rustc_query_system/dep_graph/serialized.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
//! The data that we will serialize and deserialize.
//!
//! Notionally, the dep-graph is a sequence of NodeInfo with the dependencies
//! specified inline. The total number of nodes and edges are stored as the last
//! 16 bytes of the file, so we can find them easily at decoding time.
//!
//! The serialisation is performed on-demand when each node is emitted. Using this
//! scheme, we do not need to keep the current graph in memory.
//!
//! The deserialization is performed manually, in order to convert from the stored
//! sequence of NodeInfos to the different arrays in SerializedDepGraph. Since the
//! node and edge count are stored at the end of the file, all the arrays can be
//! pre-allocated with the right length.
//!
//! The encoding of the de-pgraph is generally designed around the fact that fixed-size
//! reads of encoded data are generally faster than variable-sized reads. Ergo we adopt
//! essentially the same varint encoding scheme used in the rmeta format; the edge lists
//! for each node on the graph store a 2-bit integer which is the number of bytes per edge
//! index in that node's edge list. We effectively ignore that an edge index of 0 could be
//! encoded with 0 bytes in order to not require 3 bits to store the byte width of the edges.
//! The overhead of calculating the correct byte width for each edge is mitigated by
//! building edge lists with [`EdgesVec`] which keeps a running max of the edges in a node.
//!
//! When we decode this data, we do not immediately create [`SerializedDepNodeIndex`] and
//! instead keep the data in its denser serialized form which lets us turn our on-disk size
//! efficiency directly into a peak memory reduction. When we convert these encoded-in-memory
//! values into their fully-deserialized type, we use a fixed-size read of the encoded array
//! then mask off any errant bytes we read. The array of edge index bytes is padded to permit this.
//!
//! We also encode and decode the entire rest of each node using [`SerializedNodeHeader`]
//! to let this encoding and decoding be done in one fixed-size operation. These headers contain
//! two [`Fingerprint`]s along with the serialized [`DepKind`], and the number of edge indices
//! in the node and the number of bytes used to encode the edge indices for this node. The
//! [`DepKind`], number of edges, and bytes per edge are all bit-packed together, if they fit.
//! If the number of edges in this node does not fit in the bits available in the header, we
//! store it directly after the header with leb128.
use std::iter;
use std::marker::PhantomData;
use std::sync::Arc;
use rustc_data_structures::fingerprint::{Fingerprint, PackedFingerprint};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::outline;
use rustc_data_structures::profiling::SelfProfilerRef;
use rustc_data_structures::sync::Lock;
use rustc_data_structures::unhash::UnhashMap;
use rustc_index::{Idx, IndexVec};
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder, IntEncodedWithFixedSize, MemDecoder};
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use tracing::{debug, instrument};
use super::query::DepGraphQuery;
use super::{DepKind, DepNode, DepNodeIndex, Deps};
use crate::dep_graph::edges::EdgesVec;
// The maximum value of `SerializedDepNodeIndex` leaves the upper two bits
// unused so that we can store multiple index types in `CompressedHybridIndex`,
// and use those bits to encode which index type it contains.
rustc_index::newtype_index! {
#[encodable]
#[max = 0x7FFF_FFFF]
pub struct SerializedDepNodeIndex {}
}
const DEP_NODE_SIZE: usize = std::mem::size_of::<SerializedDepNodeIndex>();
/// Amount of padding we need to add to the edge list data so that we can retrieve every
/// SerializedDepNodeIndex with a fixed-size read then mask.
const DEP_NODE_PAD: usize = DEP_NODE_SIZE - 1;
/// Number of bits we need to store the number of used bytes in a SerializedDepNodeIndex.
/// Note that wherever we encode byte widths like this we actually store the number of bytes used
/// minus 1; for a 4-byte value we technically would have 5 widths to store, but using one byte to
/// store zeroes (which are relatively rare) is a decent tradeoff to save a bit in our bitfields.
const DEP_NODE_WIDTH_BITS: usize = DEP_NODE_SIZE / 2;
/// Data for use when recompiling the **current crate**.
#[derive(Debug, Default)]
pub struct SerializedDepGraph {
/// The set of all DepNodes in the graph
nodes: IndexVec<SerializedDepNodeIndex, DepNode>,
/// The set of all Fingerprints in the graph. Each Fingerprint corresponds to
/// the DepNode at the same index in the nodes vector.
fingerprints: IndexVec<SerializedDepNodeIndex, Fingerprint>,
/// For each DepNode, stores the list of edges originating from that
/// DepNode. Encoded as a [start, end) pair indexing into edge_list_data,
/// which holds the actual DepNodeIndices of the target nodes.
edge_list_indices: IndexVec<SerializedDepNodeIndex, EdgeHeader>,
/// A flattened list of all edge targets in the graph, stored in the same
/// varint encoding that we use on disk. Edge sources are implicit in edge_list_indices.
edge_list_data: Vec<u8>,
/// Stores a map from fingerprints to nodes per dep node kind.
/// This is the reciprocal of `nodes`.
index: Vec<UnhashMap<PackedFingerprint, SerializedDepNodeIndex>>,
}
impl SerializedDepGraph {
#[inline]
pub fn edge_targets_from(
&self,
source: SerializedDepNodeIndex,
) -> impl Iterator<Item = SerializedDepNodeIndex> + Clone + '_ {
let header = self.edge_list_indices[source];
let mut raw = &self.edge_list_data[header.start()..];
// Figure out where the edge list for `source` ends by getting the start index of the next
// edge list, or the end of the array if this is the last edge.
let end = self
.edge_list_indices
.get(source + 1)
.map(|h| h.start())
.unwrap_or_else(|| self.edge_list_data.len() - DEP_NODE_PAD);
// The number of edges for this node is implicitly stored in the combination of the byte
// width and the length.
let bytes_per_index = header.bytes_per_index();
let len = (end - header.start()) / bytes_per_index;
// LLVM doesn't hoist EdgeHeader::mask so we do it ourselves.
let mask = header.mask();
(0..len).map(move |_| {
// Doing this slicing in this order ensures that the first bounds check suffices for
// all the others.
let index = &raw[..DEP_NODE_SIZE];
raw = &raw[bytes_per_index..];
let index = u32::from_le_bytes(index.try_into().unwrap()) & mask;
SerializedDepNodeIndex::from_u32(index)
})
}
#[inline]
pub fn index_to_node(&self, dep_node_index: SerializedDepNodeIndex) -> DepNode {
self.nodes[dep_node_index]
}
#[inline]
pub fn node_to_index_opt(&self, dep_node: &DepNode) -> Option<SerializedDepNodeIndex> {
self.index.get(dep_node.kind.as_usize())?.get(&dep_node.hash).cloned()
}
#[inline]
pub fn fingerprint_by_index(&self, dep_node_index: SerializedDepNodeIndex) -> Fingerprint {
self.fingerprints[dep_node_index]
}
#[inline]
pub fn node_count(&self) -> usize {
self.nodes.len()
}
}
/// A packed representation of an edge's start index and byte width.
///
/// This is packed by stealing 2 bits from the start index, which means we only accommodate edge
/// data arrays up to a quarter of our address space. Which seems fine.
#[derive(Debug, Clone, Copy)]
struct EdgeHeader {
repr: usize,
}
impl EdgeHeader {
#[inline]
fn start(self) -> usize {
self.repr >> DEP_NODE_WIDTH_BITS
}
#[inline]
fn bytes_per_index(self) -> usize {
(self.repr & mask(DEP_NODE_WIDTH_BITS)) + 1
}
#[inline]
fn mask(self) -> u32 {
mask(self.bytes_per_index() * 8) as u32
}
}
#[inline]
fn mask(bits: usize) -> usize {
usize::MAX >> ((std::mem::size_of::<usize>() * 8) - bits)
}
impl SerializedDepGraph {
#[instrument(level = "debug", skip(d))]
pub fn decode<D: Deps>(d: &mut MemDecoder<'_>) -> Arc<SerializedDepGraph> {
// The last 16 bytes are the node count and edge count.
debug!("position: {:?}", d.position());
let (node_count, edge_count) =
d.with_position(d.len() - 2 * IntEncodedWithFixedSize::ENCODED_SIZE, |d| {
debug!("position: {:?}", d.position());
let node_count = IntEncodedWithFixedSize::decode(d).0 as usize;
let edge_count = IntEncodedWithFixedSize::decode(d).0 as usize;
(node_count, edge_count)
});
debug!("position: {:?}", d.position());
debug!(?node_count, ?edge_count);
let graph_bytes = d.len() - (2 * IntEncodedWithFixedSize::ENCODED_SIZE) - d.position();
let mut nodes = IndexVec::with_capacity(node_count);
let mut fingerprints = IndexVec::with_capacity(node_count);
let mut edge_list_indices = IndexVec::with_capacity(node_count);
// This estimation assumes that all of the encoded bytes are for the edge lists or for the
// fixed-size node headers. But that's not necessarily true; if any edge list has a length
// that spills out of the size we can bit-pack into SerializedNodeHeader then some of the
// total serialized size is also used by leb128-encoded edge list lengths. Neglecting that
// contribution to graph_bytes means our estimation of the bytes needed for edge_list_data
// slightly overshoots. But it cannot overshoot by much; consider that the worse case is
// for a node with length 64, which means the spilled 1-byte leb128 length is 1 byte of at
// least (34 byte header + 1 byte len + 64 bytes edge data), which is ~1%. A 2-byte leb128
// length is about the same fractional overhead and it amortizes for yet greater lengths.
let mut edge_list_data = Vec::with_capacity(
graph_bytes - node_count * std::mem::size_of::<SerializedNodeHeader<D>>(),
);
for _index in 0..node_count {
// Decode the header for this edge; the header packs together as many of the fixed-size
// fields as possible to limit the number of times we update decoder state.
let node_header =
SerializedNodeHeader::<D> { bytes: d.read_array(), _marker: PhantomData };
let _i: SerializedDepNodeIndex = nodes.push(node_header.node());
debug_assert_eq!(_i.index(), _index);
let _i: SerializedDepNodeIndex = fingerprints.push(node_header.fingerprint());
debug_assert_eq!(_i.index(), _index);
// If the length of this node's edge list is small, the length is stored in the header.
// If it is not, we fall back to another decoder call.
let num_edges = node_header.len().unwrap_or_else(|| d.read_usize());
// The edges index list uses the same varint strategy as rmeta tables; we select the
// number of byte elements per-array not per-element. This lets us read the whole edge
// list for a node with one decoder call and also use the on-disk format in memory.
let edges_len_bytes = node_header.bytes_per_index() * num_edges;
// The in-memory structure for the edges list stores the byte width of the edges on
// this node with the offset into the global edge data array.
let edges_header = node_header.edges_header(&edge_list_data);
edge_list_data.extend(d.read_raw_bytes(edges_len_bytes));
let _i: SerializedDepNodeIndex = edge_list_indices.push(edges_header);
debug_assert_eq!(_i.index(), _index);
}
// When we access the edge list data, we do a fixed-size read from the edge list data then
// mask off the bytes that aren't for that edge index, so the last read may dangle off the
// end of the array. This padding ensure it doesn't.
edge_list_data.extend(&[0u8; DEP_NODE_PAD]);
// Read the number of each dep kind and use it to create an hash map with a suitable size.
let mut index: Vec<_> = (0..(D::DEP_KIND_MAX + 1))
.map(|_| UnhashMap::with_capacity_and_hasher(d.read_u32() as usize, Default::default()))
.collect();
for (idx, node) in nodes.iter_enumerated() {
index[node.kind.as_usize()].insert(node.hash, idx);
}
Arc::new(SerializedDepGraph {
nodes,
fingerprints,
edge_list_indices,
edge_list_data,
index,
})
}
}
/// A packed representation of all the fixed-size fields in a `NodeInfo`.
///
/// This stores in one byte array:
/// * The `Fingerprint` in the `NodeInfo`
/// * The `Fingerprint` in `DepNode` that is in this `NodeInfo`
/// * The `DepKind`'s discriminant (a u16, but not all bits are used...)
/// * The byte width of the encoded edges for this node
/// * In whatever bits remain, the length of the edge list for this node, if it fits
struct SerializedNodeHeader<D> {
// 2 bytes for the DepNode
// 16 for Fingerprint in DepNode
// 16 for Fingerprint in NodeInfo
bytes: [u8; 34],
_marker: PhantomData<D>,
}
// The fields of a `SerializedNodeHeader`, this struct is an implementation detail and exists only
// to make the implementation of `SerializedNodeHeader` simpler.
struct Unpacked {
len: Option<usize>,
bytes_per_index: usize,
kind: DepKind,
hash: PackedFingerprint,
fingerprint: Fingerprint,
}
// Bit fields, where
// M: bits used to store the length of a node's edge list
// N: bits used to store the byte width of elements of the edge list
// are
// 0..M length of the edge
// M..M+N bytes per index
// M+N..16 kind
impl<D: Deps> SerializedNodeHeader<D> {
const TOTAL_BITS: usize = std::mem::size_of::<DepKind>() * 8;
const LEN_BITS: usize = Self::TOTAL_BITS - Self::KIND_BITS - Self::WIDTH_BITS;
const WIDTH_BITS: usize = DEP_NODE_WIDTH_BITS;
const KIND_BITS: usize = Self::TOTAL_BITS - D::DEP_KIND_MAX.leading_zeros() as usize;
const MAX_INLINE_LEN: usize = (u16::MAX as usize >> (Self::TOTAL_BITS - Self::LEN_BITS)) - 1;
#[inline]
fn new(
node: DepNode,
fingerprint: Fingerprint,
edge_max_index: u32,
edge_count: usize,
) -> Self {
debug_assert_eq!(Self::TOTAL_BITS, Self::LEN_BITS + Self::WIDTH_BITS + Self::KIND_BITS);
let mut head = node.kind.as_inner();
let free_bytes = edge_max_index.leading_zeros() as usize / 8;
let bytes_per_index = (DEP_NODE_SIZE - free_bytes).saturating_sub(1);
head |= (bytes_per_index as u16) << Self::KIND_BITS;
// Encode number of edges + 1 so that we can reserve 0 to indicate that the len doesn't fit
// in this bitfield.
if edge_count <= Self::MAX_INLINE_LEN {
head |= (edge_count as u16 + 1) << (Self::KIND_BITS + Self::WIDTH_BITS);
}
let hash: Fingerprint = node.hash.into();
// Using half-open ranges ensures an unconditional panic if we get the magic numbers wrong.
let mut bytes = [0u8; 34];
bytes[..2].copy_from_slice(&head.to_le_bytes());
bytes[2..18].copy_from_slice(&hash.to_le_bytes());
bytes[18..].copy_from_slice(&fingerprint.to_le_bytes());
#[cfg(debug_assertions)]
{
let res = Self { bytes, _marker: PhantomData };
assert_eq!(fingerprint, res.fingerprint());
assert_eq!(node, res.node());
if let Some(len) = res.len() {
assert_eq!(edge_count, len);
}
}
Self { bytes, _marker: PhantomData }
}
#[inline]
fn unpack(&self) -> Unpacked {
let head = u16::from_le_bytes(self.bytes[..2].try_into().unwrap());
let hash = self.bytes[2..18].try_into().unwrap();
let fingerprint = self.bytes[18..].try_into().unwrap();
let kind = head & mask(Self::KIND_BITS) as u16;
let bytes_per_index = (head >> Self::KIND_BITS) & mask(Self::WIDTH_BITS) as u16;
let len = (head as usize) >> (Self::WIDTH_BITS + Self::KIND_BITS);
Unpacked {
len: len.checked_sub(1),
bytes_per_index: bytes_per_index as usize + 1,
kind: DepKind::new(kind),
hash: Fingerprint::from_le_bytes(hash).into(),
fingerprint: Fingerprint::from_le_bytes(fingerprint),
}
}
#[inline]
fn len(&self) -> Option<usize> {
self.unpack().len
}
#[inline]
fn bytes_per_index(&self) -> usize {
self.unpack().bytes_per_index
}
#[inline]
fn fingerprint(&self) -> Fingerprint {
self.unpack().fingerprint
}
#[inline]
fn node(&self) -> DepNode {
let Unpacked { kind, hash, .. } = self.unpack();
DepNode { kind, hash }
}
#[inline]
fn edges_header(&self, edge_list_data: &[u8]) -> EdgeHeader {
EdgeHeader {
repr: (edge_list_data.len() << DEP_NODE_WIDTH_BITS) | (self.bytes_per_index() - 1),
}
}
}
#[derive(Debug)]
struct NodeInfo {
node: DepNode,
fingerprint: Fingerprint,
edges: EdgesVec,
}
impl NodeInfo {
fn encode<D: Deps>(&self, e: &mut FileEncoder) {
let NodeInfo { node, fingerprint, ref edges } = *self;
let header =
SerializedNodeHeader::<D>::new(node, fingerprint, edges.max_index(), edges.len());
e.write_array(header.bytes);
if header.len().is_none() {
e.emit_usize(edges.len());
}
let bytes_per_index = header.bytes_per_index();
for node_index in edges.iter() {
e.write_with(|dest| {
*dest = node_index.as_u32().to_le_bytes();
bytes_per_index
});
}
}
/// Encode a node that was promoted from the previous graph. It reads the edges directly from
/// the previous dep graph and expects all edges to already have a new dep node index assigned.
/// This avoids the overhead of constructing `EdgesVec`, which would be needed to call `encode`.
#[inline]
fn encode_promoted<D: Deps>(
e: &mut FileEncoder,
node: DepNode,
fingerprint: Fingerprint,
prev_index: SerializedDepNodeIndex,
prev_index_to_index: &IndexVec<SerializedDepNodeIndex, Option<DepNodeIndex>>,
previous: &SerializedDepGraph,
) -> usize {
let edges = previous.edge_targets_from(prev_index);
let edge_count = edges.size_hint().0;
// Find the highest edge in the new dep node indices
let edge_max =
edges.clone().map(|i| prev_index_to_index[i].unwrap().as_u32()).max().unwrap_or(0);
let header = SerializedNodeHeader::<D>::new(node, fingerprint, edge_max, edge_count);
e.write_array(header.bytes);
if header.len().is_none() {
e.emit_usize(edge_count);
}
let bytes_per_index = header.bytes_per_index();
for node_index in edges {
let node_index = prev_index_to_index[node_index].unwrap();
e.write_with(|dest| {
*dest = node_index.as_u32().to_le_bytes();
bytes_per_index
});
}
edge_count
}
}
struct Stat {
kind: DepKind,
node_counter: u64,
edge_counter: u64,
}
struct EncoderState<D: Deps> {
previous: Arc<SerializedDepGraph>,
encoder: FileEncoder,
total_node_count: usize,
total_edge_count: usize,
stats: Option<FxHashMap<DepKind, Stat>>,
/// Stores the number of times we've encoded each dep kind.
kind_stats: Vec<u32>,
marker: PhantomData<D>,
}
impl<D: Deps> EncoderState<D> {
fn new(encoder: FileEncoder, record_stats: bool, previous: Arc<SerializedDepGraph>) -> Self {
Self {
previous,
encoder,
total_edge_count: 0,
total_node_count: 0,
stats: record_stats.then(FxHashMap::default),
kind_stats: iter::repeat(0).take(D::DEP_KIND_MAX as usize + 1).collect(),
marker: PhantomData,
}
}
#[inline]
fn record(
&mut self,
node: DepNode,
edge_count: usize,
edges: impl FnOnce(&mut Self) -> Vec<DepNodeIndex>,
record_graph: &Option<Lock<DepGraphQuery>>,
) -> DepNodeIndex {
let index = DepNodeIndex::new(self.total_node_count);
self.total_node_count += 1;
self.kind_stats[node.kind.as_usize()] += 1;
self.total_edge_count += edge_count;
if let Some(record_graph) = &record_graph {
// Call `edges` before the outlined code to allow the closure to be optimized out.
let edges = edges(self);
// Outline the build of the full dep graph as it's typically disabled and cold.
outline(move || {
// Do not ICE when a query is called from within `with_query`.
if let Some(record_graph) = &mut record_graph.try_lock() {
record_graph.push(index, node, &edges);
}
});
}
if let Some(stats) = &mut self.stats {
let kind = node.kind;
// Outline the stats code as it's typically disabled and cold.
outline(move || {
let stat =
stats.entry(kind).or_insert(Stat { kind, node_counter: 0, edge_counter: 0 });
stat.node_counter += 1;
stat.edge_counter += edge_count as u64;
});
}
index
}
/// Encodes a node to the current graph.
fn encode_node(
&mut self,
node: &NodeInfo,
record_graph: &Option<Lock<DepGraphQuery>>,
) -> DepNodeIndex {
node.encode::<D>(&mut self.encoder);
self.record(node.node, node.edges.len(), |_| node.edges[..].to_vec(), record_graph)
}
/// Encodes a node that was promoted from the previous graph. It reads the information directly from
/// the previous dep graph for performance reasons.
///
/// This differs from `encode_node` where you have to explicitly provide the relevant `NodeInfo`.
///
/// It expects all edges to already have a new dep node index assigned.
#[inline]
fn encode_promoted_node(
&mut self,
prev_index: SerializedDepNodeIndex,
record_graph: &Option<Lock<DepGraphQuery>>,
prev_index_to_index: &IndexVec<SerializedDepNodeIndex, Option<DepNodeIndex>>,
) -> DepNodeIndex {
let node = self.previous.index_to_node(prev_index);
let fingerprint = self.previous.fingerprint_by_index(prev_index);
let edge_count = NodeInfo::encode_promoted::<D>(
&mut self.encoder,
node,
fingerprint,
prev_index,
prev_index_to_index,
&self.previous,
);
self.record(
node,
edge_count,
|this| {
this.previous
.edge_targets_from(prev_index)
.map(|i| prev_index_to_index[i].unwrap())
.collect()
},
record_graph,
)
}
fn finish(self, profiler: &SelfProfilerRef) -> FileEncodeResult {
let Self {
mut encoder,
total_node_count,
total_edge_count,
stats: _,
kind_stats,
marker: _,
previous: _,
} = self;
let node_count = total_node_count.try_into().unwrap();
let edge_count = total_edge_count.try_into().unwrap();
// Encode the number of each dep kind encountered
for count in kind_stats.iter() {
count.encode(&mut encoder);
}
debug!(?node_count, ?edge_count);
debug!("position: {:?}", encoder.position());
IntEncodedWithFixedSize(node_count).encode(&mut encoder);
IntEncodedWithFixedSize(edge_count).encode(&mut encoder);
debug!("position: {:?}", encoder.position());
// Drop the encoder so that nothing is written after the counts.
let result = encoder.finish();
if let Ok(position) = result {
// FIXME(rylev): we hardcode the dep graph file name so we
// don't need a dependency on rustc_incremental just for that.
profiler.artifact_size("dep_graph", "dep-graph.bin", position as u64);
}
result
}
}
pub(crate) struct GraphEncoder<D: Deps> {
profiler: SelfProfilerRef,
status: Lock<Option<EncoderState<D>>>,
record_graph: Option<Lock<DepGraphQuery>>,
}
impl<D: Deps> GraphEncoder<D> {
pub(crate) fn new(
encoder: FileEncoder,
prev_node_count: usize,
record_graph: bool,
record_stats: bool,
profiler: &SelfProfilerRef,
previous: Arc<SerializedDepGraph>,
) -> Self {
let record_graph = record_graph.then(|| Lock::new(DepGraphQuery::new(prev_node_count)));
let status = Lock::new(Some(EncoderState::new(encoder, record_stats, previous)));
GraphEncoder { status, record_graph, profiler: profiler.clone() }
}
pub(crate) fn with_query(&self, f: impl Fn(&DepGraphQuery)) {
if let Some(record_graph) = &self.record_graph {
f(&record_graph.lock())
}
}
pub(crate) fn print_incremental_info(
&self,
total_read_count: u64,
total_duplicate_read_count: u64,
) {
let mut status = self.status.lock();
let status = status.as_mut().unwrap();
if let Some(record_stats) = &status.stats {
let mut stats: Vec<_> = record_stats.values().collect();
stats.sort_by_key(|s| -(s.node_counter as i64));
const SEPARATOR: &str = "[incremental] --------------------------------\
----------------------------------------------\
------------";
eprintln!("[incremental]");
eprintln!("[incremental] DepGraph Statistics");
eprintln!("{SEPARATOR}");
eprintln!("[incremental]");
eprintln!("[incremental] Total Node Count: {}", status.total_node_count);
eprintln!("[incremental] Total Edge Count: {}", status.total_edge_count);
if cfg!(debug_assertions) {
eprintln!("[incremental] Total Edge Reads: {total_read_count}");
eprintln!("[incremental] Total Duplicate Edge Reads: {total_duplicate_read_count}");
}
eprintln!("[incremental]");
eprintln!(
"[incremental] {:<36}| {:<17}| {:<12}| {:<17}|",
"Node Kind", "Node Frequency", "Node Count", "Avg. Edge Count"
);
eprintln!("{SEPARATOR}");
for stat in stats {
let node_kind_ratio =
(100.0 * (stat.node_counter as f64)) / (status.total_node_count as f64);
let node_kind_avg_edges = (stat.edge_counter as f64) / (stat.node_counter as f64);
eprintln!(
"[incremental] {:<36}|{:>16.1}% |{:>12} |{:>17.1} |",
format!("{:?}", stat.kind),
node_kind_ratio,
stat.node_counter,
node_kind_avg_edges,
);
}
eprintln!("{SEPARATOR}");
eprintln!("[incremental]");
}
}
pub(crate) fn send(
&self,
node: DepNode,
fingerprint: Fingerprint,
edges: EdgesVec,
) -> DepNodeIndex {
let _prof_timer = self.profiler.generic_activity("incr_comp_encode_dep_graph");
let node = NodeInfo { node, fingerprint, edges };
self.status.lock().as_mut().unwrap().encode_node(&node, &self.record_graph)
}
/// Encodes a node that was promoted from the previous graph. It reads the information directly from
/// the previous dep graph and expects all edges to already have a new dep node index assigned.
#[inline]
pub(crate) fn send_promoted(
&self,
prev_index: SerializedDepNodeIndex,
prev_index_to_index: &IndexVec<SerializedDepNodeIndex, Option<DepNodeIndex>>,
) -> DepNodeIndex {
let _prof_timer = self.profiler.generic_activity("incr_comp_encode_dep_graph");
self.status.lock().as_mut().unwrap().encode_promoted_node(
prev_index,
&self.record_graph,
prev_index_to_index,
)
}
pub(crate) fn finish(&self) -> FileEncodeResult {
let _prof_timer = self.profiler.generic_activity("incr_comp_encode_dep_graph_finish");
self.status.lock().take().unwrap().finish(&self.profiler)
}
}