rustc_type_ir/
ty_kind.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
use std::fmt;

use derive_where::derive_where;
use rustc_ast_ir::Mutability;
#[cfg(feature = "nightly")]
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
#[cfg(feature = "nightly")]
use rustc_data_structures::unify::{NoError, UnifyKey, UnifyValue};
#[cfg(feature = "nightly")]
use rustc_macros::{Decodable, Encodable, HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};

use self::TyKind::*;
pub use self::closure::*;
use crate::inherent::*;
use crate::{self as ty, DebruijnIndex, Interner};

mod closure;

/// Specifies how a trait object is represented.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum DynKind {
    /// An unsized `dyn Trait` object
    Dyn,
    /// A sized `dyn* Trait` object
    ///
    /// These objects are represented as a `(data, vtable)` pair where `data` is a value of some
    /// ptr-sized and ptr-aligned dynamically determined type `T` and `vtable` is a pointer to the
    /// vtable of `impl T for Trait`. This allows a `dyn*` object to be treated agnostically with
    /// respect to whether it points to a `Box<T>`, `Rc<T>`, etc.
    DynStar,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum AliasTyKind {
    /// A projection `<Type as Trait>::AssocType`.
    /// Can get normalized away if monomorphic enough.
    Projection,
    /// An associated type in an inherent `impl`
    Inherent,
    /// An opaque type (usually from `impl Trait` in type aliases or function return types)
    /// Can only be normalized away in RevealAll mode
    Opaque,
    /// A type alias that actually checks its trait bounds.
    /// Currently only used if the type alias references opaque types.
    /// Can always be normalized away.
    Weak,
}

impl AliasTyKind {
    pub fn descr(self) -> &'static str {
        match self {
            AliasTyKind::Projection => "associated type",
            AliasTyKind::Inherent => "inherent associated type",
            AliasTyKind::Opaque => "opaque type",
            AliasTyKind::Weak => "type alias",
        }
    }
}

/// Defines the kinds of types used by the type system.
///
/// Types written by the user start out as `hir::TyKind` and get
/// converted to this representation using `<dyn HirTyLowerer>::lower_ty`.
#[cfg_attr(feature = "nightly", rustc_diagnostic_item = "IrTyKind")]
#[derive_where(Clone, Copy, Hash, PartialEq, Eq; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
pub enum TyKind<I: Interner> {
    /// The primitive boolean type. Written as `bool`.
    Bool,

    /// The primitive character type; holds a Unicode scalar value
    /// (a non-surrogate code point). Written as `char`.
    Char,

    /// A primitive signed integer type. For example, `i32`.
    Int(IntTy),

    /// A primitive unsigned integer type. For example, `u32`.
    Uint(UintTy),

    /// A primitive floating-point type. For example, `f64`.
    Float(FloatTy),

    /// Algebraic data types (ADT). For example: structures, enumerations and unions.
    ///
    /// For example, the type `List<i32>` would be represented using the `AdtDef`
    /// for `struct List<T>` and the args `[i32]`.
    ///
    /// Note that generic parameters in fields only get lazily instantiated
    /// by using something like `adt_def.all_fields().map(|field| field.ty(interner, args))`.
    Adt(I::AdtDef, I::GenericArgs),

    /// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
    Foreign(I::DefId),

    /// The pointee of a string slice. Written as `str`.
    Str,

    /// An array with the given length. Written as `[T; N]`.
    Array(I::Ty, I::Const),

    /// A pattern newtype. Takes any type and restricts its valid values to its pattern.
    /// This will also change the layout to take advantage of this restriction.
    /// Only `Copy` and `Clone` will automatically get implemented for pattern types.
    /// Auto-traits treat this as if it were an aggregate with a single nested type.
    /// Only supports integer range patterns for now.
    Pat(I::Ty, I::Pat),

    /// The pointee of an array slice. Written as `[T]`.
    Slice(I::Ty),

    /// A raw pointer. Written as `*mut T` or `*const T`
    RawPtr(I::Ty, Mutability),

    /// A reference; a pointer with an associated lifetime. Written as
    /// `&'a mut T` or `&'a T`.
    Ref(I::Region, I::Ty, Mutability),

    /// The anonymous type of a function declaration/definition. Each
    /// function has a unique type.
    ///
    /// For the function `fn foo() -> i32 { 3 }` this type would be
    /// shown to the user as `fn() -> i32 {foo}`.
    ///
    /// For example the type of `bar` here:
    /// ```rust
    /// fn foo() -> i32 { 1 }
    /// let bar = foo; // bar: fn() -> i32 {foo}
    /// ```
    FnDef(I::DefId, I::GenericArgs),

    /// A pointer to a function. Written as `fn() -> i32`.
    ///
    /// Note that both functions and closures start out as either
    /// [FnDef] or [Closure] which can be then be coerced to this variant.
    ///
    /// For example the type of `bar` here:
    ///
    /// ```rust
    /// fn foo() -> i32 { 1 }
    /// let bar: fn() -> i32 = foo;
    /// ```
    ///
    /// These two fields are equivalent to a `ty::Binder<I, FnSig<I>>`. But by
    /// splitting that into two pieces, we get a more compact data layout that
    /// reduces the size of `TyKind` by 8 bytes. It is a very hot type, so it's
    /// worth the mild inconvenience.
    FnPtr(ty::Binder<I, FnSigTys<I>>, FnHeader<I>),

    /// A trait object. Written as `dyn for<'b> Trait<'b, Assoc = u32> + Send + 'a`.
    Dynamic(I::BoundExistentialPredicates, I::Region, DynKind),

    /// The anonymous type of a closure. Used to represent the type of `|a| a`.
    ///
    /// Closure args contain both the - potentially instantiated - generic parameters
    /// of its parent and some synthetic parameters. See the documentation for
    /// `ClosureArgs` for more details.
    Closure(I::DefId, I::GenericArgs),

    /// The anonymous type of a closure. Used to represent the type of `async |a| a`.
    ///
    /// Coroutine-closure args contain both the - potentially instantiated - generic
    /// parameters of its parent and some synthetic parameters. See the documentation
    /// for `CoroutineClosureArgs` for more details.
    CoroutineClosure(I::DefId, I::GenericArgs),

    /// The anonymous type of a coroutine. Used to represent the type of
    /// `|a| yield a`.
    ///
    /// For more info about coroutine args, visit the documentation for
    /// `CoroutineArgs`.
    Coroutine(I::DefId, I::GenericArgs),

    /// A type representing the types stored inside a coroutine.
    /// This should only appear as part of the `CoroutineArgs`.
    ///
    /// Unlike upvars, the witness can reference lifetimes from
    /// inside of the coroutine itself. To deal with them in
    /// the type of the coroutine, we convert them to higher ranked
    /// lifetimes bound by the witness itself.
    ///
    /// This contains the `DefId` and the `GenericArgsRef` of the coroutine.
    /// The actual witness types are computed on MIR by the `mir_coroutine_witnesses` query.
    ///
    /// Looking at the following example, the witness for this coroutine
    /// may end up as something like `for<'a> [Vec<i32>, &'a Vec<i32>]`:
    ///
    /// ```
    /// #![feature(coroutines)]
    /// #[coroutine] static |a| {
    ///     let x = &vec![3];
    ///     yield a;
    ///     yield x[0];
    /// }
    /// # ;
    /// ```
    CoroutineWitness(I::DefId, I::GenericArgs),

    /// The never type `!`.
    Never,

    /// A tuple type. For example, `(i32, bool)`.
    Tuple(I::Tys),

    /// A projection, opaque type, weak type alias, or inherent associated type.
    /// All of these types are represented as pairs of def-id and args, and can
    /// be normalized, so they are grouped conceptually.
    Alias(AliasTyKind, AliasTy<I>),

    /// A type parameter; for example, `T` in `fn f<T>(x: T) {}`.
    Param(I::ParamTy),

    /// Bound type variable, used to represent the `'a` in `for<'a> fn(&'a ())`.
    ///
    /// For canonical queries, we replace inference variables with bound variables,
    /// so e.g. when checking whether `&'_ (): Trait<_>` holds, we canonicalize that to
    /// `for<'a, T> &'a (): Trait<T>` and then convert the introduced bound variables
    /// back to inference variables in a new inference context when inside of the query.
    ///
    /// It is conventional to render anonymous bound types like `^N` or `^D_N`,
    /// where `N` is the bound variable's anonymous index into the binder, and
    /// `D` is the debruijn index, or totally omitted if the debruijn index is zero.
    ///
    /// See the `rustc-dev-guide` for more details about
    /// [higher-ranked trait bounds][1] and [canonical queries][2].
    ///
    /// [1]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
    /// [2]: https://rustc-dev-guide.rust-lang.org/traits/canonical-queries.html
    Bound(DebruijnIndex, I::BoundTy),

    /// A placeholder type, used during higher ranked subtyping to instantiate
    /// bound variables.
    ///
    /// It is conventional to render anonymous placeholder types like `!N` or `!U_N`,
    /// where `N` is the placeholder variable's anonymous index (which corresponds
    /// to the bound variable's index from the binder from which it was instantiated),
    /// and `U` is the universe index in which it is instantiated, or totally omitted
    /// if the universe index is zero.
    Placeholder(I::PlaceholderTy),

    /// A type variable used during type checking.
    ///
    /// Similar to placeholders, inference variables also live in a universe to
    /// correctly deal with higher ranked types. Though unlike placeholders,
    /// that universe is stored in the `InferCtxt` instead of directly
    /// inside of the type.
    Infer(InferTy),

    /// A placeholder for a type which could not be computed; this is
    /// propagated to avoid useless error messages.
    Error(I::ErrorGuaranteed),
}

// This is manually implemented because a derive would require `I: Debug`
impl<I: Interner> fmt::Debug for TyKind<I> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Bool => write!(f, "bool"),
            Char => write!(f, "char"),
            Int(i) => write!(f, "{i:?}"),
            Uint(u) => write!(f, "{u:?}"),
            Float(float) => write!(f, "{float:?}"),
            Adt(d, s) => {
                write!(f, "{d:?}")?;
                let mut s = s.iter();
                let first = s.next();
                match first {
                    Some(first) => write!(f, "<{:?}", first)?,
                    None => return Ok(()),
                };

                for arg in s {
                    write!(f, ", {:?}", arg)?;
                }

                write!(f, ">")
            }
            Foreign(d) => f.debug_tuple("Foreign").field(d).finish(),
            Str => write!(f, "str"),
            Array(t, c) => write!(f, "[{t:?}; {c:?}]"),
            Pat(t, p) => write!(f, "pattern_type!({t:?} is {p:?})"),
            Slice(t) => write!(f, "[{:?}]", &t),
            RawPtr(ty, mutbl) => write!(f, "*{} {:?}", mutbl.ptr_str(), ty),
            Ref(r, t, m) => write!(f, "&{:?} {}{:?}", r, m.prefix_str(), t),
            FnDef(d, s) => f.debug_tuple("FnDef").field(d).field(&s).finish(),
            FnPtr(sig_tys, hdr) => write!(f, "{:?}", sig_tys.with(*hdr)),
            Dynamic(p, r, repr) => match repr {
                DynKind::Dyn => write!(f, "dyn {p:?} + {r:?}"),
                DynKind::DynStar => write!(f, "dyn* {p:?} + {r:?}"),
            },
            Closure(d, s) => f.debug_tuple("Closure").field(d).field(&s).finish(),
            CoroutineClosure(d, s) => f.debug_tuple("CoroutineClosure").field(d).field(&s).finish(),
            Coroutine(d, s) => f.debug_tuple("Coroutine").field(d).field(&s).finish(),
            CoroutineWitness(d, s) => f.debug_tuple("CoroutineWitness").field(d).field(&s).finish(),
            Never => write!(f, "!"),
            Tuple(t) => {
                write!(f, "(")?;
                let mut count = 0;
                for ty in t.iter() {
                    if count > 0 {
                        write!(f, ", ")?;
                    }
                    write!(f, "{ty:?}")?;
                    count += 1;
                }
                // unary tuples need a trailing comma
                if count == 1 {
                    write!(f, ",")?;
                }
                write!(f, ")")
            }
            Alias(i, a) => f.debug_tuple("Alias").field(i).field(&a).finish(),
            Param(p) => write!(f, "{p:?}"),
            Bound(d, b) => crate::debug_bound_var(f, *d, b),
            Placeholder(p) => write!(f, "{p:?}"),
            Infer(t) => write!(f, "{:?}", t),
            TyKind::Error(_) => write!(f, "{{type error}}"),
        }
    }
}

/// Represents the projection of an associated, opaque, or lazy-type-alias type.
///
/// * For a projection, this would be `<Ty as Trait<...>>::N<...>`.
/// * For an inherent projection, this would be `Ty::N<...>`.
/// * For an opaque type, there is no explicit syntax.
#[derive_where(Clone, Copy, Hash, PartialEq, Eq, Debug; I: Interner)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct AliasTy<I: Interner> {
    /// The parameters of the associated or opaque type.
    ///
    /// For a projection, these are the generic parameters for the trait and the
    /// GAT parameters, if there are any.
    ///
    /// For an inherent projection, they consist of the self type and the GAT parameters,
    /// if there are any.
    ///
    /// For RPIT the generic parameters are for the generics of the function,
    /// while for TAIT it is used for the generic parameters of the alias.
    pub args: I::GenericArgs,

    /// The `DefId` of the `TraitItem` or `ImplItem` for the associated type `N` depending on whether
    /// this is a projection or an inherent projection or the `DefId` of the `OpaqueType` item if
    /// this is an opaque.
    ///
    /// During codegen, `interner.type_of(def_id)` can be used to get the type of the
    /// underlying type if the type is an opaque.
    ///
    /// Note that if this is an associated type, this is not the `DefId` of the
    /// `TraitRef` containing this associated type, which is in `interner.associated_item(def_id).container`,
    /// aka. `interner.parent(def_id)`.
    pub def_id: I::DefId,

    /// This field exists to prevent the creation of `AliasTy` without using [`AliasTy::new_from_args`].
    #[derive_where(skip(Debug))]
    pub(crate) _use_alias_ty_new_instead: (),
}

impl<I: Interner> AliasTy<I> {
    pub fn new_from_args(interner: I, def_id: I::DefId, args: I::GenericArgs) -> AliasTy<I> {
        interner.debug_assert_args_compatible(def_id, args);
        AliasTy { def_id, args, _use_alias_ty_new_instead: () }
    }

    pub fn new(
        interner: I,
        def_id: I::DefId,
        args: impl IntoIterator<Item: Into<I::GenericArg>>,
    ) -> AliasTy<I> {
        let args = interner.mk_args_from_iter(args.into_iter().map(Into::into));
        Self::new_from_args(interner, def_id, args)
    }

    pub fn kind(self, interner: I) -> AliasTyKind {
        interner.alias_ty_kind(self)
    }

    /// Whether this alias type is an opaque.
    pub fn is_opaque(self, interner: I) -> bool {
        matches!(self.kind(interner), AliasTyKind::Opaque)
    }

    pub fn to_ty(self, interner: I) -> I::Ty {
        Ty::new_alias(interner, self.kind(interner), self)
    }
}

/// The following methods work only with (trait) associated type projections.
impl<I: Interner> AliasTy<I> {
    pub fn self_ty(self) -> I::Ty {
        self.args.type_at(0)
    }

    pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> Self {
        AliasTy::new(
            interner,
            self.def_id,
            [self_ty.into()].into_iter().chain(self.args.iter().skip(1)),
        )
    }

    pub fn trait_def_id(self, interner: I) -> I::DefId {
        assert_eq!(self.kind(interner), AliasTyKind::Projection, "expected a projection");
        interner.parent(self.def_id)
    }

    /// Extracts the underlying trait reference and own args from this projection.
    /// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
    /// then this function would return a `T: StreamingIterator` trait reference and
    /// `['a]` as the own args.
    pub fn trait_ref_and_own_args(self, interner: I) -> (ty::TraitRef<I>, I::GenericArgsSlice) {
        debug_assert_eq!(self.kind(interner), AliasTyKind::Projection);
        interner.trait_ref_and_own_args_for_alias(self.def_id, self.args)
    }

    /// Extracts the underlying trait reference from this projection.
    /// For example, if this is a projection of `<T as Iterator>::Item`,
    /// then this function would return a `T: Iterator` trait reference.
    ///
    /// WARNING: This will drop the args for generic associated types
    /// consider calling [Self::trait_ref_and_own_args] to get those
    /// as well.
    pub fn trait_ref(self, interner: I) -> ty::TraitRef<I> {
        self.trait_ref_and_own_args(interner).0
    }
}

/// The following methods work only with inherent associated type projections.
impl<I: Interner> AliasTy<I> {
    /// Transform the generic parameters to have the given `impl` args as the base and the GAT args on top of that.
    ///
    /// Does the following transformation:
    ///
    /// ```text
    /// [Self, P_0...P_m] -> [I_0...I_n, P_0...P_m]
    ///
    ///     I_i impl args
    ///     P_j GAT args
    /// ```
    pub fn rebase_inherent_args_onto_impl(
        self,
        impl_args: I::GenericArgs,
        interner: I,
    ) -> I::GenericArgs {
        debug_assert_eq!(self.kind(interner), AliasTyKind::Inherent);
        interner.mk_args_from_iter(impl_args.iter().chain(self.args.iter().skip(1)))
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum IntTy {
    Isize,
    I8,
    I16,
    I32,
    I64,
    I128,
}

impl IntTy {
    pub fn name_str(&self) -> &'static str {
        match *self {
            IntTy::Isize => "isize",
            IntTy::I8 => "i8",
            IntTy::I16 => "i16",
            IntTy::I32 => "i32",
            IntTy::I64 => "i64",
            IntTy::I128 => "i128",
        }
    }

    pub fn bit_width(&self) -> Option<u64> {
        Some(match *self {
            IntTy::Isize => return None,
            IntTy::I8 => 8,
            IntTy::I16 => 16,
            IntTy::I32 => 32,
            IntTy::I64 => 64,
            IntTy::I128 => 128,
        })
    }

    pub fn normalize(&self, target_width: u32) -> Self {
        match self {
            IntTy::Isize => match target_width {
                16 => IntTy::I16,
                32 => IntTy::I32,
                64 => IntTy::I64,
                _ => unreachable!(),
            },
            _ => *self,
        }
    }

    pub fn to_unsigned(self) -> UintTy {
        match self {
            IntTy::Isize => UintTy::Usize,
            IntTy::I8 => UintTy::U8,
            IntTy::I16 => UintTy::U16,
            IntTy::I32 => UintTy::U32,
            IntTy::I64 => UintTy::U64,
            IntTy::I128 => UintTy::U128,
        }
    }
}

#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum UintTy {
    Usize,
    U8,
    U16,
    U32,
    U64,
    U128,
}

impl UintTy {
    pub fn name_str(&self) -> &'static str {
        match *self {
            UintTy::Usize => "usize",
            UintTy::U8 => "u8",
            UintTy::U16 => "u16",
            UintTy::U32 => "u32",
            UintTy::U64 => "u64",
            UintTy::U128 => "u128",
        }
    }

    pub fn bit_width(&self) -> Option<u64> {
        Some(match *self {
            UintTy::Usize => return None,
            UintTy::U8 => 8,
            UintTy::U16 => 16,
            UintTy::U32 => 32,
            UintTy::U64 => 64,
            UintTy::U128 => 128,
        })
    }

    pub fn normalize(&self, target_width: u32) -> Self {
        match self {
            UintTy::Usize => match target_width {
                16 => UintTy::U16,
                32 => UintTy::U32,
                64 => UintTy::U64,
                _ => unreachable!(),
            },
            _ => *self,
        }
    }

    pub fn to_signed(self) -> IntTy {
        match self {
            UintTy::Usize => IntTy::Isize,
            UintTy::U8 => IntTy::I8,
            UintTy::U16 => IntTy::I16,
            UintTy::U32 => IntTy::I32,
            UintTy::U64 => IntTy::I64,
            UintTy::U128 => IntTy::I128,
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum FloatTy {
    F16,
    F32,
    F64,
    F128,
}

impl FloatTy {
    pub fn name_str(self) -> &'static str {
        match self {
            FloatTy::F16 => "f16",
            FloatTy::F32 => "f32",
            FloatTy::F64 => "f64",
            FloatTy::F128 => "f128",
        }
    }

    pub fn bit_width(self) -> u64 {
        match self {
            FloatTy::F16 => 16,
            FloatTy::F32 => 32,
            FloatTy::F64 => 64,
            FloatTy::F128 => 128,
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum IntVarValue {
    Unknown,
    IntType(IntTy),
    UintType(UintTy),
}

impl IntVarValue {
    pub fn is_known(self) -> bool {
        match self {
            IntVarValue::IntType(_) | IntVarValue::UintType(_) => true,
            IntVarValue::Unknown => false,
        }
    }

    pub fn is_unknown(self) -> bool {
        !self.is_known()
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum FloatVarValue {
    Unknown,
    Known(FloatTy),
}

impl FloatVarValue {
    pub fn is_known(self) -> bool {
        match self {
            FloatVarValue::Known(_) => true,
            FloatVarValue::Unknown => false,
        }
    }

    pub fn is_unknown(self) -> bool {
        !self.is_known()
    }
}

rustc_index::newtype_index! {
    /// A **ty**pe **v**ariable **ID**.
    #[encodable]
    #[orderable]
    #[debug_format = "?{}t"]
    #[gate_rustc_only]
    pub struct TyVid {}
}

rustc_index::newtype_index! {
    /// An **int**egral (`u32`, `i32`, `usize`, etc.) type **v**ariable **ID**.
    #[encodable]
    #[orderable]
    #[debug_format = "?{}i"]
    #[gate_rustc_only]
    pub struct IntVid {}
}

rustc_index::newtype_index! {
    /// A **float**ing-point (`f32` or `f64`) type **v**ariable **ID**.
    #[encodable]
    #[orderable]
    #[debug_format = "?{}f"]
    #[gate_rustc_only]
    pub struct FloatVid {}
}

/// A placeholder for a type that hasn't been inferred yet.
///
/// E.g., if we have an empty array (`[]`), then we create a fresh
/// type variable for the element type since we won't know until it's
/// used what the element type is supposed to be.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable))]
pub enum InferTy {
    /// A type variable.
    TyVar(TyVid),
    /// An integral type variable (`{integer}`).
    ///
    /// These are created when the compiler sees an integer literal like
    /// `1` that could be several different types (`u8`, `i32`, `u32`, etc.).
    /// We don't know until it's used what type it's supposed to be, so
    /// we create a fresh type variable.
    IntVar(IntVid),
    /// A floating-point type variable (`{float}`).
    ///
    /// These are created when the compiler sees an float literal like
    /// `1.0` that could be either an `f32` or an `f64`.
    /// We don't know until it's used what type it's supposed to be, so
    /// we create a fresh type variable.
    FloatVar(FloatVid),

    /// A [`FreshTy`][Self::FreshTy] is one that is generated as a replacement
    /// for an unbound type variable. This is convenient for caching etc. See
    /// `rustc_infer::infer::freshen` for more details.
    ///
    /// Compare with [`TyVar`][Self::TyVar].
    FreshTy(u32),
    /// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`IntVar`][Self::IntVar].
    FreshIntTy(u32),
    /// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`FloatVar`][Self::FloatVar].
    FreshFloatTy(u32),
}

/// Raw `TyVid` are used as the unification key for `sub_relations`;
/// they carry no values.
#[cfg(feature = "nightly")]
impl UnifyKey for TyVid {
    type Value = ();
    #[inline]
    fn index(&self) -> u32 {
        self.as_u32()
    }
    #[inline]
    fn from_index(i: u32) -> TyVid {
        TyVid::from_u32(i)
    }
    fn tag() -> &'static str {
        "TyVid"
    }
}

#[cfg(feature = "nightly")]
impl UnifyValue for IntVarValue {
    type Error = NoError;

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, Self::Error> {
        match (*value1, *value2) {
            (IntVarValue::Unknown, IntVarValue::Unknown) => Ok(IntVarValue::Unknown),
            (
                IntVarValue::Unknown,
                known @ (IntVarValue::UintType(_) | IntVarValue::IntType(_)),
            )
            | (
                known @ (IntVarValue::UintType(_) | IntVarValue::IntType(_)),
                IntVarValue::Unknown,
            ) => Ok(known),
            _ => panic!("differing ints should have been resolved first"),
        }
    }
}

#[cfg(feature = "nightly")]
impl UnifyKey for IntVid {
    type Value = IntVarValue;
    #[inline] // make this function eligible for inlining - it is quite hot.
    fn index(&self) -> u32 {
        self.as_u32()
    }
    #[inline]
    fn from_index(i: u32) -> IntVid {
        IntVid::from_u32(i)
    }
    fn tag() -> &'static str {
        "IntVid"
    }
}

#[cfg(feature = "nightly")]
impl UnifyValue for FloatVarValue {
    type Error = NoError;

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, Self::Error> {
        match (*value1, *value2) {
            (FloatVarValue::Unknown, FloatVarValue::Unknown) => Ok(FloatVarValue::Unknown),
            (FloatVarValue::Unknown, FloatVarValue::Known(known))
            | (FloatVarValue::Known(known), FloatVarValue::Unknown) => {
                Ok(FloatVarValue::Known(known))
            }
            (FloatVarValue::Known(_), FloatVarValue::Known(_)) => {
                panic!("differing floats should have been resolved first")
            }
        }
    }
}

#[cfg(feature = "nightly")]
impl UnifyKey for FloatVid {
    type Value = FloatVarValue;
    #[inline]
    fn index(&self) -> u32 {
        self.as_u32()
    }
    #[inline]
    fn from_index(i: u32) -> FloatVid {
        FloatVid::from_u32(i)
    }
    fn tag() -> &'static str {
        "FloatVid"
    }
}

#[cfg(feature = "nightly")]
impl<CTX> HashStable<CTX> for InferTy {
    fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
        use InferTy::*;
        std::mem::discriminant(self).hash_stable(ctx, hasher);
        match self {
            TyVar(_) | IntVar(_) | FloatVar(_) => {
                panic!("type variables should not be hashed: {self:?}")
            }
            FreshTy(v) | FreshIntTy(v) | FreshFloatTy(v) => v.hash_stable(ctx, hasher),
        }
    }
}

impl fmt::Display for InferTy {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use InferTy::*;
        match *self {
            TyVar(_) => write!(f, "_"),
            IntVar(_) => write!(f, "{}", "{integer}"),
            FloatVar(_) => write!(f, "{}", "{float}"),
            FreshTy(v) => write!(f, "FreshTy({v})"),
            FreshIntTy(v) => write!(f, "FreshIntTy({v})"),
            FreshFloatTy(v) => write!(f, "FreshFloatTy({v})"),
        }
    }
}

impl fmt::Debug for IntTy {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.name_str())
    }
}

impl fmt::Debug for UintTy {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.name_str())
    }
}

impl fmt::Debug for FloatTy {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.name_str())
    }
}

impl fmt::Debug for InferTy {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use InferTy::*;
        match *self {
            TyVar(ref v) => v.fmt(f),
            IntVar(ref v) => v.fmt(f),
            FloatVar(ref v) => v.fmt(f),
            FreshTy(v) => write!(f, "FreshTy({v:?})"),
            FreshIntTy(v) => write!(f, "FreshIntTy({v:?})"),
            FreshFloatTy(v) => write!(f, "FreshFloatTy({v:?})"),
        }
    }
}

#[derive_where(Clone, Copy, PartialEq, Eq, Hash, Debug; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
pub struct TypeAndMut<I: Interner> {
    pub ty: I::Ty,
    pub mutbl: Mutability,
}

#[derive_where(Clone, Copy, PartialEq, Eq, Hash; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
pub struct FnSig<I: Interner> {
    pub inputs_and_output: I::Tys,
    pub c_variadic: bool,
    #[type_visitable(ignore)]
    #[type_foldable(identity)]
    pub safety: I::Safety,
    #[type_visitable(ignore)]
    #[type_foldable(identity)]
    pub abi: I::Abi,
}

impl<I: Interner> FnSig<I> {
    pub fn inputs(self) -> I::FnInputTys {
        self.inputs_and_output.inputs()
    }

    pub fn output(self) -> I::Ty {
        self.inputs_and_output.output()
    }

    pub fn is_fn_trait_compatible(self) -> bool {
        let FnSig { safety, abi, c_variadic, .. } = self;
        !c_variadic && safety.is_safe() && abi.is_rust()
    }
}

impl<I: Interner> ty::Binder<I, FnSig<I>> {
    #[inline]
    pub fn inputs(self) -> ty::Binder<I, I::FnInputTys> {
        self.map_bound(|fn_sig| fn_sig.inputs())
    }

    #[inline]
    #[track_caller]
    pub fn input(self, index: usize) -> ty::Binder<I, I::Ty> {
        self.map_bound(|fn_sig| fn_sig.inputs().get(index).unwrap())
    }

    pub fn inputs_and_output(self) -> ty::Binder<I, I::Tys> {
        self.map_bound(|fn_sig| fn_sig.inputs_and_output)
    }

    #[inline]
    pub fn output(self) -> ty::Binder<I, I::Ty> {
        self.map_bound(|fn_sig| fn_sig.output())
    }

    pub fn c_variadic(self) -> bool {
        self.skip_binder().c_variadic
    }

    pub fn safety(self) -> I::Safety {
        self.skip_binder().safety
    }

    pub fn abi(self) -> I::Abi {
        self.skip_binder().abi
    }

    pub fn is_fn_trait_compatible(&self) -> bool {
        self.skip_binder().is_fn_trait_compatible()
    }

    // Used to split a single value into the two fields in `TyKind::FnPtr`.
    pub fn split(self) -> (ty::Binder<I, FnSigTys<I>>, FnHeader<I>) {
        let hdr =
            FnHeader { c_variadic: self.c_variadic(), safety: self.safety(), abi: self.abi() };
        (self.map_bound(|sig| FnSigTys { inputs_and_output: sig.inputs_and_output }), hdr)
    }
}

impl<I: Interner> fmt::Debug for FnSig<I> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let sig = self;
        let FnSig { inputs_and_output: _, c_variadic, safety, abi } = sig;

        write!(f, "{}", safety.prefix_str())?;
        if !abi.is_rust() {
            write!(f, "extern \"{abi:?}\" ")?;
        }

        write!(f, "fn(")?;
        let inputs = sig.inputs();
        for (i, ty) in inputs.iter().enumerate() {
            if i > 0 {
                write!(f, ", ")?;
            }
            write!(f, "{ty:?}")?;
        }
        if *c_variadic {
            if inputs.is_empty() {
                write!(f, "...")?;
            } else {
                write!(f, ", ...")?;
            }
        }
        write!(f, ")")?;

        let output = sig.output();
        match output.kind() {
            Tuple(list) if list.is_empty() => Ok(()),
            _ => write!(f, " -> {:?}", sig.output()),
        }
    }
}

// This is just a `FnSig` without the `FnHeader` fields.
#[derive_where(Clone, Copy, Debug, PartialEq, Eq, Hash; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
pub struct FnSigTys<I: Interner> {
    pub inputs_and_output: I::Tys,
}

impl<I: Interner> FnSigTys<I> {
    pub fn inputs(self) -> I::FnInputTys {
        self.inputs_and_output.inputs()
    }

    pub fn output(self) -> I::Ty {
        self.inputs_and_output.output()
    }
}

impl<I: Interner> ty::Binder<I, FnSigTys<I>> {
    // Used to combine the two fields in `TyKind::FnPtr` into a single value.
    pub fn with(self, hdr: FnHeader<I>) -> ty::Binder<I, FnSig<I>> {
        self.map_bound(|sig_tys| FnSig {
            inputs_and_output: sig_tys.inputs_and_output,
            c_variadic: hdr.c_variadic,
            safety: hdr.safety,
            abi: hdr.abi,
        })
    }

    #[inline]
    pub fn inputs(self) -> ty::Binder<I, I::FnInputTys> {
        self.map_bound(|sig_tys| sig_tys.inputs())
    }

    #[inline]
    #[track_caller]
    pub fn input(self, index: usize) -> ty::Binder<I, I::Ty> {
        self.map_bound(|sig_tys| sig_tys.inputs().get(index).unwrap())
    }

    pub fn inputs_and_output(self) -> ty::Binder<I, I::Tys> {
        self.map_bound(|sig_tys| sig_tys.inputs_and_output)
    }

    #[inline]
    pub fn output(self) -> ty::Binder<I, I::Ty> {
        self.map_bound(|sig_tys| sig_tys.output())
    }
}

#[derive_where(Clone, Copy, Debug, PartialEq, Eq, Hash; I: Interner)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
pub struct FnHeader<I: Interner> {
    pub c_variadic: bool,
    pub safety: I::Safety,
    pub abi: I::Abi,
}