rustc_mir_transform/
coroutine.rs

1//! This is the implementation of the pass which transforms coroutines into state machines.
2//!
3//! MIR generation for coroutines creates a function which has a self argument which
4//! passes by value. This argument is effectively a coroutine type which only contains upvars and
5//! is only used for this argument inside the MIR for the coroutine.
6//! It is passed by value to enable upvars to be moved out of it. Drop elaboration runs on that
7//! MIR before this pass and creates drop flags for MIR locals.
8//! It will also drop the coroutine argument (which only consists of upvars) if any of the upvars
9//! are moved out of. This pass elaborates the drops of upvars / coroutine argument in the case
10//! that none of the upvars were moved out of. This is because we cannot have any drops of this
11//! coroutine in the MIR, since it is used to create the drop glue for the coroutine. We'd get
12//! infinite recursion otherwise.
13//!
14//! This pass creates the implementation for either the `Coroutine::resume` or `Future::poll`
15//! function and the drop shim for the coroutine based on the MIR input.
16//! It converts the coroutine argument from Self to &mut Self adding derefs in the MIR as needed.
17//! It computes the final layout of the coroutine struct which looks like this:
18//!     First upvars are stored
19//!     It is followed by the coroutine state field.
20//!     Then finally the MIR locals which are live across a suspension point are stored.
21//!     ```ignore (illustrative)
22//!     struct Coroutine {
23//!         upvars...,
24//!         state: u32,
25//!         mir_locals...,
26//!     }
27//!     ```
28//! This pass computes the meaning of the state field and the MIR locals which are live
29//! across a suspension point. There are however three hardcoded coroutine states:
30//!     0 - Coroutine have not been resumed yet
31//!     1 - Coroutine has returned / is completed
32//!     2 - Coroutine has been poisoned
33//!
34//! It also rewrites `return x` and `yield y` as setting a new coroutine state and returning
35//! `CoroutineState::Complete(x)` and `CoroutineState::Yielded(y)`,
36//! or `Poll::Ready(x)` and `Poll::Pending` respectively.
37//! MIR locals which are live across a suspension point are moved to the coroutine struct
38//! with references to them being updated with references to the coroutine struct.
39//!
40//! The pass creates two functions which have a switch on the coroutine state giving
41//! the action to take.
42//!
43//! One of them is the implementation of `Coroutine::resume` / `Future::poll`.
44//! For coroutines with state 0 (unresumed) it starts the execution of the coroutine.
45//! For coroutines with state 1 (returned) and state 2 (poisoned) it panics.
46//! Otherwise it continues the execution from the last suspension point.
47//!
48//! The other function is the drop glue for the coroutine.
49//! For coroutines with state 0 (unresumed) it drops the upvars of the coroutine.
50//! For coroutines with state 1 (returned) and state 2 (poisoned) it does nothing.
51//! Otherwise it drops all the values in scope at the last suspension point.
52
53mod by_move_body;
54use std::{iter, ops};
55
56pub(super) use by_move_body::coroutine_by_move_body_def_id;
57use rustc_abi::{FieldIdx, VariantIdx};
58use rustc_data_structures::fx::FxHashSet;
59use rustc_errors::pluralize;
60use rustc_hir as hir;
61use rustc_hir::lang_items::LangItem;
62use rustc_hir::{CoroutineDesugaring, CoroutineKind};
63use rustc_index::bit_set::{BitMatrix, DenseBitSet, GrowableBitSet};
64use rustc_index::{Idx, IndexVec};
65use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
66use rustc_middle::mir::*;
67use rustc_middle::ty::{
68    self, CoroutineArgs, CoroutineArgsExt, GenericArgsRef, InstanceKind, Ty, TyCtxt, TypingMode,
69};
70use rustc_middle::{bug, span_bug};
71use rustc_mir_dataflow::impls::{
72    MaybeBorrowedLocals, MaybeLiveLocals, MaybeRequiresStorage, MaybeStorageLive,
73    always_storage_live_locals,
74};
75use rustc_mir_dataflow::{Analysis, Results, ResultsVisitor};
76use rustc_span::def_id::{DefId, LocalDefId};
77use rustc_span::{Span, sym};
78use rustc_target::spec::PanicStrategy;
79use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
80use rustc_trait_selection::infer::TyCtxtInferExt as _;
81use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode, ObligationCtxt};
82use tracing::{debug, instrument, trace};
83
84use crate::deref_separator::deref_finder;
85use crate::{abort_unwinding_calls, errors, pass_manager as pm, simplify};
86
87pub(super) struct StateTransform;
88
89struct RenameLocalVisitor<'tcx> {
90    from: Local,
91    to: Local,
92    tcx: TyCtxt<'tcx>,
93}
94
95impl<'tcx> MutVisitor<'tcx> for RenameLocalVisitor<'tcx> {
96    fn tcx(&self) -> TyCtxt<'tcx> {
97        self.tcx
98    }
99
100    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
101        if *local == self.from {
102            *local = self.to;
103        }
104    }
105
106    fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
107        match terminator.kind {
108            TerminatorKind::Return => {
109                // Do not replace the implicit `_0` access here, as that's not possible. The
110                // transform already handles `return` correctly.
111            }
112            _ => self.super_terminator(terminator, location),
113        }
114    }
115}
116
117struct SelfArgVisitor<'tcx> {
118    tcx: TyCtxt<'tcx>,
119    new_base: Place<'tcx>,
120}
121
122impl<'tcx> SelfArgVisitor<'tcx> {
123    fn new(tcx: TyCtxt<'tcx>, elem: ProjectionElem<Local, Ty<'tcx>>) -> Self {
124        Self { tcx, new_base: Place { local: SELF_ARG, projection: tcx.mk_place_elems(&[elem]) } }
125    }
126}
127
128impl<'tcx> MutVisitor<'tcx> for SelfArgVisitor<'tcx> {
129    fn tcx(&self) -> TyCtxt<'tcx> {
130        self.tcx
131    }
132
133    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
134        assert_ne!(*local, SELF_ARG);
135    }
136
137    fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
138        if place.local == SELF_ARG {
139            replace_base(place, self.new_base, self.tcx);
140        } else {
141            self.visit_local(&mut place.local, context, location);
142
143            for elem in place.projection.iter() {
144                if let PlaceElem::Index(local) = elem {
145                    assert_ne!(local, SELF_ARG);
146                }
147            }
148        }
149    }
150}
151
152fn replace_base<'tcx>(place: &mut Place<'tcx>, new_base: Place<'tcx>, tcx: TyCtxt<'tcx>) {
153    place.local = new_base.local;
154
155    let mut new_projection = new_base.projection.to_vec();
156    new_projection.append(&mut place.projection.to_vec());
157
158    place.projection = tcx.mk_place_elems(&new_projection);
159}
160
161const SELF_ARG: Local = Local::from_u32(1);
162
163/// A `yield` point in the coroutine.
164struct SuspensionPoint<'tcx> {
165    /// State discriminant used when suspending or resuming at this point.
166    state: usize,
167    /// The block to jump to after resumption.
168    resume: BasicBlock,
169    /// Where to move the resume argument after resumption.
170    resume_arg: Place<'tcx>,
171    /// Which block to jump to if the coroutine is dropped in this state.
172    drop: Option<BasicBlock>,
173    /// Set of locals that have live storage while at this suspension point.
174    storage_liveness: GrowableBitSet<Local>,
175}
176
177struct TransformVisitor<'tcx> {
178    tcx: TyCtxt<'tcx>,
179    coroutine_kind: hir::CoroutineKind,
180
181    // The type of the discriminant in the coroutine struct
182    discr_ty: Ty<'tcx>,
183
184    // Mapping from Local to (type of local, coroutine struct index)
185    remap: IndexVec<Local, Option<(Ty<'tcx>, VariantIdx, FieldIdx)>>,
186
187    // A map from a suspension point in a block to the locals which have live storage at that point
188    storage_liveness: IndexVec<BasicBlock, Option<DenseBitSet<Local>>>,
189
190    // A list of suspension points, generated during the transform
191    suspension_points: Vec<SuspensionPoint<'tcx>>,
192
193    // The set of locals that have no `StorageLive`/`StorageDead` annotations.
194    always_live_locals: DenseBitSet<Local>,
195
196    // The original RETURN_PLACE local
197    old_ret_local: Local,
198
199    old_yield_ty: Ty<'tcx>,
200
201    old_ret_ty: Ty<'tcx>,
202}
203
204impl<'tcx> TransformVisitor<'tcx> {
205    fn insert_none_ret_block(&self, body: &mut Body<'tcx>) -> BasicBlock {
206        let block = BasicBlock::new(body.basic_blocks.len());
207        let source_info = SourceInfo::outermost(body.span);
208
209        let none_value = match self.coroutine_kind {
210            CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
211                span_bug!(body.span, "`Future`s are not fused inherently")
212            }
213            CoroutineKind::Coroutine(_) => span_bug!(body.span, "`Coroutine`s cannot be fused"),
214            // `gen` continues return `None`
215            CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
216                let option_def_id = self.tcx.require_lang_item(LangItem::Option, None);
217                make_aggregate_adt(
218                    option_def_id,
219                    VariantIdx::ZERO,
220                    self.tcx.mk_args(&[self.old_yield_ty.into()]),
221                    IndexVec::new(),
222                )
223            }
224            // `async gen` continues to return `Poll::Ready(None)`
225            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => {
226                let ty::Adt(_poll_adt, args) = *self.old_yield_ty.kind() else { bug!() };
227                let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else { bug!() };
228                let yield_ty = args.type_at(0);
229                Rvalue::Use(Operand::Constant(Box::new(ConstOperand {
230                    span: source_info.span,
231                    const_: Const::Unevaluated(
232                        UnevaluatedConst::new(
233                            self.tcx.require_lang_item(LangItem::AsyncGenFinished, None),
234                            self.tcx.mk_args(&[yield_ty.into()]),
235                        ),
236                        self.old_yield_ty,
237                    ),
238                    user_ty: None,
239                })))
240            }
241        };
242
243        let statements = vec![Statement {
244            kind: StatementKind::Assign(Box::new((Place::return_place(), none_value))),
245            source_info,
246        }];
247
248        body.basic_blocks_mut().push(BasicBlockData {
249            statements,
250            terminator: Some(Terminator { source_info, kind: TerminatorKind::Return }),
251            is_cleanup: false,
252        });
253
254        block
255    }
256
257    // Make a `CoroutineState` or `Poll` variant assignment.
258    //
259    // `core::ops::CoroutineState` only has single element tuple variants,
260    // so we can just write to the downcasted first field and then set the
261    // discriminant to the appropriate variant.
262    fn make_state(
263        &self,
264        val: Operand<'tcx>,
265        source_info: SourceInfo,
266        is_return: bool,
267        statements: &mut Vec<Statement<'tcx>>,
268    ) {
269        const ZERO: VariantIdx = VariantIdx::ZERO;
270        const ONE: VariantIdx = VariantIdx::from_usize(1);
271        let rvalue = match self.coroutine_kind {
272            CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
273                let poll_def_id = self.tcx.require_lang_item(LangItem::Poll, None);
274                let args = self.tcx.mk_args(&[self.old_ret_ty.into()]);
275                let (variant_idx, operands) = if is_return {
276                    (ZERO, IndexVec::from_raw(vec![val])) // Poll::Ready(val)
277                } else {
278                    (ONE, IndexVec::new()) // Poll::Pending
279                };
280                make_aggregate_adt(poll_def_id, variant_idx, args, operands)
281            }
282            CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
283                let option_def_id = self.tcx.require_lang_item(LangItem::Option, None);
284                let args = self.tcx.mk_args(&[self.old_yield_ty.into()]);
285                let (variant_idx, operands) = if is_return {
286                    (ZERO, IndexVec::new()) // None
287                } else {
288                    (ONE, IndexVec::from_raw(vec![val])) // Some(val)
289                };
290                make_aggregate_adt(option_def_id, variant_idx, args, operands)
291            }
292            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => {
293                if is_return {
294                    let ty::Adt(_poll_adt, args) = *self.old_yield_ty.kind() else { bug!() };
295                    let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else { bug!() };
296                    let yield_ty = args.type_at(0);
297                    Rvalue::Use(Operand::Constant(Box::new(ConstOperand {
298                        span: source_info.span,
299                        const_: Const::Unevaluated(
300                            UnevaluatedConst::new(
301                                self.tcx.require_lang_item(LangItem::AsyncGenFinished, None),
302                                self.tcx.mk_args(&[yield_ty.into()]),
303                            ),
304                            self.old_yield_ty,
305                        ),
306                        user_ty: None,
307                    })))
308                } else {
309                    Rvalue::Use(val)
310                }
311            }
312            CoroutineKind::Coroutine(_) => {
313                let coroutine_state_def_id =
314                    self.tcx.require_lang_item(LangItem::CoroutineState, None);
315                let args = self.tcx.mk_args(&[self.old_yield_ty.into(), self.old_ret_ty.into()]);
316                let variant_idx = if is_return {
317                    ONE // CoroutineState::Complete(val)
318                } else {
319                    ZERO // CoroutineState::Yielded(val)
320                };
321                make_aggregate_adt(
322                    coroutine_state_def_id,
323                    variant_idx,
324                    args,
325                    IndexVec::from_raw(vec![val]),
326                )
327            }
328        };
329
330        statements.push(Statement {
331            kind: StatementKind::Assign(Box::new((Place::return_place(), rvalue))),
332            source_info,
333        });
334    }
335
336    // Create a Place referencing a coroutine struct field
337    fn make_field(&self, variant_index: VariantIdx, idx: FieldIdx, ty: Ty<'tcx>) -> Place<'tcx> {
338        let self_place = Place::from(SELF_ARG);
339        let base = self.tcx.mk_place_downcast_unnamed(self_place, variant_index);
340        let mut projection = base.projection.to_vec();
341        projection.push(ProjectionElem::Field(idx, ty));
342
343        Place { local: base.local, projection: self.tcx.mk_place_elems(&projection) }
344    }
345
346    // Create a statement which changes the discriminant
347    fn set_discr(&self, state_disc: VariantIdx, source_info: SourceInfo) -> Statement<'tcx> {
348        let self_place = Place::from(SELF_ARG);
349        Statement {
350            source_info,
351            kind: StatementKind::SetDiscriminant {
352                place: Box::new(self_place),
353                variant_index: state_disc,
354            },
355        }
356    }
357
358    // Create a statement which reads the discriminant into a temporary
359    fn get_discr(&self, body: &mut Body<'tcx>) -> (Statement<'tcx>, Place<'tcx>) {
360        let temp_decl = LocalDecl::new(self.discr_ty, body.span);
361        let local_decls_len = body.local_decls.push(temp_decl);
362        let temp = Place::from(local_decls_len);
363
364        let self_place = Place::from(SELF_ARG);
365        let assign = Statement {
366            source_info: SourceInfo::outermost(body.span),
367            kind: StatementKind::Assign(Box::new((temp, Rvalue::Discriminant(self_place)))),
368        };
369        (assign, temp)
370    }
371}
372
373impl<'tcx> MutVisitor<'tcx> for TransformVisitor<'tcx> {
374    fn tcx(&self) -> TyCtxt<'tcx> {
375        self.tcx
376    }
377
378    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
379        assert!(!self.remap.contains(*local));
380    }
381
382    fn visit_place(
383        &mut self,
384        place: &mut Place<'tcx>,
385        _context: PlaceContext,
386        _location: Location,
387    ) {
388        // Replace an Local in the remap with a coroutine struct access
389        if let Some(&Some((ty, variant_index, idx))) = self.remap.get(place.local) {
390            replace_base(place, self.make_field(variant_index, idx, ty), self.tcx);
391        }
392    }
393
394    fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) {
395        // Remove StorageLive and StorageDead statements for remapped locals
396        for s in &mut data.statements {
397            if let StatementKind::StorageLive(l) | StatementKind::StorageDead(l) = s.kind
398                && self.remap.contains(l)
399            {
400                s.make_nop();
401            }
402        }
403
404        let ret_val = match data.terminator().kind {
405            TerminatorKind::Return => {
406                Some((true, None, Operand::Move(Place::from(self.old_ret_local)), None))
407            }
408            TerminatorKind::Yield { ref value, resume, resume_arg, drop } => {
409                Some((false, Some((resume, resume_arg)), value.clone(), drop))
410            }
411            _ => None,
412        };
413
414        if let Some((is_return, resume, v, drop)) = ret_val {
415            let source_info = data.terminator().source_info;
416            // We must assign the value first in case it gets declared dead below
417            self.make_state(v, source_info, is_return, &mut data.statements);
418            let state = if let Some((resume, mut resume_arg)) = resume {
419                // Yield
420                let state = CoroutineArgs::RESERVED_VARIANTS + self.suspension_points.len();
421
422                // The resume arg target location might itself be remapped if its base local is
423                // live across a yield.
424                if let Some(&Some((ty, variant, idx))) = self.remap.get(resume_arg.local) {
425                    replace_base(&mut resume_arg, self.make_field(variant, idx, ty), self.tcx);
426                }
427
428                let storage_liveness: GrowableBitSet<Local> =
429                    self.storage_liveness[block].clone().unwrap().into();
430
431                for i in 0..self.always_live_locals.domain_size() {
432                    let l = Local::new(i);
433                    let needs_storage_dead = storage_liveness.contains(l)
434                        && !self.remap.contains(l)
435                        && !self.always_live_locals.contains(l);
436                    if needs_storage_dead {
437                        data.statements
438                            .push(Statement { source_info, kind: StatementKind::StorageDead(l) });
439                    }
440                }
441
442                self.suspension_points.push(SuspensionPoint {
443                    state,
444                    resume,
445                    resume_arg,
446                    drop,
447                    storage_liveness,
448                });
449
450                VariantIdx::new(state)
451            } else {
452                // Return
453                VariantIdx::new(CoroutineArgs::RETURNED) // state for returned
454            };
455            data.statements.push(self.set_discr(state, source_info));
456            data.terminator_mut().kind = TerminatorKind::Return;
457        }
458
459        self.super_basic_block_data(block, data);
460    }
461}
462
463fn make_aggregate_adt<'tcx>(
464    def_id: DefId,
465    variant_idx: VariantIdx,
466    args: GenericArgsRef<'tcx>,
467    operands: IndexVec<FieldIdx, Operand<'tcx>>,
468) -> Rvalue<'tcx> {
469    Rvalue::Aggregate(Box::new(AggregateKind::Adt(def_id, variant_idx, args, None, None)), operands)
470}
471
472fn make_coroutine_state_argument_indirect<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
473    let coroutine_ty = body.local_decls.raw[1].ty;
474
475    let ref_coroutine_ty = Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, coroutine_ty);
476
477    // Replace the by value coroutine argument
478    body.local_decls.raw[1].ty = ref_coroutine_ty;
479
480    // Add a deref to accesses of the coroutine state
481    SelfArgVisitor::new(tcx, ProjectionElem::Deref).visit_body(body);
482}
483
484fn make_coroutine_state_argument_pinned<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
485    let ref_coroutine_ty = body.local_decls.raw[1].ty;
486
487    let pin_did = tcx.require_lang_item(LangItem::Pin, Some(body.span));
488    let pin_adt_ref = tcx.adt_def(pin_did);
489    let args = tcx.mk_args(&[ref_coroutine_ty.into()]);
490    let pin_ref_coroutine_ty = Ty::new_adt(tcx, pin_adt_ref, args);
491
492    // Replace the by ref coroutine argument
493    body.local_decls.raw[1].ty = pin_ref_coroutine_ty;
494
495    // Add the Pin field access to accesses of the coroutine state
496    SelfArgVisitor::new(tcx, ProjectionElem::Field(FieldIdx::ZERO, ref_coroutine_ty))
497        .visit_body(body);
498}
499
500/// Allocates a new local and replaces all references of `local` with it. Returns the new local.
501///
502/// `local` will be changed to a new local decl with type `ty`.
503///
504/// Note that the new local will be uninitialized. It is the caller's responsibility to assign some
505/// valid value to it before its first use.
506fn replace_local<'tcx>(
507    local: Local,
508    ty: Ty<'tcx>,
509    body: &mut Body<'tcx>,
510    tcx: TyCtxt<'tcx>,
511) -> Local {
512    let new_decl = LocalDecl::new(ty, body.span);
513    let new_local = body.local_decls.push(new_decl);
514    body.local_decls.swap(local, new_local);
515
516    RenameLocalVisitor { from: local, to: new_local, tcx }.visit_body(body);
517
518    new_local
519}
520
521/// Transforms the `body` of the coroutine applying the following transforms:
522///
523/// - Eliminates all the `get_context` calls that async lowering created.
524/// - Replace all `Local` `ResumeTy` types with `&mut Context<'_>` (`context_mut_ref`).
525///
526/// The `Local`s that have their types replaced are:
527/// - The `resume` argument itself.
528/// - The argument to `get_context`.
529/// - The yielded value of a `yield`.
530///
531/// The `ResumeTy` hides a `&mut Context<'_>` behind an unsafe raw pointer, and the
532/// `get_context` function is being used to convert that back to a `&mut Context<'_>`.
533///
534/// Ideally the async lowering would not use the `ResumeTy`/`get_context` indirection,
535/// but rather directly use `&mut Context<'_>`, however that would currently
536/// lead to higher-kinded lifetime errors.
537/// See <https://github.com/rust-lang/rust/issues/105501>.
538///
539/// The async lowering step and the type / lifetime inference / checking are
540/// still using the `ResumeTy` indirection for the time being, and that indirection
541/// is removed here. After this transform, the coroutine body only knows about `&mut Context<'_>`.
542fn transform_async_context<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
543    let context_mut_ref = Ty::new_task_context(tcx);
544
545    // replace the type of the `resume` argument
546    replace_resume_ty_local(tcx, body, Local::new(2), context_mut_ref);
547
548    let get_context_def_id = tcx.require_lang_item(LangItem::GetContext, None);
549
550    for bb in START_BLOCK..body.basic_blocks.next_index() {
551        let bb_data = &body[bb];
552        if bb_data.is_cleanup {
553            continue;
554        }
555
556        match &bb_data.terminator().kind {
557            TerminatorKind::Call { func, .. } => {
558                let func_ty = func.ty(body, tcx);
559                if let ty::FnDef(def_id, _) = *func_ty.kind() {
560                    if def_id == get_context_def_id {
561                        let local = eliminate_get_context_call(&mut body[bb]);
562                        replace_resume_ty_local(tcx, body, local, context_mut_ref);
563                    }
564                }
565            }
566            TerminatorKind::Yield { resume_arg, .. } => {
567                replace_resume_ty_local(tcx, body, resume_arg.local, context_mut_ref);
568            }
569            _ => {}
570        }
571    }
572}
573
574fn eliminate_get_context_call<'tcx>(bb_data: &mut BasicBlockData<'tcx>) -> Local {
575    let terminator = bb_data.terminator.take().unwrap();
576    let TerminatorKind::Call { args, destination, target, .. } = terminator.kind else {
577        bug!();
578    };
579    let [arg] = *Box::try_from(args).unwrap();
580    let local = arg.node.place().unwrap().local;
581
582    let arg = Rvalue::Use(arg.node);
583    let assign = Statement {
584        source_info: terminator.source_info,
585        kind: StatementKind::Assign(Box::new((destination, arg))),
586    };
587    bb_data.statements.push(assign);
588    bb_data.terminator = Some(Terminator {
589        source_info: terminator.source_info,
590        kind: TerminatorKind::Goto { target: target.unwrap() },
591    });
592    local
593}
594
595#[cfg_attr(not(debug_assertions), allow(unused))]
596fn replace_resume_ty_local<'tcx>(
597    tcx: TyCtxt<'tcx>,
598    body: &mut Body<'tcx>,
599    local: Local,
600    context_mut_ref: Ty<'tcx>,
601) {
602    let local_ty = std::mem::replace(&mut body.local_decls[local].ty, context_mut_ref);
603    // We have to replace the `ResumeTy` that is used for type and borrow checking
604    // with `&mut Context<'_>` in MIR.
605    #[cfg(debug_assertions)]
606    {
607        if let ty::Adt(resume_ty_adt, _) = local_ty.kind() {
608            let expected_adt = tcx.adt_def(tcx.require_lang_item(LangItem::ResumeTy, None));
609            assert_eq!(*resume_ty_adt, expected_adt);
610        } else {
611            panic!("expected `ResumeTy`, found `{:?}`", local_ty);
612        };
613    }
614}
615
616/// Transforms the `body` of the coroutine applying the following transform:
617///
618/// - Remove the `resume` argument.
619///
620/// Ideally the async lowering would not add the `resume` argument.
621///
622/// The async lowering step and the type / lifetime inference / checking are
623/// still using the `resume` argument for the time being. After this transform,
624/// the coroutine body doesn't have the `resume` argument.
625fn transform_gen_context<'tcx>(body: &mut Body<'tcx>) {
626    // This leaves the local representing the `resume` argument in place,
627    // but turns it into a regular local variable. This is cheaper than
628    // adjusting all local references in the body after removing it.
629    body.arg_count = 1;
630}
631
632struct LivenessInfo {
633    /// Which locals are live across any suspension point.
634    saved_locals: CoroutineSavedLocals,
635
636    /// The set of saved locals live at each suspension point.
637    live_locals_at_suspension_points: Vec<DenseBitSet<CoroutineSavedLocal>>,
638
639    /// Parallel vec to the above with SourceInfo for each yield terminator.
640    source_info_at_suspension_points: Vec<SourceInfo>,
641
642    /// For every saved local, the set of other saved locals that are
643    /// storage-live at the same time as this local. We cannot overlap locals in
644    /// the layout which have conflicting storage.
645    storage_conflicts: BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal>,
646
647    /// For every suspending block, the locals which are storage-live across
648    /// that suspension point.
649    storage_liveness: IndexVec<BasicBlock, Option<DenseBitSet<Local>>>,
650}
651
652/// Computes which locals have to be stored in the state-machine for the
653/// given coroutine.
654///
655/// The basic idea is as follows:
656/// - a local is live until we encounter a `StorageDead` statement. In
657///   case none exist, the local is considered to be always live.
658/// - a local has to be stored if it is either directly used after the
659///   the suspend point, or if it is live and has been previously borrowed.
660fn locals_live_across_suspend_points<'tcx>(
661    tcx: TyCtxt<'tcx>,
662    body: &Body<'tcx>,
663    always_live_locals: &DenseBitSet<Local>,
664    movable: bool,
665) -> LivenessInfo {
666    // Calculate when MIR locals have live storage. This gives us an upper bound of their
667    // lifetimes.
668    let mut storage_live = MaybeStorageLive::new(std::borrow::Cow::Borrowed(always_live_locals))
669        .iterate_to_fixpoint(tcx, body, None)
670        .into_results_cursor(body);
671
672    // Calculate the MIR locals which have been previously
673    // borrowed (even if they are still active).
674    let borrowed_locals_results =
675        MaybeBorrowedLocals.iterate_to_fixpoint(tcx, body, Some("coroutine"));
676
677    let mut borrowed_locals_cursor = borrowed_locals_results.clone().into_results_cursor(body);
678
679    // Calculate the MIR locals that we need to keep storage around for.
680    let mut requires_storage_results =
681        MaybeRequiresStorage::new(borrowed_locals_results.into_results_cursor(body))
682            .iterate_to_fixpoint(tcx, body, None);
683    let mut requires_storage_cursor = requires_storage_results.as_results_cursor(body);
684
685    // Calculate the liveness of MIR locals ignoring borrows.
686    let mut liveness =
687        MaybeLiveLocals.iterate_to_fixpoint(tcx, body, Some("coroutine")).into_results_cursor(body);
688
689    let mut storage_liveness_map = IndexVec::from_elem(None, &body.basic_blocks);
690    let mut live_locals_at_suspension_points = Vec::new();
691    let mut source_info_at_suspension_points = Vec::new();
692    let mut live_locals_at_any_suspension_point = DenseBitSet::new_empty(body.local_decls.len());
693
694    for (block, data) in body.basic_blocks.iter_enumerated() {
695        if let TerminatorKind::Yield { .. } = data.terminator().kind {
696            let loc = Location { block, statement_index: data.statements.len() };
697
698            liveness.seek_to_block_end(block);
699            let mut live_locals = liveness.get().clone();
700
701            if !movable {
702                // The `liveness` variable contains the liveness of MIR locals ignoring borrows.
703                // This is correct for movable coroutines since borrows cannot live across
704                // suspension points. However for immovable coroutines we need to account for
705                // borrows, so we conservatively assume that all borrowed locals are live until
706                // we find a StorageDead statement referencing the locals.
707                // To do this we just union our `liveness` result with `borrowed_locals`, which
708                // contains all the locals which has been borrowed before this suspension point.
709                // If a borrow is converted to a raw reference, we must also assume that it lives
710                // forever. Note that the final liveness is still bounded by the storage liveness
711                // of the local, which happens using the `intersect` operation below.
712                borrowed_locals_cursor.seek_before_primary_effect(loc);
713                live_locals.union(borrowed_locals_cursor.get());
714            }
715
716            // Store the storage liveness for later use so we can restore the state
717            // after a suspension point
718            storage_live.seek_before_primary_effect(loc);
719            storage_liveness_map[block] = Some(storage_live.get().clone());
720
721            // Locals live are live at this point only if they are used across
722            // suspension points (the `liveness` variable)
723            // and their storage is required (the `storage_required` variable)
724            requires_storage_cursor.seek_before_primary_effect(loc);
725            live_locals.intersect(requires_storage_cursor.get());
726
727            // The coroutine argument is ignored.
728            live_locals.remove(SELF_ARG);
729
730            debug!("loc = {:?}, live_locals = {:?}", loc, live_locals);
731
732            // Add the locals live at this suspension point to the set of locals which live across
733            // any suspension points
734            live_locals_at_any_suspension_point.union(&live_locals);
735
736            live_locals_at_suspension_points.push(live_locals);
737            source_info_at_suspension_points.push(data.terminator().source_info);
738        }
739    }
740
741    debug!("live_locals_anywhere = {:?}", live_locals_at_any_suspension_point);
742    let saved_locals = CoroutineSavedLocals(live_locals_at_any_suspension_point);
743
744    // Renumber our liveness_map bitsets to include only the locals we are
745    // saving.
746    let live_locals_at_suspension_points = live_locals_at_suspension_points
747        .iter()
748        .map(|live_here| saved_locals.renumber_bitset(live_here))
749        .collect();
750
751    let storage_conflicts = compute_storage_conflicts(
752        body,
753        &saved_locals,
754        always_live_locals.clone(),
755        requires_storage_results,
756    );
757
758    LivenessInfo {
759        saved_locals,
760        live_locals_at_suspension_points,
761        source_info_at_suspension_points,
762        storage_conflicts,
763        storage_liveness: storage_liveness_map,
764    }
765}
766
767/// The set of `Local`s that must be saved across yield points.
768///
769/// `CoroutineSavedLocal` is indexed in terms of the elements in this set;
770/// i.e. `CoroutineSavedLocal::new(1)` corresponds to the second local
771/// included in this set.
772struct CoroutineSavedLocals(DenseBitSet<Local>);
773
774impl CoroutineSavedLocals {
775    /// Returns an iterator over each `CoroutineSavedLocal` along with the `Local` it corresponds
776    /// to.
777    fn iter_enumerated(&self) -> impl '_ + Iterator<Item = (CoroutineSavedLocal, Local)> {
778        self.iter().enumerate().map(|(i, l)| (CoroutineSavedLocal::from(i), l))
779    }
780
781    /// Transforms a `DenseBitSet<Local>` that contains only locals saved across yield points to the
782    /// equivalent `DenseBitSet<CoroutineSavedLocal>`.
783    fn renumber_bitset(&self, input: &DenseBitSet<Local>) -> DenseBitSet<CoroutineSavedLocal> {
784        assert!(self.superset(input), "{:?} not a superset of {:?}", self.0, input);
785        let mut out = DenseBitSet::new_empty(self.count());
786        for (saved_local, local) in self.iter_enumerated() {
787            if input.contains(local) {
788                out.insert(saved_local);
789            }
790        }
791        out
792    }
793
794    fn get(&self, local: Local) -> Option<CoroutineSavedLocal> {
795        if !self.contains(local) {
796            return None;
797        }
798
799        let idx = self.iter().take_while(|&l| l < local).count();
800        Some(CoroutineSavedLocal::new(idx))
801    }
802}
803
804impl ops::Deref for CoroutineSavedLocals {
805    type Target = DenseBitSet<Local>;
806
807    fn deref(&self) -> &Self::Target {
808        &self.0
809    }
810}
811
812/// For every saved local, looks for which locals are StorageLive at the same
813/// time. Generates a bitset for every local of all the other locals that may be
814/// StorageLive simultaneously with that local. This is used in the layout
815/// computation; see `CoroutineLayout` for more.
816fn compute_storage_conflicts<'mir, 'tcx>(
817    body: &'mir Body<'tcx>,
818    saved_locals: &'mir CoroutineSavedLocals,
819    always_live_locals: DenseBitSet<Local>,
820    mut requires_storage: Results<'tcx, MaybeRequiresStorage<'mir, 'tcx>>,
821) -> BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal> {
822    assert_eq!(body.local_decls.len(), saved_locals.domain_size());
823
824    debug!("compute_storage_conflicts({:?})", body.span);
825    debug!("always_live = {:?}", always_live_locals);
826
827    // Locals that are always live or ones that need to be stored across
828    // suspension points are not eligible for overlap.
829    let mut ineligible_locals = always_live_locals;
830    ineligible_locals.intersect(&**saved_locals);
831
832    // Compute the storage conflicts for all eligible locals.
833    let mut visitor = StorageConflictVisitor {
834        body,
835        saved_locals,
836        local_conflicts: BitMatrix::from_row_n(&ineligible_locals, body.local_decls.len()),
837        eligible_storage_live: DenseBitSet::new_empty(body.local_decls.len()),
838    };
839
840    requires_storage.visit_reachable_with(body, &mut visitor);
841
842    let local_conflicts = visitor.local_conflicts;
843
844    // Compress the matrix using only stored locals (Local -> CoroutineSavedLocal).
845    //
846    // NOTE: Today we store a full conflict bitset for every local. Technically
847    // this is twice as many bits as we need, since the relation is symmetric.
848    // However, in practice these bitsets are not usually large. The layout code
849    // also needs to keep track of how many conflicts each local has, so it's
850    // simpler to keep it this way for now.
851    let mut storage_conflicts = BitMatrix::new(saved_locals.count(), saved_locals.count());
852    for (saved_local_a, local_a) in saved_locals.iter_enumerated() {
853        if ineligible_locals.contains(local_a) {
854            // Conflicts with everything.
855            storage_conflicts.insert_all_into_row(saved_local_a);
856        } else {
857            // Keep overlap information only for stored locals.
858            for (saved_local_b, local_b) in saved_locals.iter_enumerated() {
859                if local_conflicts.contains(local_a, local_b) {
860                    storage_conflicts.insert(saved_local_a, saved_local_b);
861                }
862            }
863        }
864    }
865    storage_conflicts
866}
867
868struct StorageConflictVisitor<'a, 'tcx> {
869    body: &'a Body<'tcx>,
870    saved_locals: &'a CoroutineSavedLocals,
871    // FIXME(tmandry): Consider using sparse bitsets here once we have good
872    // benchmarks for coroutines.
873    local_conflicts: BitMatrix<Local, Local>,
874    // We keep this bitset as a buffer to avoid reallocating memory.
875    eligible_storage_live: DenseBitSet<Local>,
876}
877
878impl<'a, 'tcx> ResultsVisitor<'a, 'tcx, MaybeRequiresStorage<'a, 'tcx>>
879    for StorageConflictVisitor<'a, 'tcx>
880{
881    fn visit_after_early_statement_effect(
882        &mut self,
883        _results: &mut Results<'tcx, MaybeRequiresStorage<'a, 'tcx>>,
884        state: &DenseBitSet<Local>,
885        _statement: &'a Statement<'tcx>,
886        loc: Location,
887    ) {
888        self.apply_state(state, loc);
889    }
890
891    fn visit_after_early_terminator_effect(
892        &mut self,
893        _results: &mut Results<'tcx, MaybeRequiresStorage<'a, 'tcx>>,
894        state: &DenseBitSet<Local>,
895        _terminator: &'a Terminator<'tcx>,
896        loc: Location,
897    ) {
898        self.apply_state(state, loc);
899    }
900}
901
902impl StorageConflictVisitor<'_, '_> {
903    fn apply_state(&mut self, state: &DenseBitSet<Local>, loc: Location) {
904        // Ignore unreachable blocks.
905        if let TerminatorKind::Unreachable = self.body.basic_blocks[loc.block].terminator().kind {
906            return;
907        }
908
909        self.eligible_storage_live.clone_from(state);
910        self.eligible_storage_live.intersect(&**self.saved_locals);
911
912        for local in self.eligible_storage_live.iter() {
913            self.local_conflicts.union_row_with(&self.eligible_storage_live, local);
914        }
915
916        if self.eligible_storage_live.count() > 1 {
917            trace!("at {:?}, eligible_storage_live={:?}", loc, self.eligible_storage_live);
918        }
919    }
920}
921
922fn compute_layout<'tcx>(
923    liveness: LivenessInfo,
924    body: &Body<'tcx>,
925) -> (
926    IndexVec<Local, Option<(Ty<'tcx>, VariantIdx, FieldIdx)>>,
927    CoroutineLayout<'tcx>,
928    IndexVec<BasicBlock, Option<DenseBitSet<Local>>>,
929) {
930    let LivenessInfo {
931        saved_locals,
932        live_locals_at_suspension_points,
933        source_info_at_suspension_points,
934        storage_conflicts,
935        storage_liveness,
936    } = liveness;
937
938    // Gather live local types and their indices.
939    let mut locals = IndexVec::<CoroutineSavedLocal, _>::new();
940    let mut tys = IndexVec::<CoroutineSavedLocal, _>::new();
941    for (saved_local, local) in saved_locals.iter_enumerated() {
942        debug!("coroutine saved local {:?} => {:?}", saved_local, local);
943
944        locals.push(local);
945        let decl = &body.local_decls[local];
946        debug!(?decl);
947
948        // Do not `unwrap_crate_local` here, as post-borrowck cleanup may have already cleared
949        // the information. This is alright, since `ignore_for_traits` is only relevant when
950        // this code runs on pre-cleanup MIR, and `ignore_for_traits = false` is the safer
951        // default.
952        let ignore_for_traits = match decl.local_info {
953            // Do not include raw pointers created from accessing `static` items, as those could
954            // well be re-created by another access to the same static.
955            ClearCrossCrate::Set(box LocalInfo::StaticRef { is_thread_local, .. }) => {
956                !is_thread_local
957            }
958            // Fake borrows are only read by fake reads, so do not have any reality in
959            // post-analysis MIR.
960            ClearCrossCrate::Set(box LocalInfo::FakeBorrow) => true,
961            _ => false,
962        };
963        let decl =
964            CoroutineSavedTy { ty: decl.ty, source_info: decl.source_info, ignore_for_traits };
965        debug!(?decl);
966
967        tys.push(decl);
968    }
969
970    // Leave empty variants for the UNRESUMED, RETURNED, and POISONED states.
971    // In debuginfo, these will correspond to the beginning (UNRESUMED) or end
972    // (RETURNED, POISONED) of the function.
973    let body_span = body.source_scopes[OUTERMOST_SOURCE_SCOPE].span;
974    let mut variant_source_info: IndexVec<VariantIdx, SourceInfo> = [
975        SourceInfo::outermost(body_span.shrink_to_lo()),
976        SourceInfo::outermost(body_span.shrink_to_hi()),
977        SourceInfo::outermost(body_span.shrink_to_hi()),
978    ]
979    .iter()
980    .copied()
981    .collect();
982
983    // Build the coroutine variant field list.
984    // Create a map from local indices to coroutine struct indices.
985    let mut variant_fields: IndexVec<VariantIdx, IndexVec<FieldIdx, CoroutineSavedLocal>> =
986        iter::repeat(IndexVec::new()).take(CoroutineArgs::RESERVED_VARIANTS).collect();
987    let mut remap = IndexVec::from_elem_n(None, saved_locals.domain_size());
988    for (suspension_point_idx, live_locals) in live_locals_at_suspension_points.iter().enumerate() {
989        let variant_index =
990            VariantIdx::from(CoroutineArgs::RESERVED_VARIANTS + suspension_point_idx);
991        let mut fields = IndexVec::new();
992        for (idx, saved_local) in live_locals.iter().enumerate() {
993            fields.push(saved_local);
994            // Note that if a field is included in multiple variants, we will
995            // just use the first one here. That's fine; fields do not move
996            // around inside coroutines, so it doesn't matter which variant
997            // index we access them by.
998            let idx = FieldIdx::from_usize(idx);
999            remap[locals[saved_local]] = Some((tys[saved_local].ty, variant_index, idx));
1000        }
1001        variant_fields.push(fields);
1002        variant_source_info.push(source_info_at_suspension_points[suspension_point_idx]);
1003    }
1004    debug!("coroutine variant_fields = {:?}", variant_fields);
1005    debug!("coroutine storage_conflicts = {:#?}", storage_conflicts);
1006
1007    let mut field_names = IndexVec::from_elem(None, &tys);
1008    for var in &body.var_debug_info {
1009        let VarDebugInfoContents::Place(place) = &var.value else { continue };
1010        let Some(local) = place.as_local() else { continue };
1011        let Some(&Some((_, variant, field))) = remap.get(local) else {
1012            continue;
1013        };
1014
1015        let saved_local = variant_fields[variant][field];
1016        field_names.get_or_insert_with(saved_local, || var.name);
1017    }
1018
1019    let layout = CoroutineLayout {
1020        field_tys: tys,
1021        field_names,
1022        variant_fields,
1023        variant_source_info,
1024        storage_conflicts,
1025    };
1026    debug!(?layout);
1027
1028    (remap, layout, storage_liveness)
1029}
1030
1031/// Replaces the entry point of `body` with a block that switches on the coroutine discriminant and
1032/// dispatches to blocks according to `cases`.
1033///
1034/// After this function, the former entry point of the function will be bb1.
1035fn insert_switch<'tcx>(
1036    body: &mut Body<'tcx>,
1037    cases: Vec<(usize, BasicBlock)>,
1038    transform: &TransformVisitor<'tcx>,
1039    default: TerminatorKind<'tcx>,
1040) {
1041    let default_block = insert_term_block(body, default);
1042    let (assign, discr) = transform.get_discr(body);
1043    let switch_targets =
1044        SwitchTargets::new(cases.iter().map(|(i, bb)| ((*i) as u128, *bb)), default_block);
1045    let switch = TerminatorKind::SwitchInt { discr: Operand::Move(discr), targets: switch_targets };
1046
1047    let source_info = SourceInfo::outermost(body.span);
1048    body.basic_blocks_mut().raw.insert(
1049        0,
1050        BasicBlockData {
1051            statements: vec![assign],
1052            terminator: Some(Terminator { source_info, kind: switch }),
1053            is_cleanup: false,
1054        },
1055    );
1056
1057    let blocks = body.basic_blocks_mut().iter_mut();
1058
1059    for target in blocks.flat_map(|b| b.terminator_mut().successors_mut()) {
1060        *target = BasicBlock::new(target.index() + 1);
1061    }
1062}
1063
1064fn elaborate_coroutine_drops<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
1065    use crate::elaborate_drop::{Unwind, elaborate_drop};
1066    use crate::patch::MirPatch;
1067    use crate::shim::DropShimElaborator;
1068
1069    // Note that `elaborate_drops` only drops the upvars of a coroutine, and
1070    // this is ok because `open_drop` can only be reached within that own
1071    // coroutine's resume function.
1072    let typing_env = body.typing_env(tcx);
1073
1074    let mut elaborator = DropShimElaborator { body, patch: MirPatch::new(body), tcx, typing_env };
1075
1076    for (block, block_data) in body.basic_blocks.iter_enumerated() {
1077        let (target, unwind, source_info) = match block_data.terminator() {
1078            Terminator {
1079                source_info,
1080                kind: TerminatorKind::Drop { place, target, unwind, replace: _ },
1081            } => {
1082                if let Some(local) = place.as_local()
1083                    && local == SELF_ARG
1084                {
1085                    (target, unwind, source_info)
1086                } else {
1087                    continue;
1088                }
1089            }
1090            _ => continue,
1091        };
1092        let unwind = if block_data.is_cleanup {
1093            Unwind::InCleanup
1094        } else {
1095            Unwind::To(match *unwind {
1096                UnwindAction::Cleanup(tgt) => tgt,
1097                UnwindAction::Continue => elaborator.patch.resume_block(),
1098                UnwindAction::Unreachable => elaborator.patch.unreachable_cleanup_block(),
1099                UnwindAction::Terminate(reason) => elaborator.patch.terminate_block(reason),
1100            })
1101        };
1102        elaborate_drop(
1103            &mut elaborator,
1104            *source_info,
1105            Place::from(SELF_ARG),
1106            (),
1107            *target,
1108            unwind,
1109            block,
1110        );
1111    }
1112    elaborator.patch.apply(body);
1113}
1114
1115fn create_coroutine_drop_shim<'tcx>(
1116    tcx: TyCtxt<'tcx>,
1117    transform: &TransformVisitor<'tcx>,
1118    coroutine_ty: Ty<'tcx>,
1119    body: &Body<'tcx>,
1120    drop_clean: BasicBlock,
1121) -> Body<'tcx> {
1122    let mut body = body.clone();
1123    // Take the coroutine info out of the body, since the drop shim is
1124    // not a coroutine body itself; it just has its drop built out of it.
1125    let _ = body.coroutine.take();
1126    // Make sure the resume argument is not included here, since we're
1127    // building a body for `drop_in_place`.
1128    body.arg_count = 1;
1129
1130    let source_info = SourceInfo::outermost(body.span);
1131
1132    let mut cases = create_cases(&mut body, transform, Operation::Drop);
1133
1134    cases.insert(0, (CoroutineArgs::UNRESUMED, drop_clean));
1135
1136    // The returned state and the poisoned state fall through to the default
1137    // case which is just to return
1138
1139    insert_switch(&mut body, cases, transform, TerminatorKind::Return);
1140
1141    for block in body.basic_blocks_mut() {
1142        let kind = &mut block.terminator_mut().kind;
1143        if let TerminatorKind::CoroutineDrop = *kind {
1144            *kind = TerminatorKind::Return;
1145        }
1146    }
1147
1148    // Replace the return variable
1149    body.local_decls[RETURN_PLACE] = LocalDecl::with_source_info(tcx.types.unit, source_info);
1150
1151    make_coroutine_state_argument_indirect(tcx, &mut body);
1152
1153    // Change the coroutine argument from &mut to *mut
1154    body.local_decls[SELF_ARG] =
1155        LocalDecl::with_source_info(Ty::new_mut_ptr(tcx, coroutine_ty), source_info);
1156
1157    // Make sure we remove dead blocks to remove
1158    // unrelated code from the resume part of the function
1159    simplify::remove_dead_blocks(&mut body);
1160
1161    // Update the body's def to become the drop glue.
1162    let coroutine_instance = body.source.instance;
1163    let drop_in_place = tcx.require_lang_item(LangItem::DropInPlace, None);
1164    let drop_instance = InstanceKind::DropGlue(drop_in_place, Some(coroutine_ty));
1165
1166    // Temporary change MirSource to coroutine's instance so that dump_mir produces more sensible
1167    // filename.
1168    body.source.instance = coroutine_instance;
1169    dump_mir(tcx, false, "coroutine_drop", &0, &body, |_, _| Ok(()));
1170    body.source.instance = drop_instance;
1171
1172    body
1173}
1174
1175fn insert_term_block<'tcx>(body: &mut Body<'tcx>, kind: TerminatorKind<'tcx>) -> BasicBlock {
1176    let source_info = SourceInfo::outermost(body.span);
1177    body.basic_blocks_mut().push(BasicBlockData {
1178        statements: Vec::new(),
1179        terminator: Some(Terminator { source_info, kind }),
1180        is_cleanup: false,
1181    })
1182}
1183
1184fn insert_panic_block<'tcx>(
1185    tcx: TyCtxt<'tcx>,
1186    body: &mut Body<'tcx>,
1187    message: AssertMessage<'tcx>,
1188) -> BasicBlock {
1189    let assert_block = BasicBlock::new(body.basic_blocks.len());
1190    let kind = TerminatorKind::Assert {
1191        cond: Operand::Constant(Box::new(ConstOperand {
1192            span: body.span,
1193            user_ty: None,
1194            const_: Const::from_bool(tcx, false),
1195        })),
1196        expected: true,
1197        msg: Box::new(message),
1198        target: assert_block,
1199        unwind: UnwindAction::Continue,
1200    };
1201
1202    insert_term_block(body, kind)
1203}
1204
1205fn can_return<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool {
1206    // Returning from a function with an uninhabited return type is undefined behavior.
1207    if body.return_ty().is_privately_uninhabited(tcx, typing_env) {
1208        return false;
1209    }
1210
1211    // If there's a return terminator the function may return.
1212    for block in body.basic_blocks.iter() {
1213        if let TerminatorKind::Return = block.terminator().kind {
1214            return true;
1215        }
1216    }
1217
1218    // Otherwise the function can't return.
1219    false
1220}
1221
1222fn can_unwind<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>) -> bool {
1223    // Nothing can unwind when landing pads are off.
1224    if tcx.sess.panic_strategy() == PanicStrategy::Abort {
1225        return false;
1226    }
1227
1228    // Unwinds can only start at certain terminators.
1229    for block in body.basic_blocks.iter() {
1230        match block.terminator().kind {
1231            // These never unwind.
1232            TerminatorKind::Goto { .. }
1233            | TerminatorKind::SwitchInt { .. }
1234            | TerminatorKind::UnwindTerminate(_)
1235            | TerminatorKind::Return
1236            | TerminatorKind::Unreachable
1237            | TerminatorKind::CoroutineDrop
1238            | TerminatorKind::FalseEdge { .. }
1239            | TerminatorKind::FalseUnwind { .. } => {}
1240
1241            // Resume will *continue* unwinding, but if there's no other unwinding terminator it
1242            // will never be reached.
1243            TerminatorKind::UnwindResume => {}
1244
1245            TerminatorKind::Yield { .. } => {
1246                unreachable!("`can_unwind` called before coroutine transform")
1247            }
1248
1249            // These may unwind.
1250            TerminatorKind::Drop { .. }
1251            | TerminatorKind::Call { .. }
1252            | TerminatorKind::InlineAsm { .. }
1253            | TerminatorKind::Assert { .. } => return true,
1254
1255            TerminatorKind::TailCall { .. } => {
1256                unreachable!("tail calls can't be present in generators")
1257            }
1258        }
1259    }
1260
1261    // If we didn't find an unwinding terminator, the function cannot unwind.
1262    false
1263}
1264
1265fn create_coroutine_resume_function<'tcx>(
1266    tcx: TyCtxt<'tcx>,
1267    transform: TransformVisitor<'tcx>,
1268    body: &mut Body<'tcx>,
1269    can_return: bool,
1270) {
1271    let can_unwind = can_unwind(tcx, body);
1272
1273    // Poison the coroutine when it unwinds
1274    if can_unwind {
1275        let source_info = SourceInfo::outermost(body.span);
1276        let poison_block = body.basic_blocks_mut().push(BasicBlockData {
1277            statements: vec![
1278                transform.set_discr(VariantIdx::new(CoroutineArgs::POISONED), source_info),
1279            ],
1280            terminator: Some(Terminator { source_info, kind: TerminatorKind::UnwindResume }),
1281            is_cleanup: true,
1282        });
1283
1284        for (idx, block) in body.basic_blocks_mut().iter_enumerated_mut() {
1285            let source_info = block.terminator().source_info;
1286
1287            if let TerminatorKind::UnwindResume = block.terminator().kind {
1288                // An existing `Resume` terminator is redirected to jump to our dedicated
1289                // "poisoning block" above.
1290                if idx != poison_block {
1291                    *block.terminator_mut() = Terminator {
1292                        source_info,
1293                        kind: TerminatorKind::Goto { target: poison_block },
1294                    };
1295                }
1296            } else if !block.is_cleanup {
1297                // Any terminators that *can* unwind but don't have an unwind target set are also
1298                // pointed at our poisoning block (unless they're part of the cleanup path).
1299                if let Some(unwind @ UnwindAction::Continue) = block.terminator_mut().unwind_mut() {
1300                    *unwind = UnwindAction::Cleanup(poison_block);
1301                }
1302            }
1303        }
1304    }
1305
1306    let mut cases = create_cases(body, &transform, Operation::Resume);
1307
1308    use rustc_middle::mir::AssertKind::{ResumedAfterPanic, ResumedAfterReturn};
1309
1310    // Jump to the entry point on the unresumed
1311    cases.insert(0, (CoroutineArgs::UNRESUMED, START_BLOCK));
1312
1313    // Panic when resumed on the returned or poisoned state
1314    if can_unwind {
1315        cases.insert(
1316            1,
1317            (
1318                CoroutineArgs::POISONED,
1319                insert_panic_block(tcx, body, ResumedAfterPanic(transform.coroutine_kind)),
1320            ),
1321        );
1322    }
1323
1324    if can_return {
1325        let block = match transform.coroutine_kind {
1326            CoroutineKind::Desugared(CoroutineDesugaring::Async, _)
1327            | CoroutineKind::Coroutine(_) => {
1328                insert_panic_block(tcx, body, ResumedAfterReturn(transform.coroutine_kind))
1329            }
1330            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _)
1331            | CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
1332                transform.insert_none_ret_block(body)
1333            }
1334        };
1335        cases.insert(1, (CoroutineArgs::RETURNED, block));
1336    }
1337
1338    insert_switch(body, cases, &transform, TerminatorKind::Unreachable);
1339
1340    make_coroutine_state_argument_indirect(tcx, body);
1341
1342    match transform.coroutine_kind {
1343        // Iterator::next doesn't accept a pinned argument,
1344        // unlike for all other coroutine kinds.
1345        CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {}
1346        _ => {
1347            make_coroutine_state_argument_pinned(tcx, body);
1348        }
1349    }
1350
1351    // Make sure we remove dead blocks to remove
1352    // unrelated code from the drop part of the function
1353    simplify::remove_dead_blocks(body);
1354
1355    pm::run_passes_no_validate(tcx, body, &[&abort_unwinding_calls::AbortUnwindingCalls], None);
1356
1357    dump_mir(tcx, false, "coroutine_resume", &0, body, |_, _| Ok(()));
1358}
1359
1360fn insert_clean_drop(body: &mut Body<'_>) -> BasicBlock {
1361    let return_block = insert_term_block(body, TerminatorKind::Return);
1362
1363    let term = TerminatorKind::Drop {
1364        place: Place::from(SELF_ARG),
1365        target: return_block,
1366        unwind: UnwindAction::Continue,
1367        replace: false,
1368    };
1369    let source_info = SourceInfo::outermost(body.span);
1370
1371    // Create a block to destroy an unresumed coroutines. This can only destroy upvars.
1372    body.basic_blocks_mut().push(BasicBlockData {
1373        statements: Vec::new(),
1374        terminator: Some(Terminator { source_info, kind: term }),
1375        is_cleanup: false,
1376    })
1377}
1378
1379/// An operation that can be performed on a coroutine.
1380#[derive(PartialEq, Copy, Clone)]
1381enum Operation {
1382    Resume,
1383    Drop,
1384}
1385
1386impl Operation {
1387    fn target_block(self, point: &SuspensionPoint<'_>) -> Option<BasicBlock> {
1388        match self {
1389            Operation::Resume => Some(point.resume),
1390            Operation::Drop => point.drop,
1391        }
1392    }
1393}
1394
1395fn create_cases<'tcx>(
1396    body: &mut Body<'tcx>,
1397    transform: &TransformVisitor<'tcx>,
1398    operation: Operation,
1399) -> Vec<(usize, BasicBlock)> {
1400    let source_info = SourceInfo::outermost(body.span);
1401
1402    transform
1403        .suspension_points
1404        .iter()
1405        .filter_map(|point| {
1406            // Find the target for this suspension point, if applicable
1407            operation.target_block(point).map(|target| {
1408                let mut statements = Vec::new();
1409
1410                // Create StorageLive instructions for locals with live storage
1411                for i in 0..(body.local_decls.len()) {
1412                    let l = Local::new(i);
1413                    let needs_storage_live = point.storage_liveness.contains(l)
1414                        && !transform.remap.contains(l)
1415                        && !transform.always_live_locals.contains(l);
1416                    if needs_storage_live {
1417                        statements
1418                            .push(Statement { source_info, kind: StatementKind::StorageLive(l) });
1419                    }
1420                }
1421
1422                if operation == Operation::Resume {
1423                    // Move the resume argument to the destination place of the `Yield` terminator
1424                    let resume_arg = Local::new(2); // 0 = return, 1 = self
1425                    statements.push(Statement {
1426                        source_info,
1427                        kind: StatementKind::Assign(Box::new((
1428                            point.resume_arg,
1429                            Rvalue::Use(Operand::Move(resume_arg.into())),
1430                        ))),
1431                    });
1432                }
1433
1434                // Then jump to the real target
1435                let block = body.basic_blocks_mut().push(BasicBlockData {
1436                    statements,
1437                    terminator: Some(Terminator {
1438                        source_info,
1439                        kind: TerminatorKind::Goto { target },
1440                    }),
1441                    is_cleanup: false,
1442                });
1443
1444                (point.state, block)
1445            })
1446        })
1447        .collect()
1448}
1449
1450#[instrument(level = "debug", skip(tcx), ret)]
1451pub(crate) fn mir_coroutine_witnesses<'tcx>(
1452    tcx: TyCtxt<'tcx>,
1453    def_id: LocalDefId,
1454) -> Option<CoroutineLayout<'tcx>> {
1455    let (body, _) = tcx.mir_promoted(def_id);
1456    let body = body.borrow();
1457    let body = &*body;
1458
1459    // The first argument is the coroutine type passed by value
1460    let coroutine_ty = body.local_decls[ty::CAPTURE_STRUCT_LOCAL].ty;
1461
1462    let movable = match *coroutine_ty.kind() {
1463        ty::Coroutine(def_id, _) => tcx.coroutine_movability(def_id) == hir::Movability::Movable,
1464        ty::Error(_) => return None,
1465        _ => span_bug!(body.span, "unexpected coroutine type {}", coroutine_ty),
1466    };
1467
1468    // The witness simply contains all locals live across suspend points.
1469
1470    let always_live_locals = always_storage_live_locals(body);
1471    let liveness_info = locals_live_across_suspend_points(tcx, body, &always_live_locals, movable);
1472
1473    // Extract locals which are live across suspension point into `layout`
1474    // `remap` gives a mapping from local indices onto coroutine struct indices
1475    // `storage_liveness` tells us which locals have live storage at suspension points
1476    let (_, coroutine_layout, _) = compute_layout(liveness_info, body);
1477
1478    check_suspend_tys(tcx, &coroutine_layout, body);
1479    check_field_tys_sized(tcx, &coroutine_layout, def_id);
1480
1481    Some(coroutine_layout)
1482}
1483
1484fn check_field_tys_sized<'tcx>(
1485    tcx: TyCtxt<'tcx>,
1486    coroutine_layout: &CoroutineLayout<'tcx>,
1487    def_id: LocalDefId,
1488) {
1489    // No need to check if unsized_locals/unsized_fn_params is disabled,
1490    // since we will error during typeck.
1491    if !tcx.features().unsized_locals() && !tcx.features().unsized_fn_params() {
1492        return;
1493    }
1494
1495    // FIXME(#132279): @lcnr believes that we may want to support coroutines
1496    // whose `Sized`-ness relies on the hidden types of opaques defined by the
1497    // parent function. In this case we'd have to be able to reveal only these
1498    // opaques here.
1499    let infcx = tcx.infer_ctxt().ignoring_regions().build(TypingMode::non_body_analysis());
1500    let param_env = tcx.param_env(def_id);
1501
1502    let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
1503    for field_ty in &coroutine_layout.field_tys {
1504        ocx.register_bound(
1505            ObligationCause::new(
1506                field_ty.source_info.span,
1507                def_id,
1508                ObligationCauseCode::SizedCoroutineInterior(def_id),
1509            ),
1510            param_env,
1511            field_ty.ty,
1512            tcx.require_lang_item(hir::LangItem::Sized, Some(field_ty.source_info.span)),
1513        );
1514    }
1515
1516    let errors = ocx.select_all_or_error();
1517    debug!(?errors);
1518    if !errors.is_empty() {
1519        infcx.err_ctxt().report_fulfillment_errors(errors);
1520    }
1521}
1522
1523impl<'tcx> crate::MirPass<'tcx> for StateTransform {
1524    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
1525        let Some(old_yield_ty) = body.yield_ty() else {
1526            // This only applies to coroutines
1527            return;
1528        };
1529        let old_ret_ty = body.return_ty();
1530
1531        assert!(body.coroutine_drop().is_none());
1532
1533        // The first argument is the coroutine type passed by value
1534        let coroutine_ty = body.local_decls.raw[1].ty;
1535        let coroutine_kind = body.coroutine_kind().unwrap();
1536
1537        // Get the discriminant type and args which typeck computed
1538        let (discr_ty, movable) = match *coroutine_ty.kind() {
1539            ty::Coroutine(_, args) => {
1540                let args = args.as_coroutine();
1541                (args.discr_ty(tcx), coroutine_kind.movability() == hir::Movability::Movable)
1542            }
1543            _ => {
1544                tcx.dcx().span_bug(body.span, format!("unexpected coroutine type {coroutine_ty}"));
1545            }
1546        };
1547
1548        let new_ret_ty = match coroutine_kind {
1549            CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
1550                // Compute Poll<return_ty>
1551                let poll_did = tcx.require_lang_item(LangItem::Poll, None);
1552                let poll_adt_ref = tcx.adt_def(poll_did);
1553                let poll_args = tcx.mk_args(&[old_ret_ty.into()]);
1554                Ty::new_adt(tcx, poll_adt_ref, poll_args)
1555            }
1556            CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
1557                // Compute Option<yield_ty>
1558                let option_did = tcx.require_lang_item(LangItem::Option, None);
1559                let option_adt_ref = tcx.adt_def(option_did);
1560                let option_args = tcx.mk_args(&[old_yield_ty.into()]);
1561                Ty::new_adt(tcx, option_adt_ref, option_args)
1562            }
1563            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => {
1564                // The yield ty is already `Poll<Option<yield_ty>>`
1565                old_yield_ty
1566            }
1567            CoroutineKind::Coroutine(_) => {
1568                // Compute CoroutineState<yield_ty, return_ty>
1569                let state_did = tcx.require_lang_item(LangItem::CoroutineState, None);
1570                let state_adt_ref = tcx.adt_def(state_did);
1571                let state_args = tcx.mk_args(&[old_yield_ty.into(), old_ret_ty.into()]);
1572                Ty::new_adt(tcx, state_adt_ref, state_args)
1573            }
1574        };
1575
1576        // We rename RETURN_PLACE which has type mir.return_ty to old_ret_local
1577        // RETURN_PLACE then is a fresh unused local with type ret_ty.
1578        let old_ret_local = replace_local(RETURN_PLACE, new_ret_ty, body, tcx);
1579
1580        // Replace all occurrences of `ResumeTy` with `&mut Context<'_>` within async bodies.
1581        if matches!(
1582            coroutine_kind,
1583            CoroutineKind::Desugared(CoroutineDesugaring::Async | CoroutineDesugaring::AsyncGen, _)
1584        ) {
1585            transform_async_context(tcx, body);
1586        }
1587
1588        // We also replace the resume argument and insert an `Assign`.
1589        // This is needed because the resume argument `_2` might be live across a `yield`, in which
1590        // case there is no `Assign` to it that the transform can turn into a store to the coroutine
1591        // state. After the yield the slot in the coroutine state would then be uninitialized.
1592        let resume_local = Local::new(2);
1593        let resume_ty = body.local_decls[resume_local].ty;
1594        let old_resume_local = replace_local(resume_local, resume_ty, body, tcx);
1595
1596        // When first entering the coroutine, move the resume argument into its old local
1597        // (which is now a generator interior).
1598        let source_info = SourceInfo::outermost(body.span);
1599        let stmts = &mut body.basic_blocks_mut()[START_BLOCK].statements;
1600        stmts.insert(
1601            0,
1602            Statement {
1603                source_info,
1604                kind: StatementKind::Assign(Box::new((
1605                    old_resume_local.into(),
1606                    Rvalue::Use(Operand::Move(resume_local.into())),
1607                ))),
1608            },
1609        );
1610
1611        let always_live_locals = always_storage_live_locals(body);
1612
1613        let liveness_info =
1614            locals_live_across_suspend_points(tcx, body, &always_live_locals, movable);
1615
1616        if tcx.sess.opts.unstable_opts.validate_mir {
1617            let mut vis = EnsureCoroutineFieldAssignmentsNeverAlias {
1618                assigned_local: None,
1619                saved_locals: &liveness_info.saved_locals,
1620                storage_conflicts: &liveness_info.storage_conflicts,
1621            };
1622
1623            vis.visit_body(body);
1624        }
1625
1626        // Extract locals which are live across suspension point into `layout`
1627        // `remap` gives a mapping from local indices onto coroutine struct indices
1628        // `storage_liveness` tells us which locals have live storage at suspension points
1629        let (remap, layout, storage_liveness) = compute_layout(liveness_info, body);
1630
1631        let can_return = can_return(tcx, body, body.typing_env(tcx));
1632
1633        // Run the transformation which converts Places from Local to coroutine struct
1634        // accesses for locals in `remap`.
1635        // It also rewrites `return x` and `yield y` as writing a new coroutine state and returning
1636        // either `CoroutineState::Complete(x)` and `CoroutineState::Yielded(y)`,
1637        // or `Poll::Ready(x)` and `Poll::Pending` respectively depending on the coroutine kind.
1638        let mut transform = TransformVisitor {
1639            tcx,
1640            coroutine_kind,
1641            remap,
1642            storage_liveness,
1643            always_live_locals,
1644            suspension_points: Vec::new(),
1645            old_ret_local,
1646            discr_ty,
1647            old_ret_ty,
1648            old_yield_ty,
1649        };
1650        transform.visit_body(body);
1651
1652        // Update our MIR struct to reflect the changes we've made
1653        body.arg_count = 2; // self, resume arg
1654        body.spread_arg = None;
1655
1656        // Remove the context argument within generator bodies.
1657        if matches!(coroutine_kind, CoroutineKind::Desugared(CoroutineDesugaring::Gen, _)) {
1658            transform_gen_context(body);
1659        }
1660
1661        // The original arguments to the function are no longer arguments, mark them as such.
1662        // Otherwise they'll conflict with our new arguments, which although they don't have
1663        // argument_index set, will get emitted as unnamed arguments.
1664        for var in &mut body.var_debug_info {
1665            var.argument_index = None;
1666        }
1667
1668        body.coroutine.as_mut().unwrap().yield_ty = None;
1669        body.coroutine.as_mut().unwrap().resume_ty = None;
1670        body.coroutine.as_mut().unwrap().coroutine_layout = Some(layout);
1671
1672        // Insert `drop(coroutine_struct)` which is used to drop upvars for coroutines in
1673        // the unresumed state.
1674        // This is expanded to a drop ladder in `elaborate_coroutine_drops`.
1675        let drop_clean = insert_clean_drop(body);
1676
1677        dump_mir(tcx, false, "coroutine_pre-elab", &0, body, |_, _| Ok(()));
1678
1679        // Expand `drop(coroutine_struct)` to a drop ladder which destroys upvars.
1680        // If any upvars are moved out of, drop elaboration will handle upvar destruction.
1681        // However we need to also elaborate the code generated by `insert_clean_drop`.
1682        elaborate_coroutine_drops(tcx, body);
1683
1684        dump_mir(tcx, false, "coroutine_post-transform", &0, body, |_, _| Ok(()));
1685
1686        // Create a copy of our MIR and use it to create the drop shim for the coroutine
1687        let drop_shim = create_coroutine_drop_shim(tcx, &transform, coroutine_ty, body, drop_clean);
1688
1689        body.coroutine.as_mut().unwrap().coroutine_drop = Some(drop_shim);
1690
1691        // Create the Coroutine::resume / Future::poll function
1692        create_coroutine_resume_function(tcx, transform, body, can_return);
1693
1694        // Run derefer to fix Derefs that are not in the first place
1695        deref_finder(tcx, body);
1696    }
1697
1698    fn is_required(&self) -> bool {
1699        true
1700    }
1701}
1702
1703/// Looks for any assignments between locals (e.g., `_4 = _5`) that will both be converted to fields
1704/// in the coroutine state machine but whose storage is not marked as conflicting
1705///
1706/// Validation needs to happen immediately *before* `TransformVisitor` is invoked, not after.
1707///
1708/// This condition would arise when the assignment is the last use of `_5` but the initial
1709/// definition of `_4` if we weren't extra careful to mark all locals used inside a statement as
1710/// conflicting. Non-conflicting coroutine saved locals may be stored at the same location within
1711/// the coroutine state machine, which would result in ill-formed MIR: the left-hand and right-hand
1712/// sides of an assignment may not alias. This caused a miscompilation in [#73137].
1713///
1714/// [#73137]: https://github.com/rust-lang/rust/issues/73137
1715struct EnsureCoroutineFieldAssignmentsNeverAlias<'a> {
1716    saved_locals: &'a CoroutineSavedLocals,
1717    storage_conflicts: &'a BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal>,
1718    assigned_local: Option<CoroutineSavedLocal>,
1719}
1720
1721impl EnsureCoroutineFieldAssignmentsNeverAlias<'_> {
1722    fn saved_local_for_direct_place(&self, place: Place<'_>) -> Option<CoroutineSavedLocal> {
1723        if place.is_indirect() {
1724            return None;
1725        }
1726
1727        self.saved_locals.get(place.local)
1728    }
1729
1730    fn check_assigned_place(&mut self, place: Place<'_>, f: impl FnOnce(&mut Self)) {
1731        if let Some(assigned_local) = self.saved_local_for_direct_place(place) {
1732            assert!(self.assigned_local.is_none(), "`check_assigned_place` must not recurse");
1733
1734            self.assigned_local = Some(assigned_local);
1735            f(self);
1736            self.assigned_local = None;
1737        }
1738    }
1739}
1740
1741impl<'tcx> Visitor<'tcx> for EnsureCoroutineFieldAssignmentsNeverAlias<'_> {
1742    fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) {
1743        let Some(lhs) = self.assigned_local else {
1744            // This visitor only invokes `visit_place` for the right-hand side of an assignment
1745            // and only after setting `self.assigned_local`. However, the default impl of
1746            // `Visitor::super_body` may call `visit_place` with a `NonUseContext` for places
1747            // with debuginfo. Ignore them here.
1748            assert!(!context.is_use());
1749            return;
1750        };
1751
1752        let Some(rhs) = self.saved_local_for_direct_place(*place) else { return };
1753
1754        if !self.storage_conflicts.contains(lhs, rhs) {
1755            bug!(
1756                "Assignment between coroutine saved locals whose storage is not \
1757                    marked as conflicting: {:?}: {:?} = {:?}",
1758                location,
1759                lhs,
1760                rhs,
1761            );
1762        }
1763    }
1764
1765    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
1766        match &statement.kind {
1767            StatementKind::Assign(box (lhs, rhs)) => {
1768                self.check_assigned_place(*lhs, |this| this.visit_rvalue(rhs, location));
1769            }
1770
1771            StatementKind::FakeRead(..)
1772            | StatementKind::SetDiscriminant { .. }
1773            | StatementKind::Deinit(..)
1774            | StatementKind::StorageLive(_)
1775            | StatementKind::StorageDead(_)
1776            | StatementKind::Retag(..)
1777            | StatementKind::AscribeUserType(..)
1778            | StatementKind::PlaceMention(..)
1779            | StatementKind::Coverage(..)
1780            | StatementKind::Intrinsic(..)
1781            | StatementKind::ConstEvalCounter
1782            | StatementKind::BackwardIncompatibleDropHint { .. }
1783            | StatementKind::Nop => {}
1784        }
1785    }
1786
1787    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
1788        // Checking for aliasing in terminators is probably overkill, but until we have actual
1789        // semantics, we should be conservative here.
1790        match &terminator.kind {
1791            TerminatorKind::Call {
1792                func,
1793                args,
1794                destination,
1795                target: Some(_),
1796                unwind: _,
1797                call_source: _,
1798                fn_span: _,
1799            } => {
1800                self.check_assigned_place(*destination, |this| {
1801                    this.visit_operand(func, location);
1802                    for arg in args {
1803                        this.visit_operand(&arg.node, location);
1804                    }
1805                });
1806            }
1807
1808            TerminatorKind::Yield { value, resume: _, resume_arg, drop: _ } => {
1809                self.check_assigned_place(*resume_arg, |this| this.visit_operand(value, location));
1810            }
1811
1812            // FIXME: Does `asm!` have any aliasing requirements?
1813            TerminatorKind::InlineAsm { .. } => {}
1814
1815            TerminatorKind::Call { .. }
1816            | TerminatorKind::Goto { .. }
1817            | TerminatorKind::SwitchInt { .. }
1818            | TerminatorKind::UnwindResume
1819            | TerminatorKind::UnwindTerminate(_)
1820            | TerminatorKind::Return
1821            | TerminatorKind::TailCall { .. }
1822            | TerminatorKind::Unreachable
1823            | TerminatorKind::Drop { .. }
1824            | TerminatorKind::Assert { .. }
1825            | TerminatorKind::CoroutineDrop
1826            | TerminatorKind::FalseEdge { .. }
1827            | TerminatorKind::FalseUnwind { .. } => {}
1828        }
1829    }
1830}
1831
1832fn check_suspend_tys<'tcx>(tcx: TyCtxt<'tcx>, layout: &CoroutineLayout<'tcx>, body: &Body<'tcx>) {
1833    let mut linted_tys = FxHashSet::default();
1834
1835    for (variant, yield_source_info) in
1836        layout.variant_fields.iter().zip(&layout.variant_source_info)
1837    {
1838        debug!(?variant);
1839        for &local in variant {
1840            let decl = &layout.field_tys[local];
1841            debug!(?decl);
1842
1843            if !decl.ignore_for_traits && linted_tys.insert(decl.ty) {
1844                let Some(hir_id) = decl.source_info.scope.lint_root(&body.source_scopes) else {
1845                    continue;
1846                };
1847
1848                check_must_not_suspend_ty(
1849                    tcx,
1850                    decl.ty,
1851                    hir_id,
1852                    SuspendCheckData {
1853                        source_span: decl.source_info.span,
1854                        yield_span: yield_source_info.span,
1855                        plural_len: 1,
1856                        ..Default::default()
1857                    },
1858                );
1859            }
1860        }
1861    }
1862}
1863
1864#[derive(Default)]
1865struct SuspendCheckData<'a> {
1866    source_span: Span,
1867    yield_span: Span,
1868    descr_pre: &'a str,
1869    descr_post: &'a str,
1870    plural_len: usize,
1871}
1872
1873// Returns whether it emitted a diagnostic or not
1874// Note that this fn and the proceeding one are based on the code
1875// for creating must_use diagnostics
1876//
1877// Note that this technique was chosen over things like a `Suspend` marker trait
1878// as it is simpler and has precedent in the compiler
1879fn check_must_not_suspend_ty<'tcx>(
1880    tcx: TyCtxt<'tcx>,
1881    ty: Ty<'tcx>,
1882    hir_id: hir::HirId,
1883    data: SuspendCheckData<'_>,
1884) -> bool {
1885    if ty.is_unit() {
1886        return false;
1887    }
1888
1889    let plural_suffix = pluralize!(data.plural_len);
1890
1891    debug!("Checking must_not_suspend for {}", ty);
1892
1893    match *ty.kind() {
1894        ty::Adt(_, args) if ty.is_box() => {
1895            let boxed_ty = args.type_at(0);
1896            let allocator_ty = args.type_at(1);
1897            check_must_not_suspend_ty(
1898                tcx,
1899                boxed_ty,
1900                hir_id,
1901                SuspendCheckData { descr_pre: &format!("{}boxed ", data.descr_pre), ..data },
1902            ) || check_must_not_suspend_ty(
1903                tcx,
1904                allocator_ty,
1905                hir_id,
1906                SuspendCheckData { descr_pre: &format!("{}allocator ", data.descr_pre), ..data },
1907            )
1908        }
1909        ty::Adt(def, _) => check_must_not_suspend_def(tcx, def.did(), hir_id, data),
1910        // FIXME: support adding the attribute to TAITs
1911        ty::Alias(ty::Opaque, ty::AliasTy { def_id: def, .. }) => {
1912            let mut has_emitted = false;
1913            for &(predicate, _) in tcx.explicit_item_bounds(def).skip_binder() {
1914                // We only look at the `DefId`, so it is safe to skip the binder here.
1915                if let ty::ClauseKind::Trait(ref poly_trait_predicate) =
1916                    predicate.kind().skip_binder()
1917                {
1918                    let def_id = poly_trait_predicate.trait_ref.def_id;
1919                    let descr_pre = &format!("{}implementer{} of ", data.descr_pre, plural_suffix);
1920                    if check_must_not_suspend_def(
1921                        tcx,
1922                        def_id,
1923                        hir_id,
1924                        SuspendCheckData { descr_pre, ..data },
1925                    ) {
1926                        has_emitted = true;
1927                        break;
1928                    }
1929                }
1930            }
1931            has_emitted
1932        }
1933        ty::Dynamic(binder, _, _) => {
1934            let mut has_emitted = false;
1935            for predicate in binder.iter() {
1936                if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() {
1937                    let def_id = trait_ref.def_id;
1938                    let descr_post = &format!(" trait object{}{}", plural_suffix, data.descr_post);
1939                    if check_must_not_suspend_def(
1940                        tcx,
1941                        def_id,
1942                        hir_id,
1943                        SuspendCheckData { descr_post, ..data },
1944                    ) {
1945                        has_emitted = true;
1946                        break;
1947                    }
1948                }
1949            }
1950            has_emitted
1951        }
1952        ty::Tuple(fields) => {
1953            let mut has_emitted = false;
1954            for (i, ty) in fields.iter().enumerate() {
1955                let descr_post = &format!(" in tuple element {i}");
1956                if check_must_not_suspend_ty(
1957                    tcx,
1958                    ty,
1959                    hir_id,
1960                    SuspendCheckData { descr_post, ..data },
1961                ) {
1962                    has_emitted = true;
1963                }
1964            }
1965            has_emitted
1966        }
1967        ty::Array(ty, len) => {
1968            let descr_pre = &format!("{}array{} of ", data.descr_pre, plural_suffix);
1969            check_must_not_suspend_ty(
1970                tcx,
1971                ty,
1972                hir_id,
1973                SuspendCheckData {
1974                    descr_pre,
1975                    // FIXME(must_not_suspend): This is wrong. We should handle printing unevaluated consts.
1976                    plural_len: len.try_to_target_usize(tcx).unwrap_or(0) as usize + 1,
1977                    ..data
1978                },
1979            )
1980        }
1981        // If drop tracking is enabled, we want to look through references, since the referent
1982        // may not be considered live across the await point.
1983        ty::Ref(_region, ty, _mutability) => {
1984            let descr_pre = &format!("{}reference{} to ", data.descr_pre, plural_suffix);
1985            check_must_not_suspend_ty(tcx, ty, hir_id, SuspendCheckData { descr_pre, ..data })
1986        }
1987        _ => false,
1988    }
1989}
1990
1991fn check_must_not_suspend_def(
1992    tcx: TyCtxt<'_>,
1993    def_id: DefId,
1994    hir_id: hir::HirId,
1995    data: SuspendCheckData<'_>,
1996) -> bool {
1997    if let Some(attr) = tcx.get_attr(def_id, sym::must_not_suspend) {
1998        let reason = attr.value_str().map(|s| errors::MustNotSuspendReason {
1999            span: data.source_span,
2000            reason: s.as_str().to_string(),
2001        });
2002        tcx.emit_node_span_lint(
2003            rustc_session::lint::builtin::MUST_NOT_SUSPEND,
2004            hir_id,
2005            data.source_span,
2006            errors::MustNotSupend {
2007                tcx,
2008                yield_sp: data.yield_span,
2009                reason,
2010                src_sp: data.source_span,
2011                pre: data.descr_pre,
2012                def_id,
2013                post: data.descr_post,
2014            },
2015        );
2016
2017        true
2018    } else {
2019        false
2020    }
2021}