1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
use crate::compiler_interface::with;
use crate::mir::pretty::function_body;
use crate::ty::{
    AdtDef, ClosureDef, Const, CoroutineDef, GenericArgs, Movability, Region, RigidTy, Ty, TyKind,
    VariantIdx,
};
use crate::{Error, Opaque, Span, Symbol};
use std::io;

/// The SMIR representation of a single function.
#[derive(Clone, Debug)]
pub struct Body {
    pub blocks: Vec<BasicBlock>,

    /// Declarations of locals within the function.
    ///
    /// The first local is the return value pointer, followed by `arg_count`
    /// locals for the function arguments, followed by any user-declared
    /// variables and temporaries.
    pub(super) locals: LocalDecls,

    /// The number of arguments this function takes.
    pub(super) arg_count: usize,

    /// Debug information pertaining to user variables, including captures.
    pub var_debug_info: Vec<VarDebugInfo>,

    /// Mark an argument (which must be a tuple) as getting passed as its individual components.
    ///
    /// This is used for the "rust-call" ABI such as closures.
    pub(super) spread_arg: Option<Local>,

    /// The span that covers the entire function body.
    pub span: Span,
}

pub type BasicBlockIdx = usize;

impl Body {
    /// Constructs a `Body`.
    ///
    /// A constructor is required to build a `Body` from outside the crate
    /// because the `arg_count` and `locals` fields are private.
    pub fn new(
        blocks: Vec<BasicBlock>,
        locals: LocalDecls,
        arg_count: usize,
        var_debug_info: Vec<VarDebugInfo>,
        spread_arg: Option<Local>,
        span: Span,
    ) -> Self {
        // If locals doesn't contain enough entries, it can lead to panics in
        // `ret_local`, `arg_locals`, and `inner_locals`.
        assert!(
            locals.len() > arg_count,
            "A Body must contain at least a local for the return value and each of the function's arguments"
        );
        Self { blocks, locals, arg_count, var_debug_info, spread_arg, span }
    }

    /// Return local that holds this function's return value.
    pub fn ret_local(&self) -> &LocalDecl {
        &self.locals[RETURN_LOCAL]
    }

    /// Locals in `self` that correspond to this function's arguments.
    pub fn arg_locals(&self) -> &[LocalDecl] {
        &self.locals[1..][..self.arg_count]
    }

    /// Inner locals for this function. These are the locals that are
    /// neither the return local nor the argument locals.
    pub fn inner_locals(&self) -> &[LocalDecl] {
        &self.locals[self.arg_count + 1..]
    }

    /// Convenience function to get all the locals in this function.
    ///
    /// Locals are typically accessed via the more specific methods `ret_local`,
    /// `arg_locals`, and `inner_locals`.
    pub fn locals(&self) -> &[LocalDecl] {
        &self.locals
    }

    /// Get the local declaration for this local.
    pub fn local_decl(&self, local: Local) -> Option<&LocalDecl> {
        self.locals.get(local)
    }

    /// Get an iterator for all local declarations.
    pub fn local_decls(&self) -> impl Iterator<Item = (Local, &LocalDecl)> {
        self.locals.iter().enumerate()
    }

    /// Emit the body using the provided name for the signature.
    pub fn dump<W: io::Write>(&self, w: &mut W, fn_name: &str) -> io::Result<()> {
        function_body(w, self, fn_name)
    }

    pub fn spread_arg(&self) -> Option<Local> {
        self.spread_arg
    }
}

type LocalDecls = Vec<LocalDecl>;

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct LocalDecl {
    pub ty: Ty,
    pub span: Span,
    pub mutability: Mutability,
}

#[derive(Clone, PartialEq, Eq, Debug)]
pub struct BasicBlock {
    pub statements: Vec<Statement>,
    pub terminator: Terminator,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Terminator {
    pub kind: TerminatorKind,
    pub span: Span,
}

impl Terminator {
    pub fn successors(&self) -> Successors {
        self.kind.successors()
    }
}

pub type Successors = Vec<BasicBlockIdx>;

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum TerminatorKind {
    Goto {
        target: BasicBlockIdx,
    },
    SwitchInt {
        discr: Operand,
        targets: SwitchTargets,
    },
    Resume,
    Abort,
    Return,
    Unreachable,
    Drop {
        place: Place,
        target: BasicBlockIdx,
        unwind: UnwindAction,
    },
    Call {
        func: Operand,
        args: Vec<Operand>,
        destination: Place,
        target: Option<BasicBlockIdx>,
        unwind: UnwindAction,
    },
    Assert {
        cond: Operand,
        expected: bool,
        msg: AssertMessage,
        target: BasicBlockIdx,
        unwind: UnwindAction,
    },
    InlineAsm {
        template: String,
        operands: Vec<InlineAsmOperand>,
        options: String,
        line_spans: String,
        destination: Option<BasicBlockIdx>,
        unwind: UnwindAction,
    },
}

impl TerminatorKind {
    pub fn successors(&self) -> Successors {
        use self::TerminatorKind::*;
        match *self {
            Call { target: Some(t), unwind: UnwindAction::Cleanup(u), .. }
            | Drop { target: t, unwind: UnwindAction::Cleanup(u), .. }
            | Assert { target: t, unwind: UnwindAction::Cleanup(u), .. }
            | InlineAsm { destination: Some(t), unwind: UnwindAction::Cleanup(u), .. } => {
                vec![t, u]
            }
            Goto { target: t }
            | Call { target: None, unwind: UnwindAction::Cleanup(t), .. }
            | Call { target: Some(t), unwind: _, .. }
            | Drop { target: t, unwind: _, .. }
            | Assert { target: t, unwind: _, .. }
            | InlineAsm { destination: None, unwind: UnwindAction::Cleanup(t), .. }
            | InlineAsm { destination: Some(t), unwind: _, .. } => {
                vec![t]
            }

            Return
            | Resume
            | Abort
            | Unreachable
            | Call { target: None, unwind: _, .. }
            | InlineAsm { destination: None, unwind: _, .. } => {
                vec![]
            }
            SwitchInt { ref targets, .. } => targets.all_targets(),
        }
    }

    pub fn unwind(&self) -> Option<&UnwindAction> {
        match *self {
            TerminatorKind::Goto { .. }
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Resume
            | TerminatorKind::Abort
            | TerminatorKind::SwitchInt { .. } => None,
            TerminatorKind::Call { ref unwind, .. }
            | TerminatorKind::Assert { ref unwind, .. }
            | TerminatorKind::Drop { ref unwind, .. }
            | TerminatorKind::InlineAsm { ref unwind, .. } => Some(unwind),
        }
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct InlineAsmOperand {
    pub in_value: Option<Operand>,
    pub out_place: Option<Place>,
    // This field has a raw debug representation of MIR's InlineAsmOperand.
    // For now we care about place/operand + the rest in a debug format.
    pub raw_rpr: String,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum UnwindAction {
    Continue,
    Unreachable,
    Terminate,
    Cleanup(BasicBlockIdx),
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum AssertMessage {
    BoundsCheck { len: Operand, index: Operand },
    Overflow(BinOp, Operand, Operand),
    OverflowNeg(Operand),
    DivisionByZero(Operand),
    RemainderByZero(Operand),
    ResumedAfterReturn(CoroutineKind),
    ResumedAfterPanic(CoroutineKind),
    MisalignedPointerDereference { required: Operand, found: Operand },
}

impl AssertMessage {
    pub fn description(&self) -> Result<&'static str, Error> {
        match self {
            AssertMessage::Overflow(BinOp::Add, _, _) => Ok("attempt to add with overflow"),
            AssertMessage::Overflow(BinOp::Sub, _, _) => Ok("attempt to subtract with overflow"),
            AssertMessage::Overflow(BinOp::Mul, _, _) => Ok("attempt to multiply with overflow"),
            AssertMessage::Overflow(BinOp::Div, _, _) => Ok("attempt to divide with overflow"),
            AssertMessage::Overflow(BinOp::Rem, _, _) => {
                Ok("attempt to calculate the remainder with overflow")
            }
            AssertMessage::OverflowNeg(_) => Ok("attempt to negate with overflow"),
            AssertMessage::Overflow(BinOp::Shr, _, _) => Ok("attempt to shift right with overflow"),
            AssertMessage::Overflow(BinOp::Shl, _, _) => Ok("attempt to shift left with overflow"),
            AssertMessage::Overflow(op, _, _) => Err(error!("`{:?}` cannot overflow", op)),
            AssertMessage::DivisionByZero(_) => Ok("attempt to divide by zero"),
            AssertMessage::RemainderByZero(_) => {
                Ok("attempt to calculate the remainder with a divisor of zero")
            }
            AssertMessage::ResumedAfterReturn(CoroutineKind::Coroutine(_)) => {
                Ok("coroutine resumed after completion")
            }
            AssertMessage::ResumedAfterReturn(CoroutineKind::Desugared(
                CoroutineDesugaring::Async,
                _,
            )) => Ok("`async fn` resumed after completion"),
            AssertMessage::ResumedAfterReturn(CoroutineKind::Desugared(
                CoroutineDesugaring::Gen,
                _,
            )) => Ok("`async gen fn` resumed after completion"),
            AssertMessage::ResumedAfterReturn(CoroutineKind::Desugared(
                CoroutineDesugaring::AsyncGen,
                _,
            )) => Ok("`gen fn` should just keep returning `AssertMessage::None` after completion"),
            AssertMessage::ResumedAfterPanic(CoroutineKind::Coroutine(_)) => {
                Ok("coroutine resumed after panicking")
            }
            AssertMessage::ResumedAfterPanic(CoroutineKind::Desugared(
                CoroutineDesugaring::Async,
                _,
            )) => Ok("`async fn` resumed after panicking"),
            AssertMessage::ResumedAfterPanic(CoroutineKind::Desugared(
                CoroutineDesugaring::Gen,
                _,
            )) => Ok("`async gen fn` resumed after panicking"),
            AssertMessage::ResumedAfterPanic(CoroutineKind::Desugared(
                CoroutineDesugaring::AsyncGen,
                _,
            )) => Ok("`gen fn` should just keep returning `AssertMessage::None` after panicking"),

            AssertMessage::BoundsCheck { .. } => Ok("index out of bounds"),
            AssertMessage::MisalignedPointerDereference { .. } => {
                Ok("misaligned pointer dereference")
            }
        }
    }
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum BinOp {
    Add,
    AddUnchecked,
    Sub,
    SubUnchecked,
    Mul,
    MulUnchecked,
    Div,
    Rem,
    BitXor,
    BitAnd,
    BitOr,
    Shl,
    ShlUnchecked,
    Shr,
    ShrUnchecked,
    Eq,
    Lt,
    Le,
    Ne,
    Ge,
    Gt,
    Cmp,
    Offset,
}

impl BinOp {
    /// Return the type of this operation for the given input Ty.
    /// This function does not perform type checking, and it currently doesn't handle SIMD.
    pub fn ty(&self, lhs_ty: Ty, rhs_ty: Ty) -> Ty {
        with(|ctx| ctx.binop_ty(*self, lhs_ty, rhs_ty))
    }
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum UnOp {
    Not,
    Neg,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum CoroutineKind {
    Desugared(CoroutineDesugaring, CoroutineSource),
    Coroutine(Movability),
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum CoroutineSource {
    Block,
    Closure,
    Fn,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum CoroutineDesugaring {
    Async,

    Gen,

    AsyncGen,
}

pub(crate) type LocalDefId = Opaque;
/// The rustc coverage data structures are heavily tied to internal details of the
/// coverage implementation that are likely to change, and are unlikely to be
/// useful to third-party tools for the foreseeable future.
pub(crate) type Coverage = Opaque;

/// The FakeReadCause describes the type of pattern why a FakeRead statement exists.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum FakeReadCause {
    ForMatchGuard,
    ForMatchedPlace(LocalDefId),
    ForGuardBinding,
    ForLet(LocalDefId),
    ForIndex,
}

/// Describes what kind of retag is to be performed
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum RetagKind {
    FnEntry,
    TwoPhase,
    Raw,
    Default,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum Variance {
    Covariant,
    Invariant,
    Contravariant,
    Bivariant,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CopyNonOverlapping {
    pub src: Operand,
    pub dst: Operand,
    pub count: Operand,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum NonDivergingIntrinsic {
    Assume(Operand),
    CopyNonOverlapping(CopyNonOverlapping),
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Statement {
    pub kind: StatementKind,
    pub span: Span,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum StatementKind {
    Assign(Place, Rvalue),
    FakeRead(FakeReadCause, Place),
    SetDiscriminant { place: Place, variant_index: VariantIdx },
    Deinit(Place),
    StorageLive(Local),
    StorageDead(Local),
    Retag(RetagKind, Place),
    PlaceMention(Place),
    AscribeUserType { place: Place, projections: UserTypeProjection, variance: Variance },
    Coverage(Coverage),
    Intrinsic(NonDivergingIntrinsic),
    ConstEvalCounter,
    Nop,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Rvalue {
    /// Creates a pointer with the indicated mutability to the place.
    ///
    /// This is generated by pointer casts like `&v as *const _` or raw address of expressions like
    /// `&raw v` or `addr_of!(v)`.
    AddressOf(Mutability, Place),

    /// Creates an aggregate value, like a tuple or struct.
    ///
    /// This is needed because dataflow analysis needs to distinguish
    /// `dest = Foo { x: ..., y: ... }` from `dest.x = ...; dest.y = ...;` in the case that `Foo`
    /// has a destructor.
    ///
    /// Disallowed after deaggregation for all aggregate kinds except `Array` and `Coroutine`. After
    /// coroutine lowering, `Coroutine` aggregate kinds are disallowed too.
    Aggregate(AggregateKind, Vec<Operand>),

    /// * `Offset` has the same semantics as `<*const T>::offset`, except that the second
    ///   parameter may be a `usize` as well.
    /// * The comparison operations accept `bool`s, `char`s, signed or unsigned integers, floats,
    ///   raw pointers, or function pointers and return a `bool`. The types of the operands must be
    ///   matching, up to the usual caveat of the lifetimes in function pointers.
    /// * Left and right shift operations accept signed or unsigned integers not necessarily of the
    ///   same type and return a value of the same type as their LHS. Like in Rust, the RHS is
    ///   truncated as needed.
    /// * The `Bit*` operations accept signed integers, unsigned integers, or bools with matching
    ///   types and return a value of that type.
    /// * The remaining operations accept signed integers, unsigned integers, or floats with
    ///   matching types and return a value of that type.
    BinaryOp(BinOp, Operand, Operand),

    /// Performs essentially all of the casts that can be performed via `as`.
    ///
    /// This allows for casts from/to a variety of types.
    Cast(CastKind, Operand, Ty),

    /// Same as `BinaryOp`, but yields `(T, bool)` with a `bool` indicating an error condition.
    ///
    /// For addition, subtraction, and multiplication on integers the error condition is set when
    /// the infinite precision result would not be equal to the actual result.
    CheckedBinaryOp(BinOp, Operand, Operand),

    /// A CopyForDeref is equivalent to a read from a place.
    /// When such a read happens, it is guaranteed that the only use of the returned value is a
    /// deref operation, immediately followed by one or more projections.
    CopyForDeref(Place),

    /// Computes the discriminant of the place, returning it as an integer.
    /// Returns zero for types without discriminant.
    ///
    /// The validity requirements for the underlying value are undecided for this rvalue, see
    /// [#91095]. Note too that the value of the discriminant is not the same thing as the
    /// variant index;
    ///
    /// [#91095]: https://github.com/rust-lang/rust/issues/91095
    Discriminant(Place),

    /// Yields the length of the place, as a `usize`.
    ///
    /// If the type of the place is an array, this is the array length. For slices (`[T]`, not
    /// `&[T]`) this accesses the place's metadata to determine the length. This rvalue is
    /// ill-formed for places of other types.
    Len(Place),

    /// Creates a reference to the place.
    Ref(Region, BorrowKind, Place),

    /// Creates an array where each element is the value of the operand.
    ///
    /// This is the cause of a bug in the case where the repetition count is zero because the value
    /// is not dropped, see [#74836].
    ///
    /// Corresponds to source code like `[x; 32]`.
    ///
    /// [#74836]: https://github.com/rust-lang/rust/issues/74836
    Repeat(Operand, Const),

    /// Transmutes a `*mut u8` into shallow-initialized `Box<T>`.
    ///
    /// This is different from a normal transmute because dataflow analysis will treat the box as
    /// initialized but its content as uninitialized. Like other pointer casts, this in general
    /// affects alias analysis.
    ShallowInitBox(Operand, Ty),

    /// Creates a pointer/reference to the given thread local.
    ///
    /// The yielded type is a `*mut T` if the static is mutable, otherwise if the static is extern a
    /// `*const T`, and if neither of those apply a `&T`.
    ///
    /// **Note:** This is a runtime operation that actually executes code and is in this sense more
    /// like a function call. Also, eliminating dead stores of this rvalue causes `fn main() {}` to
    /// SIGILL for some reason that I (JakobDegen) never got a chance to look into.
    ///
    /// **Needs clarification**: Are there weird additional semantics here related to the runtime
    /// nature of this operation?
    ThreadLocalRef(crate::CrateItem),

    /// Computes a value as described by the operation.
    NullaryOp(NullOp, Ty),

    /// Exactly like `BinaryOp`, but less operands.
    ///
    /// Also does two's-complement arithmetic. Negation requires a signed integer or a float;
    /// bitwise not requires a signed integer, unsigned integer, or bool. Both operation kinds
    /// return a value with the same type as their operand.
    UnaryOp(UnOp, Operand),

    /// Yields the operand unchanged
    Use(Operand),
}

impl Rvalue {
    pub fn ty(&self, locals: &[LocalDecl]) -> Result<Ty, Error> {
        match self {
            Rvalue::Use(operand) => operand.ty(locals),
            Rvalue::Repeat(operand, count) => {
                Ok(Ty::new_array_with_const_len(operand.ty(locals)?, count.clone()))
            }
            Rvalue::ThreadLocalRef(did) => Ok(did.ty()),
            Rvalue::Ref(reg, bk, place) => {
                let place_ty = place.ty(locals)?;
                Ok(Ty::new_ref(reg.clone(), place_ty, bk.to_mutable_lossy()))
            }
            Rvalue::AddressOf(mutability, place) => {
                let place_ty = place.ty(locals)?;
                Ok(Ty::new_ptr(place_ty, *mutability))
            }
            Rvalue::Len(..) => Ok(Ty::usize_ty()),
            Rvalue::Cast(.., ty) => Ok(*ty),
            Rvalue::BinaryOp(op, lhs, rhs) => {
                let lhs_ty = lhs.ty(locals)?;
                let rhs_ty = rhs.ty(locals)?;
                Ok(op.ty(lhs_ty, rhs_ty))
            }
            Rvalue::CheckedBinaryOp(op, lhs, rhs) => {
                let lhs_ty = lhs.ty(locals)?;
                let rhs_ty = rhs.ty(locals)?;
                let ty = op.ty(lhs_ty, rhs_ty);
                Ok(Ty::new_tuple(&[ty, Ty::bool_ty()]))
            }
            Rvalue::UnaryOp(UnOp::Not | UnOp::Neg, operand) => operand.ty(locals),
            Rvalue::Discriminant(place) => {
                let place_ty = place.ty(locals)?;
                place_ty
                    .kind()
                    .discriminant_ty()
                    .ok_or_else(|| error!("Expected a `RigidTy` but found: {place_ty:?}"))
            }
            Rvalue::NullaryOp(NullOp::SizeOf | NullOp::AlignOf | NullOp::OffsetOf(..), _) => {
                Ok(Ty::usize_ty())
            }
            Rvalue::NullaryOp(NullOp::UbChecks, _) => Ok(Ty::bool_ty()),
            Rvalue::Aggregate(ak, ops) => match *ak {
                AggregateKind::Array(ty) => Ty::try_new_array(ty, ops.len() as u64),
                AggregateKind::Tuple => Ok(Ty::new_tuple(
                    &ops.iter().map(|op| op.ty(locals)).collect::<Result<Vec<_>, _>>()?,
                )),
                AggregateKind::Adt(def, _, ref args, _, _) => Ok(def.ty_with_args(args)),
                AggregateKind::Closure(def, ref args) => Ok(Ty::new_closure(def, args.clone())),
                AggregateKind::Coroutine(def, ref args, mov) => {
                    Ok(Ty::new_coroutine(def, args.clone(), mov))
                }
                AggregateKind::RawPtr(ty, mutability) => Ok(Ty::new_ptr(ty, mutability)),
            },
            Rvalue::ShallowInitBox(_, ty) => Ok(Ty::new_box(*ty)),
            Rvalue::CopyForDeref(place) => place.ty(locals),
        }
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum AggregateKind {
    Array(Ty),
    Tuple,
    Adt(AdtDef, VariantIdx, GenericArgs, Option<UserTypeAnnotationIndex>, Option<FieldIdx>),
    Closure(ClosureDef, GenericArgs),
    // FIXME(stable_mir): Movability here is redundant
    Coroutine(CoroutineDef, GenericArgs, Movability),
    RawPtr(Ty, Mutability),
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Operand {
    Copy(Place),
    Move(Place),
    Constant(Constant),
}

#[derive(Clone, Eq, PartialEq)]
pub struct Place {
    pub local: Local,
    /// projection out of a place (access a field, deref a pointer, etc)
    pub projection: Vec<ProjectionElem>,
}

impl From<Local> for Place {
    fn from(local: Local) -> Self {
        Place { local, projection: vec![] }
    }
}

/// Debug information pertaining to a user variable.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct VarDebugInfo {
    /// The variable name.
    pub name: Symbol,

    /// Source info of the user variable, including the scope
    /// within which the variable is visible (to debuginfo).
    pub source_info: SourceInfo,

    /// The user variable's data is split across several fragments,
    /// each described by a `VarDebugInfoFragment`.
    pub composite: Option<VarDebugInfoFragment>,

    /// Where the data for this user variable is to be found.
    pub value: VarDebugInfoContents,

    /// When present, indicates what argument number this variable is in the function that it
    /// originated from (starting from 1). Note, if MIR inlining is enabled, then this is the
    /// argument number in the original function before it was inlined.
    pub argument_index: Option<u16>,
}

impl VarDebugInfo {
    /// Return a local variable if this info is related to one.
    pub fn local(&self) -> Option<Local> {
        match &self.value {
            VarDebugInfoContents::Place(place) if place.projection.is_empty() => Some(place.local),
            VarDebugInfoContents::Place(_) | VarDebugInfoContents::Const(_) => None,
        }
    }

    /// Return a constant if this info is related to one.
    pub fn constant(&self) -> Option<&ConstOperand> {
        match &self.value {
            VarDebugInfoContents::Place(_) => None,
            VarDebugInfoContents::Const(const_op) => Some(const_op),
        }
    }
}

pub type SourceScope = u32;

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SourceInfo {
    pub span: Span,
    pub scope: SourceScope,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct VarDebugInfoFragment {
    pub ty: Ty,
    pub projection: Vec<ProjectionElem>,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum VarDebugInfoContents {
    Place(Place),
    Const(ConstOperand),
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ConstOperand {
    pub span: Span,
    pub user_ty: Option<UserTypeAnnotationIndex>,
    pub const_: Const,
}

// In MIR ProjectionElem is parameterized on the second Field argument and the Index argument. This
// is so it can be used for both Places (for which the projection elements are of type
// ProjectionElem<Local, Ty>) and user-provided type annotations (for which the projection elements
// are of type ProjectionElem<(), ()>). In SMIR we don't need this generality, so we just use
// ProjectionElem for Places.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ProjectionElem {
    /// Dereference projections (e.g. `*_1`) project to the address referenced by the base place.
    Deref,

    /// A field projection (e.g., `f` in `_1.f`) project to a field in the base place. The field is
    /// referenced by source-order index rather than the name of the field. The fields type is also
    /// given.
    Field(FieldIdx, Ty),

    /// Index into a slice/array. The value of the index is computed at runtime using the `V`
    /// argument.
    ///
    /// Note that this does not also dereference, and so it does not exactly correspond to slice
    /// indexing in Rust. In other words, in the below Rust code:
    ///
    /// ```rust
    /// let x = &[1, 2, 3, 4];
    /// let i = 2;
    /// x[i];
    /// ```
    ///
    /// The `x[i]` is turned into a `Deref` followed by an `Index`, not just an `Index`. The same
    /// thing is true of the `ConstantIndex` and `Subslice` projections below.
    Index(Local),

    /// Index into a slice/array given by offsets.
    ///
    /// These indices are generated by slice patterns. Easiest to explain by example:
    ///
    /// ```ignore (illustrative)
    /// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false },
    /// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false },
    /// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true },
    /// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true },
    /// ```
    ConstantIndex {
        /// index or -index (in Python terms), depending on from_end
        offset: u64,
        /// The thing being indexed must be at least this long. For arrays this
        /// is always the exact length.
        min_length: u64,
        /// Counting backwards from end? This is always false when indexing an
        /// array.
        from_end: bool,
    },

    /// Projects a slice from the base place.
    ///
    /// These indices are generated by slice patterns. If `from_end` is true, this represents
    /// `slice[from..slice.len() - to]`. Otherwise it represents `array[from..to]`.
    Subslice {
        from: u64,
        to: u64,
        /// Whether `to` counts from the start or end of the array/slice.
        from_end: bool,
    },

    /// "Downcast" to a variant of an enum or a coroutine.
    Downcast(VariantIdx),

    /// Like an explicit cast from an opaque type to a concrete type, but without
    /// requiring an intermediate variable.
    OpaqueCast(Ty),

    /// A `Subtype(T)` projection is applied to any `StatementKind::Assign` where
    /// type of lvalue doesn't match the type of rvalue, the primary goal is making subtyping
    /// explicit during optimizations and codegen.
    ///
    /// This projection doesn't impact the runtime behavior of the program except for potentially changing
    /// some type metadata of the interpreter or codegen backend.
    Subtype(Ty),
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct UserTypeProjection {
    pub base: UserTypeAnnotationIndex,

    pub projection: Opaque,
}

pub type Local = usize;

pub const RETURN_LOCAL: Local = 0;

/// The source-order index of a field in a variant.
///
/// For example, in the following types,
/// ```ignore(illustrative)
/// enum Demo1 {
///    Variant0 { a: bool, b: i32 },
///    Variant1 { c: u8, d: u64 },
/// }
/// struct Demo2 { e: u8, f: u16, g: u8 }
/// ```
/// `a`'s `FieldIdx` is `0`,
/// `b`'s `FieldIdx` is `1`,
/// `c`'s `FieldIdx` is `0`, and
/// `g`'s `FieldIdx` is `2`.
pub type FieldIdx = usize;

type UserTypeAnnotationIndex = usize;

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Constant {
    pub span: Span,
    pub user_ty: Option<UserTypeAnnotationIndex>,
    pub literal: Const,
}

/// The possible branch sites of a [TerminatorKind::SwitchInt].
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SwitchTargets {
    /// The conditional branches where the first element represents the value that guards this
    /// branch, and the second element is the branch target.
    branches: Vec<(u128, BasicBlockIdx)>,
    /// The `otherwise` branch which will be taken in case none of the conditional branches are
    /// satisfied.
    otherwise: BasicBlockIdx,
}

impl SwitchTargets {
    /// All possible targets including the `otherwise` target.
    pub fn all_targets(&self) -> Successors {
        self.branches.iter().map(|(_, target)| *target).chain(Some(self.otherwise)).collect()
    }

    /// The `otherwise` branch target.
    pub fn otherwise(&self) -> BasicBlockIdx {
        self.otherwise
    }

    /// The conditional targets which are only taken if the pattern matches the given value.
    pub fn branches(&self) -> impl Iterator<Item = (u128, BasicBlockIdx)> + '_ {
        self.branches.iter().copied()
    }

    /// The number of targets including `otherwise`.
    pub fn len(&self) -> usize {
        self.branches.len() + 1
    }

    /// Create a new SwitchTargets from the given branches and `otherwise` target.
    pub fn new(branches: Vec<(u128, BasicBlockIdx)>, otherwise: BasicBlockIdx) -> SwitchTargets {
        SwitchTargets { branches, otherwise }
    }
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    Shared,

    /// An immutable, aliasable borrow that is discarded after borrow-checking. Can behave either
    /// like a normal shared borrow or like a special shallow borrow (see [`FakeBorrowKind`]).
    Fake(FakeBorrowKind),

    /// Data is mutable and not aliasable.
    Mut {
        /// `true` if this borrow arose from method-call auto-ref
        kind: MutBorrowKind,
    },
}

impl BorrowKind {
    pub fn to_mutable_lossy(self) -> Mutability {
        match self {
            BorrowKind::Mut { .. } => Mutability::Mut,
            BorrowKind::Shared => Mutability::Not,
            // FIXME: There's no type corresponding to a shallow borrow, so use `&` as an approximation.
            BorrowKind::Fake(_) => Mutability::Not,
        }
    }
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum MutBorrowKind {
    Default,
    TwoPhaseBorrow,
    ClosureCapture,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum FakeBorrowKind {
    /// A shared (deep) borrow. Data must be immutable and is aliasable.
    Deep,
    /// The immediately borrowed place must be immutable, but projections from
    /// it don't need to be. This is used to prevent match guards from replacing
    /// the scrutinee. For example, a fake borrow of `a.b` doesn't
    /// conflict with a mutable borrow of `a.b.c`.
    Shallow,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum Mutability {
    Not,
    Mut,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Safety {
    Unsafe,
    Normal,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum PointerCoercion {
    /// Go from a fn-item type to a fn-pointer type.
    ReifyFnPointer,

    /// Go from a safe fn pointer to an unsafe fn pointer.
    UnsafeFnPointer,

    /// Go from a non-capturing closure to a fn pointer or an unsafe fn pointer.
    /// It cannot convert a closure that requires unsafe.
    ClosureFnPointer(Safety),

    /// Go from a mut raw pointer to a const raw pointer.
    MutToConstPointer,

    /// Go from `*const [T; N]` to `*const T`
    ArrayToPointer,

    /// Unsize a pointer/reference value, e.g., `&[T; n]` to
    /// `&[T]`. Note that the source could be a thin or fat pointer.
    /// This will do things like convert thin pointers to fat
    /// pointers, or convert structs containing thin pointers to
    /// structs containing fat pointers, or convert between fat
    /// pointers.
    Unsize,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum CastKind {
    // FIXME(smir-rename): rename this to PointerExposeProvenance
    PointerExposeAddress,
    PointerWithExposedProvenance,
    PointerCoercion(PointerCoercion),
    DynStar,
    IntToInt,
    FloatToInt,
    FloatToFloat,
    IntToFloat,
    PtrToPtr,
    FnPtrToPtr,
    Transmute,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum NullOp {
    /// Returns the size of a value of that type.
    SizeOf,
    /// Returns the minimum alignment of a type.
    AlignOf,
    /// Returns the offset of a field.
    OffsetOf(Vec<(VariantIdx, FieldIdx)>),
    /// cfg!(ub_checks), but at codegen time
    UbChecks,
}

impl Operand {
    /// Get the type of an operand relative to the local declaration.
    ///
    /// In order to retrieve the correct type, the `locals` argument must match the list of all
    /// locals from the function body where this operand originates from.
    ///
    /// Errors indicate a malformed operand or incompatible locals list.
    pub fn ty(&self, locals: &[LocalDecl]) -> Result<Ty, Error> {
        match self {
            Operand::Copy(place) | Operand::Move(place) => place.ty(locals),
            Operand::Constant(c) => Ok(c.ty()),
        }
    }
}

impl Constant {
    pub fn ty(&self) -> Ty {
        self.literal.ty()
    }
}

impl Place {
    /// Resolve down the chain of projections to get the type referenced at the end of it.
    /// E.g.:
    /// Calling `ty()` on `var.field` should return the type of `field`.
    ///
    /// In order to retrieve the correct type, the `locals` argument must match the list of all
    /// locals from the function body where this place originates from.
    pub fn ty(&self, locals: &[LocalDecl]) -> Result<Ty, Error> {
        let start_ty = locals[self.local].ty;
        self.projection.iter().fold(Ok(start_ty), |place_ty, elem| elem.ty(place_ty?))
    }
}

impl ProjectionElem {
    /// Get the expected type after applying this projection to a given place type.
    pub fn ty(&self, place_ty: Ty) -> Result<Ty, Error> {
        let ty = place_ty;
        match &self {
            ProjectionElem::Deref => Self::deref_ty(ty),
            ProjectionElem::Field(_idx, fty) => Ok(*fty),
            ProjectionElem::Index(_) | ProjectionElem::ConstantIndex { .. } => Self::index_ty(ty),
            ProjectionElem::Subslice { from, to, from_end } => {
                Self::subslice_ty(ty, from, to, from_end)
            }
            ProjectionElem::Downcast(_) => Ok(ty),
            ProjectionElem::OpaqueCast(ty) | ProjectionElem::Subtype(ty) => Ok(*ty),
        }
    }

    fn index_ty(ty: Ty) -> Result<Ty, Error> {
        ty.kind().builtin_index().ok_or_else(|| error!("Cannot index non-array type: {ty:?}"))
    }

    fn subslice_ty(ty: Ty, from: &u64, to: &u64, from_end: &bool) -> Result<Ty, Error> {
        let ty_kind = ty.kind();
        match ty_kind {
            TyKind::RigidTy(RigidTy::Slice(..)) => Ok(ty),
            TyKind::RigidTy(RigidTy::Array(inner, _)) if !from_end => Ty::try_new_array(
                inner,
                to.checked_sub(*from).ok_or_else(|| error!("Subslice overflow: {from}..{to}"))?,
            ),
            TyKind::RigidTy(RigidTy::Array(inner, size)) => {
                let size = size.eval_target_usize()?;
                let len = size - from - to;
                Ty::try_new_array(inner, len)
            }
            _ => Err(Error(format!("Cannot subslice non-array type: `{ty_kind:?}`"))),
        }
    }

    fn deref_ty(ty: Ty) -> Result<Ty, Error> {
        let deref_ty = ty
            .kind()
            .builtin_deref(true)
            .ok_or_else(|| error!("Cannot dereference type: {ty:?}"))?;
        Ok(deref_ty.ty)
    }
}