rustc_hir_analysis/check/
intrinsicck.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
use std::assert_matches::debug_assert_matches;

use rustc_abi::FieldIdx;
use rustc_ast::InlineAsmTemplatePiece;
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir::def_id::DefId;
use rustc_hir::{self as hir, LangItem};
use rustc_middle::bug;
use rustc_middle::ty::{self, FloatTy, IntTy, Ty, TyCtxt, TypeVisitableExt, UintTy};
use rustc_session::lint;
use rustc_span::def_id::LocalDefId;
use rustc_span::{Symbol, sym};
use rustc_target::asm::{
    InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType, ModifierInfo,
};

use crate::errors::RegisterTypeUnstable;

pub struct InlineAsmCtxt<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    typing_env: ty::TypingEnv<'tcx>,
    get_operand_ty: Box<dyn Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a>,
}

enum NonAsmTypeReason<'tcx> {
    UnevaluatedSIMDArrayLength(DefId, ty::Const<'tcx>),
    Invalid(Ty<'tcx>),
    InvalidElement(DefId, Ty<'tcx>),
}

impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> {
    pub fn new_global_asm(tcx: TyCtxt<'tcx>) -> Self {
        InlineAsmCtxt {
            tcx,
            typing_env: ty::TypingEnv {
                typing_mode: ty::TypingMode::non_body_analysis(),
                param_env: ty::ParamEnv::empty(),
            },
            get_operand_ty: Box::new(|e| bug!("asm operand in global asm: {e:?}")),
        }
    }

    // FIXME(#132279): This likely causes us to incorrectly handle opaque types in their
    // defining scope.
    pub fn new_in_fn(
        tcx: TyCtxt<'tcx>,
        typing_env: ty::TypingEnv<'tcx>,
        get_operand_ty: impl Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a,
    ) -> Self {
        InlineAsmCtxt { tcx, typing_env, get_operand_ty: Box::new(get_operand_ty) }
    }

    // FIXME(compiler-errors): This could use `<$ty as Pointee>::Metadata == ()`
    fn is_thin_ptr_ty(&self, ty: Ty<'tcx>) -> bool {
        // Type still may have region variables, but `Sized` does not depend
        // on those, so just erase them before querying.
        if ty.is_sized(self.tcx, self.typing_env) {
            return true;
        }
        if let ty::Foreign(..) = ty.kind() {
            return true;
        }
        false
    }

    fn get_asm_ty(&self, ty: Ty<'tcx>) -> Result<InlineAsmType, NonAsmTypeReason<'tcx>> {
        let asm_ty_isize = match self.tcx.sess.target.pointer_width {
            16 => InlineAsmType::I16,
            32 => InlineAsmType::I32,
            64 => InlineAsmType::I64,
            width => bug!("unsupported pointer width: {width}"),
        };

        match *ty.kind() {
            ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::I8),
            ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::I16),
            ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::I32),
            ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::I64),
            ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Ok(InlineAsmType::I128),
            ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Ok(asm_ty_isize),
            ty::Float(FloatTy::F16) => Ok(InlineAsmType::F16),
            ty::Float(FloatTy::F32) => Ok(InlineAsmType::F32),
            ty::Float(FloatTy::F64) => Ok(InlineAsmType::F64),
            ty::Float(FloatTy::F128) => Ok(InlineAsmType::F128),
            ty::FnPtr(..) => Ok(asm_ty_isize),
            ty::RawPtr(ty, _) if self.is_thin_ptr_ty(ty) => Ok(asm_ty_isize),
            ty::Adt(adt, args) if adt.repr().simd() => {
                let fields = &adt.non_enum_variant().fields;
                let field = &fields[FieldIdx::ZERO];
                let elem_ty = field.ty(self.tcx, args);

                let (size, ty) = match elem_ty.kind() {
                    ty::Array(ty, len) => {
                        let len = self.tcx.normalize_erasing_regions(self.typing_env, *len);
                        if let Some(len) = len.try_to_target_usize(self.tcx) {
                            (len, *ty)
                        } else {
                            return Err(NonAsmTypeReason::UnevaluatedSIMDArrayLength(
                                field.did, len,
                            ));
                        }
                    }
                    _ => (fields.len() as u64, elem_ty),
                };

                match ty.kind() {
                    ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::VecI8(size)),
                    ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::VecI16(size)),
                    ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::VecI32(size)),
                    ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::VecI64(size)),
                    ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
                        Ok(InlineAsmType::VecI128(size))
                    }
                    ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
                        Ok(match self.tcx.sess.target.pointer_width {
                            16 => InlineAsmType::VecI16(size),
                            32 => InlineAsmType::VecI32(size),
                            64 => InlineAsmType::VecI64(size),
                            width => bug!("unsupported pointer width: {width}"),
                        })
                    }
                    ty::Float(FloatTy::F16) => Ok(InlineAsmType::VecF16(size)),
                    ty::Float(FloatTy::F32) => Ok(InlineAsmType::VecF32(size)),
                    ty::Float(FloatTy::F64) => Ok(InlineAsmType::VecF64(size)),
                    ty::Float(FloatTy::F128) => Ok(InlineAsmType::VecF128(size)),
                    _ => Err(NonAsmTypeReason::InvalidElement(field.did, ty)),
                }
            }
            ty::Infer(_) => bug!("unexpected infer ty in asm operand"),
            _ => Err(NonAsmTypeReason::Invalid(ty)),
        }
    }

    fn check_asm_operand_type(
        &self,
        idx: usize,
        reg: InlineAsmRegOrRegClass,
        expr: &'tcx hir::Expr<'tcx>,
        template: &[InlineAsmTemplatePiece],
        is_input: bool,
        tied_input: Option<(&'tcx hir::Expr<'tcx>, Option<InlineAsmType>)>,
        target_features: &FxIndexSet<Symbol>,
    ) -> Option<InlineAsmType> {
        let ty = (self.get_operand_ty)(expr);
        if ty.has_non_region_infer() {
            bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty);
        }

        let asm_ty = match *ty.kind() {
            // `!` is allowed for input but not for output (issue #87802)
            ty::Never if is_input => return None,
            _ if ty.references_error() => return None,
            ty::Adt(adt, args) if self.tcx.is_lang_item(adt.did(), LangItem::MaybeUninit) => {
                let fields = &adt.non_enum_variant().fields;
                let ty = fields[FieldIdx::from_u32(1)].ty(self.tcx, args);
                // FIXME: Are we just trying to map to the `T` in `MaybeUninit<T>`?
                // If so, just get it from the args.
                let ty::Adt(ty, args) = ty.kind() else {
                    unreachable!("expected first field of `MaybeUninit` to be an ADT")
                };
                assert!(
                    ty.is_manually_drop(),
                    "expected first field of `MaybeUninit` to be `ManuallyDrop`"
                );
                let fields = &ty.non_enum_variant().fields;
                let ty = fields[FieldIdx::ZERO].ty(self.tcx, args);
                self.get_asm_ty(ty)
            }
            _ => self.get_asm_ty(ty),
        };
        let asm_ty = match asm_ty {
            Ok(asm_ty) => asm_ty,
            Err(reason) => {
                match reason {
                    NonAsmTypeReason::UnevaluatedSIMDArrayLength(did, len) => {
                        let msg = format!("cannot evaluate SIMD vector length `{len}`");
                        self.tcx
                            .dcx()
                            .struct_span_err(self.tcx.def_span(did), msg)
                            .with_span_note(
                                expr.span,
                                "SIMD vector length needs to be known statically for use in `asm!`",
                            )
                            .emit();
                    }
                    NonAsmTypeReason::Invalid(ty) => {
                        let msg = format!("cannot use value of type `{ty}` for inline assembly");
                        self.tcx.dcx().struct_span_err(expr.span, msg).with_note(
                            "only integers, floats, SIMD vectors, pointers and function pointers \
                            can be used as arguments for inline assembly",
                        ).emit();
                    }
                    NonAsmTypeReason::InvalidElement(did, ty) => {
                        let msg = format!(
                            "cannot use SIMD vector with element type `{ty}` for inline assembly"
                        );
                        self.tcx.dcx()
                        .struct_span_err(self.tcx.def_span(did), msg).with_span_note(
                            expr.span,
                            "only integers, floats, SIMD vectors, pointers and function pointers \
                            can be used as arguments for inline assembly",
                        ).emit();
                    }
                }
                return None;
            }
        };

        // Check that the type implements Copy. The only case where this can
        // possibly fail is for SIMD types which don't #[derive(Copy)].
        if !self.tcx.type_is_copy_modulo_regions(self.typing_env, ty) {
            let msg = "arguments for inline assembly must be copyable";
            self.tcx
                .dcx()
                .struct_span_err(expr.span, msg)
                .with_note(format!("`{ty}` does not implement the Copy trait"))
                .emit();
        }

        // Ideally we wouldn't need to do this, but LLVM's register allocator
        // really doesn't like it when tied operands have different types.
        //
        // This is purely an LLVM limitation, but we have to live with it since
        // there is no way to hide this with implicit conversions.
        //
        // For the purposes of this check we only look at the `InlineAsmType`,
        // which means that pointers and integers are treated as identical (modulo
        // size).
        if let Some((in_expr, Some(in_asm_ty))) = tied_input {
            if in_asm_ty != asm_ty {
                let msg = "incompatible types for asm inout argument";
                let in_expr_ty = (self.get_operand_ty)(in_expr);
                self.tcx
                    .dcx()
                    .struct_span_err(vec![in_expr.span, expr.span], msg)
                    .with_span_label(in_expr.span, format!("type `{in_expr_ty}`"))
                    .with_span_label(expr.span, format!("type `{ty}`"))
                    .with_note(
                        "asm inout arguments must have the same type, \
                        unless they are both pointers or integers of the same size",
                    )
                    .emit();
            }

            // All of the later checks have already been done on the input, so
            // let's not emit errors and warnings twice.
            return Some(asm_ty);
        }

        // Check the type against the list of types supported by the selected
        // register class.
        let asm_arch = self.tcx.sess.asm_arch.unwrap();
        let allow_experimental_reg = self.tcx.features().asm_experimental_reg();
        let reg_class = reg.reg_class();
        let supported_tys = reg_class.supported_types(asm_arch, allow_experimental_reg);
        let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
            let mut err = if !allow_experimental_reg
                && reg_class.supported_types(asm_arch, true).iter().any(|&(t, _)| t == asm_ty)
            {
                self.tcx.sess.create_feature_err(
                    RegisterTypeUnstable { span: expr.span, ty },
                    sym::asm_experimental_reg,
                )
            } else {
                let msg = format!("type `{ty}` cannot be used with this register class");
                let mut err = self.tcx.dcx().struct_span_err(expr.span, msg);
                let supported_tys: Vec<_> =
                    supported_tys.iter().map(|(t, _)| t.to_string()).collect();
                err.note(format!(
                    "register class `{}` supports these types: {}",
                    reg_class.name(),
                    supported_tys.join(", "),
                ));
                err
            };
            if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
                err.help(format!("consider using the `{}` register class instead", suggest.name()));
            }
            err.emit();
            return Some(asm_ty);
        };

        // Check whether the selected type requires a target feature. Note that
        // this is different from the feature check we did earlier. While the
        // previous check checked that this register class is usable at all
        // with the currently enabled features, some types may only be usable
        // with a register class when a certain feature is enabled. We check
        // this here since it depends on the results of typeck.
        //
        // Also note that this check isn't run when the operand type is never
        // (!). In that case we still need the earlier check to verify that the
        // register class is usable at all.
        if let Some(feature) = feature {
            if !target_features.contains(feature) {
                let msg = format!("`{feature}` target feature is not enabled");
                self.tcx
                    .dcx()
                    .struct_span_err(expr.span, msg)
                    .with_note(format!(
                        "this is required to use type `{}` with register class `{}`",
                        ty,
                        reg_class.name(),
                    ))
                    .emit();
                return Some(asm_ty);
            }
        }

        // Check whether a modifier is suggested for using this type.
        if let Some(ModifierInfo {
            modifier: suggested_modifier,
            result: suggested_result,
            size: suggested_size,
        }) = reg_class.suggest_modifier(asm_arch, asm_ty)
        {
            // Search for any use of this operand without a modifier and emit
            // the suggestion for them.
            let mut spans = vec![];
            for piece in template {
                if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
                {
                    if operand_idx == idx && modifier.is_none() {
                        spans.push(span);
                    }
                }
            }
            if !spans.is_empty() {
                let ModifierInfo {
                    modifier: default_modifier,
                    result: default_result,
                    size: default_size,
                } = reg_class.default_modifier(asm_arch).unwrap();
                self.tcx.node_span_lint(
                    lint::builtin::ASM_SUB_REGISTER,
                    expr.hir_id,
                    spans,
                    |lint| {
                        lint.primary_message("formatting may not be suitable for sub-register argument");
                        lint.span_label(expr.span, "for this argument");
                        lint.help(format!(
                            "use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}` (for {suggested_size}-bit values)",
                        ));
                        lint.help(format!(
                            "or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}` (for {default_size}-bit values)",
                        ));
                    },
                );
            }
        }

        Some(asm_ty)
    }

    pub fn check_asm(&self, asm: &hir::InlineAsm<'tcx>, enclosing_id: LocalDefId) {
        let target_features = self.tcx.asm_target_features(enclosing_id.to_def_id());
        let Some(asm_arch) = self.tcx.sess.asm_arch else {
            self.tcx.dcx().delayed_bug("target architecture does not support asm");
            return;
        };
        let allow_experimental_reg = self.tcx.features().asm_experimental_reg();
        for (idx, (op, op_sp)) in asm.operands.iter().enumerate() {
            // Validate register classes against currently enabled target
            // features. We check that at least one type is available for
            // the enabled features.
            //
            // We ignore target feature requirements for clobbers: if the
            // feature is disabled then the compiler doesn't care what we
            // do with the registers.
            //
            // Note that this is only possible for explicit register
            // operands, which cannot be used in the asm string.
            if let Some(reg) = op.reg() {
                // Some explicit registers cannot be used depending on the
                // target. Reject those here.
                if let InlineAsmRegOrRegClass::Reg(reg) = reg {
                    if let InlineAsmReg::Err = reg {
                        // `validate` will panic on `Err`, as an error must
                        // already have been reported.
                        continue;
                    }
                    if let Err(msg) = reg.validate(
                        asm_arch,
                        self.tcx.sess.relocation_model(),
                        target_features,
                        &self.tcx.sess.target,
                        op.is_clobber(),
                    ) {
                        let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
                        self.tcx.dcx().span_err(*op_sp, msg);
                        continue;
                    }
                }

                if !op.is_clobber() {
                    let mut missing_required_features = vec![];
                    let reg_class = reg.reg_class();
                    if let InlineAsmRegClass::Err = reg_class {
                        continue;
                    }
                    for &(_, feature) in reg_class.supported_types(asm_arch, allow_experimental_reg)
                    {
                        match feature {
                            Some(feature) => {
                                if target_features.contains(&feature) {
                                    missing_required_features.clear();
                                    break;
                                } else {
                                    missing_required_features.push(feature);
                                }
                            }
                            None => {
                                missing_required_features.clear();
                                break;
                            }
                        }
                    }

                    // We are sorting primitive strs here and can use unstable sort here
                    missing_required_features.sort_unstable();
                    missing_required_features.dedup();
                    match &missing_required_features[..] {
                        [] => {}
                        [feature] => {
                            let msg = format!(
                                "register class `{}` requires the `{}` target feature",
                                reg_class.name(),
                                feature
                            );
                            self.tcx.dcx().span_err(*op_sp, msg);
                            // register isn't enabled, don't do more checks
                            continue;
                        }
                        features => {
                            let msg = format!(
                                "register class `{}` requires at least one of the following target features: {}",
                                reg_class.name(),
                                features
                                    .iter()
                                    .map(|f| f.as_str())
                                    .intersperse(", ")
                                    .collect::<String>(),
                            );
                            self.tcx.dcx().span_err(*op_sp, msg);
                            // register isn't enabled, don't do more checks
                            continue;
                        }
                    }
                }
            }

            match *op {
                hir::InlineAsmOperand::In { reg, expr } => {
                    self.check_asm_operand_type(
                        idx,
                        reg,
                        expr,
                        asm.template,
                        true,
                        None,
                        target_features,
                    );
                }
                hir::InlineAsmOperand::Out { reg, late: _, expr } => {
                    if let Some(expr) = expr {
                        self.check_asm_operand_type(
                            idx,
                            reg,
                            expr,
                            asm.template,
                            false,
                            None,
                            target_features,
                        );
                    }
                }
                hir::InlineAsmOperand::InOut { reg, late: _, expr } => {
                    self.check_asm_operand_type(
                        idx,
                        reg,
                        expr,
                        asm.template,
                        false,
                        None,
                        target_features,
                    );
                }
                hir::InlineAsmOperand::SplitInOut { reg, late: _, in_expr, out_expr } => {
                    let in_ty = self.check_asm_operand_type(
                        idx,
                        reg,
                        in_expr,
                        asm.template,
                        true,
                        None,
                        target_features,
                    );
                    if let Some(out_expr) = out_expr {
                        self.check_asm_operand_type(
                            idx,
                            reg,
                            out_expr,
                            asm.template,
                            false,
                            Some((in_expr, in_ty)),
                            target_features,
                        );
                    }
                }
                // Typeck has checked that Const operands are integers.
                hir::InlineAsmOperand::Const { anon_const } => {
                    debug_assert_matches!(
                        self.tcx.type_of(anon_const.def_id).instantiate_identity().kind(),
                        ty::Error(_) | ty::Int(_) | ty::Uint(_)
                    );
                }
                // Typeck has checked that SymFn refers to a function.
                hir::InlineAsmOperand::SymFn { anon_const } => {
                    debug_assert_matches!(
                        self.tcx.type_of(anon_const.def_id).instantiate_identity().kind(),
                        ty::Error(_) | ty::FnDef(..)
                    );
                }
                // AST lowering guarantees that SymStatic points to a static.
                hir::InlineAsmOperand::SymStatic { .. } => {}
                // No special checking is needed for labels.
                hir::InlineAsmOperand::Label { .. } => {}
            }
        }
    }
}