rustc_infer/infer/relate/generalize.rs
1use std::mem;
2
3use rustc_data_structures::sso::SsoHashMap;
4use rustc_data_structures::stack::ensure_sufficient_stack;
5use rustc_hir::def_id::DefId;
6use rustc_middle::bug;
7use rustc_middle::ty::error::TypeError;
8use rustc_middle::ty::{
9 self, AliasRelationDirection, InferConst, MaxUniverse, Term, Ty, TyCtxt, TypeVisitable,
10 TypeVisitableExt, TypingMode,
11};
12use rustc_span::Span;
13use tracing::{debug, instrument, warn};
14
15use super::{
16 PredicateEmittingRelation, Relate, RelateResult, StructurallyRelateAliases, TypeRelation,
17};
18use crate::infer::type_variable::TypeVariableValue;
19use crate::infer::unify_key::ConstVariableValue;
20use crate::infer::{InferCtxt, RegionVariableOrigin, relate};
21
22impl<'tcx> InferCtxt<'tcx> {
23 /// The idea is that we should ensure that the type variable `target_vid`
24 /// is equal to, a subtype of, or a supertype of `source_ty`.
25 ///
26 /// For this, we will instantiate `target_vid` with a *generalized* version
27 /// of `source_ty`. Generalization introduces other inference variables wherever
28 /// subtyping could occur. This also does the occurs checks, detecting whether
29 /// instantiating `target_vid` would result in a cyclic type. We eagerly error
30 /// in this case.
31 ///
32 /// This is *not* expected to be used anywhere except for an implementation of
33 /// `TypeRelation`. Do not use this, and instead please use `At::eq`, for all
34 /// other usecases (i.e. setting the value of a type var).
35 #[instrument(level = "debug", skip(self, relation))]
36 pub fn instantiate_ty_var<R: PredicateEmittingRelation<InferCtxt<'tcx>>>(
37 &self,
38 relation: &mut R,
39 target_is_expected: bool,
40 target_vid: ty::TyVid,
41 instantiation_variance: ty::Variance,
42 source_ty: Ty<'tcx>,
43 ) -> RelateResult<'tcx, ()> {
44 debug_assert!(self.inner.borrow_mut().type_variables().probe(target_vid).is_unknown());
45
46 // Generalize `source_ty` depending on the current variance. As an example, assume
47 // `?target <: &'x ?1`, where `'x` is some free region and `?1` is an inference
48 // variable.
49 //
50 // Then the `generalized_ty` would be `&'?2 ?3`, where `'?2` and `?3` are fresh
51 // region/type inference variables.
52 //
53 // We then relate `generalized_ty <: source_ty`, adding constraints like `'x: '?2` and
54 // `?1 <: ?3`.
55 let Generalization { value_may_be_infer: generalized_ty, has_unconstrained_ty_var } = self
56 .generalize(
57 relation.span(),
58 relation.structurally_relate_aliases(),
59 target_vid,
60 instantiation_variance,
61 source_ty,
62 )?;
63
64 // Constrain `b_vid` to the generalized type `generalized_ty`.
65 if let &ty::Infer(ty::TyVar(generalized_vid)) = generalized_ty.kind() {
66 self.inner.borrow_mut().type_variables().equate(target_vid, generalized_vid);
67 } else {
68 self.inner.borrow_mut().type_variables().instantiate(target_vid, generalized_ty);
69 }
70
71 // See the comment on `Generalization::has_unconstrained_ty_var`.
72 if has_unconstrained_ty_var {
73 relation.register_predicates([ty::ClauseKind::WellFormed(generalized_ty.into())]);
74 }
75
76 // Finally, relate `generalized_ty` to `source_ty`, as described in previous comment.
77 //
78 // FIXME(#16847): This code is non-ideal because all these subtype
79 // relations wind up attributed to the same spans. We need
80 // to associate causes/spans with each of the relations in
81 // the stack to get this right.
82 if generalized_ty.is_ty_var() {
83 // This happens for cases like `<?0 as Trait>::Assoc == ?0`.
84 // We can't instantiate `?0` here as that would result in a
85 // cyclic type. We instead delay the unification in case
86 // the alias can be normalized to something which does not
87 // mention `?0`.
88 if self.next_trait_solver() {
89 let (lhs, rhs, direction) = match instantiation_variance {
90 ty::Invariant => {
91 (generalized_ty.into(), source_ty.into(), AliasRelationDirection::Equate)
92 }
93 ty::Covariant => {
94 (generalized_ty.into(), source_ty.into(), AliasRelationDirection::Subtype)
95 }
96 ty::Contravariant => {
97 (source_ty.into(), generalized_ty.into(), AliasRelationDirection::Subtype)
98 }
99 ty::Bivariant => unreachable!("bivariant generalization"),
100 };
101
102 relation.register_predicates([ty::PredicateKind::AliasRelate(lhs, rhs, direction)]);
103 } else {
104 match source_ty.kind() {
105 &ty::Alias(ty::Projection, data) => {
106 // FIXME: This does not handle subtyping correctly, we could
107 // instead create a new inference variable `?normalized_source`, emitting
108 // `Projection(normalized_source, ?ty_normalized)` and
109 // `?normalized_source <: generalized_ty`.
110 relation.register_predicates([ty::ProjectionPredicate {
111 projection_term: data.into(),
112 term: generalized_ty.into(),
113 }]);
114 }
115 // The old solver only accepts projection predicates for associated types.
116 ty::Alias(ty::Inherent | ty::Weak | ty::Opaque, _) => {
117 return Err(TypeError::CyclicTy(source_ty));
118 }
119 _ => bug!("generalized `{source_ty:?} to infer, not an alias"),
120 }
121 }
122 } else {
123 // NOTE: The `instantiation_variance` is not the same variance as
124 // used by the relation. When instantiating `b`, `target_is_expected`
125 // is flipped and the `instantiation_variance` is also flipped. To
126 // constrain the `generalized_ty` while using the original relation,
127 // we therefore only have to flip the arguments.
128 //
129 // ```ignore (not code)
130 // ?a rel B
131 // instantiate_ty_var(?a, B) # expected and variance not flipped
132 // B' rel B
133 // ```
134 // or
135 // ```ignore (not code)
136 // A rel ?b
137 // instantiate_ty_var(?b, A) # expected and variance flipped
138 // A rel A'
139 // ```
140 if target_is_expected {
141 relation.relate(generalized_ty, source_ty)?;
142 } else {
143 debug!("flip relation");
144 relation.relate(source_ty, generalized_ty)?;
145 }
146 }
147
148 Ok(())
149 }
150
151 /// Instantiates the const variable `target_vid` with the given constant.
152 ///
153 /// This also tests if the given const `ct` contains an inference variable which was previously
154 /// unioned with `target_vid`. If this is the case, inferring `target_vid` to `ct`
155 /// would result in an infinite type as we continuously replace an inference variable
156 /// in `ct` with `ct` itself.
157 ///
158 /// This is especially important as unevaluated consts use their parents generics.
159 /// They therefore often contain unused args, making these errors far more likely.
160 ///
161 /// A good example of this is the following:
162 ///
163 /// ```compile_fail,E0308
164 /// #![feature(generic_const_exprs)]
165 ///
166 /// fn bind<const N: usize>(value: [u8; N]) -> [u8; 3 + 4] {
167 /// todo!()
168 /// }
169 ///
170 /// fn main() {
171 /// let mut arr = Default::default();
172 /// arr = bind(arr);
173 /// }
174 /// ```
175 ///
176 /// Here `3 + 4` ends up as `ConstKind::Unevaluated` which uses the generics
177 /// of `fn bind` (meaning that its args contain `N`).
178 ///
179 /// `bind(arr)` now infers that the type of `arr` must be `[u8; N]`.
180 /// The assignment `arr = bind(arr)` now tries to equate `N` with `3 + 4`.
181 ///
182 /// As `3 + 4` contains `N` in its args, this must not succeed.
183 ///
184 /// See `tests/ui/const-generics/occurs-check/` for more examples where this is relevant.
185 #[instrument(level = "debug", skip(self, relation))]
186 pub(crate) fn instantiate_const_var<R: PredicateEmittingRelation<InferCtxt<'tcx>>>(
187 &self,
188 relation: &mut R,
189 target_is_expected: bool,
190 target_vid: ty::ConstVid,
191 source_ct: ty::Const<'tcx>,
192 ) -> RelateResult<'tcx, ()> {
193 // FIXME(generic_const_exprs): Occurs check failures for unevaluated
194 // constants and generic expressions are not yet handled correctly.
195 let Generalization { value_may_be_infer: generalized_ct, has_unconstrained_ty_var } = self
196 .generalize(
197 relation.span(),
198 relation.structurally_relate_aliases(),
199 target_vid,
200 ty::Invariant,
201 source_ct,
202 )?;
203
204 debug_assert!(!generalized_ct.is_ct_infer());
205 if has_unconstrained_ty_var {
206 bug!("unconstrained ty var when generalizing `{source_ct:?}`");
207 }
208
209 self.inner
210 .borrow_mut()
211 .const_unification_table()
212 .union_value(target_vid, ConstVariableValue::Known { value: generalized_ct });
213
214 // Make sure that the order is correct when relating the
215 // generalized const and the source.
216 if target_is_expected {
217 relation.relate_with_variance(
218 ty::Invariant,
219 ty::VarianceDiagInfo::default(),
220 generalized_ct,
221 source_ct,
222 )?;
223 } else {
224 relation.relate_with_variance(
225 ty::Invariant,
226 ty::VarianceDiagInfo::default(),
227 source_ct,
228 generalized_ct,
229 )?;
230 }
231
232 Ok(())
233 }
234
235 /// Attempts to generalize `source_term` for the type variable `target_vid`.
236 /// This checks for cycles -- that is, whether `source_term` references `target_vid`.
237 fn generalize<T: Into<Term<'tcx>> + Relate<TyCtxt<'tcx>>>(
238 &self,
239 span: Span,
240 structurally_relate_aliases: StructurallyRelateAliases,
241 target_vid: impl Into<ty::TermVid>,
242 ambient_variance: ty::Variance,
243 source_term: T,
244 ) -> RelateResult<'tcx, Generalization<T>> {
245 assert!(!source_term.has_escaping_bound_vars());
246 let (for_universe, root_vid) = match target_vid.into() {
247 ty::TermVid::Ty(ty_vid) => {
248 (self.probe_ty_var(ty_vid).unwrap_err(), ty::TermVid::Ty(self.root_var(ty_vid)))
249 }
250 ty::TermVid::Const(ct_vid) => (
251 self.probe_const_var(ct_vid).unwrap_err(),
252 ty::TermVid::Const(
253 self.inner.borrow_mut().const_unification_table().find(ct_vid).vid,
254 ),
255 ),
256 };
257
258 let mut generalizer = Generalizer {
259 infcx: self,
260 span,
261 structurally_relate_aliases,
262 root_vid,
263 for_universe,
264 root_term: source_term.into(),
265 ambient_variance,
266 in_alias: false,
267 cache: Default::default(),
268 has_unconstrained_ty_var: false,
269 };
270
271 let value_may_be_infer = generalizer.relate(source_term, source_term)?;
272 let has_unconstrained_ty_var = generalizer.has_unconstrained_ty_var;
273 Ok(Generalization { value_may_be_infer, has_unconstrained_ty_var })
274 }
275}
276
277/// The "generalizer" is used when handling inference variables.
278///
279/// The basic strategy for handling a constraint like `?A <: B` is to
280/// apply a "generalization strategy" to the term `B` -- this replaces
281/// all the lifetimes in the term `B` with fresh inference variables.
282/// (You can read more about the strategy in this [blog post].)
283///
284/// As an example, if we had `?A <: &'x u32`, we would generalize `&'x
285/// u32` to `&'0 u32` where `'0` is a fresh variable. This becomes the
286/// value of `A`. Finally, we relate `&'0 u32 <: &'x u32`, which
287/// establishes `'0: 'x` as a constraint.
288///
289/// [blog post]: https://is.gd/0hKvIr
290struct Generalizer<'me, 'tcx> {
291 infcx: &'me InferCtxt<'tcx>,
292
293 span: Span,
294
295 /// Whether aliases should be related structurally. If not, we have to
296 /// be careful when generalizing aliases.
297 structurally_relate_aliases: StructurallyRelateAliases,
298
299 /// The vid of the type variable that is in the process of being
300 /// instantiated. If we find this within the value we are folding,
301 /// that means we would have created a cyclic value.
302 root_vid: ty::TermVid,
303
304 /// The universe of the type variable that is in the process of being
305 /// instantiated. If we find anything that this universe cannot name,
306 /// we reject the relation.
307 for_universe: ty::UniverseIndex,
308
309 /// The root term (const or type) we're generalizing. Used for cycle errors.
310 root_term: Term<'tcx>,
311
312 /// After we generalize this type, we are going to relate it to
313 /// some other type. What will be the variance at this point?
314 ambient_variance: ty::Variance,
315
316 /// This is set once we're generalizing the arguments of an alias.
317 ///
318 /// This is necessary to correctly handle
319 /// `<T as Bar<<?0 as Foo>::Assoc>::Assoc == ?0`. This equality can
320 /// hold by either normalizing the outer or the inner associated type.
321 in_alias: bool,
322
323 cache: SsoHashMap<(Ty<'tcx>, ty::Variance, bool), Ty<'tcx>>,
324
325 /// See the field `has_unconstrained_ty_var` in `Generalization`.
326 has_unconstrained_ty_var: bool,
327}
328
329impl<'tcx> Generalizer<'_, 'tcx> {
330 /// Create an error that corresponds to the term kind in `root_term`
331 fn cyclic_term_error(&self) -> TypeError<'tcx> {
332 match self.root_term.unpack() {
333 ty::TermKind::Ty(ty) => TypeError::CyclicTy(ty),
334 ty::TermKind::Const(ct) => TypeError::CyclicConst(ct),
335 }
336 }
337
338 /// Create a new type variable in the universe of the target when
339 /// generalizing an alias. This has to set `has_unconstrained_ty_var`
340 /// if we're currently in a bivariant context.
341 fn next_ty_var_for_alias(&mut self) -> Ty<'tcx> {
342 self.has_unconstrained_ty_var |= self.ambient_variance == ty::Bivariant;
343 self.infcx.next_ty_var_in_universe(self.span, self.for_universe)
344 }
345
346 /// An occurs check failure inside of an alias does not mean
347 /// that the types definitely don't unify. We may be able
348 /// to normalize the alias after all.
349 ///
350 /// We handle this by lazily equating the alias and generalizing
351 /// it to an inference variable. In the new solver, we always
352 /// generalize to an infer var unless the alias contains escaping
353 /// bound variables.
354 ///
355 /// Correctly handling aliases with escaping bound variables is
356 /// difficult and currently incomplete in two opposite ways:
357 /// - if we get an occurs check failure in the alias, replace it with a new infer var.
358 /// This causes us to later emit an alias-relate goal and is incomplete in case the
359 /// alias normalizes to type containing one of the bound variables.
360 /// - if the alias contains an inference variable not nameable by `for_universe`, we
361 /// continue generalizing the alias. This ends up pulling down the universe of the
362 /// inference variable and is incomplete in case the alias would normalize to a type
363 /// which does not mention that inference variable.
364 fn generalize_alias_ty(
365 &mut self,
366 alias: ty::AliasTy<'tcx>,
367 ) -> Result<Ty<'tcx>, TypeError<'tcx>> {
368 // We do not eagerly replace aliases with inference variables if they have
369 // escaping bound vars, see the method comment for details. However, when we
370 // are inside of an alias with escaping bound vars replacing nested aliases
371 // with inference variables can cause incorrect ambiguity.
372 //
373 // cc trait-system-refactor-initiative#110
374 if self.infcx.next_trait_solver() && !alias.has_escaping_bound_vars() && !self.in_alias {
375 return Ok(self.next_ty_var_for_alias());
376 }
377
378 let is_nested_alias = mem::replace(&mut self.in_alias, true);
379 let result = match self.relate(alias, alias) {
380 Ok(alias) => Ok(alias.to_ty(self.cx())),
381 Err(e) => {
382 if is_nested_alias {
383 return Err(e);
384 } else {
385 let mut visitor = MaxUniverse::new();
386 alias.visit_with(&mut visitor);
387 let infer_replacement_is_complete =
388 self.for_universe.can_name(visitor.max_universe())
389 && !alias.has_escaping_bound_vars();
390 if !infer_replacement_is_complete {
391 warn!("may incompletely handle alias type: {alias:?}");
392 }
393
394 debug!("generalization failure in alias");
395 Ok(self.next_ty_var_for_alias())
396 }
397 }
398 };
399 self.in_alias = is_nested_alias;
400 result
401 }
402}
403
404impl<'tcx> TypeRelation<TyCtxt<'tcx>> for Generalizer<'_, 'tcx> {
405 fn cx(&self) -> TyCtxt<'tcx> {
406 self.infcx.tcx
407 }
408
409 fn relate_item_args(
410 &mut self,
411 item_def_id: DefId,
412 a_arg: ty::GenericArgsRef<'tcx>,
413 b_arg: ty::GenericArgsRef<'tcx>,
414 ) -> RelateResult<'tcx, ty::GenericArgsRef<'tcx>> {
415 if self.ambient_variance == ty::Invariant {
416 // Avoid fetching the variance if we are in an invariant
417 // context; no need, and it can induce dependency cycles
418 // (e.g., #41849).
419 relate::relate_args_invariantly(self, a_arg, b_arg)
420 } else {
421 let tcx = self.cx();
422 let opt_variances = tcx.variances_of(item_def_id);
423 relate::relate_args_with_variances(
424 self,
425 item_def_id,
426 opt_variances,
427 a_arg,
428 b_arg,
429 false,
430 )
431 }
432 }
433
434 #[instrument(level = "debug", skip(self, variance, b), ret)]
435 fn relate_with_variance<T: Relate<TyCtxt<'tcx>>>(
436 &mut self,
437 variance: ty::Variance,
438 _info: ty::VarianceDiagInfo<TyCtxt<'tcx>>,
439 a: T,
440 b: T,
441 ) -> RelateResult<'tcx, T> {
442 let old_ambient_variance = self.ambient_variance;
443 self.ambient_variance = self.ambient_variance.xform(variance);
444 debug!(?self.ambient_variance, "new ambient variance");
445 // Recursive calls to `relate` can overflow the stack. For example a deeper version of
446 // `ui/associated-consts/issue-93775.rs`.
447 let r = ensure_sufficient_stack(|| self.relate(a, b));
448 self.ambient_variance = old_ambient_variance;
449 r
450 }
451
452 #[instrument(level = "debug", skip(self, t2), ret)]
453 fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
454 assert_eq!(t, t2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==
455
456 if let Some(&result) = self.cache.get(&(t, self.ambient_variance, self.in_alias)) {
457 return Ok(result);
458 }
459
460 // Check to see whether the type we are generalizing references
461 // any other type variable related to `vid` via
462 // subtyping. This is basically our "occurs check", preventing
463 // us from creating infinitely sized types.
464 let g = match *t.kind() {
465 ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
466 bug!("unexpected infer type: {t}")
467 }
468
469 ty::Infer(ty::TyVar(vid)) => {
470 let mut inner = self.infcx.inner.borrow_mut();
471 let vid = inner.type_variables().root_var(vid);
472 if ty::TermVid::Ty(vid) == self.root_vid {
473 // If sub-roots are equal, then `root_vid` and
474 // `vid` are related via subtyping.
475 Err(self.cyclic_term_error())
476 } else {
477 let probe = inner.type_variables().probe(vid);
478 match probe {
479 TypeVariableValue::Known { value: u } => {
480 drop(inner);
481 self.relate(u, u)
482 }
483 TypeVariableValue::Unknown { universe } => {
484 match self.ambient_variance {
485 // Invariant: no need to make a fresh type variable
486 // if we can name the universe.
487 ty::Invariant => {
488 if self.for_universe.can_name(universe) {
489 return Ok(t);
490 }
491 }
492
493 // Bivariant: make a fresh var, but remember that
494 // it is unconstrained. See the comment in
495 // `Generalization`.
496 ty::Bivariant => self.has_unconstrained_ty_var = true,
497
498 // Co/contravariant: this will be
499 // sufficiently constrained later on.
500 ty::Covariant | ty::Contravariant => (),
501 }
502
503 let origin = inner.type_variables().var_origin(vid);
504 let new_var_id =
505 inner.type_variables().new_var(self.for_universe, origin);
506 // If we're in the new solver and create a new inference
507 // variable inside of an alias we eagerly constrain that
508 // inference variable to prevent unexpected ambiguity errors.
509 //
510 // This is incomplete as it pulls down the universe of the
511 // original inference variable, even though the alias could
512 // normalize to a type which does not refer to that type at
513 // all. I don't expect this to cause unexpected errors in
514 // practice.
515 //
516 // We only need to do so for type and const variables, as
517 // region variables do not impact normalization, and will get
518 // correctly constrained by `AliasRelate` later on.
519 //
520 // cc trait-system-refactor-initiative#108
521 if self.infcx.next_trait_solver()
522 && !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
523 && self.in_alias
524 {
525 inner.type_variables().equate(vid, new_var_id);
526 }
527
528 debug!("replacing original vid={:?} with new={:?}", vid, new_var_id);
529 Ok(Ty::new_var(self.cx(), new_var_id))
530 }
531 }
532 }
533 }
534
535 ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
536 // No matter what mode we are in,
537 // integer/floating-point types must be equal to be
538 // relatable.
539 Ok(t)
540 }
541
542 ty::Placeholder(placeholder) => {
543 if self.for_universe.can_name(placeholder.universe) {
544 Ok(t)
545 } else {
546 debug!(
547 "root universe {:?} cannot name placeholder in universe {:?}",
548 self.for_universe, placeholder.universe
549 );
550 Err(TypeError::Mismatch)
551 }
552 }
553
554 ty::Alias(_, data) => match self.structurally_relate_aliases {
555 StructurallyRelateAliases::No => self.generalize_alias_ty(data),
556 StructurallyRelateAliases::Yes => relate::structurally_relate_tys(self, t, t),
557 },
558
559 _ => relate::structurally_relate_tys(self, t, t),
560 }?;
561
562 self.cache.insert((t, self.ambient_variance, self.in_alias), g);
563 Ok(g)
564 }
565
566 #[instrument(level = "debug", skip(self, r2), ret)]
567 fn regions(
568 &mut self,
569 r: ty::Region<'tcx>,
570 r2: ty::Region<'tcx>,
571 ) -> RelateResult<'tcx, ty::Region<'tcx>> {
572 assert_eq!(r, r2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==
573
574 match r.kind() {
575 // Never make variables for regions bound within the type itself,
576 // nor for erased regions.
577 ty::ReBound(..) | ty::ReErased => {
578 return Ok(r);
579 }
580
581 // It doesn't really matter for correctness if we generalize ReError,
582 // since we're already on a doomed compilation path.
583 ty::ReError(_) => {
584 return Ok(r);
585 }
586
587 ty::RePlaceholder(..)
588 | ty::ReVar(..)
589 | ty::ReStatic
590 | ty::ReEarlyParam(..)
591 | ty::ReLateParam(..) => {
592 // see common code below
593 }
594 }
595
596 // If we are in an invariant context, we can re-use the region
597 // as is, unless it happens to be in some universe that we
598 // can't name.
599 if let ty::Invariant = self.ambient_variance {
600 let r_universe = self.infcx.universe_of_region(r);
601 if self.for_universe.can_name(r_universe) {
602 return Ok(r);
603 }
604 }
605
606 Ok(self.infcx.next_region_var_in_universe(
607 RegionVariableOrigin::MiscVariable(self.span),
608 self.for_universe,
609 ))
610 }
611
612 #[instrument(level = "debug", skip(self, c2), ret)]
613 fn consts(
614 &mut self,
615 c: ty::Const<'tcx>,
616 c2: ty::Const<'tcx>,
617 ) -> RelateResult<'tcx, ty::Const<'tcx>> {
618 assert_eq!(c, c2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==
619
620 match c.kind() {
621 ty::ConstKind::Infer(InferConst::Var(vid)) => {
622 // If root const vids are equal, then `root_vid` and
623 // `vid` are related and we'd be inferring an infinitely
624 // deep const.
625 if ty::TermVid::Const(
626 self.infcx.inner.borrow_mut().const_unification_table().find(vid).vid,
627 ) == self.root_vid
628 {
629 return Err(self.cyclic_term_error());
630 }
631
632 let mut inner = self.infcx.inner.borrow_mut();
633 let variable_table = &mut inner.const_unification_table();
634 match variable_table.probe_value(vid) {
635 ConstVariableValue::Known { value: u } => {
636 drop(inner);
637 self.relate(u, u)
638 }
639 ConstVariableValue::Unknown { origin, universe } => {
640 if self.for_universe.can_name(universe) {
641 Ok(c)
642 } else {
643 let new_var_id = variable_table
644 .new_key(ConstVariableValue::Unknown {
645 origin,
646 universe: self.for_universe,
647 })
648 .vid;
649
650 // See the comment for type inference variables
651 // for more details.
652 if self.infcx.next_trait_solver()
653 && !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
654 && self.in_alias
655 {
656 variable_table.union(vid, new_var_id);
657 }
658 Ok(ty::Const::new_var(self.cx(), new_var_id))
659 }
660 }
661 }
662 }
663 // FIXME: Unevaluated constants are also not rigid, so the current
664 // approach of always relating them structurally is incomplete.
665 //
666 // FIXME: remove this branch once `structurally_relate_consts` is fully
667 // structural.
668 ty::ConstKind::Unevaluated(ty::UnevaluatedConst { def, args }) => {
669 let args = self.relate_with_variance(
670 ty::Invariant,
671 ty::VarianceDiagInfo::default(),
672 args,
673 args,
674 )?;
675 Ok(ty::Const::new_unevaluated(self.cx(), ty::UnevaluatedConst { def, args }))
676 }
677 ty::ConstKind::Placeholder(placeholder) => {
678 if self.for_universe.can_name(placeholder.universe) {
679 Ok(c)
680 } else {
681 debug!(
682 "root universe {:?} cannot name placeholder in universe {:?}",
683 self.for_universe, placeholder.universe
684 );
685 Err(TypeError::Mismatch)
686 }
687 }
688 _ => relate::structurally_relate_consts(self, c, c),
689 }
690 }
691
692 #[instrument(level = "debug", skip(self), ret)]
693 fn binders<T>(
694 &mut self,
695 a: ty::Binder<'tcx, T>,
696 _: ty::Binder<'tcx, T>,
697 ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
698 where
699 T: Relate<TyCtxt<'tcx>>,
700 {
701 let result = self.relate(a.skip_binder(), a.skip_binder())?;
702 Ok(a.rebind(result))
703 }
704}
705
706/// Result from a generalization operation. This includes
707/// not only the generalized type, but also a bool flag
708/// indicating whether further WF checks are needed.
709#[derive(Debug)]
710struct Generalization<T> {
711 /// When generalizing `<?0 as Trait>::Assoc` or
712 /// `<T as Bar<<?0 as Foo>::Assoc>>::Assoc`
713 /// for `?0` generalization returns an inference
714 /// variable.
715 ///
716 /// This has to be handled wotj care as it can
717 /// otherwise very easily result in infinite
718 /// recursion.
719 pub value_may_be_infer: T,
720
721 /// In general, we do not check whether all types which occur during
722 /// type checking are well-formed. We only check wf of user-provided types
723 /// and when actually using a type, e.g. for method calls.
724 ///
725 /// This means that when subtyping, we may end up with unconstrained
726 /// inference variables if a generalized type has bivariant parameters.
727 /// A parameter may only be bivariant if it is constrained by a projection
728 /// bound in a where-clause. As an example, imagine a type:
729 ///
730 /// struct Foo<A, B> where A: Iterator<Item = B> {
731 /// data: A
732 /// }
733 ///
734 /// here, `A` will be covariant, but `B` is unconstrained.
735 ///
736 /// However, whatever it is, for `Foo` to be WF, it must be equal to `A::Item`.
737 /// If we have an input `Foo<?A, ?B>`, then after generalization we will wind
738 /// up with a type like `Foo<?C, ?D>`. When we enforce `Foo<?A, ?B> <: Foo<?C, ?D>`,
739 /// we will wind up with the requirement that `?A <: ?C`, but no particular
740 /// relationship between `?B` and `?D` (after all, these types may be completely
741 /// different). If we do nothing else, this may mean that `?D` goes unconstrained
742 /// (as in #41677). To avoid this we emit a `WellFormed` obligation in these cases.
743 pub has_unconstrained_ty_var: bool,
744}