1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
use std::ops::ControlFlow;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_infer::traits::ObligationCauseCode;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor};
use rustc_span::symbol::kw;
use rustc_span::Span;
use rustc_trait_selection::traits;
use crate::FnCtxt;
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub(crate) fn adjust_fulfillment_error_for_expr_obligation(
&self,
error: &mut traits::FulfillmentError<'tcx>,
) -> bool {
let ObligationCauseCode::WhereClauseInExpr(def_id, _, hir_id, idx) =
*error.obligation.cause.code().peel_derives()
else {
return false;
};
let Some(uninstantiated_pred) = self
.tcx
.predicates_of(def_id)
.instantiate_identity(self.tcx)
.predicates
.into_iter()
.nth(idx)
else {
return false;
};
let generics = self.tcx.generics_of(def_id);
let (predicate_args, predicate_self_type_to_point_at) =
match uninstantiated_pred.kind().skip_binder() {
ty::ClauseKind::Trait(pred) => {
(pred.trait_ref.args.to_vec(), Some(pred.self_ty().into()))
}
ty::ClauseKind::Projection(pred) => (pred.projection_term.args.to_vec(), None),
ty::ClauseKind::ConstArgHasType(arg, ty) => (vec![ty.into(), arg.into()], None),
ty::ClauseKind::ConstEvaluatable(e) => (vec![e.into()], None),
_ => return false,
};
let find_param_matching = |matches: &dyn Fn(ty::ParamTerm) -> bool| {
predicate_args.iter().find_map(|arg| {
arg.walk().find_map(|arg| {
if let ty::GenericArgKind::Type(ty) = arg.unpack()
&& let ty::Param(param_ty) = *ty.kind()
&& matches(ty::ParamTerm::Ty(param_ty))
{
Some(arg)
} else if let ty::GenericArgKind::Const(ct) = arg.unpack()
&& let ty::ConstKind::Param(param_ct) = ct.kind()
&& matches(ty::ParamTerm::Const(param_ct))
{
Some(arg)
} else {
None
}
})
})
};
// Prefer generics that are local to the fn item, since these are likely
// to be the cause of the unsatisfied predicate.
let mut param_to_point_at = find_param_matching(&|param_term| {
self.tcx.parent(generics.param_at(param_term.index(), self.tcx).def_id) == def_id
});
// Fall back to generic that isn't local to the fn item. This will come
// from a trait or impl, for example.
let mut fallback_param_to_point_at = find_param_matching(&|param_term| {
self.tcx.parent(generics.param_at(param_term.index(), self.tcx).def_id) != def_id
&& !matches!(param_term, ty::ParamTerm::Ty(ty) if ty.name == kw::SelfUpper)
});
// Finally, the `Self` parameter is possibly the reason that the predicate
// is unsatisfied. This is less likely to be true for methods, because
// method probe means that we already kinda check that the predicates due
// to the `Self` type are true.
let mut self_param_to_point_at = find_param_matching(
&|param_term| matches!(param_term, ty::ParamTerm::Ty(ty) if ty.name == kw::SelfUpper),
);
// Finally, for ambiguity-related errors, we actually want to look
// for a parameter that is the source of the inference type left
// over in this predicate.
if let traits::FulfillmentErrorCode::Ambiguity { .. } = error.code {
fallback_param_to_point_at = None;
self_param_to_point_at = None;
param_to_point_at =
self.find_ambiguous_parameter_in(def_id, error.root_obligation.predicate);
}
let (expr, qpath) = match self.tcx.hir_node(hir_id) {
hir::Node::Expr(expr) => {
if self.closure_span_overlaps_error(error, expr.span) {
return false;
}
let qpath =
if let hir::ExprKind::Path(qpath) = expr.kind { Some(qpath) } else { None };
(Some(&expr.kind), qpath)
}
hir::Node::Ty(hir::Ty { kind: hir::TyKind::Path(qpath), .. }) => (None, Some(*qpath)),
_ => return false,
};
if let Some(qpath) = qpath {
// Prefer pointing at the turbofished arg that corresponds to the
// self type of the failing predicate over anything else.
if let Some(param) = predicate_self_type_to_point_at
&& self.point_at_path_if_possible(error, def_id, param, &qpath)
{
return true;
}
if let hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Call(callee, args),
hir_id: call_hir_id,
span: call_span,
..
}) = self.tcx.parent_hir_node(hir_id)
&& callee.hir_id == hir_id
{
if self.closure_span_overlaps_error(error, *call_span) {
return false;
}
for param in [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
.into_iter()
.flatten()
{
if self.blame_specific_arg_if_possible(
error,
def_id,
param,
*call_hir_id,
callee.span,
None,
args,
) {
return true;
}
}
}
for param in [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
.into_iter()
.flatten()
{
if self.point_at_path_if_possible(error, def_id, param, &qpath) {
return true;
}
}
}
match expr {
Some(hir::ExprKind::MethodCall(segment, receiver, args, ..)) => {
if let Some(param) = predicate_self_type_to_point_at
&& self.point_at_generic_if_possible(error, def_id, param, segment)
{
// HACK: This is not correct, since `predicate_self_type_to_point_at` might
// not actually correspond to the receiver of the method call. But we
// re-adjust the cause code here in order to prefer pointing at one of
// the method's turbofish segments but still use `FunctionArgumentObligation`
// elsewhere. Hopefully this doesn't break something.
error.obligation.cause.map_code(|parent_code| {
ObligationCauseCode::FunctionArg {
arg_hir_id: receiver.hir_id,
call_hir_id: hir_id,
parent_code,
}
});
return true;
}
for param in [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
.into_iter()
.flatten()
{
if self.blame_specific_arg_if_possible(
error,
def_id,
param,
hir_id,
segment.ident.span,
Some(receiver),
args,
) {
return true;
}
}
if let Some(param_to_point_at) = param_to_point_at
&& self.point_at_generic_if_possible(error, def_id, param_to_point_at, segment)
{
return true;
}
// Handle `Self` param specifically, since it's separated in
// the method call representation
if self_param_to_point_at.is_some() {
error.obligation.cause.span = receiver
.span
.find_ancestor_in_same_ctxt(error.obligation.cause.span)
.unwrap_or(receiver.span);
return true;
}
}
Some(hir::ExprKind::Struct(qpath, fields, ..)) => {
if let Res::Def(DefKind::Struct | DefKind::Variant, variant_def_id) =
self.typeck_results.borrow().qpath_res(qpath, hir_id)
{
for param in
[param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
.into_iter()
.flatten()
{
let refined_expr =
self.point_at_field_if_possible(def_id, param, variant_def_id, fields);
match refined_expr {
None => {}
Some((refined_expr, _)) => {
error.obligation.cause.span = refined_expr
.span
.find_ancestor_in_same_ctxt(error.obligation.cause.span)
.unwrap_or(refined_expr.span);
return true;
}
}
}
}
for param in [
predicate_self_type_to_point_at,
param_to_point_at,
fallback_param_to_point_at,
self_param_to_point_at,
]
.into_iter()
.flatten()
{
if self.point_at_path_if_possible(error, def_id, param, qpath) {
return true;
}
}
}
_ => {}
}
false
}
fn point_at_path_if_possible(
&self,
error: &mut traits::FulfillmentError<'tcx>,
def_id: DefId,
param: ty::GenericArg<'tcx>,
qpath: &hir::QPath<'tcx>,
) -> bool {
match qpath {
hir::QPath::Resolved(self_ty, path) => {
for segment in path.segments.iter().rev() {
if let Res::Def(kind, def_id) = segment.res
&& !matches!(kind, DefKind::Mod | DefKind::ForeignMod)
&& self.point_at_generic_if_possible(error, def_id, param, segment)
{
return true;
}
}
// Handle `Self` param specifically, since it's separated in
// the path representation
if let Some(self_ty) = self_ty
&& let ty::GenericArgKind::Type(ty) = param.unpack()
&& ty == self.tcx.types.self_param
{
error.obligation.cause.span = self_ty
.span
.find_ancestor_in_same_ctxt(error.obligation.cause.span)
.unwrap_or(self_ty.span);
return true;
}
}
hir::QPath::TypeRelative(self_ty, segment) => {
if self.point_at_generic_if_possible(error, def_id, param, segment) {
return true;
}
// Handle `Self` param specifically, since it's separated in
// the path representation
if let ty::GenericArgKind::Type(ty) = param.unpack()
&& ty == self.tcx.types.self_param
{
error.obligation.cause.span = self_ty
.span
.find_ancestor_in_same_ctxt(error.obligation.cause.span)
.unwrap_or(self_ty.span);
return true;
}
}
_ => {}
}
false
}
fn point_at_generic_if_possible(
&self,
error: &mut traits::FulfillmentError<'tcx>,
def_id: DefId,
param_to_point_at: ty::GenericArg<'tcx>,
segment: &hir::PathSegment<'tcx>,
) -> bool {
let own_args = self
.tcx
.generics_of(def_id)
.own_args(ty::GenericArgs::identity_for_item(self.tcx, def_id));
let Some((index, _)) =
own_args.iter().enumerate().find(|(_, arg)| **arg == param_to_point_at)
else {
return false;
};
let Some(arg) = segment.args().args.get(index) else {
return false;
};
error.obligation.cause.span = arg
.span()
.find_ancestor_in_same_ctxt(error.obligation.cause.span)
.unwrap_or(arg.span());
true
}
fn find_ambiguous_parameter_in<T: TypeVisitable<TyCtxt<'tcx>>>(
&self,
item_def_id: DefId,
t: T,
) -> Option<ty::GenericArg<'tcx>> {
struct FindAmbiguousParameter<'a, 'tcx>(&'a FnCtxt<'a, 'tcx>, DefId);
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for FindAmbiguousParameter<'_, 'tcx> {
type Result = ControlFlow<ty::GenericArg<'tcx>>;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
if let ty::Infer(ty::TyVar(vid)) = *ty.kind()
&& let Some(def_id) = self.0.type_var_origin(vid).param_def_id
&& let generics = self.0.tcx.generics_of(self.1)
&& let Some(index) = generics.param_def_id_to_index(self.0.tcx, def_id)
&& let Some(arg) =
ty::GenericArgs::identity_for_item(self.0.tcx, self.1).get(index as usize)
{
ControlFlow::Break(*arg)
} else {
ty.super_visit_with(self)
}
}
}
t.visit_with(&mut FindAmbiguousParameter(self, item_def_id)).break_value()
}
fn closure_span_overlaps_error(
&self,
error: &traits::FulfillmentError<'tcx>,
span: Span,
) -> bool {
if let traits::FulfillmentErrorCode::Select(traits::SelectionError::SignatureMismatch(
box traits::SignatureMismatchData { expected_trait_ref, .. },
)) = error.code
&& let ty::Closure(def_id, _) | ty::Coroutine(def_id, ..) =
expected_trait_ref.self_ty().kind()
&& span.overlaps(self.tcx.def_span(*def_id))
{
true
} else {
false
}
}
fn point_at_field_if_possible(
&self,
def_id: DefId,
param_to_point_at: ty::GenericArg<'tcx>,
variant_def_id: DefId,
expr_fields: &[hir::ExprField<'tcx>],
) -> Option<(&'tcx hir::Expr<'tcx>, Ty<'tcx>)> {
let def = self.tcx.adt_def(def_id);
let identity_args = ty::GenericArgs::identity_for_item(self.tcx, def_id);
let fields_referencing_param: Vec<_> = def
.variant_with_id(variant_def_id)
.fields
.iter()
.filter(|field| {
let field_ty = field.ty(self.tcx, identity_args);
find_param_in_ty(field_ty.into(), param_to_point_at)
})
.collect();
if let [field] = fields_referencing_param.as_slice() {
for expr_field in expr_fields {
// Look for the ExprField that matches the field, using the
// same rules that check_expr_struct uses for macro hygiene.
if self.tcx.adjust_ident(expr_field.ident, variant_def_id) == field.ident(self.tcx)
{
return Some((
expr_field.expr,
self.tcx.type_of(field.did).instantiate_identity(),
));
}
}
}
None
}
/// - `blame_specific_*` means that the function will recursively traverse the expression,
/// looking for the most-specific-possible span to blame.
///
/// - `point_at_*` means that the function will only go "one level", pointing at the specific
/// expression mentioned.
///
/// `blame_specific_arg_if_possible` will find the most-specific expression anywhere inside
/// the provided function call expression, and mark it as responsible for the fulfillment
/// error.
fn blame_specific_arg_if_possible(
&self,
error: &mut traits::FulfillmentError<'tcx>,
def_id: DefId,
param_to_point_at: ty::GenericArg<'tcx>,
call_hir_id: hir::HirId,
callee_span: Span,
receiver: Option<&'tcx hir::Expr<'tcx>>,
args: &'tcx [hir::Expr<'tcx>],
) -> bool {
let ty = self.tcx.type_of(def_id).instantiate_identity();
if !ty.is_fn() {
return false;
}
let sig = ty.fn_sig(self.tcx).skip_binder();
let args_referencing_param: Vec<_> = sig
.inputs()
.iter()
.enumerate()
.filter(|(_, ty)| find_param_in_ty((**ty).into(), param_to_point_at))
.collect();
// If there's one field that references the given generic, great!
if let [(idx, _)] = args_referencing_param.as_slice()
&& let Some(arg) = receiver.map_or(args.get(*idx), |rcvr| {
if *idx == 0 { Some(rcvr) } else { args.get(*idx - 1) }
})
{
error.obligation.cause.span = arg
.span
.find_ancestor_in_same_ctxt(error.obligation.cause.span)
.unwrap_or(arg.span);
if let hir::Node::Expr(arg_expr) = self.tcx.hir_node(arg.hir_id) {
// This is more specific than pointing at the entire argument.
self.blame_specific_expr_if_possible(error, arg_expr)
}
error.obligation.cause.map_code(|parent_code| ObligationCauseCode::FunctionArg {
arg_hir_id: arg.hir_id,
call_hir_id,
parent_code,
});
return true;
} else if args_referencing_param.len() > 0 {
// If more than one argument applies, then point to the callee span at least...
// We have chance to fix this up further in `point_at_generics_if_possible`
error.obligation.cause.span = callee_span;
}
false
}
/**
* Recursively searches for the most-specific blameable expression.
* For example, if you have a chain of constraints like:
* - want `Vec<i32>: Copy`
* - because `Option<Vec<i32>>: Copy` needs `Vec<i32>: Copy` because `impl <T: Copy> Copy for Option<T>`
* - because `(Option<Vec<i32>, bool)` needs `Option<Vec<i32>>: Copy` because `impl <A: Copy, B: Copy> Copy for (A, B)`
* then if you pass in `(Some(vec![1, 2, 3]), false)`, this helper `point_at_specific_expr_if_possible`
* will find the expression `vec![1, 2, 3]` as the "most blameable" reason for this missing constraint.
*
* This function only updates the error span.
*/
pub(crate) fn blame_specific_expr_if_possible(
&self,
error: &mut traits::FulfillmentError<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) {
// Whether it succeeded or failed, it likely made some amount of progress.
// In the very worst case, it's just the same `expr` we originally passed in.
let expr = match self.blame_specific_expr_if_possible_for_obligation_cause_code(
error.obligation.cause.code(),
expr,
) {
Ok(expr) => expr,
Err(expr) => expr,
};
// Either way, use this expression to update the error span.
// If it doesn't overlap the existing span at all, use the original span.
// FIXME: It would possibly be better to do this more continuously, at each level...
error.obligation.cause.span = expr
.span
.find_ancestor_in_same_ctxt(error.obligation.cause.span)
.unwrap_or(error.obligation.cause.span);
}
fn blame_specific_expr_if_possible_for_obligation_cause_code(
&self,
obligation_cause_code: &traits::ObligationCauseCode<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Result<&'tcx hir::Expr<'tcx>, &'tcx hir::Expr<'tcx>> {
match obligation_cause_code {
traits::ObligationCauseCode::WhereClauseInExpr(_, _, _, _) => {
// This is the "root"; we assume that the `expr` is already pointing here.
// Therefore, we return `Ok` so that this `expr` can be refined further.
Ok(expr)
}
traits::ObligationCauseCode::ImplDerived(impl_derived) => self
.blame_specific_expr_if_possible_for_derived_predicate_obligation(
impl_derived,
expr,
),
_ => {
// We don't recognize this kind of constraint, so we cannot refine the expression
// any further.
Err(expr)
}
}
}
/// We want to achieve the error span in the following example:
///
/// ```ignore (just for demonstration)
/// struct Burrito<Filling> {
/// filling: Filling,
/// }
/// impl <Filling: Delicious> Delicious for Burrito<Filling> {}
/// fn eat_delicious_food<Food: Delicious>(_food: Food) {}
///
/// fn will_type_error() {
/// eat_delicious_food(Burrito { filling: Kale });
/// } // ^--- The trait bound `Kale: Delicious`
/// // is not satisfied
/// ```
///
/// Without calling this function, the error span will cover the entire argument expression.
///
/// Before we do any of this logic, we recursively call `point_at_specific_expr_if_possible` on the parent
/// obligation. Hence we refine the `expr` "outwards-in" and bail at the first kind of expression/impl we don't recognize.
///
/// This function returns a `Result<&Expr, &Expr>` - either way, it returns the `Expr` whose span should be
/// reported as an error. If it is `Ok`, then it means it refined successful. If it is `Err`, then it may be
/// only a partial success - but it cannot be refined even further.
fn blame_specific_expr_if_possible_for_derived_predicate_obligation(
&self,
obligation: &traits::ImplDerivedCause<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
) -> Result<&'tcx hir::Expr<'tcx>, &'tcx hir::Expr<'tcx>> {
// First, we attempt to refine the `expr` for our span using the parent obligation.
// If this cannot be done, then we are already stuck, so we stop early (hence the use
// of the `?` try operator here).
let expr = self.blame_specific_expr_if_possible_for_obligation_cause_code(
&*obligation.derived.parent_code,
expr,
)?;
// This is the "trait" (meaning, the predicate "proved" by this `impl`) which provides the `Self` type we care about.
// For the purposes of this function, we hope that it is a `struct` type, and that our current `expr` is a literal of
// that struct type.
let impl_trait_self_ref = if self.tcx.is_trait_alias(obligation.impl_or_alias_def_id) {
ty::TraitRef::new_from_args(
self.tcx,
obligation.impl_or_alias_def_id,
ty::GenericArgs::identity_for_item(self.tcx, obligation.impl_or_alias_def_id),
)
} else {
self.tcx
.impl_trait_ref(obligation.impl_or_alias_def_id)
.map(|impl_def| impl_def.skip_binder())
// It is possible that this is absent. In this case, we make no progress.
.ok_or(expr)?
};
// We only really care about the `Self` type itself, which we extract from the ref.
let impl_self_ty: Ty<'tcx> = impl_trait_self_ref.self_ty();
let impl_predicates: ty::GenericPredicates<'tcx> =
self.tcx.predicates_of(obligation.impl_or_alias_def_id);
let Some(impl_predicate_index) = obligation.impl_def_predicate_index else {
// We don't have the index, so we can only guess.
return Err(expr);
};
if impl_predicate_index >= impl_predicates.predicates.len() {
// This shouldn't happen, but since this is only a diagnostic improvement, avoid breaking things.
return Err(expr);
}
match impl_predicates.predicates[impl_predicate_index].0.kind().skip_binder() {
ty::ClauseKind::Trait(broken_trait) => {
// ...
self.blame_specific_part_of_expr_corresponding_to_generic_param(
broken_trait.trait_ref.self_ty().into(),
expr,
impl_self_ty.into(),
)
}
_ => Err(expr),
}
}
/// Drills into `expr` to arrive at the equivalent location of `find_generic_param` in `in_ty`.
/// For example, given
/// - expr: `(Some(vec![1, 2, 3]), false)`
/// - param: `T`
/// - in_ty: `(Option<Vec<T>, bool)`
/// we would drill until we arrive at `vec![1, 2, 3]`.
///
/// If successful, we return `Ok(refined_expr)`. If unsuccessful, we return `Err(partially_refined_expr`),
/// which will go as far as possible. For example, given `(foo(), false)` instead, we would drill to
/// `foo()` and then return `Err("foo()")`.
///
/// This means that you can (and should) use the `?` try operator to chain multiple calls to this
/// function with different types, since you can only continue drilling the second time if you
/// succeeded the first time.
fn blame_specific_part_of_expr_corresponding_to_generic_param(
&self,
param: ty::GenericArg<'tcx>,
expr: &'tcx hir::Expr<'tcx>,
in_ty: ty::GenericArg<'tcx>,
) -> Result<&'tcx hir::Expr<'tcx>, &'tcx hir::Expr<'tcx>> {
if param == in_ty {
// The types match exactly, so we have drilled as far as we can.
return Ok(expr);
}
let ty::GenericArgKind::Type(in_ty) = in_ty.unpack() else {
return Err(expr);
};
if let (
hir::ExprKind::AddrOf(_borrow_kind, _borrow_mutability, borrowed_expr),
ty::Ref(_ty_region, ty_ref_type, _ty_mutability),
) = (&expr.kind, in_ty.kind())
{
// We can "drill into" the borrowed expression.
return self.blame_specific_part_of_expr_corresponding_to_generic_param(
param,
borrowed_expr,
(*ty_ref_type).into(),
);
}
if let (hir::ExprKind::Tup(expr_elements), ty::Tuple(in_ty_elements)) =
(&expr.kind, in_ty.kind())
{
if in_ty_elements.len() != expr_elements.len() {
return Err(expr);
}
// Find out which of `in_ty_elements` refer to `param`.
// FIXME: It may be better to take the first if there are multiple,
// just so that the error points to a smaller expression.
let Some((drill_expr, drill_ty)) =
is_iterator_singleton(expr_elements.iter().zip(in_ty_elements.iter()).filter(
|(_expr_elem, in_ty_elem)| find_param_in_ty((*in_ty_elem).into(), param),
))
else {
// The param is not mentioned, or it is mentioned in multiple indexes.
return Err(expr);
};
return self.blame_specific_part_of_expr_corresponding_to_generic_param(
param,
drill_expr,
drill_ty.into(),
);
}
if let (
hir::ExprKind::Struct(expr_struct_path, expr_struct_fields, _expr_struct_rest),
ty::Adt(in_ty_adt, in_ty_adt_generic_args),
) = (&expr.kind, in_ty.kind())
{
// First, confirm that this struct is the same one as in the types, and if so,
// find the right variant.
let Res::Def(expr_struct_def_kind, expr_struct_def_id) =
self.typeck_results.borrow().qpath_res(expr_struct_path, expr.hir_id)
else {
return Err(expr);
};
let variant_def_id = match expr_struct_def_kind {
DefKind::Struct => {
if in_ty_adt.did() != expr_struct_def_id {
// FIXME: Deal with type aliases?
return Err(expr);
}
expr_struct_def_id
}
DefKind::Variant => {
// If this is a variant, its parent is the type definition.
if in_ty_adt.did() != self.tcx.parent(expr_struct_def_id) {
// FIXME: Deal with type aliases?
return Err(expr);
}
expr_struct_def_id
}
_ => {
return Err(expr);
}
};
// We need to know which of the generic parameters mentions our target param.
// We expect that at least one of them does, since it is expected to be mentioned.
let Some((drill_generic_index, generic_argument_type)) = is_iterator_singleton(
in_ty_adt_generic_args
.iter()
.enumerate()
.filter(|(_index, in_ty_generic)| find_param_in_ty(*in_ty_generic, param)),
) else {
return Err(expr);
};
let struct_generic_parameters: &ty::Generics = self.tcx.generics_of(in_ty_adt.did());
if drill_generic_index >= struct_generic_parameters.own_params.len() {
return Err(expr);
}
let param_to_point_at_in_struct = self.tcx.mk_param_from_def(
struct_generic_parameters.param_at(drill_generic_index, self.tcx),
);
// We make 3 steps:
// Suppose we have a type like
// ```ignore (just for demonstration)
// struct ExampleStruct<T> {
// enabled: bool,
// item: Option<(usize, T, bool)>,
// }
//
// f(ExampleStruct {
// enabled: false,
// item: Some((0, Box::new(String::new()), 1) }, true)),
// });
// ```
// Here, `f` is passed a `ExampleStruct<Box<String>>`, but it wants
// for `String: Copy`, which isn't true here.
//
// (1) First, we drill into `.item` and highlight that expression
// (2) Then we use the template type `Option<(usize, T, bool)>` to
// drill into the `T`, arriving at a `Box<String>` expression.
// (3) Then we keep going, drilling into this expression using our
// outer contextual information.
// (1) Find the (unique) field which mentions the type in our constraint:
let (field_expr, field_type) = self
.point_at_field_if_possible(
in_ty_adt.did(),
param_to_point_at_in_struct,
variant_def_id,
expr_struct_fields,
)
.ok_or(expr)?;
// (2) Continue drilling into the struct, ignoring the struct's
// generic argument types.
let expr = self.blame_specific_part_of_expr_corresponding_to_generic_param(
param_to_point_at_in_struct,
field_expr,
field_type.into(),
)?;
// (3) Continue drilling into the expression, having "passed
// through" the struct entirely.
return self.blame_specific_part_of_expr_corresponding_to_generic_param(
param,
expr,
generic_argument_type,
);
}
if let (
hir::ExprKind::Call(expr_callee, expr_args),
ty::Adt(in_ty_adt, in_ty_adt_generic_args),
) = (&expr.kind, in_ty.kind())
{
let hir::ExprKind::Path(expr_callee_path) = &expr_callee.kind else {
// FIXME: This case overlaps with another one worth handling,
// which should happen above since it applies to non-ADTs:
// we can drill down into regular generic functions.
return Err(expr);
};
// This is (possibly) a constructor call, like `Some(...)` or `MyStruct(a, b, c)`.
let Res::Def(expr_struct_def_kind, expr_ctor_def_id) =
self.typeck_results.borrow().qpath_res(expr_callee_path, expr_callee.hir_id)
else {
return Err(expr);
};
let variant_def_id = match expr_struct_def_kind {
DefKind::Ctor(hir::def::CtorOf::Struct, hir::def::CtorKind::Fn) => {
if in_ty_adt.did() != self.tcx.parent(expr_ctor_def_id) {
// FIXME: Deal with type aliases?
return Err(expr);
}
self.tcx.parent(expr_ctor_def_id)
}
DefKind::Ctor(hir::def::CtorOf::Variant, hir::def::CtorKind::Fn) => {
// For a typical enum like
// `enum Blah<T> { Variant(T) }`
// we get the following resolutions:
// - expr_ctor_def_id ::: DefId(0:29 ~ source_file[b442]::Blah::Variant::{constructor#0})
// - self.tcx.parent(expr_ctor_def_id) ::: DefId(0:28 ~ source_file[b442]::Blah::Variant)
// - self.tcx.parent(self.tcx.parent(expr_ctor_def_id)) ::: DefId(0:26 ~ source_file[b442]::Blah)
// Therefore, we need to go up once to obtain the variant and up twice to obtain the type.
// Note that this pattern still holds even when we `use` a variant or `use` an enum type to rename it, or chain `use` expressions
// together; this resolution is handled automatically by `qpath_res`.
// FIXME: Deal with type aliases?
if in_ty_adt.did() == self.tcx.parent(self.tcx.parent(expr_ctor_def_id)) {
// The constructor definition refers to the "constructor" of the variant:
// For example, `Some(5)` triggers this case.
self.tcx.parent(expr_ctor_def_id)
} else {
// FIXME: Deal with type aliases?
return Err(expr);
}
}
_ => {
return Err(expr);
}
};
// We need to know which of the generic parameters mentions our target param.
// We expect that at least one of them does, since it is expected to be mentioned.
let Some((drill_generic_index, generic_argument_type)) = is_iterator_singleton(
in_ty_adt_generic_args
.iter()
.enumerate()
.filter(|(_index, in_ty_generic)| find_param_in_ty(*in_ty_generic, param)),
) else {
return Err(expr);
};
let struct_generic_parameters: &ty::Generics = self.tcx.generics_of(in_ty_adt.did());
if drill_generic_index >= struct_generic_parameters.own_params.len() {
return Err(expr);
}
let param_to_point_at_in_struct = self.tcx.mk_param_from_def(
struct_generic_parameters.param_at(drill_generic_index, self.tcx),
);
// We make 3 steps:
// Suppose we have a type like
// ```ignore (just for demonstration)
// struct ExampleStruct<T> {
// enabled: bool,
// item: Option<(usize, T, bool)>,
// }
//
// f(ExampleStruct {
// enabled: false,
// item: Some((0, Box::new(String::new()), 1) }, true)),
// });
// ```
// Here, `f` is passed a `ExampleStruct<Box<String>>`, but it wants
// for `String: Copy`, which isn't true here.
//
// (1) First, we drill into `.item` and highlight that expression
// (2) Then we use the template type `Option<(usize, T, bool)>` to
// drill into the `T`, arriving at a `Box<String>` expression.
// (3) Then we keep going, drilling into this expression using our
// outer contextual information.
// (1) Find the (unique) field index which mentions the type in our constraint:
let Some((field_index, field_type)) = is_iterator_singleton(
in_ty_adt
.variant_with_id(variant_def_id)
.fields
.iter()
.map(|field| field.ty(self.tcx, *in_ty_adt_generic_args))
.enumerate()
.filter(|(_index, field_type)| find_param_in_ty((*field_type).into(), param)),
) else {
return Err(expr);
};
if field_index >= expr_args.len() {
return Err(expr);
}
// (2) Continue drilling into the struct, ignoring the struct's
// generic argument types.
let expr = self.blame_specific_part_of_expr_corresponding_to_generic_param(
param_to_point_at_in_struct,
&expr_args[field_index],
field_type.into(),
)?;
// (3) Continue drilling into the expression, having "passed
// through" the struct entirely.
return self.blame_specific_part_of_expr_corresponding_to_generic_param(
param,
expr,
generic_argument_type,
);
}
// At this point, none of the basic patterns matched.
// One major possibility which remains is that we have a function call.
// In this case, it's often possible to dive deeper into the call to find something to blame,
// but this is not always possible.
Err(expr)
}
}
/// Traverses the given ty (either a `ty::Ty` or a `ty::GenericArg`) and searches for references
/// to the given `param_to_point_at`. Returns `true` if it finds any use of the param.
fn find_param_in_ty<'tcx>(
ty: ty::GenericArg<'tcx>,
param_to_point_at: ty::GenericArg<'tcx>,
) -> bool {
let mut walk = ty.walk();
while let Some(arg) = walk.next() {
if arg == param_to_point_at {
return true;
}
if let ty::GenericArgKind::Type(ty) = arg.unpack()
&& let ty::Alias(ty::Projection | ty::Inherent, ..) = ty.kind()
{
// This logic may seem a bit strange, but typically when
// we have a projection type in a function signature, the
// argument that's being passed into that signature is
// not actually constraining that projection's args in
// a meaningful way. So we skip it, and see improvements
// in some UI tests.
walk.skip_current_subtree();
}
}
false
}
/// Returns `Some(iterator.next())` if it has exactly one item, and `None` otherwise.
fn is_iterator_singleton<T>(mut iterator: impl Iterator<Item = T>) -> Option<T> {
match (iterator.next(), iterator.next()) {
(_, Some(_)) => None,
(first, _) => first,
}
}