExprKind::AssignOp(o, l, r) => {
1122                std::mem::discriminant(&o.node).hash(&mut self.s);
1123                self.hash_expr(l);
1124                self.hash_expr(r);
1125            },
1126            ExprKind::Become(f) => {
1127                self.hash_expr(f);
1128            },
1129            ExprKind::Block(b, _) => {
1130                self.hash_block(b);
1131            },
1132            ExprKind::Binary(op, l, r) => {
1133                std::mem::discriminant(&op.node).hash(&mut self.s);
1134                self.hash_expr(l);
1135                self.hash_expr(r);
1136            },
1137            ExprKind::Break(i, j) => {
1138                if let Some(i) = i.label {
1139                    self.hash_name(i.ident.name);
1140                }
1141                if let Some(j) = j {
1142                    self.hash_expr(j);
1143                }
1144            },
1145            ExprKind::Call(fun, args) => {
1146                self.hash_expr(fun);
1147                self.hash_exprs(args);
1148            },
1149            ExprKind::Cast(e, ty) | ExprKind::Type(e, ty) => {
1150                self.hash_expr(e);
1151                self.hash_ty(ty);
1152            },
1153            ExprKind::Closure(Closure {
1154                capture_clause, body, ..
1155            }) => {
1156                std::mem::discriminant(capture_clause).hash(&mut self.s);
1157                // closures inherit TypeckResults
1158                self.hash_expr(self.cx.tcx.hir_body(*body).value);
1159            },
1160            ExprKind::ConstBlock(l_id) => {
1161                self.hash_body(l_id.body);
1162            },
1163            ExprKind::DropTemps(e) | ExprKind::Yield(e, _) => {
1164                self.hash_expr(e);
1165            },
1166            ExprKind::Field(e, f) => {
1167                self.hash_expr(e);
1168                self.hash_name(f.name);
1169            },
1170            ExprKind::Index(a, i, _) => {
1171                self.hash_expr(a);
1172                self.hash_expr(i);
1173            },
1174            ExprKind::InlineAsm(asm) => {
1175                for piece in asm.template {
1176                    match piece {
1177                        InlineAsmTemplatePiece::String(s) => s.hash(&mut self.s),
1178                        InlineAsmTemplatePiece::Placeholder {
1179                            operand_idx,
1180                            modifier,
1181                            span: _,
1182                        } => {
1183                            operand_idx.hash(&mut self.s);
1184                            modifier.hash(&mut self.s);
1185                        },
1186                    }
1187                }
1188                asm.options.hash(&mut self.s);
1189                for (op, _op_sp) in asm.operands {
1190                    match op {
1191                        InlineAsmOperand::In { reg, expr } => {
1192                            reg.hash(&mut self.s);
1193                            self.hash_expr(expr);
1194                        },
1195                        InlineAsmOperand::Out { reg, late, expr } => {
1196                            reg.hash(&mut self.s);
1197                            late.hash(&mut self.s);
1198                            if let Some(expr) = expr {
1199                                self.hash_expr(expr);
1200                            }
1201                        },
1202                        InlineAsmOperand::InOut { reg, late, expr } => {
1203                            reg.hash(&mut self.s);
1204                            late.hash(&mut self.s);
1205                            self.hash_expr(expr);
1206                        },
1207                        InlineAsmOperand::SplitInOut {
1208                            reg,
1209                            late,
1210                            in_expr,
1211                            out_expr,
1212                        } => {
1213                            reg.hash(&mut self.s);
1214                            late.hash(&mut self.s);
1215                            self.hash_expr(in_expr);
1216                            if let Some(out_expr) = out_expr {
1217                                self.hash_expr(out_expr);
1218                            }
1219                        },
1220                        InlineAsmOperand::SymFn { expr } => {
1221                            self.hash_expr(expr);
1222                        },
1223                        InlineAsmOperand::Const { anon_const } => {
1224                            self.hash_body(anon_const.body);
1225                        },
1226                        InlineAsmOperand::SymStatic { path, def_id: _ } => self.hash_qpath(path),
1227                        InlineAsmOperand::Label { block } => self.hash_block(block),
1228                    }
1229                }
1230            },
1231            ExprKind::Let(LetExpr { pat, init, ty, .. }) => {
1232                self.hash_expr(init);
1233                if let Some(ty) = ty {
1234                    self.hash_ty(ty);
1235                }
1236                self.hash_pat(pat);
1237            },
1238            ExprKind::Lit(l) => {
1239                l.node.hash(&mut self.s);
1240            },
1241            ExprKind::Loop(b, i, ..) => {
1242                self.hash_block(b);
1243                if let Some(i) = i {
1244                    self.hash_name(i.ident.name);
1245                }
1246            },
1247            ExprKind::If(cond, then, else_opt) => {
1248                self.hash_expr(cond);
1249                self.hash_expr(then);
1250                if let Some(e) = else_opt {
1251                    self.hash_expr(e);
1252                }
1253            },
1254            ExprKind::Match(scrutinee, arms, _) => {
1255                self.hash_expr(scrutinee);
1256
1257                for arm in *arms {
1258                    self.hash_pat(arm.pat);
1259                    if let Some(e) = arm.guard {
1260                        self.hash_expr(e);
1261                    }
1262                    self.hash_expr(arm.body);
1263                }
1264            },
1265            ExprKind::MethodCall(path, receiver, args, _fn_span) => {
1266                self.hash_name(path.ident.name);
1267                self.hash_expr(receiver);
1268                self.hash_exprs(args);
1269            },
1270            ExprKind::OffsetOf(container, fields) => {
1271                self.hash_ty(container);
1272                for field in *fields {
1273                    self.hash_name(field.name);
1274                }
1275            },
1276            ExprKind::Path(qpath) => {
1277                self.hash_qpath(qpath);
1278            },
1279            ExprKind::Repeat(e, len) => {
1280                self.hash_expr(e);
1281                self.hash_const_arg(len);
1282            },
1283            ExprKind::Ret(e) => {
1284                if let Some(e) = e {
1285                    self.hash_expr(e);
1286                }
1287            },
1288            ExprKind::Struct(path, fields, expr) => {
1289                self.hash_qpath(path);
1290
1291                for f in *fields {
1292                    self.hash_name(f.ident.name);
1293                    self.hash_expr(f.expr);
1294                }
1295
1296                if let StructTailExpr::Base(e) = expr {
1297                    self.hash_expr(e);
1298                }
1299            },
1300            ExprKind::Tup(tup) => {
1301                self.hash_exprs(tup);
1302            },
1303            ExprKind::Use(expr, _) => {
1304                self.hash_expr(expr);
1305            },
1306            ExprKind::Unary(l_op, le) => {
1307                std::mem::discriminant(l_op).hash(&mut self.s);
1308                self.hash_expr(le);
1309            },
1310            ExprKind::UnsafeBinderCast(kind, expr, ty) => {
1311                std::mem::discriminant(kind).hash(&mut self.s);
1312                self.hash_expr(expr);
1313                if let Some(ty) = ty {
1314                    self.hash_ty(ty);
1315                }
1316            },
1317            ExprKind::Err(_) => {},
1318        }
1319    }
1320
1321    pub fn hash_exprs(&mut self, e: &[Expr<'_>]) {
1322        for e in e {
1323            self.hash_expr(e);
1324        }
1325    }
1326
1327    pub fn hash_name(&mut self, n: Symbol) {
1328        n.hash(&mut self.s);
1329    }
1330
1331    pub fn hash_qpath(&mut self, p: &QPath<'_>) {
1332        match p {
1333            QPath::Resolved(_, path) => {
1334                self.hash_path(path);
1335            },
1336            QPath::TypeRelative(_, path) => {
1337                self.hash_name(path.ident.name);
1338            },
1339        }
1340        // self.maybe_typeck_results.unwrap().qpath_res(p, id).hash(&mut self.s);
1341    }
1342
1343    pub fn hash_pat_expr(&mut self, lit: &PatExpr<'_>) {
1344        std::mem::discriminant(&lit.kind).hash(&mut self.s);
1345        match &lit.kind {
1346            PatExprKind::Lit { lit, negated } => {
1347                lit.node.hash(&mut self.s);
1348                negated.hash(&mut self.s);
1349            },
1350            PatExprKind::Path(qpath) => self.hash_qpath(qpath),
1351        }
1352    }
1353
1354    pub fn hash_ty_pat(&mut self, pat: &TyPat<'_>) {
1355        std::mem::discriminant(&pat.kind).hash(&mut self.s);
1356        match pat.kind {
1357            TyPatKind::Range(s, e) => {
1358                self.hash_const_arg(s);
1359                self.hash_const_arg(e);
1360            },
1361            TyPatKind::Or(variants) => {
1362                for variant in variants {
1363                    self.hash_ty_pat(variant);
1364                }
1365            },
1366            TyPatKind::NotNull | TyPatKind::Err(_) => {},
1367        }
1368    }
1369
1370    pub fn hash_pat(&mut self, pat: &Pat<'_>) {
1371        std::mem::discriminant(&pat.kind).hash(&mut self.s);
1372        match &pat.kind {
1373            PatKind::Missing => unreachable!(),
1374            PatKind::Binding(BindingMode(by_ref, mutability), _, _, pat) => {
1375                std::mem::discriminant(by_ref).hash(&mut self.s);
1376                if let ByRef::Yes(pi, mu) = by_ref {
1377                    std::mem::discriminant(pi).hash(&mut self.s);
1378                    std::mem::discriminant(mu).hash(&mut self.s);
1379                }
1380                std::mem::discriminant(mutability).hash(&mut self.s);
1381                if let Some(pat) = pat {
1382                    self.hash_pat(pat);
1383                }
1384            },
1385            PatKind::Box(pat) | PatKind::Deref(pat) => self.hash_pat(pat),
1386            PatKind::Expr(expr) => self.hash_pat_expr(expr),
1387            PatKind::Or(pats) => {
1388                for pat in *pats {
1389                    self.hash_pat(pat);
1390                }
1391            },
1392            PatKind::Range(s, e, i) => {
1393                if let Some(s) = s {
1394                    self.hash_pat_expr(s);
1395                }
1396                if let Some(e) = e {
1397                    self.hash_pat_expr(e);
1398                }
1399                std::mem::discriminant(i).hash(&mut self.s);
1400            },
1401            PatKind::Ref(pat, pi, mu) => {
1402                self.hash_pat(pat);
1403                std::mem::discriminant(pi).hash(&mut self.s);
1404                std::mem::discriminant(mu).hash(&mut self.s);
1405            },
1406            PatKind::Guard(pat, guard) => {
1407                self.hash_pat(pat);
1408                self.hash_expr(guard);
1409            },
1410            PatKind::Slice(l, m, r) => {
1411                for pat in *l {
1412                    self.hash_pat(pat);
1413                }
1414                if let Some(pat) = m {
1415                    self.hash_pat(pat);
1416                }
1417                for pat in *r {
1418                    self.hash_pat(pat);
1419                }
1420            },
1421            PatKind::Struct(qpath, fields, e) => {
1422                self.hash_qpath(qpath);
1423                for f in *fields {
1424                    self.hash_name(f.ident.name);
1425                    self.hash_pat(f.pat);
1426                }
1427                e.hash(&mut self.s);
1428            },
1429            PatKind::Tuple(pats, e) => {
1430                for pat in *pats {
1431                    self.hash_pat(pat);
1432                }
1433                e.hash(&mut self.s);
1434            },
1435            PatKind::TupleStruct(qpath, pats, e) => {
1436                self.hash_qpath(qpath);
1437                for pat in *pats {
1438                    self.hash_pat(pat);
1439                }
1440                e.hash(&mut self.s);
1441            },
1442            PatKind::Never | PatKind::Wild | PatKind::Err(_) => {},
1443        }
1444    }
1445
1446    pub fn hash_path(&mut self, path: &Path<'_>) {
1447        match path.res {
1448            // constant hash since equality is dependant on inter-expression context
1449            // e.g. The expressions `if let Some(x) = foo() {}` and `if let Some(y) = foo() {}` are considered equal
1450            // even though the binding names are different and they have different `HirId`s.
1451            Res::Local(_) => 1_usize.hash(&mut self.s),
1452            _ => {
1453                if let PathCheck::Resolution = self.path_check
1454                    && let [.., last] = path.segments
1455                    && let Some(segments) = generic_path_segments(path.segments)
1456                {
1457                    for seg in segments {
1458                        self.hash_generic_args(seg.args().args);
1459                    }
1460                    last.res.hash(&mut self.s);
1461                } else {
1462                    for seg in path.segments {
1463                        self.hash_name(seg.ident.name);
1464                        self.hash_generic_args(seg.args().args);
1465                    }
1466                }
1467            },
1468        }
1469    }
1470
1471    pub fn hash_modifiers(&mut self, modifiers: TraitBoundModifiers) {
1472        let TraitBoundModifiers { constness, polarity } = modifiers;
1473        std::mem::discriminant(&polarity).hash(&mut self.s);
1474        std::mem::discriminant(&constness).hash(&mut self.s);
1475    }
1476
1477    pub fn hash_stmt(&mut self, b: &Stmt<'_>) {
1478        std::mem::discriminant(&b.kind).hash(&mut self.s);
1479
1480        match &b.kind {
1481            StmtKind::Let(local) => {
1482                self.hash_pat(local.pat);
1483                if let Some(init) = local.init {
1484                    self.hash_expr(init);
1485                }
1486                if let Some(els) = local.els {
1487                    self.hash_block(els);
1488                }
1489            },
1490            StmtKind::Item(..) => {},
1491            StmtKind::Expr(expr) | StmtKind::Semi(expr) => {
1492                self.hash_expr(expr);
1493            },
1494        }
1495    }
1496
1497    pub fn hash_lifetime(&mut self, lifetime: &Lifetime) {
1498        lifetime.ident.name.hash(&mut self.s);
1499        std::mem::discriminant(&lifetime.kind).hash(&mut self.s);
1500        if let LifetimeKind::Param(param_id) = lifetime.kind {
1501            param_id.hash(&mut self.s);
1502        }
1503    }
1504
1505    pub fn hash_ty(&mut self, ty: &Ty<'_>) {
1506        std::mem::discriminant(&ty.kind).hash(&mut self.s);
1507        self.hash_tykind(&ty.kind);
1508    }
1509
1510    pub fn hash_tykind(&mut self, ty: &TyKind<'_>) {
1511        match ty {
1512            TyKind::Slice(ty) => {
1513                self.hash_ty(ty);
1514            },
1515            TyKind::Array(ty, len) => {
1516                self.hash_ty(ty);
1517                self.hash_const_arg(len);
1518            },
1519            TyKind::Pat(ty, pat) => {
1520                self.hash_ty(ty);
1521                self.hash_ty_pat(pat);
1522            },
1523            TyKind::Ptr(mut_ty) => {
1524                self.hash_ty(mut_ty.ty);
1525                mut_ty.mutbl.hash(&mut self.s);
1526            },
1527            TyKind::Ref(lifetime, mut_ty) => {
1528                self.hash_lifetime(lifetime);
1529                self.hash_ty(mut_ty.ty);
1530                mut_ty.mutbl.hash(&mut self.s);
1531            },
1532            TyKind::FnPtr(fn_ptr) => {
1533                fn_ptr.safety.hash(&mut self.s);
1534                fn_ptr.abi.hash(&mut self.s);
1535                for arg in fn_ptr.decl.inputs {
1536                    self.hash_ty(arg);
1537                }
1538                std::mem::discriminant(&fn_ptr.decl.output).hash(&mut self.s);
1539                match fn_ptr.decl.output {
1540                    FnRetTy::DefaultReturn(_) => {},
1541                    FnRetTy::Return(ty) => {
1542                        self.hash_ty(ty);
1543                    },
1544                }
1545                fn_ptr.decl.c_variadic.hash(&mut self.s);
1546            },
1547            TyKind::Tup(ty_list) => {
1548                for ty in *ty_list {
1549                    self.hash_ty(ty);
1550                }
1551            },
1552            TyKind::Path(qpath) => self.hash_qpath(qpath),
1553            TyKind::TraitObject(_, lifetime) => {
1554                self.hash_lifetime(lifetime);
1555            },
1556            TyKind::UnsafeBinder(binder) => {
1557                self.hash_ty(binder.inner_ty);
1558            },
1559            TyKind::Err(_)
1560            | TyKind::Infer(())
1561            | TyKind::Never
1562            | TyKind::InferDelegation(..)
1563            | TyKind::OpaqueDef(_)
1564            | TyKind::TraitAscription(_) => {},
1565        }
1566    }
1567
1568    pub fn hash_body(&mut self, body_id: BodyId) {
1569        // swap out TypeckResults when hashing a body
1570        let old_maybe_typeck_results = self.maybe_typeck_results.replace(self.cx.tcx.typeck_body(body_id));
1571        self.hash_expr(self.cx.tcx.hir_body(body_id).value);
1572        self.maybe_typeck_results = old_maybe_typeck_results;
1573    }
1574
1575    fn hash_const_arg(&mut self, const_arg: &ConstArg<'_>) {
1576        match &const_arg.kind {
1577            ConstArgKind::Tup(tup) => {
1578                for arg in *tup {
1579                    self.hash_const_arg(arg);
1580                }
1581            },
1582            ConstArgKind::Path(path) => self.hash_qpath(path),
1583            ConstArgKind::Anon(anon) => self.hash_body(anon.body),
1584            ConstArgKind::Struct(path, inits) => {
1585                self.hash_qpath(path);
1586                for init in *inits {
1587                    self.hash_const_arg(init.expr);
1588                }
1589            },
1590            ConstArgKind::TupleCall(path, args) => {
1591                self.hash_qpath(path);
1592                for arg in *args {
1593                    self.hash_const_arg(arg);
1594                }
1595            },
1596            ConstArgKind::Array(array_expr) => {
1597                for elem in array_expr.elems {
1598                    self.hash_const_arg(elem);
1599                }
1600            },
1601            ConstArgKind::Infer(..) | ConstArgKind::Error(..) => {},
1602            ConstArgKind::Literal(lit) => lit.hash(&mut self.s),
1603        }
1604    }
1605
1606    fn hash_generic_args(&mut self, arg_list: &[GenericArg<'_>]) {
1607        for arg in arg_list {
1608            match arg {
1609                GenericArg::Lifetime(l) => self.hash_lifetime(l),
1610                GenericArg::Type(ty) => self.hash_ty(ty.as_unambig_ty()),
1611                GenericArg::Const(ca) => self.hash_const_arg(ca.as_unambig_ct()),
1612                GenericArg::Infer(inf) => self.hash_ty(&inf.to_ty()),
1613            }
1614        }
1615    }
1616}
1617
1618pub fn hash_stmt(cx: &LateContext<'_>, s: &Stmt<'_>) -> u64 {
1619    let mut h = SpanlessHash::new(cx);
1620    h.hash_stmt(s);
1621    h.finish()
1622}
1623
1624pub fn is_bool(ty: &Ty<'_>) -> bool {
1625    if let TyKind::Path(QPath::Resolved(_, path)) = ty.kind {
1626        matches!(path.res, Res::PrimTy(PrimTy::Bool))
1627    } else {
1628        false
1629    }
1630}
1631
1632pub fn hash_expr(cx: &LateContext<'_>, e: &Expr<'_>) -> u64 {
1633    let mut h = SpanlessHash::new(cx);
1634    h.hash_expr(e);
1635    h.finish()
1636}
1637
1638fn eq_span_tokens(
1639    cx: &LateContext<'_>,
1640    left: impl SpanRange,
1641    right: impl SpanRange,
1642    pred: impl Fn(TokenKind) -> bool,
1643) -> bool {
1644    fn f(cx: &LateContext<'_>, left: Range<BytePos>, right: Range<BytePos>, pred: impl Fn(TokenKind) -> bool) -> bool {
1645        if let Some(lsrc) = left.get_source_range(cx)
1646            && let Some(lsrc) = lsrc.as_str()
1647            && let Some(rsrc) = right.get_source_range(cx)
1648            && let Some(rsrc) = rsrc.as_str()
1649        {
1650            let pred = |&(token, ..): &(TokenKind, _, _)| pred(token);
1651            let map = |(_, source, _)| source;
1652
1653            let ltok = tokenize_with_text(lsrc).filter(pred).map(map);
1654            let rtok = tokenize_with_text(rsrc).filter(pred).map(map);
1655            ltok.eq(rtok)
1656        } else {
1657            // Unable to access the source. Conservatively assume the blocks aren't equal.
1658            false
1659        }
1660    }
1661    f(cx, left.into_range(), right.into_range(), pred)
1662}
1663
1664/// Returns true if the expression contains ambiguous literals (unsuffixed float or int literals)
1665/// that could be interpreted as either f32/f64 or i32/i64 depending on context.
1666pub fn has_ambiguous_literal_in_expr(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
1667    match expr.kind {
1668        ExprKind::Path(ref qpath) => {
1669            if let Res::Local(hir_id) = cx.qpath_res(qpath, expr.hir_id)
1670                && let Node::LetStmt(local) = cx.tcx.parent_hir_node(hir_id)
1671                && local.ty.is_none()
1672                && let Some(init) = local.init
1673            {
1674                return has_ambiguous_literal_in_expr(cx, init);
1675            }
1676            false
1677        },
1678        ExprKind::Lit(lit) => matches!(
1679            lit.node,
1680            ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) | ast::LitKind::Int(_, ast::LitIntType::Unsuffixed)
1681        ),
1682
1683        ExprKind::Array(exprs) | ExprKind::Tup(exprs) => exprs.iter().any(|e| has_ambiguous_literal_in_expr(cx, e)),
1684
1685        ExprKind::Assign(lhs, rhs, _) | ExprKind::AssignOp(_, lhs, rhs) | ExprKind::Binary(_, lhs, rhs) => {
1686            has_ambiguous_literal_in_expr(cx, lhs) || has_ambiguous_literal_in_expr(cx, rhs)
1687        },
1688
1689        ExprKind::Unary(_, e)
1690        | ExprKind::Cast(e, _)
1691        | ExprKind::Type(e, _)
1692        | ExprKind::DropTemps(e)
1693        | ExprKind::AddrOf(_, _, e)
1694        | ExprKind::Field(e, _)
1695        | ExprKind::Index(e, _, _)
1696        | ExprKind::Yield(e, _) => has_ambiguous_literal_in_expr(cx, e),
1697
1698        ExprKind::MethodCall(_, receiver, args, _) | ExprKind::Call(receiver, args) => {
1699            has_ambiguous_literal_in_expr(cx, receiver) || args.iter().any(|e| has_ambiguous_literal_in_expr(cx, e))
1700        },
1701
1702        ExprKind::Closure(Closure { body, .. }) => {
1703            let body = cx.tcx.hir_body(*body);
1704            let closure_expr = crate::peel_blocks(body.value);
1705            has_ambiguous_literal_in_expr(cx, closure_expr)
1706        },
1707
1708        ExprKind::Block(blk, _) => blk.expr.as_ref().is_some_and(|e| has_ambiguous_literal_in_expr(cx, e)),
1709
1710        ExprKind::If(cond, then_expr, else_expr) => {
1711            has_ambiguous_literal_in_expr(cx, cond)
1712                || has_ambiguous_literal_in_expr(cx, then_expr)
1713                || else_expr.as_ref().is_some_and(|e| has_ambiguous_literal_in_expr(cx, e))
1714        },
1715
1716        ExprKind::Match(scrutinee, arms, _) => {
1717            has_ambiguous_literal_in_expr(cx, scrutinee)
1718                || arms.iter().any(|arm| has_ambiguous_literal_in_expr(cx, arm.body))
1719        },
1720
1721        ExprKind::Loop(body, ..) => body.expr.is_some_and(|e| has_ambiguous_literal_in_expr(cx, e)),
1722
1723        ExprKind::Ret(opt_expr) | ExprKind::Break(_, opt_expr) => {
1724            opt_expr.as_ref().is_some_and(|e| has_ambiguous_literal_in_expr(cx, e))
1725        },
1726
1727        _ => false,
1728    }
1729}