rustc_trait_selection/traits/
wf.rs

1//! Core logic responsible for determining what it means for various type system
2//! primitives to be "well formed". Actually checking whether these primitives are
3//! well formed is performed elsewhere (e.g. during type checking or item well formedness
4//! checking).
5
6use std::iter;
7
8use rustc_hir as hir;
9use rustc_hir::def::DefKind;
10use rustc_hir::lang_items::LangItem;
11use rustc_infer::traits::{ObligationCauseCode, PredicateObligations};
12use rustc_middle::bug;
13use rustc_middle::ty::{
14    self, GenericArgsRef, Term, TermKind, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable,
15    TypeVisitableExt, TypeVisitor,
16};
17use rustc_session::parse::feature_err;
18use rustc_span::def_id::{DefId, LocalDefId};
19use rustc_span::{Span, sym};
20use tracing::{debug, instrument, trace};
21
22use crate::infer::InferCtxt;
23use crate::traits;
24
25/// Returns the set of obligations needed to make `arg` well-formed.
26/// If `arg` contains unresolved inference variables, this may include
27/// further WF obligations. However, if `arg` IS an unresolved
28/// inference variable, returns `None`, because we are not able to
29/// make any progress at all. This is to prevent cycles where we
30/// say "?0 is WF if ?0 is WF".
31pub fn obligations<'tcx>(
32    infcx: &InferCtxt<'tcx>,
33    param_env: ty::ParamEnv<'tcx>,
34    body_id: LocalDefId,
35    recursion_depth: usize,
36    term: Term<'tcx>,
37    span: Span,
38) -> Option<PredicateObligations<'tcx>> {
39    // Handle the "cycle" case (see comment above) by bailing out if necessary.
40    let term = match term.unpack() {
41        TermKind::Ty(ty) => {
42            match ty.kind() {
43                ty::Infer(ty::TyVar(_)) => {
44                    let resolved_ty = infcx.shallow_resolve(ty);
45                    if resolved_ty == ty {
46                        // No progress, bail out to prevent cycles.
47                        return None;
48                    } else {
49                        resolved_ty
50                    }
51                }
52                _ => ty,
53            }
54            .into()
55        }
56        TermKind::Const(ct) => {
57            match ct.kind() {
58                ty::ConstKind::Infer(_) => {
59                    let resolved = infcx.shallow_resolve_const(ct);
60                    if resolved == ct {
61                        // No progress, bail out to prevent cycles.
62                        return None;
63                    } else {
64                        resolved
65                    }
66                }
67                _ => ct,
68            }
69            .into()
70        }
71    };
72
73    let mut wf = WfPredicates {
74        infcx,
75        param_env,
76        body_id,
77        span,
78        out: PredicateObligations::new(),
79        recursion_depth,
80        item: None,
81    };
82    wf.add_wf_preds_for_term(term);
83    debug!("wf::obligations({:?}, body_id={:?}) = {:?}", term, body_id, wf.out);
84
85    let result = wf.normalize(infcx);
86    debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", term, body_id, result);
87    Some(result)
88}
89
90/// Compute the predicates that are required for a type to be well-formed.
91///
92/// This is only intended to be used in the new solver, since it does not
93/// take into account recursion depth or proper error-reporting spans.
94pub fn unnormalized_obligations<'tcx>(
95    infcx: &InferCtxt<'tcx>,
96    param_env: ty::ParamEnv<'tcx>,
97    term: Term<'tcx>,
98    span: Span,
99    body_id: LocalDefId,
100) -> Option<PredicateObligations<'tcx>> {
101    debug_assert_eq!(term, infcx.resolve_vars_if_possible(term));
102
103    // However, if `arg` IS an unresolved inference variable, returns `None`,
104    // because we are not able to make any progress at all. This is to prevent
105    // cycles where we say "?0 is WF if ?0 is WF".
106    if term.is_infer() {
107        return None;
108    }
109
110    let mut wf = WfPredicates {
111        infcx,
112        param_env,
113        body_id,
114        span,
115        out: PredicateObligations::new(),
116        recursion_depth: 0,
117        item: None,
118    };
119    wf.add_wf_preds_for_term(term);
120    Some(wf.out)
121}
122
123/// Returns the obligations that make this trait reference
124/// well-formed. For example, if there is a trait `Set` defined like
125/// `trait Set<K: Eq>`, then the trait bound `Foo: Set<Bar>` is WF
126/// if `Bar: Eq`.
127pub fn trait_obligations<'tcx>(
128    infcx: &InferCtxt<'tcx>,
129    param_env: ty::ParamEnv<'tcx>,
130    body_id: LocalDefId,
131    trait_pred: ty::TraitPredicate<'tcx>,
132    span: Span,
133    item: &'tcx hir::Item<'tcx>,
134) -> PredicateObligations<'tcx> {
135    let mut wf = WfPredicates {
136        infcx,
137        param_env,
138        body_id,
139        span,
140        out: PredicateObligations::new(),
141        recursion_depth: 0,
142        item: Some(item),
143    };
144    wf.add_wf_preds_for_trait_pred(trait_pred, Elaborate::All);
145    debug!(obligations = ?wf.out);
146    wf.normalize(infcx)
147}
148
149/// Returns the requirements for `clause` to be well-formed.
150///
151/// For example, if there is a trait `Set` defined like
152/// `trait Set<K: Eq>`, then the trait bound `Foo: Set<Bar>` is WF
153/// if `Bar: Eq`.
154#[instrument(skip(infcx), ret)]
155pub fn clause_obligations<'tcx>(
156    infcx: &InferCtxt<'tcx>,
157    param_env: ty::ParamEnv<'tcx>,
158    body_id: LocalDefId,
159    clause: ty::Clause<'tcx>,
160    span: Span,
161) -> PredicateObligations<'tcx> {
162    let mut wf = WfPredicates {
163        infcx,
164        param_env,
165        body_id,
166        span,
167        out: PredicateObligations::new(),
168        recursion_depth: 0,
169        item: None,
170    };
171
172    // It's ok to skip the binder here because wf code is prepared for it
173    match clause.kind().skip_binder() {
174        ty::ClauseKind::Trait(t) => {
175            wf.add_wf_preds_for_trait_pred(t, Elaborate::None);
176        }
177        ty::ClauseKind::HostEffect(..) => {
178            // Technically the well-formedness of this predicate is implied by
179            // the corresponding trait predicate it should've been generated beside.
180        }
181        ty::ClauseKind::RegionOutlives(..) => {}
182        ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
183            wf.add_wf_preds_for_term(ty.into());
184        }
185        ty::ClauseKind::Projection(t) => {
186            wf.add_wf_preds_for_alias_term(t.projection_term);
187            wf.add_wf_preds_for_term(t.term);
188        }
189        ty::ClauseKind::ConstArgHasType(ct, ty) => {
190            wf.add_wf_preds_for_term(ct.into());
191            wf.add_wf_preds_for_term(ty.into());
192        }
193        ty::ClauseKind::WellFormed(term) => {
194            wf.add_wf_preds_for_term(term);
195        }
196
197        ty::ClauseKind::ConstEvaluatable(ct) => {
198            wf.add_wf_preds_for_term(ct.into());
199        }
200    }
201
202    wf.normalize(infcx)
203}
204
205struct WfPredicates<'a, 'tcx> {
206    infcx: &'a InferCtxt<'tcx>,
207    param_env: ty::ParamEnv<'tcx>,
208    body_id: LocalDefId,
209    span: Span,
210    out: PredicateObligations<'tcx>,
211    recursion_depth: usize,
212    item: Option<&'tcx hir::Item<'tcx>>,
213}
214
215/// Controls whether we "elaborate" supertraits and so forth on the WF
216/// predicates. This is a kind of hack to address #43784. The
217/// underlying problem in that issue was a trait structure like:
218///
219/// ```ignore (illustrative)
220/// trait Foo: Copy { }
221/// trait Bar: Foo { }
222/// impl<T: Bar> Foo for T { }
223/// impl<T> Bar for T { }
224/// ```
225///
226/// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
227/// we decide that this is true because `T: Bar` is in the
228/// where-clauses (and we can elaborate that to include `T:
229/// Copy`). This wouldn't be a problem, except that when we check the
230/// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
231/// impl. And so nowhere did we check that `T: Copy` holds!
232///
233/// To resolve this, we elaborate the WF requirements that must be
234/// proven when checking impls. This means that (e.g.) the `impl Bar
235/// for T` will be forced to prove not only that `T: Foo` but also `T:
236/// Copy` (which it won't be able to do, because there is no `Copy`
237/// impl for `T`).
238#[derive(Debug, PartialEq, Eq, Copy, Clone)]
239enum Elaborate {
240    All,
241    None,
242}
243
244/// Points the cause span of a super predicate at the relevant associated type.
245///
246/// Given a trait impl item:
247///
248/// ```ignore (incomplete)
249/// impl TargetTrait for TargetType {
250///    type Assoc = SomeType;
251/// }
252/// ```
253///
254/// And a super predicate of `TargetTrait` that has any of the following forms:
255///
256/// 1. `<OtherType as OtherTrait>::Assoc == <TargetType as TargetTrait>::Assoc`
257/// 2. `<<TargetType as TargetTrait>::Assoc as OtherTrait>::Assoc == OtherType`
258/// 3. `<TargetType as TargetTrait>::Assoc: OtherTrait`
259///
260/// Replace the span of the cause with the span of the associated item:
261///
262/// ```ignore (incomplete)
263/// impl TargetTrait for TargetType {
264///     type Assoc = SomeType;
265/// //               ^^^^^^^^ this span
266/// }
267/// ```
268///
269/// Note that bounds that can be expressed as associated item bounds are **not**
270/// super predicates. This means that form 2 and 3 from above are only relevant if
271/// the [`GenericArgsRef`] of the projection type are not its identity arguments.
272fn extend_cause_with_original_assoc_item_obligation<'tcx>(
273    tcx: TyCtxt<'tcx>,
274    item: Option<&hir::Item<'tcx>>,
275    cause: &mut traits::ObligationCause<'tcx>,
276    pred: ty::Predicate<'tcx>,
277) {
278    debug!(?item, ?cause, ?pred, "extended_cause_with_original_assoc_item_obligation");
279    let (items, impl_def_id) = match item {
280        Some(hir::Item { kind: hir::ItemKind::Impl(impl_), owner_id, .. }) => {
281            (impl_.items, *owner_id)
282        }
283        _ => return,
284    };
285
286    let ty_to_impl_span = |ty: Ty<'_>| {
287        if let ty::Alias(ty::Projection, projection_ty) = ty.kind()
288            && let Some(&impl_item_id) =
289                tcx.impl_item_implementor_ids(impl_def_id).get(&projection_ty.def_id)
290            && let Some(impl_item) =
291                items.iter().find(|item| item.id.owner_id.to_def_id() == impl_item_id)
292        {
293            Some(tcx.hir_impl_item(impl_item.id).expect_type().span)
294        } else {
295            None
296        }
297    };
298
299    // It is fine to skip the binder as we don't care about regions here.
300    match pred.kind().skip_binder() {
301        ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj)) => {
302            // Form 1: The obligation comes not from the current `impl` nor the `trait` being
303            // implemented, but rather from a "second order" obligation, where an associated
304            // type has a projection coming from another associated type.
305            // See `tests/ui/traits/assoc-type-in-superbad.rs` for an example.
306            if let Some(term_ty) = proj.term.as_type()
307                && let Some(impl_item_span) = ty_to_impl_span(term_ty)
308            {
309                cause.span = impl_item_span;
310            }
311
312            // Form 2: A projection obligation for an associated item failed to be met.
313            // We overwrite the span from above to ensure that a bound like
314            // `Self::Assoc1: Trait<OtherAssoc = Self::Assoc2>` gets the same
315            // span for both obligations that it is lowered to.
316            if let Some(impl_item_span) = ty_to_impl_span(proj.self_ty()) {
317                cause.span = impl_item_span;
318            }
319        }
320
321        ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
322            // Form 3: A trait obligation for an associated item failed to be met.
323            debug!("extended_cause_with_original_assoc_item_obligation trait proj {:?}", pred);
324            if let Some(impl_item_span) = ty_to_impl_span(pred.self_ty()) {
325                cause.span = impl_item_span;
326            }
327        }
328        _ => {}
329    }
330}
331
332impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
333    fn tcx(&self) -> TyCtxt<'tcx> {
334        self.infcx.tcx
335    }
336
337    fn cause(&self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
338        traits::ObligationCause::new(self.span, self.body_id, code)
339    }
340
341    fn normalize(self, infcx: &InferCtxt<'tcx>) -> PredicateObligations<'tcx> {
342        // Do not normalize `wf` obligations with the new solver.
343        //
344        // The current deep normalization routine with the new solver does not
345        // handle ambiguity and the new solver correctly deals with unnnormalized goals.
346        // If the user relies on normalized types, e.g. for `fn implied_outlives_bounds`,
347        // it is their responsibility to normalize while avoiding ambiguity.
348        if infcx.next_trait_solver() {
349            return self.out;
350        }
351
352        let cause = self.cause(ObligationCauseCode::WellFormed(None));
353        let param_env = self.param_env;
354        let mut obligations = PredicateObligations::with_capacity(self.out.len());
355        for mut obligation in self.out {
356            assert!(!obligation.has_escaping_bound_vars());
357            let mut selcx = traits::SelectionContext::new(infcx);
358            // Don't normalize the whole obligation, the param env is either
359            // already normalized, or we're currently normalizing the
360            // param_env. Either way we should only normalize the predicate.
361            let normalized_predicate = traits::normalize::normalize_with_depth_to(
362                &mut selcx,
363                param_env,
364                cause.clone(),
365                self.recursion_depth,
366                obligation.predicate,
367                &mut obligations,
368            );
369            obligation.predicate = normalized_predicate;
370            obligations.push(obligation);
371        }
372        obligations
373    }
374
375    /// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
376    fn add_wf_preds_for_trait_pred(
377        &mut self,
378        trait_pred: ty::TraitPredicate<'tcx>,
379        elaborate: Elaborate,
380    ) {
381        let tcx = self.tcx();
382        let trait_ref = trait_pred.trait_ref;
383
384        // Negative trait predicates don't require supertraits to hold, just
385        // that their args are WF.
386        if trait_pred.polarity == ty::PredicatePolarity::Negative {
387            self.add_wf_preds_for_negative_trait_pred(trait_ref);
388            return;
389        }
390
391        // if the trait predicate is not const, the wf obligations should not be const as well.
392        let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.args);
393
394        debug!("compute_trait_pred obligations {:?}", obligations);
395        let param_env = self.param_env;
396        let depth = self.recursion_depth;
397
398        let item = self.item;
399
400        let extend = |traits::PredicateObligation { predicate, mut cause, .. }| {
401            if let Some(parent_trait_pred) = predicate.as_trait_clause() {
402                cause = cause.derived_cause(
403                    parent_trait_pred,
404                    traits::ObligationCauseCode::WellFormedDerived,
405                );
406            }
407            extend_cause_with_original_assoc_item_obligation(tcx, item, &mut cause, predicate);
408            traits::Obligation::with_depth(tcx, cause, depth, param_env, predicate)
409        };
410
411        if let Elaborate::All = elaborate {
412            let implied_obligations = traits::util::elaborate(tcx, obligations);
413            let implied_obligations = implied_obligations.map(extend);
414            self.out.extend(implied_obligations);
415        } else {
416            self.out.extend(obligations);
417        }
418
419        self.out.extend(
420            trait_ref
421                .args
422                .iter()
423                .enumerate()
424                .filter_map(|(i, arg)| arg.as_term().map(|t| (i, t)))
425                .filter(|(_, term)| !term.has_escaping_bound_vars())
426                .map(|(i, term)| {
427                    let mut cause = traits::ObligationCause::misc(self.span, self.body_id);
428                    // The first arg is the self ty - use the correct span for it.
429                    if i == 0 {
430                        if let Some(hir::ItemKind::Impl(hir::Impl { self_ty, .. })) =
431                            item.map(|i| &i.kind)
432                        {
433                            cause.span = self_ty.span;
434                        }
435                    }
436                    traits::Obligation::with_depth(
437                        tcx,
438                        cause,
439                        depth,
440                        param_env,
441                        ty::ClauseKind::WellFormed(term),
442                    )
443                }),
444        );
445    }
446
447    // Compute the obligations that are required for `trait_ref` to be WF,
448    // given that it is a *negative* trait predicate.
449    fn add_wf_preds_for_negative_trait_pred(&mut self, trait_ref: ty::TraitRef<'tcx>) {
450        for arg in trait_ref.args {
451            if let Some(term) = arg.as_term() {
452                self.add_wf_preds_for_term(term);
453            }
454        }
455    }
456
457    /// Pushes the obligations required for an alias (except inherent) to be WF
458    /// into `self.out`.
459    fn add_wf_preds_for_alias_term(&mut self, data: ty::AliasTerm<'tcx>) {
460        // A projection is well-formed if
461        //
462        // (a) its predicates hold (*)
463        // (b) its args are wf
464        //
465        // (*) The predicates of an associated type include the predicates of
466        //     the trait that it's contained in. For example, given
467        //
468        // trait A<T>: Clone {
469        //     type X where T: Copy;
470        // }
471        //
472        // The predicates of `<() as A<i32>>::X` are:
473        // [
474        //     `(): Sized`
475        //     `(): Clone`
476        //     `(): A<i32>`
477        //     `i32: Sized`
478        //     `i32: Clone`
479        //     `i32: Copy`
480        // ]
481        let obligations = self.nominal_obligations(data.def_id, data.args);
482        self.out.extend(obligations);
483
484        self.add_wf_preds_for_projection_args(data.args);
485    }
486
487    /// Pushes the obligations required for an inherent alias to be WF
488    /// into `self.out`.
489    // FIXME(inherent_associated_types): Merge this function with `fn compute_alias`.
490    fn add_wf_preds_for_inherent_projection(&mut self, data: ty::AliasTerm<'tcx>) {
491        // An inherent projection is well-formed if
492        //
493        // (a) its predicates hold (*)
494        // (b) its args are wf
495        //
496        // (*) The predicates of an inherent associated type include the
497        //     predicates of the impl that it's contained in.
498
499        if !data.self_ty().has_escaping_bound_vars() {
500            // FIXME(inherent_associated_types): Should this happen inside of a snapshot?
501            // FIXME(inherent_associated_types): This is incompatible with the new solver and lazy norm!
502            let args = traits::project::compute_inherent_assoc_term_args(
503                &mut traits::SelectionContext::new(self.infcx),
504                self.param_env,
505                data,
506                self.cause(ObligationCauseCode::WellFormed(None)),
507                self.recursion_depth,
508                &mut self.out,
509            );
510            let obligations = self.nominal_obligations(data.def_id, args);
511            self.out.extend(obligations);
512        }
513
514        data.args.visit_with(self);
515    }
516
517    fn add_wf_preds_for_projection_args(&mut self, args: GenericArgsRef<'tcx>) {
518        let tcx = self.tcx();
519        let cause = self.cause(ObligationCauseCode::WellFormed(None));
520        let param_env = self.param_env;
521        let depth = self.recursion_depth;
522
523        self.out.extend(
524            args.iter()
525                .filter_map(|arg| arg.as_term())
526                .filter(|term| !term.has_escaping_bound_vars())
527                .map(|term| {
528                    traits::Obligation::with_depth(
529                        tcx,
530                        cause.clone(),
531                        depth,
532                        param_env,
533                        ty::ClauseKind::WellFormed(term),
534                    )
535                }),
536        );
537    }
538
539    fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
540        if !subty.has_escaping_bound_vars() {
541            let cause = self.cause(cause);
542            let trait_ref = ty::TraitRef::new(
543                self.tcx(),
544                self.tcx().require_lang_item(LangItem::Sized, Some(cause.span)),
545                [subty],
546            );
547            self.out.push(traits::Obligation::with_depth(
548                self.tcx(),
549                cause,
550                self.recursion_depth,
551                self.param_env,
552                ty::Binder::dummy(trait_ref),
553            ));
554        }
555    }
556
557    /// Pushes all the predicates needed to validate that `term` is WF into `out`.
558    #[instrument(level = "debug", skip(self))]
559    fn add_wf_preds_for_term(&mut self, term: Term<'tcx>) {
560        term.visit_with(self);
561        debug!(?self.out);
562    }
563
564    #[instrument(level = "debug", skip(self))]
565    fn nominal_obligations(
566        &mut self,
567        def_id: DefId,
568        args: GenericArgsRef<'tcx>,
569    ) -> PredicateObligations<'tcx> {
570        let predicates = self.tcx().predicates_of(def_id);
571        let mut origins = vec![def_id; predicates.predicates.len()];
572        let mut head = predicates;
573        while let Some(parent) = head.parent {
574            head = self.tcx().predicates_of(parent);
575            origins.extend(iter::repeat(parent).take(head.predicates.len()));
576        }
577
578        let predicates = predicates.instantiate(self.tcx(), args);
579        trace!("{:#?}", predicates);
580        debug_assert_eq!(predicates.predicates.len(), origins.len());
581
582        iter::zip(predicates, origins.into_iter().rev())
583            .map(|((pred, span), origin_def_id)| {
584                let code = ObligationCauseCode::WhereClause(origin_def_id, span);
585                let cause = self.cause(code);
586                traits::Obligation::with_depth(
587                    self.tcx(),
588                    cause,
589                    self.recursion_depth,
590                    self.param_env,
591                    pred,
592                )
593            })
594            .filter(|pred| !pred.has_escaping_bound_vars())
595            .collect()
596    }
597
598    fn add_wf_preds_for_dyn_ty(
599        &mut self,
600        ty: Ty<'tcx>,
601        data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
602        region: ty::Region<'tcx>,
603    ) {
604        // Imagine a type like this:
605        //
606        //     trait Foo { }
607        //     trait Bar<'c> : 'c { }
608        //
609        //     &'b (Foo+'c+Bar<'d>)
610        //         ^
611        //
612        // In this case, the following relationships must hold:
613        //
614        //     'b <= 'c
615        //     'd <= 'c
616        //
617        // The first conditions is due to the normal region pointer
618        // rules, which say that a reference cannot outlive its
619        // referent.
620        //
621        // The final condition may be a bit surprising. In particular,
622        // you may expect that it would have been `'c <= 'd`, since
623        // usually lifetimes of outer things are conservative
624        // approximations for inner things. However, it works somewhat
625        // differently with trait objects: here the idea is that if the
626        // user specifies a region bound (`'c`, in this case) it is the
627        // "master bound" that *implies* that bounds from other traits are
628        // all met. (Remember that *all bounds* in a type like
629        // `Foo+Bar+Zed` must be met, not just one, hence if we write
630        // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
631        // 'y.)
632        //
633        // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
634        // am looking forward to the future here.
635        if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
636            let implicit_bounds = object_region_bounds(self.tcx(), data);
637
638            let explicit_bound = region;
639
640            self.out.reserve(implicit_bounds.len());
641            for implicit_bound in implicit_bounds {
642                let cause = self.cause(ObligationCauseCode::ObjectTypeBound(ty, explicit_bound));
643                let outlives =
644                    ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
645                self.out.push(traits::Obligation::with_depth(
646                    self.tcx(),
647                    cause,
648                    self.recursion_depth,
649                    self.param_env,
650                    outlives,
651                ));
652            }
653
654            // We don't add any wf predicates corresponding to the trait ref's generic arguments
655            // which allows code like this to compile:
656            // ```rust
657            // trait Trait<T: Sized> {}
658            // fn foo(_: &dyn Trait<[u32]>) {}
659            // ```
660        }
661    }
662
663    fn add_wf_preds_for_pat_ty(&mut self, base_ty: Ty<'tcx>, pat: ty::Pattern<'tcx>) {
664        let tcx = self.tcx();
665        match *pat {
666            ty::PatternKind::Range { start, end } => {
667                let mut check = |c| {
668                    let cause = self.cause(ObligationCauseCode::Misc);
669                    self.out.push(traits::Obligation::with_depth(
670                        tcx,
671                        cause.clone(),
672                        self.recursion_depth,
673                        self.param_env,
674                        ty::Binder::dummy(ty::PredicateKind::Clause(
675                            ty::ClauseKind::ConstArgHasType(c, base_ty),
676                        )),
677                    ));
678                    if !tcx.features().generic_pattern_types() {
679                        if c.has_param() {
680                            if self.span.is_dummy() {
681                                self.tcx()
682                                    .dcx()
683                                    .delayed_bug("feature error should be reported elsewhere, too");
684                            } else {
685                                feature_err(
686                                    &self.tcx().sess,
687                                    sym::generic_pattern_types,
688                                    self.span,
689                                    "wraparound pattern type ranges cause monomorphization time errors",
690                                )
691                                .emit();
692                            }
693                        }
694                    }
695                };
696                check(start);
697                check(end);
698            }
699            ty::PatternKind::Or(patterns) => {
700                for pat in patterns {
701                    self.add_wf_preds_for_pat_ty(base_ty, pat)
702                }
703            }
704        }
705    }
706}
707
708impl<'a, 'tcx> TypeVisitor<TyCtxt<'tcx>> for WfPredicates<'a, 'tcx> {
709    fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
710        debug!("wf bounds for t={:?} t.kind={:#?}", t, t.kind());
711
712        let tcx = self.tcx();
713
714        match *t.kind() {
715            ty::Bool
716            | ty::Char
717            | ty::Int(..)
718            | ty::Uint(..)
719            | ty::Float(..)
720            | ty::Error(_)
721            | ty::Str
722            | ty::CoroutineWitness(..)
723            | ty::Never
724            | ty::Param(_)
725            | ty::Bound(..)
726            | ty::Placeholder(..)
727            | ty::Foreign(..) => {
728                // WfScalar, WfParameter, etc
729            }
730
731            // Can only infer to `ty::Int(_) | ty::Uint(_)`.
732            ty::Infer(ty::IntVar(_)) => {}
733
734            // Can only infer to `ty::Float(_)`.
735            ty::Infer(ty::FloatVar(_)) => {}
736
737            ty::Slice(subty) => {
738                self.require_sized(subty, ObligationCauseCode::SliceOrArrayElem);
739            }
740
741            ty::Array(subty, len) => {
742                self.require_sized(subty, ObligationCauseCode::SliceOrArrayElem);
743                // Note that the len being WF is implicitly checked while visiting.
744                // Here we just check that it's of type usize.
745                let cause = self.cause(ObligationCauseCode::ArrayLen(t));
746                self.out.push(traits::Obligation::with_depth(
747                    tcx,
748                    cause,
749                    self.recursion_depth,
750                    self.param_env,
751                    ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(
752                        len,
753                        tcx.types.usize,
754                    ))),
755                ));
756            }
757
758            ty::Pat(base_ty, pat) => {
759                self.require_sized(base_ty, ObligationCauseCode::Misc);
760                self.add_wf_preds_for_pat_ty(base_ty, pat);
761            }
762
763            ty::Tuple(tys) => {
764                if let Some((_last, rest)) = tys.split_last() {
765                    for &elem in rest {
766                        self.require_sized(elem, ObligationCauseCode::TupleElem);
767                    }
768                }
769            }
770
771            ty::RawPtr(_, _) => {
772                // Simple cases that are WF if their type args are WF.
773            }
774
775            ty::Alias(ty::Projection | ty::Opaque | ty::Free, data) => {
776                let obligations = self.nominal_obligations(data.def_id, data.args);
777                self.out.extend(obligations);
778            }
779            ty::Alias(ty::Inherent, data) => {
780                self.add_wf_preds_for_inherent_projection(data.into());
781                return; // Subtree handled by compute_inherent_projection.
782            }
783
784            ty::Adt(def, args) => {
785                // WfNominalType
786                let obligations = self.nominal_obligations(def.did(), args);
787                self.out.extend(obligations);
788            }
789
790            ty::FnDef(did, args) => {
791                // HACK: Check the return type of function definitions for
792                // well-formedness to mostly fix #84533. This is still not
793                // perfect and there may be ways to abuse the fact that we
794                // ignore requirements with escaping bound vars. That's a
795                // more general issue however.
796                let fn_sig = tcx.fn_sig(did).instantiate(tcx, args);
797                fn_sig.output().skip_binder().visit_with(self);
798
799                let obligations = self.nominal_obligations(did, args);
800                self.out.extend(obligations);
801            }
802
803            ty::Ref(r, rty, _) => {
804                // WfReference
805                if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
806                    let cause = self.cause(ObligationCauseCode::ReferenceOutlivesReferent(t));
807                    self.out.push(traits::Obligation::with_depth(
808                        tcx,
809                        cause,
810                        self.recursion_depth,
811                        self.param_env,
812                        ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
813                            ty::OutlivesPredicate(rty, r),
814                        ))),
815                    ));
816                }
817            }
818
819            ty::Coroutine(did, args, ..) => {
820                // Walk ALL the types in the coroutine: this will
821                // include the upvar types as well as the yield
822                // type. Note that this is mildly distinct from
823                // the closure case, where we have to be careful
824                // about the signature of the closure. We don't
825                // have the problem of implied bounds here since
826                // coroutines don't take arguments.
827                let obligations = self.nominal_obligations(did, args);
828                self.out.extend(obligations);
829            }
830
831            ty::Closure(did, args) => {
832                // Note that we cannot skip the generic types
833                // types. Normally, within the fn
834                // body where they are created, the generics will
835                // always be WF, and outside of that fn body we
836                // are not directly inspecting closure types
837                // anyway, except via auto trait matching (which
838                // only inspects the upvar types).
839                // But when a closure is part of a type-alias-impl-trait
840                // then the function that created the defining site may
841                // have had more bounds available than the type alias
842                // specifies. This may cause us to have a closure in the
843                // hidden type that is not actually well formed and
844                // can cause compiler crashes when the user abuses unsafe
845                // code to procure such a closure.
846                // See tests/ui/type-alias-impl-trait/wf_check_closures.rs
847                let obligations = self.nominal_obligations(did, args);
848                self.out.extend(obligations);
849                // Only check the upvar types for WF, not the rest
850                // of the types within. This is needed because we
851                // capture the signature and it may not be WF
852                // without the implied bounds. Consider a closure
853                // like `|x: &'a T|` -- it may be that `T: 'a` is
854                // not known to hold in the creator's context (and
855                // indeed the closure may not be invoked by its
856                // creator, but rather turned to someone who *can*
857                // verify that).
858                //
859                // The special treatment of closures here really
860                // ought not to be necessary either; the problem
861                // is related to #25860 -- there is no way for us
862                // to express a fn type complete with the implied
863                // bounds that it is assuming. I think in reality
864                // the WF rules around fn are a bit messed up, and
865                // that is the rot problem: `fn(&'a T)` should
866                // probably always be WF, because it should be
867                // shorthand for something like `where(T: 'a) {
868                // fn(&'a T) }`, as discussed in #25860.
869                let upvars = args.as_closure().tupled_upvars_ty();
870                return upvars.visit_with(self);
871            }
872
873            ty::CoroutineClosure(did, args) => {
874                // See the above comments. The same apply to coroutine-closures.
875                let obligations = self.nominal_obligations(did, args);
876                self.out.extend(obligations);
877                let upvars = args.as_coroutine_closure().tupled_upvars_ty();
878                return upvars.visit_with(self);
879            }
880
881            ty::FnPtr(..) => {
882                // Let the visitor iterate into the argument/return
883                // types appearing in the fn signature.
884            }
885            ty::UnsafeBinder(ty) => {
886                // FIXME(unsafe_binders): For now, we have no way to express
887                // that a type must be `ManuallyDrop` OR `Copy` (or a pointer).
888                if !ty.has_escaping_bound_vars() {
889                    self.out.push(traits::Obligation::new(
890                        self.tcx(),
891                        self.cause(ObligationCauseCode::Misc),
892                        self.param_env,
893                        ty.map_bound(|ty| {
894                            ty::TraitRef::new(
895                                self.tcx(),
896                                self.tcx().require_lang_item(
897                                    LangItem::BikeshedGuaranteedNoDrop,
898                                    Some(self.span),
899                                ),
900                                [ty],
901                            )
902                        }),
903                    ));
904                }
905
906                // We recurse into the binder below.
907            }
908
909            ty::Dynamic(data, r, _) => {
910                // WfObject
911                //
912                // Here, we defer WF checking due to higher-ranked
913                // regions. This is perhaps not ideal.
914                self.add_wf_preds_for_dyn_ty(t, data, r);
915
916                // FIXME(#27579) RFC also considers adding trait
917                // obligations that don't refer to Self and
918                // checking those
919                if let Some(principal) = data.principal_def_id() {
920                    self.out.push(traits::Obligation::with_depth(
921                        tcx,
922                        self.cause(ObligationCauseCode::WellFormed(None)),
923                        self.recursion_depth,
924                        self.param_env,
925                        ty::Binder::dummy(ty::PredicateKind::DynCompatible(principal)),
926                    ));
927                }
928            }
929
930            // Inference variables are the complicated case, since we don't
931            // know what type they are. We do two things:
932            //
933            // 1. Check if they have been resolved, and if so proceed with
934            //    THAT type.
935            // 2. If not, we've at least simplified things (e.g., we went
936            //    from `Vec?0>: WF` to `?0: WF`), so we can
937            //    register a pending obligation and keep
938            //    moving. (Goal is that an "inductive hypothesis"
939            //    is satisfied to ensure termination.)
940            // See also the comment on `fn obligations`, describing cycle
941            // prevention, which happens before this can be reached.
942            ty::Infer(_) => {
943                let cause = self.cause(ObligationCauseCode::WellFormed(None));
944                self.out.push(traits::Obligation::with_depth(
945                    tcx,
946                    cause,
947                    self.recursion_depth,
948                    self.param_env,
949                    ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
950                        t.into(),
951                    ))),
952                ));
953            }
954        }
955
956        t.super_visit_with(self)
957    }
958
959    fn visit_const(&mut self, c: ty::Const<'tcx>) -> Self::Result {
960        let tcx = self.tcx();
961
962        match c.kind() {
963            ty::ConstKind::Unevaluated(uv) => {
964                if !c.has_escaping_bound_vars() {
965                    let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(
966                        ty::ClauseKind::ConstEvaluatable(c),
967                    ));
968                    let cause = self.cause(ObligationCauseCode::WellFormed(None));
969                    self.out.push(traits::Obligation::with_depth(
970                        tcx,
971                        cause,
972                        self.recursion_depth,
973                        self.param_env,
974                        predicate,
975                    ));
976
977                    if tcx.def_kind(uv.def) == DefKind::AssocConst
978                        && tcx.def_kind(tcx.parent(uv.def)) == (DefKind::Impl { of_trait: false })
979                    {
980                        self.add_wf_preds_for_inherent_projection(uv.into());
981                        return; // Subtree is handled by above function
982                    } else {
983                        let obligations = self.nominal_obligations(uv.def, uv.args);
984                        self.out.extend(obligations);
985                    }
986                }
987            }
988            ty::ConstKind::Infer(_) => {
989                let cause = self.cause(ObligationCauseCode::WellFormed(None));
990
991                self.out.push(traits::Obligation::with_depth(
992                    tcx,
993                    cause,
994                    self.recursion_depth,
995                    self.param_env,
996                    ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
997                        c.into(),
998                    ))),
999                ));
1000            }
1001            ty::ConstKind::Expr(_) => {
1002                // FIXME(generic_const_exprs): this doesn't verify that given `Expr(N + 1)` the
1003                // trait bound `typeof(N): Add<typeof(1)>` holds. This is currently unnecessary
1004                // as `ConstKind::Expr` is only produced via normalization of `ConstKind::Unevaluated`
1005                // which means that the `DefId` would have been typeck'd elsewhere. However in
1006                // the future we may allow directly lowering to `ConstKind::Expr` in which case
1007                // we would not be proving bounds we should.
1008
1009                let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(
1010                    ty::ClauseKind::ConstEvaluatable(c),
1011                ));
1012                let cause = self.cause(ObligationCauseCode::WellFormed(None));
1013                self.out.push(traits::Obligation::with_depth(
1014                    tcx,
1015                    cause,
1016                    self.recursion_depth,
1017                    self.param_env,
1018                    predicate,
1019                ));
1020            }
1021
1022            ty::ConstKind::Error(_)
1023            | ty::ConstKind::Param(_)
1024            | ty::ConstKind::Bound(..)
1025            | ty::ConstKind::Placeholder(..) => {
1026                // These variants are trivially WF, so nothing to do here.
1027            }
1028            ty::ConstKind::Value(..) => {
1029                // FIXME: Enforce that values are structurally-matchable.
1030            }
1031        }
1032
1033        c.super_visit_with(self)
1034    }
1035
1036    fn visit_predicate(&mut self, _p: ty::Predicate<'tcx>) -> Self::Result {
1037        bug!("predicate should not be checked for well-formedness");
1038    }
1039}
1040
1041/// Given an object type like `SomeTrait + Send`, computes the lifetime
1042/// bounds that must hold on the elided self type. These are derived
1043/// from the declarations of `SomeTrait`, `Send`, and friends -- if
1044/// they declare `trait SomeTrait : 'static`, for example, then
1045/// `'static` would appear in the list.
1046///
1047/// N.B., in some cases, particularly around higher-ranked bounds,
1048/// this function returns a kind of conservative approximation.
1049/// That is, all regions returned by this function are definitely
1050/// required, but there may be other region bounds that are not
1051/// returned, as well as requirements like `for<'a> T: 'a`.
1052///
1053/// Requires that trait definitions have been processed so that we can
1054/// elaborate predicates and walk supertraits.
1055pub fn object_region_bounds<'tcx>(
1056    tcx: TyCtxt<'tcx>,
1057    existential_predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1058) -> Vec<ty::Region<'tcx>> {
1059    let erased_self_ty = tcx.types.trait_object_dummy_self;
1060
1061    let predicates =
1062        existential_predicates.iter().map(|predicate| predicate.with_self_ty(tcx, erased_self_ty));
1063
1064    traits::elaborate(tcx, predicates)
1065        .filter_map(|pred| {
1066            debug!(?pred);
1067            match pred.kind().skip_binder() {
1068                ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ref t, ref r)) => {
1069                    // Search for a bound of the form `erased_self_ty
1070                    // : 'a`, but be wary of something like `for<'a>
1071                    // erased_self_ty : 'a` (we interpret a
1072                    // higher-ranked bound like that as 'static,
1073                    // though at present the code in `fulfill.rs`
1074                    // considers such bounds to be unsatisfiable, so
1075                    // it's kind of a moot point since you could never
1076                    // construct such an object, but this seems
1077                    // correct even if that code changes).
1078                    if t == &erased_self_ty && !r.has_escaping_bound_vars() {
1079                        Some(*r)
1080                    } else {
1081                        None
1082                    }
1083                }
1084                ty::ClauseKind::Trait(_)
1085                | ty::ClauseKind::HostEffect(..)
1086                | ty::ClauseKind::RegionOutlives(_)
1087                | ty::ClauseKind::Projection(_)
1088                | ty::ClauseKind::ConstArgHasType(_, _)
1089                | ty::ClauseKind::WellFormed(_)
1090                | ty::ClauseKind::ConstEvaluatable(_) => None,
1091            }
1092        })
1093        .collect()
1094}