compiletest/
json.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
//! These structs are a subset of the ones found in `rustc_errors::json`.

use std::path::{Path, PathBuf};
use std::str::FromStr;

use serde::Deserialize;

use crate::errors::{Error, ErrorKind};
use crate::runtest::ProcRes;

#[derive(Deserialize)]
struct Diagnostic {
    message: String,
    code: Option<DiagnosticCode>,
    level: String,
    spans: Vec<DiagnosticSpan>,
    children: Vec<Diagnostic>,
    rendered: Option<String>,
}

#[derive(Deserialize)]
struct ArtifactNotification {
    #[allow(dead_code)]
    artifact: PathBuf,
}

#[derive(Deserialize)]
struct UnusedExternNotification {
    #[allow(dead_code)]
    lint_level: String,
    #[allow(dead_code)]
    unused_extern_names: Vec<String>,
}

#[derive(Deserialize, Clone)]
struct DiagnosticSpan {
    file_name: String,
    line_start: usize,
    line_end: usize,
    column_start: usize,
    column_end: usize,
    is_primary: bool,
    label: Option<String>,
    suggested_replacement: Option<String>,
    expansion: Option<Box<DiagnosticSpanMacroExpansion>>,
}

#[derive(Deserialize)]
struct FutureIncompatReport {
    future_incompat_report: Vec<FutureBreakageItem>,
}

#[derive(Deserialize)]
struct FutureBreakageItem {
    diagnostic: Diagnostic,
}

impl DiagnosticSpan {
    /// Returns the deepest source span in the macro call stack with a given file name.
    /// This is either the supplied span, or the span for some macro callsite that expanded to it.
    fn first_callsite_in_file(&self, file_name: &str) -> &DiagnosticSpan {
        if self.file_name == file_name {
            self
        } else {
            self.expansion
                .as_ref()
                .map(|origin| origin.span.first_callsite_in_file(file_name))
                .unwrap_or(self)
        }
    }
}

#[derive(Deserialize, Clone)]
struct DiagnosticSpanMacroExpansion {
    /// span where macro was applied to generate this code
    span: DiagnosticSpan,

    /// name of macro that was applied (e.g., "foo!" or "#[derive(Eq)]")
    macro_decl_name: String,
}

#[derive(Deserialize, Clone)]
struct DiagnosticCode {
    /// The code itself.
    code: String,
}

pub fn rustfix_diagnostics_only(output: &str) -> String {
    output
        .lines()
        .filter(|line| line.starts_with('{') && serde_json::from_str::<Diagnostic>(line).is_ok())
        .collect()
}

pub fn extract_rendered(output: &str) -> String {
    output
        .lines()
        .filter_map(|line| {
            if line.starts_with('{') {
                if let Ok(diagnostic) = serde_json::from_str::<Diagnostic>(line) {
                    diagnostic.rendered
                } else if let Ok(report) = serde_json::from_str::<FutureIncompatReport>(line) {
                    if report.future_incompat_report.is_empty() {
                        None
                    } else {
                        Some(format!(
                            "Future incompatibility report: {}",
                            report
                                .future_incompat_report
                                .into_iter()
                                .map(|item| {
                                    format!(
                                        "Future breakage diagnostic:\n{}",
                                        item.diagnostic
                                            .rendered
                                            .unwrap_or_else(|| "Not rendered".to_string())
                                    )
                                })
                                .collect::<String>()
                        ))
                    }
                } else if serde_json::from_str::<ArtifactNotification>(line).is_ok() {
                    // Ignore the notification.
                    None
                } else if serde_json::from_str::<UnusedExternNotification>(line).is_ok() {
                    // Ignore the notification.
                    None
                } else {
                    // This function is called for both compiler and non-compiler output,
                    // so if the line isn't recognized as JSON from the compiler then
                    // just print it as-is.
                    Some(format!("{line}\n"))
                }
            } else {
                // preserve non-JSON lines, such as ICEs
                Some(format!("{}\n", line))
            }
        })
        .collect()
}

pub fn parse_output(file_name: &str, output: &str, proc_res: &ProcRes) -> Vec<Error> {
    output.lines().flat_map(|line| parse_line(file_name, line, output, proc_res)).collect()
}

fn parse_line(file_name: &str, line: &str, output: &str, proc_res: &ProcRes) -> Vec<Error> {
    // The compiler sometimes intermingles non-JSON stuff into the
    // output.  This hack just skips over such lines. Yuck.
    if line.starts_with('{') {
        match serde_json::from_str::<Diagnostic>(line) {
            Ok(diagnostic) => {
                let mut expected_errors = vec![];
                push_expected_errors(&mut expected_errors, &diagnostic, &[], file_name);
                expected_errors
            }
            Err(error) => {
                // Ignore the future compat report message - this is handled
                // by `extract_rendered`
                if serde_json::from_str::<FutureIncompatReport>(line).is_ok() {
                    vec![]
                } else {
                    proc_res.fatal(
                        Some(&format!(
                            "failed to decode compiler output as json: \
                         `{}`\nline: {}\noutput: {}",
                            error, line, output
                        )),
                        || (),
                    );
                }
            }
        }
    } else {
        vec![]
    }
}

fn push_expected_errors(
    expected_errors: &mut Vec<Error>,
    diagnostic: &Diagnostic,
    default_spans: &[&DiagnosticSpan],
    file_name: &str,
) {
    // In case of macro expansions, we need to get the span of the callsite
    let spans_info_in_this_file: Vec<_> = diagnostic
        .spans
        .iter()
        .map(|span| (span.is_primary, span.first_callsite_in_file(file_name)))
        .filter(|(_, span)| Path::new(&span.file_name) == Path::new(&file_name))
        .collect();

    let spans_in_this_file: Vec<_> = spans_info_in_this_file.iter().map(|(_, span)| span).collect();

    let primary_spans: Vec<_> = spans_info_in_this_file
        .iter()
        .filter(|(is_primary, _)| *is_primary)
        .map(|(_, span)| span)
        .take(1) // sometimes we have more than one showing up in the json; pick first
        .cloned()
        .collect();
    let primary_spans = if primary_spans.is_empty() {
        // subdiagnostics often don't have a span of their own;
        // inherit the span from the parent in that case
        default_spans
    } else {
        &primary_spans
    };

    // We break the output into multiple lines, and then append the
    // [E123] to every line in the output. This may be overkill.  The
    // intention was to match existing tests that do things like "//|
    // found `i32` [E123]" and expect to match that somewhere, and yet
    // also ensure that `//~ ERROR E123` *always* works. The
    // assumption is that these multi-line error messages are on their
    // way out anyhow.
    let with_code = |span: &DiagnosticSpan, text: &str| {
        match diagnostic.code {
            Some(ref code) =>
            // FIXME(#33000) -- it'd be better to use a dedicated
            // UI harness than to include the line/col number like
            // this, but some current tests rely on it.
            //
            // Note: Do NOT include the filename. These can easily
            // cause false matches where the expected message
            // appears in the filename, and hence the message
            // changes but the test still passes.
            {
                format!(
                    "{}:{}: {}:{}: {} [{}]",
                    span.line_start,
                    span.column_start,
                    span.line_end,
                    span.column_end,
                    text,
                    code.code.clone()
                )
            }
            None =>
            // FIXME(#33000) -- it'd be better to use a dedicated UI harness
            {
                format!(
                    "{}:{}: {}:{}: {}",
                    span.line_start, span.column_start, span.line_end, span.column_end, text
                )
            }
        }
    };

    // Convert multi-line messages into multiple expected
    // errors. We expect to replace these with something
    // more structured shortly anyhow.
    let mut message_lines = diagnostic.message.lines();
    if let Some(first_line) = message_lines.next() {
        for span in primary_spans {
            let msg = with_code(span, first_line);
            let kind = ErrorKind::from_str(&diagnostic.level).ok();
            expected_errors.push(Error { line_num: span.line_start, kind, msg });
        }
    }
    for next_line in message_lines {
        for span in primary_spans {
            expected_errors.push(Error {
                line_num: span.line_start,
                kind: None,
                msg: with_code(span, next_line),
            });
        }
    }

    // If the message has a suggestion, register that.
    for span in primary_spans {
        if let Some(ref suggested_replacement) = span.suggested_replacement {
            for (index, line) in suggested_replacement.lines().enumerate() {
                expected_errors.push(Error {
                    line_num: span.line_start + index,
                    kind: Some(ErrorKind::Suggestion),
                    msg: line.to_string(),
                });
            }
        }
    }

    // Add notes for the backtrace
    for span in primary_spans {
        if let Some(frame) = &span.expansion {
            push_backtrace(expected_errors, frame, file_name);
        }
    }

    // Add notes for any labels that appear in the message.
    for span in spans_in_this_file.iter().filter(|span| span.label.is_some()) {
        expected_errors.push(Error {
            line_num: span.line_start,
            kind: Some(ErrorKind::Note),
            msg: span.label.clone().unwrap(),
        });
    }

    // Flatten out the children.
    for child in &diagnostic.children {
        push_expected_errors(expected_errors, child, primary_spans, file_name);
    }
}

fn push_backtrace(
    expected_errors: &mut Vec<Error>,
    expansion: &DiagnosticSpanMacroExpansion,
    file_name: &str,
) {
    if Path::new(&expansion.span.file_name) == Path::new(&file_name) {
        expected_errors.push(Error {
            line_num: expansion.span.line_start,
            kind: Some(ErrorKind::Note),
            msg: format!("in this expansion of {}", expansion.macro_decl_name),
        });
    }

    if let Some(previous_expansion) = &expansion.span.expansion {
        push_backtrace(expected_errors, previous_expansion, file_name);
    }
}