rustc_middle/traits/specialization_graph.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def_id::{DefId, DefIdMap};
use rustc_macros::{HashStable, TyDecodable, TyEncodable};
use rustc_span::sym;
use crate::error::StrictCoherenceNeedsNegativeCoherence;
use crate::ty::fast_reject::SimplifiedType;
use crate::ty::visit::TypeVisitableExt;
use crate::ty::{self, TyCtxt};
/// A per-trait graph of impls in specialization order. At the moment, this
/// graph forms a tree rooted with the trait itself, with all other nodes
/// representing impls, and parent-child relationships representing
/// specializations.
///
/// The graph provides two key services:
///
/// - Construction. This implicitly checks for overlapping impls (i.e., impls
/// that overlap but where neither specializes the other -- an artifact of the
/// simple "chain" rule.
///
/// - Parent extraction. In particular, the graph can give you the *immediate*
/// parents of a given specializing impl, which is needed for extracting
/// default items amongst other things. In the simple "chain" rule, every impl
/// has at most one parent.
#[derive(TyEncodable, TyDecodable, HashStable, Debug)]
pub struct Graph {
/// All impls have a parent; the "root" impls have as their parent the `def_id`
/// of the trait.
pub parent: DefIdMap<DefId>,
/// The "root" impls are found by looking up the trait's def_id.
pub children: DefIdMap<Children>,
}
impl Graph {
pub fn new() -> Graph {
Graph { parent: Default::default(), children: Default::default() }
}
/// The parent of a given impl, which is the `DefId` of the trait when the
/// impl is a "specialization root".
#[track_caller]
pub fn parent(&self, child: DefId) -> DefId {
*self.parent.get(&child).unwrap_or_else(|| panic!("Failed to get parent for {child:?}"))
}
}
/// What kind of overlap check are we doing -- this exists just for testing and feature-gating
/// purposes.
#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable, Debug, TyEncodable, TyDecodable)]
pub enum OverlapMode {
/// The 1.0 rules (either types fail to unify, or where clauses are not implemented for crate-local types)
Stable,
/// Feature-gated test: Stable, *or* there is an explicit negative impl that rules out one of the where-clauses.
WithNegative,
/// Just check for negative impls, not for "where clause not implemented": used for testing.
Strict,
}
impl OverlapMode {
pub fn get(tcx: TyCtxt<'_>, trait_id: DefId) -> OverlapMode {
let with_negative_coherence = tcx.features().with_negative_coherence();
let strict_coherence = tcx.has_attr(trait_id, sym::rustc_strict_coherence);
if with_negative_coherence {
if strict_coherence { OverlapMode::Strict } else { OverlapMode::WithNegative }
} else {
if strict_coherence {
let attr_span = trait_id
.as_local()
.into_iter()
.flat_map(|local_def_id| {
tcx.hir().attrs(tcx.local_def_id_to_hir_id(local_def_id))
})
.find(|attr| attr.has_name(sym::rustc_strict_coherence))
.map(|attr| attr.span);
tcx.dcx().emit_err(StrictCoherenceNeedsNegativeCoherence {
span: tcx.def_span(trait_id),
attr_span,
});
}
OverlapMode::Stable
}
}
pub fn use_negative_impl(&self) -> bool {
*self == OverlapMode::Strict || *self == OverlapMode::WithNegative
}
pub fn use_implicit_negative(&self) -> bool {
*self == OverlapMode::Stable || *self == OverlapMode::WithNegative
}
}
/// Children of a given impl, grouped into blanket/non-blanket varieties as is
/// done in `TraitDef`.
#[derive(Default, TyEncodable, TyDecodable, Debug, HashStable)]
pub struct Children {
// Impls of a trait (or specializations of a given impl). To allow for
// quicker lookup, the impls are indexed by a simplified version of their
// `Self` type: impls with a simplifiable `Self` are stored in
// `non_blanket_impls` keyed by it, while all other impls are stored in
// `blanket_impls`.
//
// A similar division is used within `TraitDef`, but the lists there collect
// together *all* the impls for a trait, and are populated prior to building
// the specialization graph.
/// Impls of the trait.
pub non_blanket_impls: FxIndexMap<SimplifiedType, Vec<DefId>>,
/// Blanket impls associated with the trait.
pub blanket_impls: Vec<DefId>,
}
/// A node in the specialization graph is either an impl or a trait
/// definition; either can serve as a source of item definitions.
/// There is always exactly one trait definition node: the root.
#[derive(Debug, Copy, Clone)]
pub enum Node {
Impl(DefId),
Trait(DefId),
}
impl Node {
pub fn is_from_trait(&self) -> bool {
matches!(self, Node::Trait(..))
}
/// Tries to find the associated item that implements `trait_item_def_id`
/// defined in this node.
///
/// If this returns `None`, the item can potentially still be found in
/// parents of this node.
pub fn item<'tcx>(&self, tcx: TyCtxt<'tcx>, trait_item_def_id: DefId) -> Option<ty::AssocItem> {
match *self {
Node::Trait(_) => Some(tcx.associated_item(trait_item_def_id)),
Node::Impl(impl_def_id) => {
let id = tcx.impl_item_implementor_ids(impl_def_id).get(&trait_item_def_id)?;
Some(tcx.associated_item(*id))
}
}
}
pub fn def_id(&self) -> DefId {
match *self {
Node::Impl(did) => did,
Node::Trait(did) => did,
}
}
}
#[derive(Copy, Clone)]
pub struct Ancestors<'tcx> {
trait_def_id: DefId,
specialization_graph: &'tcx Graph,
current_source: Option<Node>,
}
impl Iterator for Ancestors<'_> {
type Item = Node;
fn next(&mut self) -> Option<Node> {
let cur = self.current_source.take();
if let Some(Node::Impl(cur_impl)) = cur {
let parent = self.specialization_graph.parent(cur_impl);
self.current_source = if parent == self.trait_def_id {
Some(Node::Trait(parent))
} else {
Some(Node::Impl(parent))
};
}
cur
}
}
/// Information about the most specialized definition of an associated item.
#[derive(Debug)]
pub struct LeafDef {
/// The associated item described by this `LeafDef`.
pub item: ty::AssocItem,
/// The node in the specialization graph containing the definition of `item`.
pub defining_node: Node,
/// The "top-most" (ie. least specialized) specialization graph node that finalized the
/// definition of `item`.
///
/// Example:
///
/// ```
/// #![feature(specialization)]
/// trait Tr {
/// fn assoc(&self);
/// }
///
/// impl<T> Tr for T {
/// default fn assoc(&self) {}
/// }
///
/// impl Tr for u8 {}
/// ```
///
/// If we start the leaf definition search at `impl Tr for u8`, that impl will be the
/// `finalizing_node`, while `defining_node` will be the generic impl.
///
/// If the leaf definition search is started at the generic impl, `finalizing_node` will be
/// `None`, since the most specialized impl we found still allows overriding the method
/// (doesn't finalize it).
pub finalizing_node: Option<Node>,
}
impl LeafDef {
/// Returns whether this definition is known to not be further specializable.
pub fn is_final(&self) -> bool {
self.finalizing_node.is_some()
}
}
impl<'tcx> Ancestors<'tcx> {
/// Finds the bottom-most (ie. most specialized) definition of an associated
/// item.
pub fn leaf_def(mut self, tcx: TyCtxt<'tcx>, trait_item_def_id: DefId) -> Option<LeafDef> {
let mut finalizing_node = None;
self.find_map(|node| {
if let Some(item) = node.item(tcx, trait_item_def_id) {
if finalizing_node.is_none() {
let is_specializable = item.defaultness(tcx).is_default()
|| tcx.defaultness(node.def_id()).is_default();
if !is_specializable {
finalizing_node = Some(node);
}
}
Some(LeafDef { item, defining_node: node, finalizing_node })
} else {
// Item not mentioned. This "finalizes" any defaulted item provided by an ancestor.
finalizing_node = Some(node);
None
}
})
}
}
/// Walk up the specialization ancestors of a given impl, starting with that
/// impl itself.
///
/// Returns `Err` if an error was reported while building the specialization
/// graph.
pub fn ancestors(
tcx: TyCtxt<'_>,
trait_def_id: DefId,
start_from_impl: DefId,
) -> Result<Ancestors<'_>, ErrorGuaranteed> {
let specialization_graph = tcx.specialization_graph_of(trait_def_id)?;
if let Err(reported) = tcx.type_of(start_from_impl).instantiate_identity().error_reported() {
Err(reported)
} else {
Ok(Ancestors {
trait_def_id,
specialization_graph,
current_source: Some(Node::Impl(start_from_impl)),
})
}
}