rustc_hir_analysis/check/intrinsicck.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
use std::assert_matches::debug_assert_matches;
use rustc_abi::FieldIdx;
use rustc_ast::InlineAsmTemplatePiece;
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir::def_id::DefId;
use rustc_hir::{self as hir, LangItem};
use rustc_middle::bug;
use rustc_middle::ty::{self, FloatTy, IntTy, Ty, TyCtxt, TypeVisitableExt, UintTy};
use rustc_session::lint;
use rustc_span::def_id::LocalDefId;
use rustc_span::{Symbol, sym};
use rustc_target::asm::{
InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType, ModifierInfo,
};
use crate::errors::RegisterTypeUnstable;
pub struct InlineAsmCtxt<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
get_operand_ty: Box<dyn Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a>,
}
enum NonAsmTypeReason<'tcx> {
UnevaluatedSIMDArrayLength(DefId, ty::Const<'tcx>),
Invalid(Ty<'tcx>),
InvalidElement(DefId, Ty<'tcx>),
}
impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> {
pub fn new_global_asm(tcx: TyCtxt<'tcx>) -> Self {
InlineAsmCtxt {
tcx,
typing_env: ty::TypingEnv {
typing_mode: ty::TypingMode::non_body_analysis(),
param_env: ty::ParamEnv::empty(),
},
get_operand_ty: Box::new(|e| bug!("asm operand in global asm: {e:?}")),
}
}
// FIXME(#132279): This likely causes us to incorrectly handle opaque types in their
// defining scope.
pub fn new_in_fn(
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
get_operand_ty: impl Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a,
) -> Self {
InlineAsmCtxt { tcx, typing_env, get_operand_ty: Box::new(get_operand_ty) }
}
// FIXME(compiler-errors): This could use `<$ty as Pointee>::Metadata == ()`
fn is_thin_ptr_ty(&self, ty: Ty<'tcx>) -> bool {
// Type still may have region variables, but `Sized` does not depend
// on those, so just erase them before querying.
if ty.is_sized(self.tcx, self.typing_env) {
return true;
}
if let ty::Foreign(..) = ty.kind() {
return true;
}
false
}
fn get_asm_ty(&self, ty: Ty<'tcx>) -> Result<InlineAsmType, NonAsmTypeReason<'tcx>> {
let asm_ty_isize = match self.tcx.sess.target.pointer_width {
16 => InlineAsmType::I16,
32 => InlineAsmType::I32,
64 => InlineAsmType::I64,
width => bug!("unsupported pointer width: {width}"),
};
match *ty.kind() {
ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::I8),
ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::I16),
ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::I32),
ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::I64),
ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Ok(InlineAsmType::I128),
ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Ok(asm_ty_isize),
ty::Float(FloatTy::F16) => Ok(InlineAsmType::F16),
ty::Float(FloatTy::F32) => Ok(InlineAsmType::F32),
ty::Float(FloatTy::F64) => Ok(InlineAsmType::F64),
ty::Float(FloatTy::F128) => Ok(InlineAsmType::F128),
ty::FnPtr(..) => Ok(asm_ty_isize),
ty::RawPtr(ty, _) if self.is_thin_ptr_ty(ty) => Ok(asm_ty_isize),
ty::Adt(adt, args) if adt.repr().simd() => {
let fields = &adt.non_enum_variant().fields;
let field = &fields[FieldIdx::ZERO];
let elem_ty = field.ty(self.tcx, args);
let (size, ty) = match elem_ty.kind() {
ty::Array(ty, len) => {
let len = self.tcx.normalize_erasing_regions(self.typing_env, *len);
if let Some(len) = len.try_to_target_usize(self.tcx) {
(len, *ty)
} else {
return Err(NonAsmTypeReason::UnevaluatedSIMDArrayLength(
field.did, len,
));
}
}
_ => (fields.len() as u64, elem_ty),
};
match ty.kind() {
ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::VecI8(size)),
ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::VecI16(size)),
ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::VecI32(size)),
ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::VecI64(size)),
ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
Ok(InlineAsmType::VecI128(size))
}
ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
Ok(match self.tcx.sess.target.pointer_width {
16 => InlineAsmType::VecI16(size),
32 => InlineAsmType::VecI32(size),
64 => InlineAsmType::VecI64(size),
width => bug!("unsupported pointer width: {width}"),
})
}
ty::Float(FloatTy::F16) => Ok(InlineAsmType::VecF16(size)),
ty::Float(FloatTy::F32) => Ok(InlineAsmType::VecF32(size)),
ty::Float(FloatTy::F64) => Ok(InlineAsmType::VecF64(size)),
ty::Float(FloatTy::F128) => Ok(InlineAsmType::VecF128(size)),
_ => Err(NonAsmTypeReason::InvalidElement(field.did, ty)),
}
}
ty::Infer(_) => bug!("unexpected infer ty in asm operand"),
_ => Err(NonAsmTypeReason::Invalid(ty)),
}
}
fn check_asm_operand_type(
&self,
idx: usize,
reg: InlineAsmRegOrRegClass,
expr: &'tcx hir::Expr<'tcx>,
template: &[InlineAsmTemplatePiece],
is_input: bool,
tied_input: Option<(&'tcx hir::Expr<'tcx>, Option<InlineAsmType>)>,
target_features: &FxIndexSet<Symbol>,
) -> Option<InlineAsmType> {
let ty = (self.get_operand_ty)(expr);
if ty.has_non_region_infer() {
bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty);
}
let asm_ty = match *ty.kind() {
// `!` is allowed for input but not for output (issue #87802)
ty::Never if is_input => return None,
_ if ty.references_error() => return None,
ty::Adt(adt, args) if self.tcx.is_lang_item(adt.did(), LangItem::MaybeUninit) => {
let fields = &adt.non_enum_variant().fields;
let ty = fields[FieldIdx::from_u32(1)].ty(self.tcx, args);
// FIXME: Are we just trying to map to the `T` in `MaybeUninit<T>`?
// If so, just get it from the args.
let ty::Adt(ty, args) = ty.kind() else {
unreachable!("expected first field of `MaybeUninit` to be an ADT")
};
assert!(
ty.is_manually_drop(),
"expected first field of `MaybeUninit` to be `ManuallyDrop`"
);
let fields = &ty.non_enum_variant().fields;
let ty = fields[FieldIdx::ZERO].ty(self.tcx, args);
self.get_asm_ty(ty)
}
_ => self.get_asm_ty(ty),
};
let asm_ty = match asm_ty {
Ok(asm_ty) => asm_ty,
Err(reason) => {
match reason {
NonAsmTypeReason::UnevaluatedSIMDArrayLength(did, len) => {
let msg = format!("cannot evaluate SIMD vector length `{len}`");
self.tcx
.dcx()
.struct_span_err(self.tcx.def_span(did), msg)
.with_span_note(
expr.span,
"SIMD vector length needs to be known statically for use in `asm!`",
)
.emit();
}
NonAsmTypeReason::Invalid(ty) => {
let msg = format!("cannot use value of type `{ty}` for inline assembly");
self.tcx.dcx().struct_span_err(expr.span, msg).with_note(
"only integers, floats, SIMD vectors, pointers and function pointers \
can be used as arguments for inline assembly",
).emit();
}
NonAsmTypeReason::InvalidElement(did, ty) => {
let msg = format!(
"cannot use SIMD vector with element type `{ty}` for inline assembly"
);
self.tcx.dcx()
.struct_span_err(self.tcx.def_span(did), msg).with_span_note(
expr.span,
"only integers, floats, SIMD vectors, pointers and function pointers \
can be used as arguments for inline assembly",
).emit();
}
}
return None;
}
};
// Check that the type implements Copy. The only case where this can
// possibly fail is for SIMD types which don't #[derive(Copy)].
if !self.tcx.type_is_copy_modulo_regions(self.typing_env, ty) {
let msg = "arguments for inline assembly must be copyable";
self.tcx
.dcx()
.struct_span_err(expr.span, msg)
.with_note(format!("`{ty}` does not implement the Copy trait"))
.emit();
}
// Ideally we wouldn't need to do this, but LLVM's register allocator
// really doesn't like it when tied operands have different types.
//
// This is purely an LLVM limitation, but we have to live with it since
// there is no way to hide this with implicit conversions.
//
// For the purposes of this check we only look at the `InlineAsmType`,
// which means that pointers and integers are treated as identical (modulo
// size).
if let Some((in_expr, Some(in_asm_ty))) = tied_input {
if in_asm_ty != asm_ty {
let msg = "incompatible types for asm inout argument";
let in_expr_ty = (self.get_operand_ty)(in_expr);
self.tcx
.dcx()
.struct_span_err(vec![in_expr.span, expr.span], msg)
.with_span_label(in_expr.span, format!("type `{in_expr_ty}`"))
.with_span_label(expr.span, format!("type `{ty}`"))
.with_note(
"asm inout arguments must have the same type, \
unless they are both pointers or integers of the same size",
)
.emit();
}
// All of the later checks have already been done on the input, so
// let's not emit errors and warnings twice.
return Some(asm_ty);
}
// Check the type against the list of types supported by the selected
// register class.
let asm_arch = self.tcx.sess.asm_arch.unwrap();
let allow_experimental_reg = self.tcx.features().asm_experimental_reg();
let reg_class = reg.reg_class();
let supported_tys = reg_class.supported_types(asm_arch, allow_experimental_reg);
let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
let mut err = if !allow_experimental_reg
&& reg_class.supported_types(asm_arch, true).iter().any(|&(t, _)| t == asm_ty)
{
self.tcx.sess.create_feature_err(
RegisterTypeUnstable { span: expr.span, ty },
sym::asm_experimental_reg,
)
} else {
let msg = format!("type `{ty}` cannot be used with this register class");
let mut err = self.tcx.dcx().struct_span_err(expr.span, msg);
let supported_tys: Vec<_> =
supported_tys.iter().map(|(t, _)| t.to_string()).collect();
err.note(format!(
"register class `{}` supports these types: {}",
reg_class.name(),
supported_tys.join(", "),
));
err
};
if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
err.help(format!("consider using the `{}` register class instead", suggest.name()));
}
err.emit();
return Some(asm_ty);
};
// Check whether the selected type requires a target feature. Note that
// this is different from the feature check we did earlier. While the
// previous check checked that this register class is usable at all
// with the currently enabled features, some types may only be usable
// with a register class when a certain feature is enabled. We check
// this here since it depends on the results of typeck.
//
// Also note that this check isn't run when the operand type is never
// (!). In that case we still need the earlier check to verify that the
// register class is usable at all.
if let Some(feature) = feature {
if !target_features.contains(feature) {
let msg = format!("`{feature}` target feature is not enabled");
self.tcx
.dcx()
.struct_span_err(expr.span, msg)
.with_note(format!(
"this is required to use type `{}` with register class `{}`",
ty,
reg_class.name(),
))
.emit();
return Some(asm_ty);
}
}
// Check whether a modifier is suggested for using this type.
if let Some(ModifierInfo {
modifier: suggested_modifier,
result: suggested_result,
size: suggested_size,
}) = reg_class.suggest_modifier(asm_arch, asm_ty)
{
// Search for any use of this operand without a modifier and emit
// the suggestion for them.
let mut spans = vec![];
for piece in template {
if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
{
if operand_idx == idx && modifier.is_none() {
spans.push(span);
}
}
}
if !spans.is_empty() {
let ModifierInfo {
modifier: default_modifier,
result: default_result,
size: default_size,
} = reg_class.default_modifier(asm_arch).unwrap();
self.tcx.node_span_lint(
lint::builtin::ASM_SUB_REGISTER,
expr.hir_id,
spans,
|lint| {
lint.primary_message("formatting may not be suitable for sub-register argument");
lint.span_label(expr.span, "for this argument");
lint.help(format!(
"use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}` (for {suggested_size}-bit values)",
));
lint.help(format!(
"or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}` (for {default_size}-bit values)",
));
},
);
}
}
Some(asm_ty)
}
pub fn check_asm(&self, asm: &hir::InlineAsm<'tcx>, enclosing_id: LocalDefId) {
let target_features = self.tcx.asm_target_features(enclosing_id.to_def_id());
let Some(asm_arch) = self.tcx.sess.asm_arch else {
self.tcx.dcx().delayed_bug("target architecture does not support asm");
return;
};
let allow_experimental_reg = self.tcx.features().asm_experimental_reg();
for (idx, (op, op_sp)) in asm.operands.iter().enumerate() {
// Validate register classes against currently enabled target
// features. We check that at least one type is available for
// the enabled features.
//
// We ignore target feature requirements for clobbers: if the
// feature is disabled then the compiler doesn't care what we
// do with the registers.
//
// Note that this is only possible for explicit register
// operands, which cannot be used in the asm string.
if let Some(reg) = op.reg() {
// Some explicit registers cannot be used depending on the
// target. Reject those here.
if let InlineAsmRegOrRegClass::Reg(reg) = reg {
if let InlineAsmReg::Err = reg {
// `validate` will panic on `Err`, as an error must
// already have been reported.
continue;
}
if let Err(msg) = reg.validate(
asm_arch,
self.tcx.sess.relocation_model(),
target_features,
&self.tcx.sess.target,
op.is_clobber(),
) {
let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
self.tcx.dcx().span_err(*op_sp, msg);
continue;
}
}
if !op.is_clobber() {
let mut missing_required_features = vec![];
let reg_class = reg.reg_class();
if let InlineAsmRegClass::Err = reg_class {
continue;
}
for &(_, feature) in reg_class.supported_types(asm_arch, allow_experimental_reg)
{
match feature {
Some(feature) => {
if target_features.contains(&feature) {
missing_required_features.clear();
break;
} else {
missing_required_features.push(feature);
}
}
None => {
missing_required_features.clear();
break;
}
}
}
// We are sorting primitive strs here and can use unstable sort here
missing_required_features.sort_unstable();
missing_required_features.dedup();
match &missing_required_features[..] {
[] => {}
[feature] => {
let msg = format!(
"register class `{}` requires the `{}` target feature",
reg_class.name(),
feature
);
self.tcx.dcx().span_err(*op_sp, msg);
// register isn't enabled, don't do more checks
continue;
}
features => {
let msg = format!(
"register class `{}` requires at least one of the following target features: {}",
reg_class.name(),
features
.iter()
.map(|f| f.as_str())
.intersperse(", ")
.collect::<String>(),
);
self.tcx.dcx().span_err(*op_sp, msg);
// register isn't enabled, don't do more checks
continue;
}
}
}
}
match *op {
hir::InlineAsmOperand::In { reg, expr } => {
self.check_asm_operand_type(
idx,
reg,
expr,
asm.template,
true,
None,
target_features,
);
}
hir::InlineAsmOperand::Out { reg, late: _, expr } => {
if let Some(expr) = expr {
self.check_asm_operand_type(
idx,
reg,
expr,
asm.template,
false,
None,
target_features,
);
}
}
hir::InlineAsmOperand::InOut { reg, late: _, expr } => {
self.check_asm_operand_type(
idx,
reg,
expr,
asm.template,
false,
None,
target_features,
);
}
hir::InlineAsmOperand::SplitInOut { reg, late: _, in_expr, out_expr } => {
let in_ty = self.check_asm_operand_type(
idx,
reg,
in_expr,
asm.template,
true,
None,
target_features,
);
if let Some(out_expr) = out_expr {
self.check_asm_operand_type(
idx,
reg,
out_expr,
asm.template,
false,
Some((in_expr, in_ty)),
target_features,
);
}
}
// Typeck has checked that Const operands are integers.
hir::InlineAsmOperand::Const { anon_const } => {
debug_assert_matches!(
self.tcx.type_of(anon_const.def_id).instantiate_identity().kind(),
ty::Error(_) | ty::Int(_) | ty::Uint(_)
);
}
// Typeck has checked that SymFn refers to a function.
hir::InlineAsmOperand::SymFn { anon_const } => {
debug_assert_matches!(
self.tcx.type_of(anon_const.def_id).instantiate_identity().kind(),
ty::Error(_) | ty::FnDef(..)
);
}
// AST lowering guarantees that SymStatic points to a static.
hir::InlineAsmOperand::SymStatic { .. } => {}
// No special checking is needed for labels.
hir::InlineAsmOperand::Label { .. } => {}
}
}
}
}