rustc_middle/traits/
specialization_graph.rs

1use rustc_data_structures::fx::FxIndexMap;
2use rustc_errors::ErrorGuaranteed;
3use rustc_hir::def_id::{DefId, DefIdMap};
4use rustc_macros::{HashStable, TyDecodable, TyEncodable};
5use rustc_span::sym;
6
7use crate::error::StrictCoherenceNeedsNegativeCoherence;
8use crate::ty::fast_reject::SimplifiedType;
9use crate::ty::{self, TyCtxt, TypeVisitableExt};
10
11/// A per-trait graph of impls in specialization order. At the moment, this
12/// graph forms a tree rooted with the trait itself, with all other nodes
13/// representing impls, and parent-child relationships representing
14/// specializations.
15///
16/// The graph provides two key services:
17///
18/// - Construction. This implicitly checks for overlapping impls (i.e., impls
19///   that overlap but where neither specializes the other -- an artifact of the
20///   simple "chain" rule.
21///
22/// - Parent extraction. In particular, the graph can give you the *immediate*
23///   parents of a given specializing impl, which is needed for extracting
24///   default items amongst other things. In the simple "chain" rule, every impl
25///   has at most one parent.
26#[derive(TyEncodable, TyDecodable, HashStable, Debug)]
27pub struct Graph {
28    /// All impls have a parent; the "root" impls have as their parent the `def_id`
29    /// of the trait.
30    pub parent: DefIdMap<DefId>,
31
32    /// The "root" impls are found by looking up the trait's def_id.
33    pub children: DefIdMap<Children>,
34}
35
36impl Graph {
37    pub fn new() -> Graph {
38        Graph { parent: Default::default(), children: Default::default() }
39    }
40
41    /// The parent of a given impl, which is the `DefId` of the trait when the
42    /// impl is a "specialization root".
43    #[track_caller]
44    pub fn parent(&self, child: DefId) -> DefId {
45        *self.parent.get(&child).unwrap_or_else(|| panic!("Failed to get parent for {child:?}"))
46    }
47}
48
49/// What kind of overlap check are we doing -- this exists just for testing and feature-gating
50/// purposes.
51#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable, Debug, TyEncodable, TyDecodable)]
52pub enum OverlapMode {
53    /// The 1.0 rules (either types fail to unify, or where clauses are not implemented for crate-local types)
54    Stable,
55    /// Feature-gated test: Stable, *or* there is an explicit negative impl that rules out one of the where-clauses.
56    WithNegative,
57    /// Just check for negative impls, not for "where clause not implemented": used for testing.
58    Strict,
59}
60
61impl OverlapMode {
62    pub fn get(tcx: TyCtxt<'_>, trait_id: DefId) -> OverlapMode {
63        let with_negative_coherence = tcx.features().with_negative_coherence();
64        let strict_coherence = tcx.has_attr(trait_id, sym::rustc_strict_coherence);
65
66        if with_negative_coherence {
67            if strict_coherence { OverlapMode::Strict } else { OverlapMode::WithNegative }
68        } else {
69            if strict_coherence {
70                let attr_span = trait_id
71                    .as_local()
72                    .into_iter()
73                    .flat_map(|local_def_id| {
74                        tcx.hir_attrs(tcx.local_def_id_to_hir_id(local_def_id))
75                    })
76                    .find(|attr| attr.has_name(sym::rustc_strict_coherence))
77                    .map(|attr| attr.span());
78                tcx.dcx().emit_err(StrictCoherenceNeedsNegativeCoherence {
79                    span: tcx.def_span(trait_id),
80                    attr_span,
81                });
82            }
83            OverlapMode::Stable
84        }
85    }
86
87    pub fn use_negative_impl(&self) -> bool {
88        *self == OverlapMode::Strict || *self == OverlapMode::WithNegative
89    }
90
91    pub fn use_implicit_negative(&self) -> bool {
92        *self == OverlapMode::Stable || *self == OverlapMode::WithNegative
93    }
94}
95
96/// Children of a given impl, grouped into blanket/non-blanket varieties as is
97/// done in `TraitDef`.
98#[derive(Default, TyEncodable, TyDecodable, Debug, HashStable)]
99pub struct Children {
100    // Impls of a trait (or specializations of a given impl). To allow for
101    // quicker lookup, the impls are indexed by a simplified version of their
102    // `Self` type: impls with a simplifiable `Self` are stored in
103    // `non_blanket_impls` keyed by it, while all other impls are stored in
104    // `blanket_impls`.
105    //
106    // A similar division is used within `TraitDef`, but the lists there collect
107    // together *all* the impls for a trait, and are populated prior to building
108    // the specialization graph.
109    /// Impls of the trait.
110    pub non_blanket_impls: FxIndexMap<SimplifiedType, Vec<DefId>>,
111
112    /// Blanket impls associated with the trait.
113    pub blanket_impls: Vec<DefId>,
114}
115
116/// A node in the specialization graph is either an impl or a trait
117/// definition; either can serve as a source of item definitions.
118/// There is always exactly one trait definition node: the root.
119#[derive(Debug, Copy, Clone)]
120pub enum Node {
121    Impl(DefId),
122    Trait(DefId),
123}
124
125impl Node {
126    pub fn is_from_trait(&self) -> bool {
127        matches!(self, Node::Trait(..))
128    }
129
130    /// Tries to find the associated item that implements `trait_item_def_id`
131    /// defined in this node.
132    ///
133    /// If this returns `None`, the item can potentially still be found in
134    /// parents of this node.
135    pub fn item<'tcx>(&self, tcx: TyCtxt<'tcx>, trait_item_def_id: DefId) -> Option<ty::AssocItem> {
136        match *self {
137            Node::Trait(_) => Some(tcx.associated_item(trait_item_def_id)),
138            Node::Impl(impl_def_id) => {
139                let id = tcx.impl_item_implementor_ids(impl_def_id).get(&trait_item_def_id)?;
140                Some(tcx.associated_item(*id))
141            }
142        }
143    }
144
145    pub fn def_id(&self) -> DefId {
146        match *self {
147            Node::Impl(did) => did,
148            Node::Trait(did) => did,
149        }
150    }
151}
152
153#[derive(Copy, Clone)]
154pub struct Ancestors<'tcx> {
155    trait_def_id: DefId,
156    specialization_graph: &'tcx Graph,
157    current_source: Option<Node>,
158}
159
160impl Iterator for Ancestors<'_> {
161    type Item = Node;
162    fn next(&mut self) -> Option<Node> {
163        let cur = self.current_source.take();
164        if let Some(Node::Impl(cur_impl)) = cur {
165            let parent = self.specialization_graph.parent(cur_impl);
166
167            self.current_source = if parent == self.trait_def_id {
168                Some(Node::Trait(parent))
169            } else {
170                Some(Node::Impl(parent))
171            };
172        }
173        cur
174    }
175}
176
177/// Information about the most specialized definition of an associated item.
178#[derive(Debug)]
179pub struct LeafDef {
180    /// The associated item described by this `LeafDef`.
181    pub item: ty::AssocItem,
182
183    /// The node in the specialization graph containing the definition of `item`.
184    pub defining_node: Node,
185
186    /// The "top-most" (ie. least specialized) specialization graph node that finalized the
187    /// definition of `item`.
188    ///
189    /// Example:
190    ///
191    /// ```
192    /// #![feature(specialization)]
193    /// trait Tr {
194    ///     fn assoc(&self);
195    /// }
196    ///
197    /// impl<T> Tr for T {
198    ///     default fn assoc(&self) {}
199    /// }
200    ///
201    /// impl Tr for u8 {}
202    /// ```
203    ///
204    /// If we start the leaf definition search at `impl Tr for u8`, that impl will be the
205    /// `finalizing_node`, while `defining_node` will be the generic impl.
206    ///
207    /// If the leaf definition search is started at the generic impl, `finalizing_node` will be
208    /// `None`, since the most specialized impl we found still allows overriding the method
209    /// (doesn't finalize it).
210    pub finalizing_node: Option<Node>,
211}
212
213impl LeafDef {
214    /// Returns whether this definition is known to not be further specializable.
215    pub fn is_final(&self) -> bool {
216        self.finalizing_node.is_some()
217    }
218}
219
220impl<'tcx> Ancestors<'tcx> {
221    /// Finds the bottom-most (ie. most specialized) definition of an associated
222    /// item.
223    pub fn leaf_def(mut self, tcx: TyCtxt<'tcx>, trait_item_def_id: DefId) -> Option<LeafDef> {
224        let mut finalizing_node = None;
225
226        self.find_map(|node| {
227            if let Some(item) = node.item(tcx, trait_item_def_id) {
228                if finalizing_node.is_none() {
229                    let is_specializable = item.defaultness(tcx).is_default()
230                        || tcx.defaultness(node.def_id()).is_default();
231
232                    if !is_specializable {
233                        finalizing_node = Some(node);
234                    }
235                }
236
237                Some(LeafDef { item, defining_node: node, finalizing_node })
238            } else {
239                // Item not mentioned. This "finalizes" any defaulted item provided by an ancestor.
240                finalizing_node = Some(node);
241                None
242            }
243        })
244    }
245}
246
247/// Walk up the specialization ancestors of a given impl, starting with that
248/// impl itself.
249///
250/// Returns `Err` if an error was reported while building the specialization
251/// graph.
252pub fn ancestors(
253    tcx: TyCtxt<'_>,
254    trait_def_id: DefId,
255    start_from_impl: DefId,
256) -> Result<Ancestors<'_>, ErrorGuaranteed> {
257    let specialization_graph = tcx.specialization_graph_of(trait_def_id)?;
258
259    if let Err(reported) = tcx.type_of(start_from_impl).instantiate_identity().error_reported() {
260        Err(reported)
261    } else {
262        Ok(Ancestors {
263            trait_def_id,
264            specialization_graph,
265            current_source: Some(Node::Impl(start_from_impl)),
266        })
267    }
268}