rustc_const_eval/util/check_validity_requirement.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
use rustc_abi::{BackendRepr, FieldsShape, Scalar, Variants};
use rustc_middle::bug;
use rustc_middle::ty::layout::{
HasTyCtxt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, ValidityRequirement,
};
use rustc_middle::ty::{PseudoCanonicalInput, Ty, TyCtxt};
use crate::const_eval::{CanAccessMutGlobal, CheckAlignment, CompileTimeMachine};
use crate::interpret::{InterpCx, MemoryKind};
/// Determines if this type permits "raw" initialization by just transmuting some memory into an
/// instance of `T`.
///
/// `init_kind` indicates if the memory is zero-initialized or left uninitialized. We assume
/// uninitialized memory is mitigated by filling it with 0x01, which reduces the chance of causing
/// LLVM UB.
///
/// By default we check whether that operation would cause *LLVM UB*, i.e., whether the LLVM IR we
/// generate has UB or not. This is a mitigation strategy, which is why we are okay with accepting
/// Rust UB as long as there is no risk of miscompilations. The `strict_init_checks` can be set to
/// do a full check against Rust UB instead (in which case we will also ignore the 0x01-filling and
/// to the full uninit check).
pub fn check_validity_requirement<'tcx>(
tcx: TyCtxt<'tcx>,
kind: ValidityRequirement,
input: PseudoCanonicalInput<'tcx, Ty<'tcx>>,
) -> Result<bool, &'tcx LayoutError<'tcx>> {
let layout = tcx.layout_of(input)?;
// There is nothing strict or lax about inhabitedness.
if kind == ValidityRequirement::Inhabited {
return Ok(!layout.is_uninhabited());
}
let layout_cx = LayoutCx::new(tcx, input.typing_env);
if kind == ValidityRequirement::Uninit || tcx.sess.opts.unstable_opts.strict_init_checks {
check_validity_requirement_strict(layout, &layout_cx, kind)
} else {
check_validity_requirement_lax(layout, &layout_cx, kind)
}
}
/// Implements the 'strict' version of the [`check_validity_requirement`] checks; see that function
/// for details.
fn check_validity_requirement_strict<'tcx>(
ty: TyAndLayout<'tcx>,
cx: &LayoutCx<'tcx>,
kind: ValidityRequirement,
) -> Result<bool, &'tcx LayoutError<'tcx>> {
let machine = CompileTimeMachine::new(CanAccessMutGlobal::No, CheckAlignment::Error);
let mut cx = InterpCx::new(cx.tcx(), rustc_span::DUMMY_SP, cx.typing_env, machine);
let allocated = cx
.allocate(ty, MemoryKind::Machine(crate::const_eval::MemoryKind::Heap))
.expect("OOM: failed to allocate for uninit check");
if kind == ValidityRequirement::Zero {
cx.write_bytes_ptr(
allocated.ptr(),
std::iter::repeat(0_u8).take(ty.layout.size().bytes_usize()),
)
.expect("failed to write bytes for zero valid check");
}
// Assume that if it failed, it's a validation failure.
// This does *not* actually check that references are dereferenceable, but since all types that
// require dereferenceability also require non-null, we don't actually get any false negatives
// due to this.
// The value we are validating is temporary and discarded at the end of this function, so
// there is no point in reseting provenance and padding.
Ok(cx
.validate_operand(
&allocated.into(),
/*recursive*/ false,
/*reset_provenance_and_padding*/ false,
)
.discard_err()
.is_some())
}
/// Implements the 'lax' (default) version of the [`check_validity_requirement`] checks; see that
/// function for details.
fn check_validity_requirement_lax<'tcx>(
this: TyAndLayout<'tcx>,
cx: &LayoutCx<'tcx>,
init_kind: ValidityRequirement,
) -> Result<bool, &'tcx LayoutError<'tcx>> {
let scalar_allows_raw_init = move |s: Scalar| -> bool {
match init_kind {
ValidityRequirement::Inhabited => {
bug!("ValidityRequirement::Inhabited should have been handled above")
}
ValidityRequirement::Zero => {
// The range must contain 0.
s.valid_range(cx).contains(0)
}
ValidityRequirement::UninitMitigated0x01Fill => {
// The range must include an 0x01-filled buffer.
let mut val: u128 = 0x01;
for _ in 1..s.size(cx).bytes() {
// For sizes >1, repeat the 0x01.
val = (val << 8) | 0x01;
}
s.valid_range(cx).contains(val)
}
ValidityRequirement::Uninit => {
bug!("ValidityRequirement::Uninit should have been handled above")
}
}
};
// Check the ABI.
let valid = match this.backend_repr {
BackendRepr::Uninhabited => false, // definitely UB
BackendRepr::Scalar(s) => scalar_allows_raw_init(s),
BackendRepr::ScalarPair(s1, s2) => scalar_allows_raw_init(s1) && scalar_allows_raw_init(s2),
BackendRepr::Vector { element: s, count } => count == 0 || scalar_allows_raw_init(s),
BackendRepr::Memory { .. } => true, // Fields are checked below.
};
if !valid {
// This is definitely not okay.
return Ok(false);
}
// Special magic check for references and boxes (i.e., special pointer types).
if let Some(pointee) = this.ty.builtin_deref(false) {
let pointee = cx.layout_of(pointee)?;
// We need to ensure that the LLVM attributes `aligned` and `dereferenceable(size)` are satisfied.
if pointee.align.abi.bytes() > 1 {
// 0x01-filling is not aligned.
return Ok(false);
}
if pointee.size.bytes() > 0 {
// A 'fake' integer pointer is not sufficiently dereferenceable.
return Ok(false);
}
}
// If we have not found an error yet, we need to recursively descend into fields.
match &this.fields {
FieldsShape::Primitive | FieldsShape::Union { .. } => {}
FieldsShape::Array { .. } => {
// Arrays never have scalar layout in LLVM, so if the array is not actually
// accessed, there is no LLVM UB -- therefore we can skip this.
}
FieldsShape::Arbitrary { offsets, .. } => {
for idx in 0..offsets.len() {
if !check_validity_requirement_lax(this.field(cx, idx), cx, init_kind)? {
// We found a field that is unhappy with this kind of initialization.
return Ok(false);
}
}
}
}
match &this.variants {
Variants::Empty => return Ok(false),
Variants::Single { .. } => {
// All fields of this single variant have already been checked above, there is nothing
// else to do.
}
Variants::Multiple { .. } => {
// We cannot tell LLVM anything about the details of this multi-variant layout, so
// invalid values "hidden" inside the variant cannot cause LLVM trouble.
}
}
Ok(true)
}