1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
//! This is the implementation of the pass which transforms coroutines into state machines.
//!
//! MIR generation for coroutines creates a function which has a self argument which
//! passes by value. This argument is effectively a coroutine type which only contains upvars and
//! is only used for this argument inside the MIR for the coroutine.
//! It is passed by value to enable upvars to be moved out of it. Drop elaboration runs on that
//! MIR before this pass and creates drop flags for MIR locals.
//! It will also drop the coroutine argument (which only consists of upvars) if any of the upvars
//! are moved out of. This pass elaborates the drops of upvars / coroutine argument in the case
//! that none of the upvars were moved out of. This is because we cannot have any drops of this
//! coroutine in the MIR, since it is used to create the drop glue for the coroutine. We'd get
//! infinite recursion otherwise.
//!
//! This pass creates the implementation for either the `Coroutine::resume` or `Future::poll`
//! function and the drop shim for the coroutine based on the MIR input.
//! It converts the coroutine argument from Self to &mut Self adding derefs in the MIR as needed.
//! It computes the final layout of the coroutine struct which looks like this:
//!     First upvars are stored
//!     It is followed by the coroutine state field.
//!     Then finally the MIR locals which are live across a suspension point are stored.
//!     ```ignore (illustrative)
//!     struct Coroutine {
//!         upvars...,
//!         state: u32,
//!         mir_locals...,
//!     }
//!     ```
//! This pass computes the meaning of the state field and the MIR locals which are live
//! across a suspension point. There are however three hardcoded coroutine states:
//!     0 - Coroutine have not been resumed yet
//!     1 - Coroutine has returned / is completed
//!     2 - Coroutine has been poisoned
//!
//! It also rewrites `return x` and `yield y` as setting a new coroutine state and returning
//! `CoroutineState::Complete(x)` and `CoroutineState::Yielded(y)`,
//! or `Poll::Ready(x)` and `Poll::Pending` respectively.
//! MIR locals which are live across a suspension point are moved to the coroutine struct
//! with references to them being updated with references to the coroutine struct.
//!
//! The pass creates two functions which have a switch on the coroutine state giving
//! the action to take.
//!
//! One of them is the implementation of `Coroutine::resume` / `Future::poll`.
//! For coroutines with state 0 (unresumed) it starts the execution of the coroutine.
//! For coroutines with state 1 (returned) and state 2 (poisoned) it panics.
//! Otherwise it continues the execution from the last suspension point.
//!
//! The other function is the drop glue for the coroutine.
//! For coroutines with state 0 (unresumed) it drops the upvars of the coroutine.
//! For coroutines with state 1 (returned) and state 2 (poisoned) it does nothing.
//! Otherwise it drops all the values in scope at the last suspension point.

mod by_move_body;
pub use by_move_body::ByMoveBody;

use crate::abort_unwinding_calls;
use crate::deref_separator::deref_finder;
use crate::errors;
use crate::pass_manager as pm;
use crate::simplify;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::pluralize;
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{CoroutineDesugaring, CoroutineKind};
use rustc_index::bit_set::{BitMatrix, BitSet, GrowableBitSet};
use rustc_index::{Idx, IndexVec};
use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::CoroutineArgs;
use rustc_middle::ty::InstanceDef;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::{bug, span_bug};
use rustc_mir_dataflow::impls::{
    MaybeBorrowedLocals, MaybeLiveLocals, MaybeRequiresStorage, MaybeStorageLive,
};
use rustc_mir_dataflow::storage::always_storage_live_locals;
use rustc_mir_dataflow::Analysis;
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_span::symbol::sym;
use rustc_span::Span;
use rustc_target::abi::{FieldIdx, VariantIdx};
use rustc_target::spec::PanicStrategy;
use rustc_trait_selection::infer::TyCtxtInferExt as _;
use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::ObligationCtxt;
use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode};
use std::{iter, ops};

pub struct StateTransform;

struct RenameLocalVisitor<'tcx> {
    from: Local,
    to: Local,
    tcx: TyCtxt<'tcx>,
}

impl<'tcx> MutVisitor<'tcx> for RenameLocalVisitor<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
        if *local == self.from {
            *local = self.to;
        }
    }

    fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
        match terminator.kind {
            TerminatorKind::Return => {
                // Do not replace the implicit `_0` access here, as that's not possible. The
                // transform already handles `return` correctly.
            }
            _ => self.super_terminator(terminator, location),
        }
    }
}

struct DerefArgVisitor<'tcx> {
    tcx: TyCtxt<'tcx>,
}

impl<'tcx> MutVisitor<'tcx> for DerefArgVisitor<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
        assert_ne!(*local, SELF_ARG);
    }

    fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
        if place.local == SELF_ARG {
            replace_base(
                place,
                Place {
                    local: SELF_ARG,
                    projection: self.tcx().mk_place_elems(&[ProjectionElem::Deref]),
                },
                self.tcx,
            );
        } else {
            self.visit_local(&mut place.local, context, location);

            for elem in place.projection.iter() {
                if let PlaceElem::Index(local) = elem {
                    assert_ne!(local, SELF_ARG);
                }
            }
        }
    }
}

struct PinArgVisitor<'tcx> {
    ref_coroutine_ty: Ty<'tcx>,
    tcx: TyCtxt<'tcx>,
}

impl<'tcx> MutVisitor<'tcx> for PinArgVisitor<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
        assert_ne!(*local, SELF_ARG);
    }

    fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
        if place.local == SELF_ARG {
            replace_base(
                place,
                Place {
                    local: SELF_ARG,
                    projection: self.tcx().mk_place_elems(&[ProjectionElem::Field(
                        FieldIdx::ZERO,
                        self.ref_coroutine_ty,
                    )]),
                },
                self.tcx,
            );
        } else {
            self.visit_local(&mut place.local, context, location);

            for elem in place.projection.iter() {
                if let PlaceElem::Index(local) = elem {
                    assert_ne!(local, SELF_ARG);
                }
            }
        }
    }
}

fn replace_base<'tcx>(place: &mut Place<'tcx>, new_base: Place<'tcx>, tcx: TyCtxt<'tcx>) {
    place.local = new_base.local;

    let mut new_projection = new_base.projection.to_vec();
    new_projection.append(&mut place.projection.to_vec());

    place.projection = tcx.mk_place_elems(&new_projection);
}

const SELF_ARG: Local = Local::from_u32(1);

/// Coroutine has not been resumed yet.
const UNRESUMED: usize = CoroutineArgs::UNRESUMED;
/// Coroutine has returned / is completed.
const RETURNED: usize = CoroutineArgs::RETURNED;
/// Coroutine has panicked and is poisoned.
const POISONED: usize = CoroutineArgs::POISONED;

/// Number of variants to reserve in coroutine state. Corresponds to
/// `UNRESUMED` (beginning of a coroutine) and `RETURNED`/`POISONED`
/// (end of a coroutine) states.
const RESERVED_VARIANTS: usize = 3;

/// A `yield` point in the coroutine.
struct SuspensionPoint<'tcx> {
    /// State discriminant used when suspending or resuming at this point.
    state: usize,
    /// The block to jump to after resumption.
    resume: BasicBlock,
    /// Where to move the resume argument after resumption.
    resume_arg: Place<'tcx>,
    /// Which block to jump to if the coroutine is dropped in this state.
    drop: Option<BasicBlock>,
    /// Set of locals that have live storage while at this suspension point.
    storage_liveness: GrowableBitSet<Local>,
}

struct TransformVisitor<'tcx> {
    tcx: TyCtxt<'tcx>,
    coroutine_kind: hir::CoroutineKind,

    // The type of the discriminant in the coroutine struct
    discr_ty: Ty<'tcx>,

    // Mapping from Local to (type of local, coroutine struct index)
    // FIXME(eddyb) This should use `IndexVec<Local, Option<_>>`.
    remap: FxHashMap<Local, (Ty<'tcx>, VariantIdx, FieldIdx)>,

    // A map from a suspension point in a block to the locals which have live storage at that point
    storage_liveness: IndexVec<BasicBlock, Option<BitSet<Local>>>,

    // A list of suspension points, generated during the transform
    suspension_points: Vec<SuspensionPoint<'tcx>>,

    // The set of locals that have no `StorageLive`/`StorageDead` annotations.
    always_live_locals: BitSet<Local>,

    // The original RETURN_PLACE local
    old_ret_local: Local,

    old_yield_ty: Ty<'tcx>,

    old_ret_ty: Ty<'tcx>,
}

impl<'tcx> TransformVisitor<'tcx> {
    fn insert_none_ret_block(&self, body: &mut Body<'tcx>) -> BasicBlock {
        let block = BasicBlock::new(body.basic_blocks.len());
        let source_info = SourceInfo::outermost(body.span);

        let none_value = match self.coroutine_kind {
            CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
                span_bug!(body.span, "`Future`s are not fused inherently")
            }
            CoroutineKind::Coroutine(_) => span_bug!(body.span, "`Coroutine`s cannot be fused"),
            // `gen` continues return `None`
            CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
                let option_def_id = self.tcx.require_lang_item(LangItem::Option, None);
                Rvalue::Aggregate(
                    Box::new(AggregateKind::Adt(
                        option_def_id,
                        VariantIdx::ZERO,
                        self.tcx.mk_args(&[self.old_yield_ty.into()]),
                        None,
                        None,
                    )),
                    IndexVec::new(),
                )
            }
            // `async gen` continues to return `Poll::Ready(None)`
            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => {
                let ty::Adt(_poll_adt, args) = *self.old_yield_ty.kind() else { bug!() };
                let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else { bug!() };
                let yield_ty = args.type_at(0);
                Rvalue::Use(Operand::Constant(Box::new(ConstOperand {
                    span: source_info.span,
                    const_: Const::Unevaluated(
                        UnevaluatedConst::new(
                            self.tcx.require_lang_item(LangItem::AsyncGenFinished, None),
                            self.tcx.mk_args(&[yield_ty.into()]),
                        ),
                        self.old_yield_ty,
                    ),
                    user_ty: None,
                })))
            }
        };

        let statements = vec![Statement {
            kind: StatementKind::Assign(Box::new((Place::return_place(), none_value))),
            source_info,
        }];

        body.basic_blocks_mut().push(BasicBlockData {
            statements,
            terminator: Some(Terminator { source_info, kind: TerminatorKind::Return }),
            is_cleanup: false,
        });

        block
    }

    // Make a `CoroutineState` or `Poll` variant assignment.
    //
    // `core::ops::CoroutineState` only has single element tuple variants,
    // so we can just write to the downcasted first field and then set the
    // discriminant to the appropriate variant.
    fn make_state(
        &self,
        val: Operand<'tcx>,
        source_info: SourceInfo,
        is_return: bool,
        statements: &mut Vec<Statement<'tcx>>,
    ) {
        let rvalue = match self.coroutine_kind {
            CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
                let poll_def_id = self.tcx.require_lang_item(LangItem::Poll, None);
                let args = self.tcx.mk_args(&[self.old_ret_ty.into()]);
                if is_return {
                    // Poll::Ready(val)
                    Rvalue::Aggregate(
                        Box::new(AggregateKind::Adt(
                            poll_def_id,
                            VariantIdx::ZERO,
                            args,
                            None,
                            None,
                        )),
                        IndexVec::from_raw(vec![val]),
                    )
                } else {
                    // Poll::Pending
                    Rvalue::Aggregate(
                        Box::new(AggregateKind::Adt(
                            poll_def_id,
                            VariantIdx::from_usize(1),
                            args,
                            None,
                            None,
                        )),
                        IndexVec::new(),
                    )
                }
            }
            CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
                let option_def_id = self.tcx.require_lang_item(LangItem::Option, None);
                let args = self.tcx.mk_args(&[self.old_yield_ty.into()]);
                if is_return {
                    // None
                    Rvalue::Aggregate(
                        Box::new(AggregateKind::Adt(
                            option_def_id,
                            VariantIdx::ZERO,
                            args,
                            None,
                            None,
                        )),
                        IndexVec::new(),
                    )
                } else {
                    // Some(val)
                    Rvalue::Aggregate(
                        Box::new(AggregateKind::Adt(
                            option_def_id,
                            VariantIdx::from_usize(1),
                            args,
                            None,
                            None,
                        )),
                        IndexVec::from_raw(vec![val]),
                    )
                }
            }
            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => {
                if is_return {
                    let ty::Adt(_poll_adt, args) = *self.old_yield_ty.kind() else { bug!() };
                    let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else { bug!() };
                    let yield_ty = args.type_at(0);
                    Rvalue::Use(Operand::Constant(Box::new(ConstOperand {
                        span: source_info.span,
                        const_: Const::Unevaluated(
                            UnevaluatedConst::new(
                                self.tcx.require_lang_item(LangItem::AsyncGenFinished, None),
                                self.tcx.mk_args(&[yield_ty.into()]),
                            ),
                            self.old_yield_ty,
                        ),
                        user_ty: None,
                    })))
                } else {
                    Rvalue::Use(val)
                }
            }
            CoroutineKind::Coroutine(_) => {
                let coroutine_state_def_id =
                    self.tcx.require_lang_item(LangItem::CoroutineState, None);
                let args = self.tcx.mk_args(&[self.old_yield_ty.into(), self.old_ret_ty.into()]);
                if is_return {
                    // CoroutineState::Complete(val)
                    Rvalue::Aggregate(
                        Box::new(AggregateKind::Adt(
                            coroutine_state_def_id,
                            VariantIdx::from_usize(1),
                            args,
                            None,
                            None,
                        )),
                        IndexVec::from_raw(vec![val]),
                    )
                } else {
                    // CoroutineState::Yielded(val)
                    Rvalue::Aggregate(
                        Box::new(AggregateKind::Adt(
                            coroutine_state_def_id,
                            VariantIdx::ZERO,
                            args,
                            None,
                            None,
                        )),
                        IndexVec::from_raw(vec![val]),
                    )
                }
            }
        };

        statements.push(Statement {
            kind: StatementKind::Assign(Box::new((Place::return_place(), rvalue))),
            source_info,
        });
    }

    // Create a Place referencing a coroutine struct field
    fn make_field(&self, variant_index: VariantIdx, idx: FieldIdx, ty: Ty<'tcx>) -> Place<'tcx> {
        let self_place = Place::from(SELF_ARG);
        let base = self.tcx.mk_place_downcast_unnamed(self_place, variant_index);
        let mut projection = base.projection.to_vec();
        projection.push(ProjectionElem::Field(idx, ty));

        Place { local: base.local, projection: self.tcx.mk_place_elems(&projection) }
    }

    // Create a statement which changes the discriminant
    fn set_discr(&self, state_disc: VariantIdx, source_info: SourceInfo) -> Statement<'tcx> {
        let self_place = Place::from(SELF_ARG);
        Statement {
            source_info,
            kind: StatementKind::SetDiscriminant {
                place: Box::new(self_place),
                variant_index: state_disc,
            },
        }
    }

    // Create a statement which reads the discriminant into a temporary
    fn get_discr(&self, body: &mut Body<'tcx>) -> (Statement<'tcx>, Place<'tcx>) {
        let temp_decl = LocalDecl::new(self.discr_ty, body.span);
        let local_decls_len = body.local_decls.push(temp_decl);
        let temp = Place::from(local_decls_len);

        let self_place = Place::from(SELF_ARG);
        let assign = Statement {
            source_info: SourceInfo::outermost(body.span),
            kind: StatementKind::Assign(Box::new((temp, Rvalue::Discriminant(self_place)))),
        };
        (assign, temp)
    }
}

impl<'tcx> MutVisitor<'tcx> for TransformVisitor<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
        assert_eq!(self.remap.get(local), None);
    }

    fn visit_place(
        &mut self,
        place: &mut Place<'tcx>,
        _context: PlaceContext,
        _location: Location,
    ) {
        // Replace an Local in the remap with a coroutine struct access
        if let Some(&(ty, variant_index, idx)) = self.remap.get(&place.local) {
            replace_base(place, self.make_field(variant_index, idx, ty), self.tcx);
        }
    }

    fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) {
        // Remove StorageLive and StorageDead statements for remapped locals
        data.retain_statements(|s| match s.kind {
            StatementKind::StorageLive(l) | StatementKind::StorageDead(l) => {
                !self.remap.contains_key(&l)
            }
            _ => true,
        });

        let ret_val = match data.terminator().kind {
            TerminatorKind::Return => {
                Some((true, None, Operand::Move(Place::from(self.old_ret_local)), None))
            }
            TerminatorKind::Yield { ref value, resume, resume_arg, drop } => {
                Some((false, Some((resume, resume_arg)), value.clone(), drop))
            }
            _ => None,
        };

        if let Some((is_return, resume, v, drop)) = ret_val {
            let source_info = data.terminator().source_info;
            // We must assign the value first in case it gets declared dead below
            self.make_state(v, source_info, is_return, &mut data.statements);
            let state = if let Some((resume, mut resume_arg)) = resume {
                // Yield
                let state = RESERVED_VARIANTS + self.suspension_points.len();

                // The resume arg target location might itself be remapped if its base local is
                // live across a yield.
                let resume_arg =
                    if let Some(&(ty, variant, idx)) = self.remap.get(&resume_arg.local) {
                        replace_base(&mut resume_arg, self.make_field(variant, idx, ty), self.tcx);
                        resume_arg
                    } else {
                        resume_arg
                    };

                let storage_liveness: GrowableBitSet<Local> =
                    self.storage_liveness[block].clone().unwrap().into();

                for i in 0..self.always_live_locals.domain_size() {
                    let l = Local::new(i);
                    let needs_storage_dead = storage_liveness.contains(l)
                        && !self.remap.contains_key(&l)
                        && !self.always_live_locals.contains(l);
                    if needs_storage_dead {
                        data.statements
                            .push(Statement { source_info, kind: StatementKind::StorageDead(l) });
                    }
                }

                self.suspension_points.push(SuspensionPoint {
                    state,
                    resume,
                    resume_arg,
                    drop,
                    storage_liveness,
                });

                VariantIdx::new(state)
            } else {
                // Return
                VariantIdx::new(RETURNED) // state for returned
            };
            data.statements.push(self.set_discr(state, source_info));
            data.terminator_mut().kind = TerminatorKind::Return;
        }

        self.super_basic_block_data(block, data);
    }
}

fn make_coroutine_state_argument_indirect<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
    let coroutine_ty = body.local_decls.raw[1].ty;

    let ref_coroutine_ty = Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, coroutine_ty);

    // Replace the by value coroutine argument
    body.local_decls.raw[1].ty = ref_coroutine_ty;

    // Add a deref to accesses of the coroutine state
    DerefArgVisitor { tcx }.visit_body(body);
}

fn make_coroutine_state_argument_pinned<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
    let ref_coroutine_ty = body.local_decls.raw[1].ty;

    let pin_did = tcx.require_lang_item(LangItem::Pin, Some(body.span));
    let pin_adt_ref = tcx.adt_def(pin_did);
    let args = tcx.mk_args(&[ref_coroutine_ty.into()]);
    let pin_ref_coroutine_ty = Ty::new_adt(tcx, pin_adt_ref, args);

    // Replace the by ref coroutine argument
    body.local_decls.raw[1].ty = pin_ref_coroutine_ty;

    // Add the Pin field access to accesses of the coroutine state
    PinArgVisitor { ref_coroutine_ty, tcx }.visit_body(body);
}

/// Allocates a new local and replaces all references of `local` with it. Returns the new local.
///
/// `local` will be changed to a new local decl with type `ty`.
///
/// Note that the new local will be uninitialized. It is the caller's responsibility to assign some
/// valid value to it before its first use.
fn replace_local<'tcx>(
    local: Local,
    ty: Ty<'tcx>,
    body: &mut Body<'tcx>,
    tcx: TyCtxt<'tcx>,
) -> Local {
    let new_decl = LocalDecl::new(ty, body.span);
    let new_local = body.local_decls.push(new_decl);
    body.local_decls.swap(local, new_local);

    RenameLocalVisitor { from: local, to: new_local, tcx }.visit_body(body);

    new_local
}

/// Transforms the `body` of the coroutine applying the following transforms:
///
/// - Eliminates all the `get_context` calls that async lowering created.
/// - Replace all `Local` `ResumeTy` types with `&mut Context<'_>` (`context_mut_ref`).
///
/// The `Local`s that have their types replaced are:
/// - The `resume` argument itself.
/// - The argument to `get_context`.
/// - The yielded value of a `yield`.
///
/// The `ResumeTy` hides a `&mut Context<'_>` behind an unsafe raw pointer, and the
/// `get_context` function is being used to convert that back to a `&mut Context<'_>`.
///
/// Ideally the async lowering would not use the `ResumeTy`/`get_context` indirection,
/// but rather directly use `&mut Context<'_>`, however that would currently
/// lead to higher-kinded lifetime errors.
/// See <https://github.com/rust-lang/rust/issues/105501>.
///
/// The async lowering step and the type / lifetime inference / checking are
/// still using the `ResumeTy` indirection for the time being, and that indirection
/// is removed here. After this transform, the coroutine body only knows about `&mut Context<'_>`.
fn transform_async_context<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
    let context_mut_ref = Ty::new_task_context(tcx);

    // replace the type of the `resume` argument
    replace_resume_ty_local(tcx, body, Local::new(2), context_mut_ref);

    let get_context_def_id = tcx.require_lang_item(LangItem::GetContext, None);

    for bb in START_BLOCK..body.basic_blocks.next_index() {
        let bb_data = &body[bb];
        if bb_data.is_cleanup {
            continue;
        }

        match &bb_data.terminator().kind {
            TerminatorKind::Call { func, .. } => {
                let func_ty = func.ty(body, tcx);
                if let ty::FnDef(def_id, _) = *func_ty.kind() {
                    if def_id == get_context_def_id {
                        let local = eliminate_get_context_call(&mut body[bb]);
                        replace_resume_ty_local(tcx, body, local, context_mut_ref);
                    }
                } else {
                    continue;
                }
            }
            TerminatorKind::Yield { resume_arg, .. } => {
                replace_resume_ty_local(tcx, body, resume_arg.local, context_mut_ref);
            }
            _ => {}
        }
    }
}

fn eliminate_get_context_call<'tcx>(bb_data: &mut BasicBlockData<'tcx>) -> Local {
    let terminator = bb_data.terminator.take().unwrap();
    if let TerminatorKind::Call { mut args, destination, target, .. } = terminator.kind {
        let arg = args.pop().unwrap();
        let local = arg.node.place().unwrap().local;

        let arg = Rvalue::Use(arg.node);
        let assign = Statement {
            source_info: terminator.source_info,
            kind: StatementKind::Assign(Box::new((destination, arg))),
        };
        bb_data.statements.push(assign);
        bb_data.terminator = Some(Terminator {
            source_info: terminator.source_info,
            kind: TerminatorKind::Goto { target: target.unwrap() },
        });
        local
    } else {
        bug!();
    }
}

#[cfg_attr(not(debug_assertions), allow(unused))]
fn replace_resume_ty_local<'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &mut Body<'tcx>,
    local: Local,
    context_mut_ref: Ty<'tcx>,
) {
    let local_ty = std::mem::replace(&mut body.local_decls[local].ty, context_mut_ref);
    // We have to replace the `ResumeTy` that is used for type and borrow checking
    // with `&mut Context<'_>` in MIR.
    #[cfg(debug_assertions)]
    {
        if let ty::Adt(resume_ty_adt, _) = local_ty.kind() {
            let expected_adt = tcx.adt_def(tcx.require_lang_item(LangItem::ResumeTy, None));
            assert_eq!(*resume_ty_adt, expected_adt);
        } else {
            panic!("expected `ResumeTy`, found `{:?}`", local_ty);
        };
    }
}

/// Transforms the `body` of the coroutine applying the following transform:
///
/// - Remove the `resume` argument.
///
/// Ideally the async lowering would not add the `resume` argument.
///
/// The async lowering step and the type / lifetime inference / checking are
/// still using the `resume` argument for the time being. After this transform,
/// the coroutine body doesn't have the `resume` argument.
fn transform_gen_context<'tcx>(body: &mut Body<'tcx>) {
    // This leaves the local representing the `resume` argument in place,
    // but turns it into a regular local variable. This is cheaper than
    // adjusting all local references in the body after removing it.
    body.arg_count = 1;
}

struct LivenessInfo {
    /// Which locals are live across any suspension point.
    saved_locals: CoroutineSavedLocals,

    /// The set of saved locals live at each suspension point.
    live_locals_at_suspension_points: Vec<BitSet<CoroutineSavedLocal>>,

    /// Parallel vec to the above with SourceInfo for each yield terminator.
    source_info_at_suspension_points: Vec<SourceInfo>,

    /// For every saved local, the set of other saved locals that are
    /// storage-live at the same time as this local. We cannot overlap locals in
    /// the layout which have conflicting storage.
    storage_conflicts: BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal>,

    /// For every suspending block, the locals which are storage-live across
    /// that suspension point.
    storage_liveness: IndexVec<BasicBlock, Option<BitSet<Local>>>,
}

/// Computes which locals have to be stored in the state-machine for the
/// given coroutine.
///
/// The basic idea is as follows:
/// - a local is live until we encounter a `StorageDead` statement. In
///   case none exist, the local is considered to be always live.
/// - a local has to be stored if it is either directly used after the
///   the suspend point, or if it is live and has been previously borrowed.
fn locals_live_across_suspend_points<'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &Body<'tcx>,
    always_live_locals: &BitSet<Local>,
    movable: bool,
) -> LivenessInfo {
    // Calculate when MIR locals have live storage. This gives us an upper bound of their
    // lifetimes.
    let mut storage_live = MaybeStorageLive::new(std::borrow::Cow::Borrowed(always_live_locals))
        .into_engine(tcx, body)
        .iterate_to_fixpoint()
        .into_results_cursor(body);

    // Calculate the MIR locals which have been previously
    // borrowed (even if they are still active).
    let borrowed_locals_results =
        MaybeBorrowedLocals.into_engine(tcx, body).pass_name("coroutine").iterate_to_fixpoint();

    let mut borrowed_locals_cursor = borrowed_locals_results.clone().into_results_cursor(body);

    // Calculate the MIR locals that we actually need to keep storage around
    // for.
    let mut requires_storage_cursor =
        MaybeRequiresStorage::new(borrowed_locals_results.into_results_cursor(body))
            .into_engine(tcx, body)
            .iterate_to_fixpoint()
            .into_results_cursor(body);

    // Calculate the liveness of MIR locals ignoring borrows.
    let mut liveness = MaybeLiveLocals
        .into_engine(tcx, body)
        .pass_name("coroutine")
        .iterate_to_fixpoint()
        .into_results_cursor(body);

    let mut storage_liveness_map = IndexVec::from_elem(None, &body.basic_blocks);
    let mut live_locals_at_suspension_points = Vec::new();
    let mut source_info_at_suspension_points = Vec::new();
    let mut live_locals_at_any_suspension_point = BitSet::new_empty(body.local_decls.len());

    for (block, data) in body.basic_blocks.iter_enumerated() {
        if let TerminatorKind::Yield { .. } = data.terminator().kind {
            let loc = Location { block, statement_index: data.statements.len() };

            liveness.seek_to_block_end(block);
            let mut live_locals: BitSet<_> = BitSet::new_empty(body.local_decls.len());
            live_locals.union(liveness.get());

            if !movable {
                // The `liveness` variable contains the liveness of MIR locals ignoring borrows.
                // This is correct for movable coroutines since borrows cannot live across
                // suspension points. However for immovable coroutines we need to account for
                // borrows, so we conservatively assume that all borrowed locals are live until
                // we find a StorageDead statement referencing the locals.
                // To do this we just union our `liveness` result with `borrowed_locals`, which
                // contains all the locals which has been borrowed before this suspension point.
                // If a borrow is converted to a raw reference, we must also assume that it lives
                // forever. Note that the final liveness is still bounded by the storage liveness
                // of the local, which happens using the `intersect` operation below.
                borrowed_locals_cursor.seek_before_primary_effect(loc);
                live_locals.union(borrowed_locals_cursor.get());
            }

            // Store the storage liveness for later use so we can restore the state
            // after a suspension point
            storage_live.seek_before_primary_effect(loc);
            storage_liveness_map[block] = Some(storage_live.get().clone());

            // Locals live are live at this point only if they are used across
            // suspension points (the `liveness` variable)
            // and their storage is required (the `storage_required` variable)
            requires_storage_cursor.seek_before_primary_effect(loc);
            live_locals.intersect(requires_storage_cursor.get());

            // The coroutine argument is ignored.
            live_locals.remove(SELF_ARG);

            debug!("loc = {:?}, live_locals = {:?}", loc, live_locals);

            // Add the locals live at this suspension point to the set of locals which live across
            // any suspension points
            live_locals_at_any_suspension_point.union(&live_locals);

            live_locals_at_suspension_points.push(live_locals);
            source_info_at_suspension_points.push(data.terminator().source_info);
        }
    }

    debug!("live_locals_anywhere = {:?}", live_locals_at_any_suspension_point);
    let saved_locals = CoroutineSavedLocals(live_locals_at_any_suspension_point);

    // Renumber our liveness_map bitsets to include only the locals we are
    // saving.
    let live_locals_at_suspension_points = live_locals_at_suspension_points
        .iter()
        .map(|live_here| saved_locals.renumber_bitset(live_here))
        .collect();

    let storage_conflicts = compute_storage_conflicts(
        body,
        &saved_locals,
        always_live_locals.clone(),
        requires_storage_cursor.into_results(),
    );

    LivenessInfo {
        saved_locals,
        live_locals_at_suspension_points,
        source_info_at_suspension_points,
        storage_conflicts,
        storage_liveness: storage_liveness_map,
    }
}

/// The set of `Local`s that must be saved across yield points.
///
/// `CoroutineSavedLocal` is indexed in terms of the elements in this set;
/// i.e. `CoroutineSavedLocal::new(1)` corresponds to the second local
/// included in this set.
struct CoroutineSavedLocals(BitSet<Local>);

impl CoroutineSavedLocals {
    /// Returns an iterator over each `CoroutineSavedLocal` along with the `Local` it corresponds
    /// to.
    fn iter_enumerated(&self) -> impl '_ + Iterator<Item = (CoroutineSavedLocal, Local)> {
        self.iter().enumerate().map(|(i, l)| (CoroutineSavedLocal::from(i), l))
    }

    /// Transforms a `BitSet<Local>` that contains only locals saved across yield points to the
    /// equivalent `BitSet<CoroutineSavedLocal>`.
    fn renumber_bitset(&self, input: &BitSet<Local>) -> BitSet<CoroutineSavedLocal> {
        assert!(self.superset(input), "{:?} not a superset of {:?}", self.0, input);
        let mut out = BitSet::new_empty(self.count());
        for (saved_local, local) in self.iter_enumerated() {
            if input.contains(local) {
                out.insert(saved_local);
            }
        }
        out
    }

    fn get(&self, local: Local) -> Option<CoroutineSavedLocal> {
        if !self.contains(local) {
            return None;
        }

        let idx = self.iter().take_while(|&l| l < local).count();
        Some(CoroutineSavedLocal::new(idx))
    }
}

impl ops::Deref for CoroutineSavedLocals {
    type Target = BitSet<Local>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// For every saved local, looks for which locals are StorageLive at the same
/// time. Generates a bitset for every local of all the other locals that may be
/// StorageLive simultaneously with that local. This is used in the layout
/// computation; see `CoroutineLayout` for more.
fn compute_storage_conflicts<'mir, 'tcx>(
    body: &'mir Body<'tcx>,
    saved_locals: &CoroutineSavedLocals,
    always_live_locals: BitSet<Local>,
    mut requires_storage: rustc_mir_dataflow::Results<'tcx, MaybeRequiresStorage<'mir, 'tcx>>,
) -> BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal> {
    assert_eq!(body.local_decls.len(), saved_locals.domain_size());

    debug!("compute_storage_conflicts({:?})", body.span);
    debug!("always_live = {:?}", always_live_locals);

    // Locals that are always live or ones that need to be stored across
    // suspension points are not eligible for overlap.
    let mut ineligible_locals = always_live_locals;
    ineligible_locals.intersect(&**saved_locals);

    // Compute the storage conflicts for all eligible locals.
    let mut visitor = StorageConflictVisitor {
        body,
        saved_locals: saved_locals,
        local_conflicts: BitMatrix::from_row_n(&ineligible_locals, body.local_decls.len()),
        eligible_storage_live: BitSet::new_empty(body.local_decls.len()),
    };

    requires_storage.visit_reachable_with(body, &mut visitor);

    let local_conflicts = visitor.local_conflicts;

    // Compress the matrix using only stored locals (Local -> CoroutineSavedLocal).
    //
    // NOTE: Today we store a full conflict bitset for every local. Technically
    // this is twice as many bits as we need, since the relation is symmetric.
    // However, in practice these bitsets are not usually large. The layout code
    // also needs to keep track of how many conflicts each local has, so it's
    // simpler to keep it this way for now.
    let mut storage_conflicts = BitMatrix::new(saved_locals.count(), saved_locals.count());
    for (saved_local_a, local_a) in saved_locals.iter_enumerated() {
        if ineligible_locals.contains(local_a) {
            // Conflicts with everything.
            storage_conflicts.insert_all_into_row(saved_local_a);
        } else {
            // Keep overlap information only for stored locals.
            for (saved_local_b, local_b) in saved_locals.iter_enumerated() {
                if local_conflicts.contains(local_a, local_b) {
                    storage_conflicts.insert(saved_local_a, saved_local_b);
                }
            }
        }
    }
    storage_conflicts
}

struct StorageConflictVisitor<'mir, 'tcx, 's> {
    body: &'mir Body<'tcx>,
    saved_locals: &'s CoroutineSavedLocals,
    // FIXME(tmandry): Consider using sparse bitsets here once we have good
    // benchmarks for coroutines.
    local_conflicts: BitMatrix<Local, Local>,
    // We keep this bitset as a buffer to avoid reallocating memory.
    eligible_storage_live: BitSet<Local>,
}

impl<'mir, 'tcx, R> rustc_mir_dataflow::ResultsVisitor<'mir, 'tcx, R>
    for StorageConflictVisitor<'mir, 'tcx, '_>
{
    type FlowState = BitSet<Local>;

    fn visit_statement_before_primary_effect(
        &mut self,
        _results: &mut R,
        state: &Self::FlowState,
        _statement: &'mir Statement<'tcx>,
        loc: Location,
    ) {
        self.apply_state(state, loc);
    }

    fn visit_terminator_before_primary_effect(
        &mut self,
        _results: &mut R,
        state: &Self::FlowState,
        _terminator: &'mir Terminator<'tcx>,
        loc: Location,
    ) {
        self.apply_state(state, loc);
    }
}

impl StorageConflictVisitor<'_, '_, '_> {
    fn apply_state(&mut self, flow_state: &BitSet<Local>, loc: Location) {
        // Ignore unreachable blocks.
        if let TerminatorKind::Unreachable = self.body.basic_blocks[loc.block].terminator().kind {
            return;
        }

        self.eligible_storage_live.clone_from(flow_state);
        self.eligible_storage_live.intersect(&**self.saved_locals);

        for local in self.eligible_storage_live.iter() {
            self.local_conflicts.union_row_with(&self.eligible_storage_live, local);
        }

        if self.eligible_storage_live.count() > 1 {
            trace!("at {:?}, eligible_storage_live={:?}", loc, self.eligible_storage_live);
        }
    }
}

fn compute_layout<'tcx>(
    liveness: LivenessInfo,
    body: &Body<'tcx>,
) -> (
    FxHashMap<Local, (Ty<'tcx>, VariantIdx, FieldIdx)>,
    CoroutineLayout<'tcx>,
    IndexVec<BasicBlock, Option<BitSet<Local>>>,
) {
    let LivenessInfo {
        saved_locals,
        live_locals_at_suspension_points,
        source_info_at_suspension_points,
        storage_conflicts,
        storage_liveness,
    } = liveness;

    // Gather live local types and their indices.
    let mut locals = IndexVec::<CoroutineSavedLocal, _>::new();
    let mut tys = IndexVec::<CoroutineSavedLocal, _>::new();
    for (saved_local, local) in saved_locals.iter_enumerated() {
        debug!("coroutine saved local {:?} => {:?}", saved_local, local);

        locals.push(local);
        let decl = &body.local_decls[local];
        debug!(?decl);

        // Do not `assert_crate_local` here, as post-borrowck cleanup may have already cleared
        // the information. This is alright, since `ignore_for_traits` is only relevant when
        // this code runs on pre-cleanup MIR, and `ignore_for_traits = false` is the safer
        // default.
        let ignore_for_traits = match decl.local_info {
            // Do not include raw pointers created from accessing `static` items, as those could
            // well be re-created by another access to the same static.
            ClearCrossCrate::Set(box LocalInfo::StaticRef { is_thread_local, .. }) => {
                !is_thread_local
            }
            // Fake borrows are only read by fake reads, so do not have any reality in
            // post-analysis MIR.
            ClearCrossCrate::Set(box LocalInfo::FakeBorrow) => true,
            _ => false,
        };
        let decl =
            CoroutineSavedTy { ty: decl.ty, source_info: decl.source_info, ignore_for_traits };
        debug!(?decl);

        tys.push(decl);
    }

    // Leave empty variants for the UNRESUMED, RETURNED, and POISONED states.
    // In debuginfo, these will correspond to the beginning (UNRESUMED) or end
    // (RETURNED, POISONED) of the function.
    let body_span = body.source_scopes[OUTERMOST_SOURCE_SCOPE].span;
    let mut variant_source_info: IndexVec<VariantIdx, SourceInfo> = [
        SourceInfo::outermost(body_span.shrink_to_lo()),
        SourceInfo::outermost(body_span.shrink_to_hi()),
        SourceInfo::outermost(body_span.shrink_to_hi()),
    ]
    .iter()
    .copied()
    .collect();

    // Build the coroutine variant field list.
    // Create a map from local indices to coroutine struct indices.
    let mut variant_fields: IndexVec<VariantIdx, IndexVec<FieldIdx, CoroutineSavedLocal>> =
        iter::repeat(IndexVec::new()).take(RESERVED_VARIANTS).collect();
    let mut remap = FxHashMap::default();
    for (suspension_point_idx, live_locals) in live_locals_at_suspension_points.iter().enumerate() {
        let variant_index = VariantIdx::from(RESERVED_VARIANTS + suspension_point_idx);
        let mut fields = IndexVec::new();
        for (idx, saved_local) in live_locals.iter().enumerate() {
            fields.push(saved_local);
            // Note that if a field is included in multiple variants, we will
            // just use the first one here. That's fine; fields do not move
            // around inside coroutines, so it doesn't matter which variant
            // index we access them by.
            let idx = FieldIdx::from_usize(idx);
            remap.entry(locals[saved_local]).or_insert((tys[saved_local].ty, variant_index, idx));
        }
        variant_fields.push(fields);
        variant_source_info.push(source_info_at_suspension_points[suspension_point_idx]);
    }
    debug!("coroutine variant_fields = {:?}", variant_fields);
    debug!("coroutine storage_conflicts = {:#?}", storage_conflicts);

    let mut field_names = IndexVec::from_elem(None, &tys);
    for var in &body.var_debug_info {
        let VarDebugInfoContents::Place(place) = &var.value else { continue };
        let Some(local) = place.as_local() else { continue };
        let Some(&(_, variant, field)) = remap.get(&local) else { continue };

        let saved_local = variant_fields[variant][field];
        field_names.get_or_insert_with(saved_local, || var.name);
    }

    let layout = CoroutineLayout {
        field_tys: tys,
        field_names,
        variant_fields,
        variant_source_info,
        storage_conflicts,
    };
    debug!(?layout);

    (remap, layout, storage_liveness)
}

/// Replaces the entry point of `body` with a block that switches on the coroutine discriminant and
/// dispatches to blocks according to `cases`.
///
/// After this function, the former entry point of the function will be bb1.
fn insert_switch<'tcx>(
    body: &mut Body<'tcx>,
    cases: Vec<(usize, BasicBlock)>,
    transform: &TransformVisitor<'tcx>,
    default: TerminatorKind<'tcx>,
) {
    let default_block = insert_term_block(body, default);
    let (assign, discr) = transform.get_discr(body);
    let switch_targets =
        SwitchTargets::new(cases.iter().map(|(i, bb)| ((*i) as u128, *bb)), default_block);
    let switch = TerminatorKind::SwitchInt { discr: Operand::Move(discr), targets: switch_targets };

    let source_info = SourceInfo::outermost(body.span);
    body.basic_blocks_mut().raw.insert(
        0,
        BasicBlockData {
            statements: vec![assign],
            terminator: Some(Terminator { source_info, kind: switch }),
            is_cleanup: false,
        },
    );

    let blocks = body.basic_blocks_mut().iter_mut();

    for target in blocks.flat_map(|b| b.terminator_mut().successors_mut()) {
        *target = BasicBlock::new(target.index() + 1);
    }
}

fn elaborate_coroutine_drops<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
    use crate::shim::DropShimElaborator;
    use rustc_middle::mir::patch::MirPatch;
    use rustc_mir_dataflow::elaborate_drops::{elaborate_drop, Unwind};

    // Note that `elaborate_drops` only drops the upvars of a coroutine, and
    // this is ok because `open_drop` can only be reached within that own
    // coroutine's resume function.

    let def_id = body.source.def_id();
    let param_env = tcx.param_env(def_id);

    let mut elaborator = DropShimElaborator { body, patch: MirPatch::new(body), tcx, param_env };

    for (block, block_data) in body.basic_blocks.iter_enumerated() {
        let (target, unwind, source_info) = match block_data.terminator() {
            Terminator {
                source_info,
                kind: TerminatorKind::Drop { place, target, unwind, replace: _ },
            } => {
                if let Some(local) = place.as_local() {
                    if local == SELF_ARG {
                        (target, unwind, source_info)
                    } else {
                        continue;
                    }
                } else {
                    continue;
                }
            }
            _ => continue,
        };
        let unwind = if block_data.is_cleanup {
            Unwind::InCleanup
        } else {
            Unwind::To(match *unwind {
                UnwindAction::Cleanup(tgt) => tgt,
                UnwindAction::Continue => elaborator.patch.resume_block(),
                UnwindAction::Unreachable => elaborator.patch.unreachable_cleanup_block(),
                UnwindAction::Terminate(reason) => elaborator.patch.terminate_block(reason),
            })
        };
        elaborate_drop(
            &mut elaborator,
            *source_info,
            Place::from(SELF_ARG),
            (),
            *target,
            unwind,
            block,
        );
    }
    elaborator.patch.apply(body);
}

fn create_coroutine_drop_shim<'tcx>(
    tcx: TyCtxt<'tcx>,
    transform: &TransformVisitor<'tcx>,
    coroutine_ty: Ty<'tcx>,
    body: &Body<'tcx>,
    drop_clean: BasicBlock,
) -> Body<'tcx> {
    let mut body = body.clone();
    // Take the coroutine info out of the body, since the drop shim is
    // not a coroutine body itself; it just has its drop built out of it.
    let _ = body.coroutine.take();
    // Make sure the resume argument is not included here, since we're
    // building a body for `drop_in_place`.
    body.arg_count = 1;

    let source_info = SourceInfo::outermost(body.span);

    let mut cases = create_cases(&mut body, transform, Operation::Drop);

    cases.insert(0, (UNRESUMED, drop_clean));

    // The returned state and the poisoned state fall through to the default
    // case which is just to return

    insert_switch(&mut body, cases, transform, TerminatorKind::Return);

    for block in body.basic_blocks_mut() {
        let kind = &mut block.terminator_mut().kind;
        if let TerminatorKind::CoroutineDrop = *kind {
            *kind = TerminatorKind::Return;
        }
    }

    // Replace the return variable
    body.local_decls[RETURN_PLACE] = LocalDecl::with_source_info(tcx.types.unit, source_info);

    make_coroutine_state_argument_indirect(tcx, &mut body);

    // Change the coroutine argument from &mut to *mut
    body.local_decls[SELF_ARG] =
        LocalDecl::with_source_info(Ty::new_mut_ptr(tcx, coroutine_ty), source_info);

    // Make sure we remove dead blocks to remove
    // unrelated code from the resume part of the function
    simplify::remove_dead_blocks(&mut body);

    // Update the body's def to become the drop glue.
    let coroutine_instance = body.source.instance;
    let drop_in_place = tcx.require_lang_item(LangItem::DropInPlace, None);
    let drop_instance = InstanceDef::DropGlue(drop_in_place, Some(coroutine_ty));

    // Temporary change MirSource to coroutine's instance so that dump_mir produces more sensible
    // filename.
    body.source.instance = coroutine_instance;
    dump_mir(tcx, false, "coroutine_drop", &0, &body, |_, _| Ok(()));
    body.source.instance = drop_instance;

    body
}

fn insert_term_block<'tcx>(body: &mut Body<'tcx>, kind: TerminatorKind<'tcx>) -> BasicBlock {
    let source_info = SourceInfo::outermost(body.span);
    body.basic_blocks_mut().push(BasicBlockData {
        statements: Vec::new(),
        terminator: Some(Terminator { source_info, kind }),
        is_cleanup: false,
    })
}

fn insert_panic_block<'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &mut Body<'tcx>,
    message: AssertMessage<'tcx>,
) -> BasicBlock {
    let assert_block = BasicBlock::new(body.basic_blocks.len());
    let term = TerminatorKind::Assert {
        cond: Operand::Constant(Box::new(ConstOperand {
            span: body.span,
            user_ty: None,
            const_: Const::from_bool(tcx, false),
        })),
        expected: true,
        msg: Box::new(message),
        target: assert_block,
        unwind: UnwindAction::Continue,
    };

    let source_info = SourceInfo::outermost(body.span);
    body.basic_blocks_mut().push(BasicBlockData {
        statements: Vec::new(),
        terminator: Some(Terminator { source_info, kind: term }),
        is_cleanup: false,
    });

    assert_block
}

fn can_return<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
    // Returning from a function with an uninhabited return type is undefined behavior.
    if body.return_ty().is_privately_uninhabited(tcx, param_env) {
        return false;
    }

    // If there's a return terminator the function may return.
    for block in body.basic_blocks.iter() {
        if let TerminatorKind::Return = block.terminator().kind {
            return true;
        }
    }

    // Otherwise the function can't return.
    false
}

fn can_unwind<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>) -> bool {
    // Nothing can unwind when landing pads are off.
    if tcx.sess.panic_strategy() == PanicStrategy::Abort {
        return false;
    }

    // Unwinds can only start at certain terminators.
    for block in body.basic_blocks.iter() {
        match block.terminator().kind {
            // These never unwind.
            TerminatorKind::Goto { .. }
            | TerminatorKind::SwitchInt { .. }
            | TerminatorKind::UnwindTerminate(_)
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::CoroutineDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. } => {}

            // Resume will *continue* unwinding, but if there's no other unwinding terminator it
            // will never be reached.
            TerminatorKind::UnwindResume => {}

            TerminatorKind::Yield { .. } => {
                unreachable!("`can_unwind` called before coroutine transform")
            }

            // These may unwind.
            TerminatorKind::Drop { .. }
            | TerminatorKind::Call { .. }
            | TerminatorKind::InlineAsm { .. }
            | TerminatorKind::Assert { .. } => return true,
        }
    }

    // If we didn't find an unwinding terminator, the function cannot unwind.
    false
}

fn create_coroutine_resume_function<'tcx>(
    tcx: TyCtxt<'tcx>,
    transform: TransformVisitor<'tcx>,
    body: &mut Body<'tcx>,
    can_return: bool,
) {
    let can_unwind = can_unwind(tcx, body);

    // Poison the coroutine when it unwinds
    if can_unwind {
        let source_info = SourceInfo::outermost(body.span);
        let poison_block = body.basic_blocks_mut().push(BasicBlockData {
            statements: vec![transform.set_discr(VariantIdx::new(POISONED), source_info)],
            terminator: Some(Terminator { source_info, kind: TerminatorKind::UnwindResume }),
            is_cleanup: true,
        });

        for (idx, block) in body.basic_blocks_mut().iter_enumerated_mut() {
            let source_info = block.terminator().source_info;

            if let TerminatorKind::UnwindResume = block.terminator().kind {
                // An existing `Resume` terminator is redirected to jump to our dedicated
                // "poisoning block" above.
                if idx != poison_block {
                    *block.terminator_mut() = Terminator {
                        source_info,
                        kind: TerminatorKind::Goto { target: poison_block },
                    };
                }
            } else if !block.is_cleanup {
                // Any terminators that *can* unwind but don't have an unwind target set are also
                // pointed at our poisoning block (unless they're part of the cleanup path).
                if let Some(unwind @ UnwindAction::Continue) = block.terminator_mut().unwind_mut() {
                    *unwind = UnwindAction::Cleanup(poison_block);
                }
            }
        }
    }

    let mut cases = create_cases(body, &transform, Operation::Resume);

    use rustc_middle::mir::AssertKind::{ResumedAfterPanic, ResumedAfterReturn};

    // Jump to the entry point on the unresumed
    cases.insert(0, (UNRESUMED, START_BLOCK));

    // Panic when resumed on the returned or poisoned state
    if can_unwind {
        cases.insert(
            1,
            (POISONED, insert_panic_block(tcx, body, ResumedAfterPanic(transform.coroutine_kind))),
        );
    }

    if can_return {
        let block = match transform.coroutine_kind {
            CoroutineKind::Desugared(CoroutineDesugaring::Async, _)
            | CoroutineKind::Coroutine(_) => {
                insert_panic_block(tcx, body, ResumedAfterReturn(transform.coroutine_kind))
            }
            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _)
            | CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
                transform.insert_none_ret_block(body)
            }
        };
        cases.insert(1, (RETURNED, block));
    }

    insert_switch(body, cases, &transform, TerminatorKind::Unreachable);

    make_coroutine_state_argument_indirect(tcx, body);

    match transform.coroutine_kind {
        // Iterator::next doesn't accept a pinned argument,
        // unlike for all other coroutine kinds.
        CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {}
        _ => {
            make_coroutine_state_argument_pinned(tcx, body);
        }
    }

    // Make sure we remove dead blocks to remove
    // unrelated code from the drop part of the function
    simplify::remove_dead_blocks(body);

    pm::run_passes_no_validate(tcx, body, &[&abort_unwinding_calls::AbortUnwindingCalls], None);

    dump_mir(tcx, false, "coroutine_resume", &0, body, |_, _| Ok(()));
}

fn insert_clean_drop(body: &mut Body<'_>) -> BasicBlock {
    let return_block = insert_term_block(body, TerminatorKind::Return);

    let term = TerminatorKind::Drop {
        place: Place::from(SELF_ARG),
        target: return_block,
        unwind: UnwindAction::Continue,
        replace: false,
    };
    let source_info = SourceInfo::outermost(body.span);

    // Create a block to destroy an unresumed coroutines. This can only destroy upvars.
    body.basic_blocks_mut().push(BasicBlockData {
        statements: Vec::new(),
        terminator: Some(Terminator { source_info, kind: term }),
        is_cleanup: false,
    })
}

/// An operation that can be performed on a coroutine.
#[derive(PartialEq, Copy, Clone)]
enum Operation {
    Resume,
    Drop,
}

impl Operation {
    fn target_block(self, point: &SuspensionPoint<'_>) -> Option<BasicBlock> {
        match self {
            Operation::Resume => Some(point.resume),
            Operation::Drop => point.drop,
        }
    }
}

fn create_cases<'tcx>(
    body: &mut Body<'tcx>,
    transform: &TransformVisitor<'tcx>,
    operation: Operation,
) -> Vec<(usize, BasicBlock)> {
    let source_info = SourceInfo::outermost(body.span);

    transform
        .suspension_points
        .iter()
        .filter_map(|point| {
            // Find the target for this suspension point, if applicable
            operation.target_block(point).map(|target| {
                let mut statements = Vec::new();

                // Create StorageLive instructions for locals with live storage
                for i in 0..(body.local_decls.len()) {
                    let l = Local::new(i);
                    let needs_storage_live = point.storage_liveness.contains(l)
                        && !transform.remap.contains_key(&l)
                        && !transform.always_live_locals.contains(l);
                    if needs_storage_live {
                        statements
                            .push(Statement { source_info, kind: StatementKind::StorageLive(l) });
                    }
                }

                if operation == Operation::Resume {
                    // Move the resume argument to the destination place of the `Yield` terminator
                    let resume_arg = Local::new(2); // 0 = return, 1 = self
                    statements.push(Statement {
                        source_info,
                        kind: StatementKind::Assign(Box::new((
                            point.resume_arg,
                            Rvalue::Use(Operand::Move(resume_arg.into())),
                        ))),
                    });
                }

                // Then jump to the real target
                let block = body.basic_blocks_mut().push(BasicBlockData {
                    statements,
                    terminator: Some(Terminator {
                        source_info,
                        kind: TerminatorKind::Goto { target },
                    }),
                    is_cleanup: false,
                });

                (point.state, block)
            })
        })
        .collect()
}

#[instrument(level = "debug", skip(tcx), ret)]
pub(crate) fn mir_coroutine_witnesses<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: LocalDefId,
) -> Option<CoroutineLayout<'tcx>> {
    let (body, _) = tcx.mir_promoted(def_id);
    let body = body.borrow();
    let body = &*body;

    // The first argument is the coroutine type passed by value
    let coroutine_ty = body.local_decls[ty::CAPTURE_STRUCT_LOCAL].ty;

    let movable = match *coroutine_ty.kind() {
        ty::Coroutine(def_id, _) => tcx.coroutine_movability(def_id) == hir::Movability::Movable,
        ty::Error(_) => return None,
        _ => span_bug!(body.span, "unexpected coroutine type {}", coroutine_ty),
    };

    // The witness simply contains all locals live across suspend points.

    let always_live_locals = always_storage_live_locals(body);
    let liveness_info = locals_live_across_suspend_points(tcx, body, &always_live_locals, movable);

    // Extract locals which are live across suspension point into `layout`
    // `remap` gives a mapping from local indices onto coroutine struct indices
    // `storage_liveness` tells us which locals have live storage at suspension points
    let (_, coroutine_layout, _) = compute_layout(liveness_info, body);

    check_suspend_tys(tcx, &coroutine_layout, body);
    check_field_tys_sized(tcx, &coroutine_layout, def_id);

    Some(coroutine_layout)
}

fn check_field_tys_sized<'tcx>(
    tcx: TyCtxt<'tcx>,
    coroutine_layout: &CoroutineLayout<'tcx>,
    def_id: LocalDefId,
) {
    // No need to check if unsized_locals/unsized_fn_params is disabled,
    // since we will error during typeck.
    if !tcx.features().unsized_locals && !tcx.features().unsized_fn_params {
        return;
    }

    let infcx = tcx.infer_ctxt().ignoring_regions().build();
    let param_env = tcx.param_env(def_id);

    let ocx = ObligationCtxt::new(&infcx);
    for field_ty in &coroutine_layout.field_tys {
        ocx.register_bound(
            ObligationCause::new(
                field_ty.source_info.span,
                def_id,
                ObligationCauseCode::SizedCoroutineInterior(def_id),
            ),
            param_env,
            field_ty.ty,
            tcx.require_lang_item(hir::LangItem::Sized, Some(field_ty.source_info.span)),
        );
    }

    let errors = ocx.select_all_or_error();
    debug!(?errors);
    if !errors.is_empty() {
        infcx.err_ctxt().report_fulfillment_errors(errors);
    }
}

impl<'tcx> MirPass<'tcx> for StateTransform {
    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        let Some(old_yield_ty) = body.yield_ty() else {
            // This only applies to coroutines
            return;
        };
        let old_ret_ty = body.return_ty();

        assert!(body.coroutine_drop().is_none());

        // The first argument is the coroutine type passed by value
        let coroutine_ty = body.local_decls.raw[1].ty;
        let coroutine_kind = body.coroutine_kind().unwrap();

        // Get the discriminant type and args which typeck computed
        let (discr_ty, movable) = match *coroutine_ty.kind() {
            ty::Coroutine(_, args) => {
                let args = args.as_coroutine();
                (args.discr_ty(tcx), coroutine_kind.movability() == hir::Movability::Movable)
            }
            _ => {
                tcx.dcx().span_bug(body.span, format!("unexpected coroutine type {coroutine_ty}"));
            }
        };

        let new_ret_ty = match coroutine_kind {
            CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
                // Compute Poll<return_ty>
                let poll_did = tcx.require_lang_item(LangItem::Poll, None);
                let poll_adt_ref = tcx.adt_def(poll_did);
                let poll_args = tcx.mk_args(&[old_ret_ty.into()]);
                Ty::new_adt(tcx, poll_adt_ref, poll_args)
            }
            CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
                // Compute Option<yield_ty>
                let option_did = tcx.require_lang_item(LangItem::Option, None);
                let option_adt_ref = tcx.adt_def(option_did);
                let option_args = tcx.mk_args(&[old_yield_ty.into()]);
                Ty::new_adt(tcx, option_adt_ref, option_args)
            }
            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => {
                // The yield ty is already `Poll<Option<yield_ty>>`
                old_yield_ty
            }
            CoroutineKind::Coroutine(_) => {
                // Compute CoroutineState<yield_ty, return_ty>
                let state_did = tcx.require_lang_item(LangItem::CoroutineState, None);
                let state_adt_ref = tcx.adt_def(state_did);
                let state_args = tcx.mk_args(&[old_yield_ty.into(), old_ret_ty.into()]);
                Ty::new_adt(tcx, state_adt_ref, state_args)
            }
        };

        // We rename RETURN_PLACE which has type mir.return_ty to old_ret_local
        // RETURN_PLACE then is a fresh unused local with type ret_ty.
        let old_ret_local = replace_local(RETURN_PLACE, new_ret_ty, body, tcx);

        // Replace all occurrences of `ResumeTy` with `&mut Context<'_>` within async bodies.
        if matches!(
            coroutine_kind,
            CoroutineKind::Desugared(CoroutineDesugaring::Async | CoroutineDesugaring::AsyncGen, _)
        ) {
            transform_async_context(tcx, body);
        }

        // We also replace the resume argument and insert an `Assign`.
        // This is needed because the resume argument `_2` might be live across a `yield`, in which
        // case there is no `Assign` to it that the transform can turn into a store to the coroutine
        // state. After the yield the slot in the coroutine state would then be uninitialized.
        let resume_local = Local::new(2);
        let resume_ty = body.local_decls[resume_local].ty;
        let old_resume_local = replace_local(resume_local, resume_ty, body, tcx);

        // When first entering the coroutine, move the resume argument into its old local
        // (which is now a generator interior).
        let source_info = SourceInfo::outermost(body.span);
        let stmts = &mut body.basic_blocks_mut()[START_BLOCK].statements;
        stmts.insert(
            0,
            Statement {
                source_info,
                kind: StatementKind::Assign(Box::new((
                    old_resume_local.into(),
                    Rvalue::Use(Operand::Move(resume_local.into())),
                ))),
            },
        );

        let always_live_locals = always_storage_live_locals(body);

        let liveness_info =
            locals_live_across_suspend_points(tcx, body, &always_live_locals, movable);

        if tcx.sess.opts.unstable_opts.validate_mir {
            let mut vis = EnsureCoroutineFieldAssignmentsNeverAlias {
                assigned_local: None,
                saved_locals: &liveness_info.saved_locals,
                storage_conflicts: &liveness_info.storage_conflicts,
            };

            vis.visit_body(body);
        }

        // Extract locals which are live across suspension point into `layout`
        // `remap` gives a mapping from local indices onto coroutine struct indices
        // `storage_liveness` tells us which locals have live storage at suspension points
        let (remap, layout, storage_liveness) = compute_layout(liveness_info, body);

        let can_return = can_return(tcx, body, tcx.param_env(body.source.def_id()));

        // Run the transformation which converts Places from Local to coroutine struct
        // accesses for locals in `remap`.
        // It also rewrites `return x` and `yield y` as writing a new coroutine state and returning
        // either `CoroutineState::Complete(x)` and `CoroutineState::Yielded(y)`,
        // or `Poll::Ready(x)` and `Poll::Pending` respectively depending on the coroutine kind.
        let mut transform = TransformVisitor {
            tcx,
            coroutine_kind,
            remap,
            storage_liveness,
            always_live_locals,
            suspension_points: Vec::new(),
            old_ret_local,
            discr_ty,
            old_ret_ty,
            old_yield_ty,
        };
        transform.visit_body(body);

        // Update our MIR struct to reflect the changes we've made
        body.arg_count = 2; // self, resume arg
        body.spread_arg = None;

        // Remove the context argument within generator bodies.
        if matches!(coroutine_kind, CoroutineKind::Desugared(CoroutineDesugaring::Gen, _)) {
            transform_gen_context(body);
        }

        // The original arguments to the function are no longer arguments, mark them as such.
        // Otherwise they'll conflict with our new arguments, which although they don't have
        // argument_index set, will get emitted as unnamed arguments.
        for var in &mut body.var_debug_info {
            var.argument_index = None;
        }

        body.coroutine.as_mut().unwrap().yield_ty = None;
        body.coroutine.as_mut().unwrap().resume_ty = None;
        body.coroutine.as_mut().unwrap().coroutine_layout = Some(layout);

        // Insert `drop(coroutine_struct)` which is used to drop upvars for coroutines in
        // the unresumed state.
        // This is expanded to a drop ladder in `elaborate_coroutine_drops`.
        let drop_clean = insert_clean_drop(body);

        dump_mir(tcx, false, "coroutine_pre-elab", &0, body, |_, _| Ok(()));

        // Expand `drop(coroutine_struct)` to a drop ladder which destroys upvars.
        // If any upvars are moved out of, drop elaboration will handle upvar destruction.
        // However we need to also elaborate the code generated by `insert_clean_drop`.
        elaborate_coroutine_drops(tcx, body);

        dump_mir(tcx, false, "coroutine_post-transform", &0, body, |_, _| Ok(()));

        // Create a copy of our MIR and use it to create the drop shim for the coroutine
        let drop_shim = create_coroutine_drop_shim(tcx, &transform, coroutine_ty, body, drop_clean);

        body.coroutine.as_mut().unwrap().coroutine_drop = Some(drop_shim);

        // Create the Coroutine::resume / Future::poll function
        create_coroutine_resume_function(tcx, transform, body, can_return);

        // Run derefer to fix Derefs that are not in the first place
        deref_finder(tcx, body);
    }
}

/// Looks for any assignments between locals (e.g., `_4 = _5`) that will both be converted to fields
/// in the coroutine state machine but whose storage is not marked as conflicting
///
/// Validation needs to happen immediately *before* `TransformVisitor` is invoked, not after.
///
/// This condition would arise when the assignment is the last use of `_5` but the initial
/// definition of `_4` if we weren't extra careful to mark all locals used inside a statement as
/// conflicting. Non-conflicting coroutine saved locals may be stored at the same location within
/// the coroutine state machine, which would result in ill-formed MIR: the left-hand and right-hand
/// sides of an assignment may not alias. This caused a miscompilation in [#73137].
///
/// [#73137]: https://github.com/rust-lang/rust/issues/73137
struct EnsureCoroutineFieldAssignmentsNeverAlias<'a> {
    saved_locals: &'a CoroutineSavedLocals,
    storage_conflicts: &'a BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal>,
    assigned_local: Option<CoroutineSavedLocal>,
}

impl EnsureCoroutineFieldAssignmentsNeverAlias<'_> {
    fn saved_local_for_direct_place(&self, place: Place<'_>) -> Option<CoroutineSavedLocal> {
        if place.is_indirect() {
            return None;
        }

        self.saved_locals.get(place.local)
    }

    fn check_assigned_place(&mut self, place: Place<'_>, f: impl FnOnce(&mut Self)) {
        if let Some(assigned_local) = self.saved_local_for_direct_place(place) {
            assert!(self.assigned_local.is_none(), "`check_assigned_place` must not recurse");

            self.assigned_local = Some(assigned_local);
            f(self);
            self.assigned_local = None;
        }
    }
}

impl<'tcx> Visitor<'tcx> for EnsureCoroutineFieldAssignmentsNeverAlias<'_> {
    fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) {
        let Some(lhs) = self.assigned_local else {
            // This visitor only invokes `visit_place` for the right-hand side of an assignment
            // and only after setting `self.assigned_local`. However, the default impl of
            // `Visitor::super_body` may call `visit_place` with a `NonUseContext` for places
            // with debuginfo. Ignore them here.
            assert!(!context.is_use());
            return;
        };

        let Some(rhs) = self.saved_local_for_direct_place(*place) else { return };

        if !self.storage_conflicts.contains(lhs, rhs) {
            bug!(
                "Assignment between coroutine saved locals whose storage is not \
                    marked as conflicting: {:?}: {:?} = {:?}",
                location,
                lhs,
                rhs,
            );
        }
    }

    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        match &statement.kind {
            StatementKind::Assign(box (lhs, rhs)) => {
                self.check_assigned_place(*lhs, |this| this.visit_rvalue(rhs, location));
            }

            StatementKind::FakeRead(..)
            | StatementKind::SetDiscriminant { .. }
            | StatementKind::Deinit(..)
            | StatementKind::StorageLive(_)
            | StatementKind::StorageDead(_)
            | StatementKind::Retag(..)
            | StatementKind::AscribeUserType(..)
            | StatementKind::PlaceMention(..)
            | StatementKind::Coverage(..)
            | StatementKind::Intrinsic(..)
            | StatementKind::ConstEvalCounter
            | StatementKind::Nop => {}
        }
    }

    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
        // Checking for aliasing in terminators is probably overkill, but until we have actual
        // semantics, we should be conservative here.
        match &terminator.kind {
            TerminatorKind::Call {
                func,
                args,
                destination,
                target: Some(_),
                unwind: _,
                call_source: _,
                fn_span: _,
            } => {
                self.check_assigned_place(*destination, |this| {
                    this.visit_operand(func, location);
                    for arg in args {
                        this.visit_operand(&arg.node, location);
                    }
                });
            }

            TerminatorKind::Yield { value, resume: _, resume_arg, drop: _ } => {
                self.check_assigned_place(*resume_arg, |this| this.visit_operand(value, location));
            }

            // FIXME: Does `asm!` have any aliasing requirements?
            TerminatorKind::InlineAsm { .. } => {}

            TerminatorKind::Call { .. }
            | TerminatorKind::Goto { .. }
            | TerminatorKind::SwitchInt { .. }
            | TerminatorKind::UnwindResume
            | TerminatorKind::UnwindTerminate(_)
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Drop { .. }
            | TerminatorKind::Assert { .. }
            | TerminatorKind::CoroutineDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. } => {}
        }
    }
}

fn check_suspend_tys<'tcx>(tcx: TyCtxt<'tcx>, layout: &CoroutineLayout<'tcx>, body: &Body<'tcx>) {
    let mut linted_tys = FxHashSet::default();

    // We want a user-facing param-env.
    let param_env = tcx.param_env(body.source.def_id());

    for (variant, yield_source_info) in
        layout.variant_fields.iter().zip(&layout.variant_source_info)
    {
        debug!(?variant);
        for &local in variant {
            let decl = &layout.field_tys[local];
            debug!(?decl);

            if !decl.ignore_for_traits && linted_tys.insert(decl.ty) {
                let Some(hir_id) = decl.source_info.scope.lint_root(&body.source_scopes) else {
                    continue;
                };

                check_must_not_suspend_ty(
                    tcx,
                    decl.ty,
                    hir_id,
                    param_env,
                    SuspendCheckData {
                        source_span: decl.source_info.span,
                        yield_span: yield_source_info.span,
                        plural_len: 1,
                        ..Default::default()
                    },
                );
            }
        }
    }
}

#[derive(Default)]
struct SuspendCheckData<'a> {
    source_span: Span,
    yield_span: Span,
    descr_pre: &'a str,
    descr_post: &'a str,
    plural_len: usize,
}

// Returns whether it emitted a diagnostic or not
// Note that this fn and the proceeding one are based on the code
// for creating must_use diagnostics
//
// Note that this technique was chosen over things like a `Suspend` marker trait
// as it is simpler and has precedent in the compiler
fn check_must_not_suspend_ty<'tcx>(
    tcx: TyCtxt<'tcx>,
    ty: Ty<'tcx>,
    hir_id: hir::HirId,
    param_env: ty::ParamEnv<'tcx>,
    data: SuspendCheckData<'_>,
) -> bool {
    if ty.is_unit() {
        return false;
    }

    let plural_suffix = pluralize!(data.plural_len);

    debug!("Checking must_not_suspend for {}", ty);

    match *ty.kind() {
        ty::Adt(_, args) if ty.is_box() => {
            let boxed_ty = args.type_at(0);
            let allocator_ty = args.type_at(1);
            check_must_not_suspend_ty(
                tcx,
                boxed_ty,
                hir_id,
                param_env,
                SuspendCheckData { descr_pre: &format!("{}boxed ", data.descr_pre), ..data },
            ) || check_must_not_suspend_ty(
                tcx,
                allocator_ty,
                hir_id,
                param_env,
                SuspendCheckData { descr_pre: &format!("{}allocator ", data.descr_pre), ..data },
            )
        }
        ty::Adt(def, _) => check_must_not_suspend_def(tcx, def.did(), hir_id, data),
        // FIXME: support adding the attribute to TAITs
        ty::Alias(ty::Opaque, ty::AliasTy { def_id: def, .. }) => {
            let mut has_emitted = false;
            for &(predicate, _) in tcx.explicit_item_bounds(def).skip_binder() {
                // We only look at the `DefId`, so it is safe to skip the binder here.
                if let ty::ClauseKind::Trait(ref poly_trait_predicate) =
                    predicate.kind().skip_binder()
                {
                    let def_id = poly_trait_predicate.trait_ref.def_id;
                    let descr_pre = &format!("{}implementer{} of ", data.descr_pre, plural_suffix);
                    if check_must_not_suspend_def(
                        tcx,
                        def_id,
                        hir_id,
                        SuspendCheckData { descr_pre, ..data },
                    ) {
                        has_emitted = true;
                        break;
                    }
                }
            }
            has_emitted
        }
        ty::Dynamic(binder, _, _) => {
            let mut has_emitted = false;
            for predicate in binder.iter() {
                if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() {
                    let def_id = trait_ref.def_id;
                    let descr_post = &format!(" trait object{}{}", plural_suffix, data.descr_post);
                    if check_must_not_suspend_def(
                        tcx,
                        def_id,
                        hir_id,
                        SuspendCheckData { descr_post, ..data },
                    ) {
                        has_emitted = true;
                        break;
                    }
                }
            }
            has_emitted
        }
        ty::Tuple(fields) => {
            let mut has_emitted = false;
            for (i, ty) in fields.iter().enumerate() {
                let descr_post = &format!(" in tuple element {i}");
                if check_must_not_suspend_ty(
                    tcx,
                    ty,
                    hir_id,
                    param_env,
                    SuspendCheckData { descr_post, ..data },
                ) {
                    has_emitted = true;
                }
            }
            has_emitted
        }
        ty::Array(ty, len) => {
            let descr_pre = &format!("{}array{} of ", data.descr_pre, plural_suffix);
            check_must_not_suspend_ty(
                tcx,
                ty,
                hir_id,
                param_env,
                SuspendCheckData {
                    descr_pre,
                    plural_len: len.try_eval_target_usize(tcx, param_env).unwrap_or(0) as usize + 1,
                    ..data
                },
            )
        }
        // If drop tracking is enabled, we want to look through references, since the referent
        // may not be considered live across the await point.
        ty::Ref(_region, ty, _mutability) => {
            let descr_pre = &format!("{}reference{} to ", data.descr_pre, plural_suffix);
            check_must_not_suspend_ty(
                tcx,
                ty,
                hir_id,
                param_env,
                SuspendCheckData { descr_pre, ..data },
            )
        }
        _ => false,
    }
}

fn check_must_not_suspend_def(
    tcx: TyCtxt<'_>,
    def_id: DefId,
    hir_id: hir::HirId,
    data: SuspendCheckData<'_>,
) -> bool {
    if let Some(attr) = tcx.get_attr(def_id, sym::must_not_suspend) {
        let reason = attr.value_str().map(|s| errors::MustNotSuspendReason {
            span: data.source_span,
            reason: s.as_str().to_string(),
        });
        tcx.emit_node_span_lint(
            rustc_session::lint::builtin::MUST_NOT_SUSPEND,
            hir_id,
            data.source_span,
            errors::MustNotSupend {
                tcx,
                yield_sp: data.yield_span,
                reason,
                src_sp: data.source_span,
                pre: data.descr_pre,
                def_id,
                post: data.descr_post,
            },
        );

        true
    } else {
        false
    }
}