1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
use std::fmt;

use rustc_errors::ErrorGuaranteed;
use rustc_infer::infer::canonical::Certainty;
use rustc_infer::traits::PredicateObligation;
use rustc_middle::traits::query::NoSolution;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::{ParamEnvAnd, TyCtxt};
use rustc_span::Span;

use crate::infer::canonical::{
    Canonical, CanonicalQueryResponse, OriginalQueryValues, QueryRegionConstraints,
};
use crate::infer::{InferCtxt, InferOk};
use crate::traits::{ObligationCause, ObligationCtxt};

pub mod ascribe_user_type;
pub mod custom;
pub mod implied_outlives_bounds;
pub mod normalize;
pub mod outlives;
pub mod prove_predicate;

pub use rustc_middle::traits::query::type_op::*;

use self::custom::scrape_region_constraints;

/// "Type ops" are used in NLL to perform some particular action and
/// extract out the resulting region constraints (or an error if it
/// cannot be completed).
pub trait TypeOp<'tcx>: Sized + fmt::Debug {
    type Output: fmt::Debug;
    type ErrorInfo;

    /// Processes the operation and all resulting obligations,
    /// returning the final result along with any region constraints
    /// (they will be given over to the NLL region solver).
    fn fully_perform(
        self,
        infcx: &InferCtxt<'tcx>,
        span: Span,
    ) -> Result<TypeOpOutput<'tcx, Self>, ErrorGuaranteed>;
}

/// The output from performing a type op
pub struct TypeOpOutput<'tcx, Op: TypeOp<'tcx>> {
    /// The output from the type op.
    pub output: Op::Output,
    /// Any region constraints from performing the type op.
    pub constraints: Option<&'tcx QueryRegionConstraints<'tcx>>,
    /// Used for error reporting to be able to rerun the query
    pub error_info: Option<Op::ErrorInfo>,
}

/// "Query type ops" are type ops that are implemented using a
/// [canonical query][c]. The `Self` type here contains the kernel of
/// information needed to do the operation -- `TypeOp` is actually
/// implemented for `ParamEnvAnd<Self>`, since we always need to bring
/// along a parameter environment as well. For query type-ops, we will
/// first canonicalize the key and then invoke the query on the tcx,
/// which produces the resulting query region constraints.
///
/// [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html
pub trait QueryTypeOp<'tcx>: fmt::Debug + Copy + TypeFoldable<TyCtxt<'tcx>> + 'tcx {
    type QueryResponse: TypeFoldable<TyCtxt<'tcx>>;

    /// Give query the option for a simple fast path that never
    /// actually hits the tcx cache lookup etc. Return `Some(r)` with
    /// a final result or `None` to do the full path.
    fn try_fast_path(
        tcx: TyCtxt<'tcx>,
        key: &ParamEnvAnd<'tcx, Self>,
    ) -> Option<Self::QueryResponse>;

    /// Performs the actual query with the canonicalized key -- the
    /// real work happens here. This method is not given an `infcx`
    /// because it shouldn't need one -- and if it had access to one,
    /// it might do things like invoke `sub_regions`, which would be
    /// bad, because it would create subregion relationships that are
    /// not captured in the return value.
    fn perform_query(
        tcx: TyCtxt<'tcx>,
        canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Self>>,
    ) -> Result<CanonicalQueryResponse<'tcx, Self::QueryResponse>, NoSolution>;

    /// In the new trait solver, we already do caching in the solver itself,
    /// so there's no need to canonicalize and cache via the query system.
    /// Additionally, even if we were to canonicalize, we'd still need to
    /// make sure to feed it predefined opaque types and the defining anchor
    /// and that would require duplicating all of the tcx queries. Instead,
    /// just perform these ops locally.
    fn perform_locally_with_next_solver(
        ocx: &ObligationCtxt<'_, 'tcx>,
        key: ParamEnvAnd<'tcx, Self>,
    ) -> Result<Self::QueryResponse, NoSolution>;

    fn fully_perform_into(
        query_key: ParamEnvAnd<'tcx, Self>,
        infcx: &InferCtxt<'tcx>,
        output_query_region_constraints: &mut QueryRegionConstraints<'tcx>,
        span: Span,
    ) -> Result<
        (
            Self::QueryResponse,
            Option<Canonical<'tcx, ParamEnvAnd<'tcx, Self>>>,
            Vec<PredicateObligation<'tcx>>,
            Certainty,
        ),
        NoSolution,
    > {
        if let Some(result) = QueryTypeOp::try_fast_path(infcx.tcx, &query_key) {
            return Ok((result, None, vec![], Certainty::Proven));
        }

        let mut canonical_var_values = OriginalQueryValues::default();
        let old_param_env = query_key.param_env;
        let canonical_self = infcx.canonicalize_query(query_key, &mut canonical_var_values);
        let canonical_result = Self::perform_query(infcx.tcx, canonical_self)?;

        let InferOk { value, obligations } = infcx
            .instantiate_nll_query_response_and_region_obligations(
                &ObligationCause::dummy_with_span(span),
                old_param_env,
                &canonical_var_values,
                canonical_result,
                output_query_region_constraints,
            )?;

        Ok((value, Some(canonical_self), obligations, canonical_result.value.certainty))
    }
}

impl<'tcx, Q> TypeOp<'tcx> for ParamEnvAnd<'tcx, Q>
where
    Q: QueryTypeOp<'tcx>,
{
    type Output = Q::QueryResponse;
    type ErrorInfo = Canonical<'tcx, ParamEnvAnd<'tcx, Q>>;

    fn fully_perform(
        self,
        infcx: &InferCtxt<'tcx>,
        span: Span,
    ) -> Result<TypeOpOutput<'tcx, Self>, ErrorGuaranteed> {
        // In the new trait solver, query type ops are performed locally. This
        // is because query type ops currently use the old canonicalizer, and
        // that doesn't preserve things like opaques which have been registered
        // during MIR typeck. Even after the old canonicalizer is gone, it's
        // probably worthwhile just keeping this run-locally logic, since we
        // probably don't gain much from caching here given the new solver does
        // caching internally.
        if infcx.next_trait_solver() {
            return Ok(scrape_region_constraints(
                infcx,
                |ocx| QueryTypeOp::perform_locally_with_next_solver(ocx, self),
                "query type op",
                span,
            )?
            .0);
        }

        let mut error_info = None;
        let mut region_constraints = QueryRegionConstraints::default();

        // HACK(type_alias_impl_trait): When moving an opaque type to hidden type mapping from the query to the current inferctxt,
        // we sometimes end up with `Opaque<'a> = Opaque<'b>` instead of an actual hidden type. In that case we don't register a
        // hidden type but just equate the lifetimes. Thus we need to scrape the region constraints even though we're also manually
        // collecting region constraints via `region_constraints`.
        let (mut output, _) = scrape_region_constraints(
            infcx,
            |ocx| {
                let (output, ei, obligations, _) =
                    Q::fully_perform_into(self, infcx, &mut region_constraints, span)?;
                error_info = ei;

                ocx.register_obligations(obligations);
                Ok(output)
            },
            "fully_perform",
            span,
        )?;
        output.error_info = error_info;
        if let Some(constraints) = output.constraints {
            region_constraints
                .member_constraints
                .extend(constraints.member_constraints.iter().cloned());
            region_constraints.outlives.extend(constraints.outlives.iter().cloned());
        }
        output.constraints = if region_constraints.is_empty() {
            None
        } else {
            Some(infcx.tcx.arena.alloc(region_constraints))
        };
        Ok(output)
    }
}