rustc_codegen_ssa/mir/
block.rs

1use std::cmp;
2
3use rustc_abi::{Align, BackendRepr, ExternAbi, HasDataLayout, Reg, Size, WrappingRange};
4use rustc_ast as ast;
5use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
6use rustc_data_structures::packed::Pu128;
7use rustc_hir::lang_items::LangItem;
8use rustc_lint_defs::builtin::TAIL_CALL_TRACK_CALLER;
9use rustc_middle::mir::{self, AssertKind, InlineAsmMacro, SwitchTargets, UnwindTerminateReason};
10use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf, ValidityRequirement};
11use rustc_middle::ty::print::{with_no_trimmed_paths, with_no_visible_paths};
12use rustc_middle::ty::{self, Instance, Ty};
13use rustc_middle::{bug, span_bug};
14use rustc_session::config::OptLevel;
15use rustc_span::Span;
16use rustc_span::source_map::Spanned;
17use rustc_target::callconv::{ArgAbi, CastTarget, FnAbi, PassMode};
18use tracing::{debug, info};
19
20use super::operand::OperandRef;
21use super::operand::OperandValue::{Immediate, Pair, Ref, ZeroSized};
22use super::place::{PlaceRef, PlaceValue};
23use super::{CachedLlbb, FunctionCx, LocalRef};
24use crate::base::{self, is_call_from_compiler_builtins_to_upstream_monomorphization};
25use crate::common::{self, IntPredicate};
26use crate::errors::CompilerBuiltinsCannotCall;
27use crate::traits::*;
28use crate::{MemFlags, meth};
29
30// Indicates if we are in the middle of merging a BB's successor into it. This
31// can happen when BB jumps directly to its successor and the successor has no
32// other predecessors.
33#[derive(Debug, PartialEq)]
34enum MergingSucc {
35    False,
36    True,
37}
38
39/// Indicates to the call terminator codegen whether a call
40/// is a normal call or an explicit tail call.
41#[derive(Debug, PartialEq)]
42enum CallKind {
43    Normal,
44    Tail,
45}
46
47/// Used by `FunctionCx::codegen_terminator` for emitting common patterns
48/// e.g., creating a basic block, calling a function, etc.
49struct TerminatorCodegenHelper<'tcx> {
50    bb: mir::BasicBlock,
51    terminator: &'tcx mir::Terminator<'tcx>,
52}
53
54impl<'a, 'tcx> TerminatorCodegenHelper<'tcx> {
55    /// Returns the appropriate `Funclet` for the current funclet, if on MSVC,
56    /// either already previously cached, or newly created, by `landing_pad_for`.
57    fn funclet<'b, Bx: BuilderMethods<'a, 'tcx>>(
58        &self,
59        fx: &'b mut FunctionCx<'a, 'tcx, Bx>,
60    ) -> Option<&'b Bx::Funclet> {
61        let cleanup_kinds = fx.cleanup_kinds.as_ref()?;
62        let funclet_bb = cleanup_kinds[self.bb].funclet_bb(self.bb)?;
63        // If `landing_pad_for` hasn't been called yet to create the `Funclet`,
64        // it has to be now. This may not seem necessary, as RPO should lead
65        // to all the unwind edges being visited (and so to `landing_pad_for`
66        // getting called for them), before building any of the blocks inside
67        // the funclet itself - however, if MIR contains edges that end up not
68        // being needed in the LLVM IR after monomorphization, the funclet may
69        // be unreachable, and we don't have yet a way to skip building it in
70        // such an eventuality (which may be a better solution than this).
71        if fx.funclets[funclet_bb].is_none() {
72            fx.landing_pad_for(funclet_bb);
73        }
74        Some(
75            fx.funclets[funclet_bb]
76                .as_ref()
77                .expect("landing_pad_for didn't also create funclets entry"),
78        )
79    }
80
81    /// Get a basic block (creating it if necessary), possibly with cleanup
82    /// stuff in it or next to it.
83    fn llbb_with_cleanup<Bx: BuilderMethods<'a, 'tcx>>(
84        &self,
85        fx: &mut FunctionCx<'a, 'tcx, Bx>,
86        target: mir::BasicBlock,
87    ) -> Bx::BasicBlock {
88        let (needs_landing_pad, is_cleanupret) = self.llbb_characteristics(fx, target);
89        let mut lltarget = fx.llbb(target);
90        if needs_landing_pad {
91            lltarget = fx.landing_pad_for(target);
92        }
93        if is_cleanupret {
94            // Cross-funclet jump - need a trampoline
95            assert!(base::wants_new_eh_instructions(fx.cx.tcx().sess));
96            debug!("llbb_with_cleanup: creating cleanup trampoline for {:?}", target);
97            let name = &format!("{:?}_cleanup_trampoline_{:?}", self.bb, target);
98            let trampoline_llbb = Bx::append_block(fx.cx, fx.llfn, name);
99            let mut trampoline_bx = Bx::build(fx.cx, trampoline_llbb);
100            trampoline_bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
101            trampoline_llbb
102        } else {
103            lltarget
104        }
105    }
106
107    fn llbb_characteristics<Bx: BuilderMethods<'a, 'tcx>>(
108        &self,
109        fx: &mut FunctionCx<'a, 'tcx, Bx>,
110        target: mir::BasicBlock,
111    ) -> (bool, bool) {
112        if let Some(ref cleanup_kinds) = fx.cleanup_kinds {
113            let funclet_bb = cleanup_kinds[self.bb].funclet_bb(self.bb);
114            let target_funclet = cleanup_kinds[target].funclet_bb(target);
115            let (needs_landing_pad, is_cleanupret) = match (funclet_bb, target_funclet) {
116                (None, None) => (false, false),
117                (None, Some(_)) => (true, false),
118                (Some(f), Some(t_f)) => (f != t_f, f != t_f),
119                (Some(_), None) => {
120                    let span = self.terminator.source_info.span;
121                    span_bug!(span, "{:?} - jump out of cleanup?", self.terminator);
122                }
123            };
124            (needs_landing_pad, is_cleanupret)
125        } else {
126            let needs_landing_pad = !fx.mir[self.bb].is_cleanup && fx.mir[target].is_cleanup;
127            let is_cleanupret = false;
128            (needs_landing_pad, is_cleanupret)
129        }
130    }
131
132    fn funclet_br<Bx: BuilderMethods<'a, 'tcx>>(
133        &self,
134        fx: &mut FunctionCx<'a, 'tcx, Bx>,
135        bx: &mut Bx,
136        target: mir::BasicBlock,
137        mergeable_succ: bool,
138    ) -> MergingSucc {
139        let (needs_landing_pad, is_cleanupret) = self.llbb_characteristics(fx, target);
140        if mergeable_succ && !needs_landing_pad && !is_cleanupret {
141            // We can merge the successor into this bb, so no need for a `br`.
142            MergingSucc::True
143        } else {
144            let mut lltarget = fx.llbb(target);
145            if needs_landing_pad {
146                lltarget = fx.landing_pad_for(target);
147            }
148            if is_cleanupret {
149                // micro-optimization: generate a `ret` rather than a jump
150                // to a trampoline.
151                bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
152            } else {
153                bx.br(lltarget);
154            }
155            MergingSucc::False
156        }
157    }
158
159    /// Call `fn_ptr` of `fn_abi` with the arguments `llargs`, the optional
160    /// return destination `destination` and the unwind action `unwind`.
161    fn do_call<Bx: BuilderMethods<'a, 'tcx>>(
162        &self,
163        fx: &mut FunctionCx<'a, 'tcx, Bx>,
164        bx: &mut Bx,
165        fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
166        fn_ptr: Bx::Value,
167        llargs: &[Bx::Value],
168        destination: Option<(ReturnDest<'tcx, Bx::Value>, mir::BasicBlock)>,
169        mut unwind: mir::UnwindAction,
170        lifetime_ends_after_call: &[(Bx::Value, Size)],
171        instance: Option<Instance<'tcx>>,
172        kind: CallKind,
173        mergeable_succ: bool,
174    ) -> MergingSucc {
175        let tcx = bx.tcx();
176        if let Some(instance) = instance
177            && is_call_from_compiler_builtins_to_upstream_monomorphization(tcx, instance)
178        {
179            if destination.is_some() {
180                let caller_def = fx.instance.def_id();
181                let e = CompilerBuiltinsCannotCall {
182                    span: tcx.def_span(caller_def),
183                    caller: with_no_trimmed_paths!(tcx.def_path_str(caller_def)),
184                    callee: with_no_trimmed_paths!(tcx.def_path_str(instance.def_id())),
185                };
186                tcx.dcx().emit_err(e);
187            } else {
188                info!(
189                    "compiler_builtins call to diverging function {:?} replaced with abort",
190                    instance.def_id()
191                );
192                bx.abort();
193                bx.unreachable();
194                return MergingSucc::False;
195            }
196        }
197
198        // If there is a cleanup block and the function we're calling can unwind, then
199        // do an invoke, otherwise do a call.
200        let fn_ty = bx.fn_decl_backend_type(fn_abi);
201
202        let fn_attrs = if bx.tcx().def_kind(fx.instance.def_id()).has_codegen_attrs() {
203            Some(bx.tcx().codegen_instance_attrs(fx.instance.def))
204        } else {
205            None
206        };
207        let fn_attrs = fn_attrs.as_deref();
208
209        if !fn_abi.can_unwind {
210            unwind = mir::UnwindAction::Unreachable;
211        }
212
213        let unwind_block = match unwind {
214            mir::UnwindAction::Cleanup(cleanup) => Some(self.llbb_with_cleanup(fx, cleanup)),
215            mir::UnwindAction::Continue => None,
216            mir::UnwindAction::Unreachable => None,
217            mir::UnwindAction::Terminate(reason) => {
218                if fx.mir[self.bb].is_cleanup && base::wants_new_eh_instructions(fx.cx.tcx().sess) {
219                    // MSVC SEH will abort automatically if an exception tries to
220                    // propagate out from cleanup.
221
222                    // FIXME(@mirkootter): For wasm, we currently do not support terminate during
223                    // cleanup, because this requires a few more changes: The current code
224                    // caches the `terminate_block` for each function; funclet based code - however -
225                    // requires a different terminate_block for each funclet
226                    // Until this is implemented, we just do not unwind inside cleanup blocks
227
228                    None
229                } else {
230                    Some(fx.terminate_block(reason))
231                }
232            }
233        };
234
235        if kind == CallKind::Tail {
236            bx.tail_call(fn_ty, fn_attrs, fn_abi, fn_ptr, llargs, self.funclet(fx), instance);
237            return MergingSucc::False;
238        }
239
240        if let Some(unwind_block) = unwind_block {
241            let ret_llbb = if let Some((_, target)) = destination {
242                fx.llbb(target)
243            } else {
244                fx.unreachable_block()
245            };
246            let invokeret = bx.invoke(
247                fn_ty,
248                fn_attrs,
249                Some(fn_abi),
250                fn_ptr,
251                llargs,
252                ret_llbb,
253                unwind_block,
254                self.funclet(fx),
255                instance,
256            );
257            if fx.mir[self.bb].is_cleanup {
258                bx.apply_attrs_to_cleanup_callsite(invokeret);
259            }
260
261            if let Some((ret_dest, target)) = destination {
262                bx.switch_to_block(fx.llbb(target));
263                fx.set_debug_loc(bx, self.terminator.source_info);
264                for &(tmp, size) in lifetime_ends_after_call {
265                    bx.lifetime_end(tmp, size);
266                }
267                fx.store_return(bx, ret_dest, &fn_abi.ret, invokeret);
268            }
269            MergingSucc::False
270        } else {
271            let llret =
272                bx.call(fn_ty, fn_attrs, Some(fn_abi), fn_ptr, llargs, self.funclet(fx), instance);
273            if fx.mir[self.bb].is_cleanup {
274                bx.apply_attrs_to_cleanup_callsite(llret);
275            }
276
277            if let Some((ret_dest, target)) = destination {
278                for &(tmp, size) in lifetime_ends_after_call {
279                    bx.lifetime_end(tmp, size);
280                }
281                fx.store_return(bx, ret_dest, &fn_abi.ret, llret);
282                self.funclet_br(fx, bx, target, mergeable_succ)
283            } else {
284                bx.unreachable();
285                MergingSucc::False
286            }
287        }
288    }
289
290    /// Generates inline assembly with optional `destination` and `unwind`.
291    fn do_inlineasm<Bx: BuilderMethods<'a, 'tcx>>(
292        &self,
293        fx: &mut FunctionCx<'a, 'tcx, Bx>,
294        bx: &mut Bx,
295        template: &[InlineAsmTemplatePiece],
296        operands: &[InlineAsmOperandRef<'tcx, Bx>],
297        options: InlineAsmOptions,
298        line_spans: &[Span],
299        destination: Option<mir::BasicBlock>,
300        unwind: mir::UnwindAction,
301        instance: Instance<'_>,
302        mergeable_succ: bool,
303    ) -> MergingSucc {
304        let unwind_target = match unwind {
305            mir::UnwindAction::Cleanup(cleanup) => Some(self.llbb_with_cleanup(fx, cleanup)),
306            mir::UnwindAction::Terminate(reason) => Some(fx.terminate_block(reason)),
307            mir::UnwindAction::Continue => None,
308            mir::UnwindAction::Unreachable => None,
309        };
310
311        if operands.iter().any(|x| matches!(x, InlineAsmOperandRef::Label { .. })) {
312            assert!(unwind_target.is_none());
313            let ret_llbb = if let Some(target) = destination {
314                fx.llbb(target)
315            } else {
316                fx.unreachable_block()
317            };
318
319            bx.codegen_inline_asm(
320                template,
321                operands,
322                options,
323                line_spans,
324                instance,
325                Some(ret_llbb),
326                None,
327            );
328            MergingSucc::False
329        } else if let Some(cleanup) = unwind_target {
330            let ret_llbb = if let Some(target) = destination {
331                fx.llbb(target)
332            } else {
333                fx.unreachable_block()
334            };
335
336            bx.codegen_inline_asm(
337                template,
338                operands,
339                options,
340                line_spans,
341                instance,
342                Some(ret_llbb),
343                Some((cleanup, self.funclet(fx))),
344            );
345            MergingSucc::False
346        } else {
347            bx.codegen_inline_asm(template, operands, options, line_spans, instance, None, None);
348
349            if let Some(target) = destination {
350                self.funclet_br(fx, bx, target, mergeable_succ)
351            } else {
352                bx.unreachable();
353                MergingSucc::False
354            }
355        }
356    }
357}
358
359/// Codegen implementations for some terminator variants.
360impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
361    /// Generates code for a `Resume` terminator.
362    fn codegen_resume_terminator(&mut self, helper: TerminatorCodegenHelper<'tcx>, bx: &mut Bx) {
363        if let Some(funclet) = helper.funclet(self) {
364            bx.cleanup_ret(funclet, None);
365        } else {
366            let slot = self.get_personality_slot(bx);
367            let exn0 = slot.project_field(bx, 0);
368            let exn0 = bx.load_operand(exn0).immediate();
369            let exn1 = slot.project_field(bx, 1);
370            let exn1 = bx.load_operand(exn1).immediate();
371            slot.storage_dead(bx);
372
373            bx.resume(exn0, exn1);
374        }
375    }
376
377    fn codegen_switchint_terminator(
378        &mut self,
379        helper: TerminatorCodegenHelper<'tcx>,
380        bx: &mut Bx,
381        discr: &mir::Operand<'tcx>,
382        targets: &SwitchTargets,
383    ) {
384        let discr = self.codegen_operand(bx, discr);
385        let discr_value = discr.immediate();
386        let switch_ty = discr.layout.ty;
387        // If our discriminant is a constant we can branch directly
388        if let Some(const_discr) = bx.const_to_opt_u128(discr_value, false) {
389            let target = targets.target_for_value(const_discr);
390            bx.br(helper.llbb_with_cleanup(self, target));
391            return;
392        };
393
394        let mut target_iter = targets.iter();
395        if target_iter.len() == 1 {
396            // If there are two targets (one conditional, one fallback), emit `br` instead of
397            // `switch`.
398            let (test_value, target) = target_iter.next().unwrap();
399            let otherwise = targets.otherwise();
400            let lltarget = helper.llbb_with_cleanup(self, target);
401            let llotherwise = helper.llbb_with_cleanup(self, otherwise);
402            let target_cold = self.cold_blocks[target];
403            let otherwise_cold = self.cold_blocks[otherwise];
404            // If `target_cold == otherwise_cold`, the branches have the same weight
405            // so there is no expectation. If they differ, the `target` branch is expected
406            // when the `otherwise` branch is cold.
407            let expect = if target_cold == otherwise_cold { None } else { Some(otherwise_cold) };
408            if switch_ty == bx.tcx().types.bool {
409                // Don't generate trivial icmps when switching on bool.
410                match test_value {
411                    0 => {
412                        let expect = expect.map(|e| !e);
413                        bx.cond_br_with_expect(discr_value, llotherwise, lltarget, expect);
414                    }
415                    1 => {
416                        bx.cond_br_with_expect(discr_value, lltarget, llotherwise, expect);
417                    }
418                    _ => bug!(),
419                }
420            } else {
421                let switch_llty = bx.immediate_backend_type(bx.layout_of(switch_ty));
422                let llval = bx.const_uint_big(switch_llty, test_value);
423                let cmp = bx.icmp(IntPredicate::IntEQ, discr_value, llval);
424                bx.cond_br_with_expect(cmp, lltarget, llotherwise, expect);
425            }
426        } else if target_iter.len() == 2
427            && self.mir[targets.otherwise()].is_empty_unreachable()
428            && targets.all_values().contains(&Pu128(0))
429            && targets.all_values().contains(&Pu128(1))
430        {
431            // This is the really common case for `bool`, `Option`, etc.
432            // By using `trunc nuw` we communicate that other values are
433            // impossible without needing `switch` or `assume`s.
434            let true_bb = targets.target_for_value(1);
435            let false_bb = targets.target_for_value(0);
436            let true_ll = helper.llbb_with_cleanup(self, true_bb);
437            let false_ll = helper.llbb_with_cleanup(self, false_bb);
438
439            let expected_cond_value = if self.cx.sess().opts.optimize == OptLevel::No {
440                None
441            } else {
442                match (self.cold_blocks[true_bb], self.cold_blocks[false_bb]) {
443                    // Same coldness, no expectation
444                    (true, true) | (false, false) => None,
445                    // Different coldness, expect the non-cold one
446                    (true, false) => Some(false),
447                    (false, true) => Some(true),
448                }
449            };
450
451            let bool_ty = bx.tcx().types.bool;
452            let cond = if switch_ty == bool_ty {
453                discr_value
454            } else {
455                let bool_llty = bx.immediate_backend_type(bx.layout_of(bool_ty));
456                bx.unchecked_utrunc(discr_value, bool_llty)
457            };
458            bx.cond_br_with_expect(cond, true_ll, false_ll, expected_cond_value);
459        } else if self.cx.sess().opts.optimize == OptLevel::No
460            && target_iter.len() == 2
461            && self.mir[targets.otherwise()].is_empty_unreachable()
462        {
463            // In unoptimized builds, if there are two normal targets and the `otherwise` target is
464            // an unreachable BB, emit `br` instead of `switch`. This leaves behind the unreachable
465            // BB, which will usually (but not always) be dead code.
466            //
467            // Why only in unoptimized builds?
468            // - In unoptimized builds LLVM uses FastISel which does not support switches, so it
469            //   must fall back to the slower SelectionDAG isel. Therefore, using `br` gives
470            //   significant compile time speedups for unoptimized builds.
471            // - In optimized builds the above doesn't hold, and using `br` sometimes results in
472            //   worse generated code because LLVM can no longer tell that the value being switched
473            //   on can only have two values, e.g. 0 and 1.
474            //
475            let (test_value1, target1) = target_iter.next().unwrap();
476            let (_test_value2, target2) = target_iter.next().unwrap();
477            let ll1 = helper.llbb_with_cleanup(self, target1);
478            let ll2 = helper.llbb_with_cleanup(self, target2);
479            let switch_llty = bx.immediate_backend_type(bx.layout_of(switch_ty));
480            let llval = bx.const_uint_big(switch_llty, test_value1);
481            let cmp = bx.icmp(IntPredicate::IntEQ, discr_value, llval);
482            bx.cond_br(cmp, ll1, ll2);
483        } else {
484            let otherwise = targets.otherwise();
485            let otherwise_cold = self.cold_blocks[otherwise];
486            let otherwise_unreachable = self.mir[otherwise].is_empty_unreachable();
487            let cold_count = targets.iter().filter(|(_, target)| self.cold_blocks[*target]).count();
488            let none_cold = cold_count == 0;
489            let all_cold = cold_count == targets.iter().len();
490            if (none_cold && (!otherwise_cold || otherwise_unreachable))
491                || (all_cold && (otherwise_cold || otherwise_unreachable))
492            {
493                // All targets have the same weight,
494                // or `otherwise` is unreachable and it's the only target with a different weight.
495                bx.switch(
496                    discr_value,
497                    helper.llbb_with_cleanup(self, targets.otherwise()),
498                    target_iter
499                        .map(|(value, target)| (value, helper.llbb_with_cleanup(self, target))),
500                );
501            } else {
502                // Targets have different weights
503                bx.switch_with_weights(
504                    discr_value,
505                    helper.llbb_with_cleanup(self, targets.otherwise()),
506                    otherwise_cold,
507                    target_iter.map(|(value, target)| {
508                        (value, helper.llbb_with_cleanup(self, target), self.cold_blocks[target])
509                    }),
510                );
511            }
512        }
513    }
514
515    fn codegen_return_terminator(&mut self, bx: &mut Bx) {
516        // Call `va_end` if this is the definition of a C-variadic function.
517        if self.fn_abi.c_variadic {
518            // The `VaList` "spoofed" argument is just after all the real arguments.
519            let va_list_arg_idx = self.fn_abi.args.len();
520            match self.locals[mir::Local::from_usize(1 + va_list_arg_idx)] {
521                LocalRef::Place(va_list) => {
522                    bx.va_end(va_list.val.llval);
523
524                    // Explicitly end the lifetime of the `va_list`, improves LLVM codegen.
525                    bx.lifetime_end(va_list.val.llval, va_list.layout.size);
526                }
527                _ => bug!("C-variadic function must have a `VaList` place"),
528            }
529        }
530        if self.fn_abi.ret.layout.is_uninhabited() {
531            // Functions with uninhabited return values are marked `noreturn`,
532            // so we should make sure that we never actually do.
533            // We play it safe by using a well-defined `abort`, but we could go for immediate UB
534            // if that turns out to be helpful.
535            bx.abort();
536            // `abort` does not terminate the block, so we still need to generate
537            // an `unreachable` terminator after it.
538            bx.unreachable();
539            return;
540        }
541        let llval = match &self.fn_abi.ret.mode {
542            PassMode::Ignore | PassMode::Indirect { .. } => {
543                bx.ret_void();
544                return;
545            }
546
547            PassMode::Direct(_) | PassMode::Pair(..) => {
548                let op = self.codegen_consume(bx, mir::Place::return_place().as_ref());
549                if let Ref(place_val) = op.val {
550                    bx.load_from_place(bx.backend_type(op.layout), place_val)
551                } else {
552                    op.immediate_or_packed_pair(bx)
553                }
554            }
555
556            PassMode::Cast { cast: cast_ty, pad_i32: _ } => {
557                let op = match self.locals[mir::RETURN_PLACE] {
558                    LocalRef::Operand(op) => op,
559                    LocalRef::PendingOperand => bug!("use of return before def"),
560                    LocalRef::Place(cg_place) => OperandRef {
561                        val: Ref(cg_place.val),
562                        layout: cg_place.layout,
563                        move_annotation: None,
564                    },
565                    LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
566                };
567                let llslot = match op.val {
568                    Immediate(_) | Pair(..) => {
569                        let scratch = PlaceRef::alloca(bx, self.fn_abi.ret.layout);
570                        op.val.store(bx, scratch);
571                        scratch.val.llval
572                    }
573                    Ref(place_val) => {
574                        assert_eq!(
575                            place_val.align, op.layout.align.abi,
576                            "return place is unaligned!"
577                        );
578                        place_val.llval
579                    }
580                    ZeroSized => bug!("ZST return value shouldn't be in PassMode::Cast"),
581                };
582                load_cast(bx, cast_ty, llslot, self.fn_abi.ret.layout.align.abi)
583            }
584        };
585        bx.ret(llval);
586    }
587
588    #[tracing::instrument(level = "trace", skip(self, helper, bx))]
589    fn codegen_drop_terminator(
590        &mut self,
591        helper: TerminatorCodegenHelper<'tcx>,
592        bx: &mut Bx,
593        source_info: &mir::SourceInfo,
594        location: mir::Place<'tcx>,
595        target: mir::BasicBlock,
596        unwind: mir::UnwindAction,
597        mergeable_succ: bool,
598    ) -> MergingSucc {
599        let ty = location.ty(self.mir, bx.tcx()).ty;
600        let ty = self.monomorphize(ty);
601        let drop_fn = Instance::resolve_drop_in_place(bx.tcx(), ty);
602
603        if let ty::InstanceKind::DropGlue(_, None) = drop_fn.def {
604            // we don't actually need to drop anything.
605            return helper.funclet_br(self, bx, target, mergeable_succ);
606        }
607
608        let place = self.codegen_place(bx, location.as_ref());
609        let (args1, args2);
610        let mut args = if let Some(llextra) = place.val.llextra {
611            args2 = [place.val.llval, llextra];
612            &args2[..]
613        } else {
614            args1 = [place.val.llval];
615            &args1[..]
616        };
617        let (maybe_null, drop_fn, fn_abi, drop_instance) = match ty.kind() {
618            // FIXME(eddyb) perhaps move some of this logic into
619            // `Instance::resolve_drop_in_place`?
620            ty::Dynamic(_, _) => {
621                // IN THIS ARM, WE HAVE:
622                // ty = *mut (dyn Trait)
623                // which is: exists<T> ( *mut T,    Vtable<T: Trait> )
624                //                       args[0]    args[1]
625                //
626                // args = ( Data, Vtable )
627                //                  |
628                //                  v
629                //                /-------\
630                //                | ...   |
631                //                \-------/
632                //
633                let virtual_drop = Instance {
634                    def: ty::InstanceKind::Virtual(drop_fn.def_id(), 0), // idx 0: the drop function
635                    args: drop_fn.args,
636                };
637                debug!("ty = {:?}", ty);
638                debug!("drop_fn = {:?}", drop_fn);
639                debug!("args = {:?}", args);
640                let fn_abi = bx.fn_abi_of_instance(virtual_drop, ty::List::empty());
641                let vtable = args[1];
642                // Truncate vtable off of args list
643                args = &args[..1];
644                (
645                    true,
646                    meth::VirtualIndex::from_index(ty::COMMON_VTABLE_ENTRIES_DROPINPLACE)
647                        .get_optional_fn(bx, vtable, ty, fn_abi),
648                    fn_abi,
649                    virtual_drop,
650                )
651            }
652            _ => (
653                false,
654                bx.get_fn_addr(drop_fn),
655                bx.fn_abi_of_instance(drop_fn, ty::List::empty()),
656                drop_fn,
657            ),
658        };
659
660        // We generate a null check for the drop_fn. This saves a bunch of relocations being
661        // generated for no-op drops.
662        if maybe_null {
663            let is_not_null = bx.append_sibling_block("is_not_null");
664            let llty = bx.fn_ptr_backend_type(fn_abi);
665            let null = bx.const_null(llty);
666            let non_null =
667                bx.icmp(base::bin_op_to_icmp_predicate(mir::BinOp::Ne, false), drop_fn, null);
668            bx.cond_br(non_null, is_not_null, helper.llbb_with_cleanup(self, target));
669            bx.switch_to_block(is_not_null);
670            self.set_debug_loc(bx, *source_info);
671        }
672
673        helper.do_call(
674            self,
675            bx,
676            fn_abi,
677            drop_fn,
678            args,
679            Some((ReturnDest::Nothing, target)),
680            unwind,
681            &[],
682            Some(drop_instance),
683            CallKind::Normal,
684            !maybe_null && mergeable_succ,
685        )
686    }
687
688    fn codegen_assert_terminator(
689        &mut self,
690        helper: TerminatorCodegenHelper<'tcx>,
691        bx: &mut Bx,
692        terminator: &mir::Terminator<'tcx>,
693        cond: &mir::Operand<'tcx>,
694        expected: bool,
695        msg: &mir::AssertMessage<'tcx>,
696        target: mir::BasicBlock,
697        unwind: mir::UnwindAction,
698        mergeable_succ: bool,
699    ) -> MergingSucc {
700        let span = terminator.source_info.span;
701        let cond = self.codegen_operand(bx, cond).immediate();
702        let mut const_cond = bx.const_to_opt_u128(cond, false).map(|c| c == 1);
703
704        // This case can currently arise only from functions marked
705        // with #[rustc_inherit_overflow_checks] and inlined from
706        // another crate (mostly core::num generic/#[inline] fns),
707        // while the current crate doesn't use overflow checks.
708        if !bx.sess().overflow_checks() && msg.is_optional_overflow_check() {
709            const_cond = Some(expected);
710        }
711
712        // Don't codegen the panic block if success if known.
713        if const_cond == Some(expected) {
714            return helper.funclet_br(self, bx, target, mergeable_succ);
715        }
716
717        // Because we're branching to a panic block (either a `#[cold]` one
718        // or an inlined abort), there's no need to `expect` it.
719
720        // Create the failure block and the conditional branch to it.
721        let lltarget = helper.llbb_with_cleanup(self, target);
722        let panic_block = bx.append_sibling_block("panic");
723        if expected {
724            bx.cond_br(cond, lltarget, panic_block);
725        } else {
726            bx.cond_br(cond, panic_block, lltarget);
727        }
728
729        // After this point, bx is the block for the call to panic.
730        bx.switch_to_block(panic_block);
731        self.set_debug_loc(bx, terminator.source_info);
732
733        // Get the location information.
734        let location = self.get_caller_location(bx, terminator.source_info).immediate();
735
736        // Put together the arguments to the panic entry point.
737        let (lang_item, args) = match msg {
738            AssertKind::BoundsCheck { len, index } => {
739                let len = self.codegen_operand(bx, len).immediate();
740                let index = self.codegen_operand(bx, index).immediate();
741                // It's `fn panic_bounds_check(index: usize, len: usize)`,
742                // and `#[track_caller]` adds an implicit third argument.
743                (LangItem::PanicBoundsCheck, vec![index, len, location])
744            }
745            AssertKind::MisalignedPointerDereference { required, found } => {
746                let required = self.codegen_operand(bx, required).immediate();
747                let found = self.codegen_operand(bx, found).immediate();
748                // It's `fn panic_misaligned_pointer_dereference(required: usize, found: usize)`,
749                // and `#[track_caller]` adds an implicit third argument.
750                (LangItem::PanicMisalignedPointerDereference, vec![required, found, location])
751            }
752            AssertKind::NullPointerDereference => {
753                // It's `fn panic_null_pointer_dereference()`,
754                // `#[track_caller]` adds an implicit argument.
755                (LangItem::PanicNullPointerDereference, vec![location])
756            }
757            AssertKind::InvalidEnumConstruction(source) => {
758                let source = self.codegen_operand(bx, source).immediate();
759                // It's `fn panic_invalid_enum_construction(source: u128)`,
760                // `#[track_caller]` adds an implicit argument.
761                (LangItem::PanicInvalidEnumConstruction, vec![source, location])
762            }
763            _ => {
764                // It's `pub fn panic_...()` and `#[track_caller]` adds an implicit argument.
765                (msg.panic_function(), vec![location])
766            }
767        };
768
769        let (fn_abi, llfn, instance) = common::build_langcall(bx, span, lang_item);
770
771        // Codegen the actual panic invoke/call.
772        let merging_succ = helper.do_call(
773            self,
774            bx,
775            fn_abi,
776            llfn,
777            &args,
778            None,
779            unwind,
780            &[],
781            Some(instance),
782            CallKind::Normal,
783            false,
784        );
785        assert_eq!(merging_succ, MergingSucc::False);
786        MergingSucc::False
787    }
788
789    fn codegen_terminate_terminator(
790        &mut self,
791        helper: TerminatorCodegenHelper<'tcx>,
792        bx: &mut Bx,
793        terminator: &mir::Terminator<'tcx>,
794        reason: UnwindTerminateReason,
795    ) {
796        let span = terminator.source_info.span;
797        self.set_debug_loc(bx, terminator.source_info);
798
799        // Obtain the panic entry point.
800        let (fn_abi, llfn, instance) = common::build_langcall(bx, span, reason.lang_item());
801
802        // Codegen the actual panic invoke/call.
803        let merging_succ = helper.do_call(
804            self,
805            bx,
806            fn_abi,
807            llfn,
808            &[],
809            None,
810            mir::UnwindAction::Unreachable,
811            &[],
812            Some(instance),
813            CallKind::Normal,
814            false,
815        );
816        assert_eq!(merging_succ, MergingSucc::False);
817    }
818
819    /// Returns `Some` if this is indeed a panic intrinsic and codegen is done.
820    fn codegen_panic_intrinsic(
821        &mut self,
822        helper: &TerminatorCodegenHelper<'tcx>,
823        bx: &mut Bx,
824        intrinsic: ty::IntrinsicDef,
825        instance: Instance<'tcx>,
826        source_info: mir::SourceInfo,
827        target: Option<mir::BasicBlock>,
828        unwind: mir::UnwindAction,
829        mergeable_succ: bool,
830    ) -> Option<MergingSucc> {
831        // Emit a panic or a no-op for `assert_*` intrinsics.
832        // These are intrinsics that compile to panics so that we can get a message
833        // which mentions the offending type, even from a const context.
834        let Some(requirement) = ValidityRequirement::from_intrinsic(intrinsic.name) else {
835            return None;
836        };
837
838        let ty = instance.args.type_at(0);
839
840        let is_valid = bx
841            .tcx()
842            .check_validity_requirement((requirement, bx.typing_env().as_query_input(ty)))
843            .expect("expect to have layout during codegen");
844
845        if is_valid {
846            // a NOP
847            let target = target.unwrap();
848            return Some(helper.funclet_br(self, bx, target, mergeable_succ));
849        }
850
851        let layout = bx.layout_of(ty);
852
853        let msg_str = with_no_visible_paths!({
854            with_no_trimmed_paths!({
855                if layout.is_uninhabited() {
856                    // Use this error even for the other intrinsics as it is more precise.
857                    format!("attempted to instantiate uninhabited type `{ty}`")
858                } else if requirement == ValidityRequirement::Zero {
859                    format!("attempted to zero-initialize type `{ty}`, which is invalid")
860                } else {
861                    format!("attempted to leave type `{ty}` uninitialized, which is invalid")
862                }
863            })
864        });
865        let msg = bx.const_str(&msg_str);
866
867        // Obtain the panic entry point.
868        let (fn_abi, llfn, instance) =
869            common::build_langcall(bx, source_info.span, LangItem::PanicNounwind);
870
871        // Codegen the actual panic invoke/call.
872        Some(helper.do_call(
873            self,
874            bx,
875            fn_abi,
876            llfn,
877            &[msg.0, msg.1],
878            target.as_ref().map(|bb| (ReturnDest::Nothing, *bb)),
879            unwind,
880            &[],
881            Some(instance),
882            CallKind::Normal,
883            mergeable_succ,
884        ))
885    }
886
887    fn codegen_call_terminator(
888        &mut self,
889        helper: TerminatorCodegenHelper<'tcx>,
890        bx: &mut Bx,
891        terminator: &mir::Terminator<'tcx>,
892        func: &mir::Operand<'tcx>,
893        args: &[Spanned<mir::Operand<'tcx>>],
894        destination: mir::Place<'tcx>,
895        target: Option<mir::BasicBlock>,
896        unwind: mir::UnwindAction,
897        fn_span: Span,
898        kind: CallKind,
899        mergeable_succ: bool,
900    ) -> MergingSucc {
901        let source_info = mir::SourceInfo { span: fn_span, ..terminator.source_info };
902
903        // Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar.
904        let callee = self.codegen_operand(bx, func);
905
906        let (instance, mut llfn) = match *callee.layout.ty.kind() {
907            ty::FnDef(def_id, generic_args) => {
908                let instance = ty::Instance::expect_resolve(
909                    bx.tcx(),
910                    bx.typing_env(),
911                    def_id,
912                    generic_args,
913                    fn_span,
914                );
915
916                match instance.def {
917                    // We don't need AsyncDropGlueCtorShim here because it is not `noop func`,
918                    // it is `func returning noop future`
919                    ty::InstanceKind::DropGlue(_, None) => {
920                        // Empty drop glue; a no-op.
921                        let target = target.unwrap();
922                        return helper.funclet_br(self, bx, target, mergeable_succ);
923                    }
924                    ty::InstanceKind::Intrinsic(def_id) => {
925                        let intrinsic = bx.tcx().intrinsic(def_id).unwrap();
926                        if let Some(merging_succ) = self.codegen_panic_intrinsic(
927                            &helper,
928                            bx,
929                            intrinsic,
930                            instance,
931                            source_info,
932                            target,
933                            unwind,
934                            mergeable_succ,
935                        ) {
936                            return merging_succ;
937                        }
938
939                        let result_layout =
940                            self.cx.layout_of(self.monomorphized_place_ty(destination.as_ref()));
941
942                        let (result, store_in_local) = if result_layout.is_zst() {
943                            (
944                                PlaceRef::new_sized(bx.const_undef(bx.type_ptr()), result_layout),
945                                None,
946                            )
947                        } else if let Some(local) = destination.as_local() {
948                            match self.locals[local] {
949                                LocalRef::Place(dest) => (dest, None),
950                                LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
951                                LocalRef::PendingOperand => {
952                                    // Currently, intrinsics always need a location to store
953                                    // the result, so we create a temporary `alloca` for the
954                                    // result.
955                                    let tmp = PlaceRef::alloca(bx, result_layout);
956                                    tmp.storage_live(bx);
957                                    (tmp, Some(local))
958                                }
959                                LocalRef::Operand(_) => {
960                                    bug!("place local already assigned to");
961                                }
962                            }
963                        } else {
964                            (self.codegen_place(bx, destination.as_ref()), None)
965                        };
966
967                        if result.val.align < result.layout.align.abi {
968                            // Currently, MIR code generation does not create calls
969                            // that store directly to fields of packed structs (in
970                            // fact, the calls it creates write only to temps).
971                            //
972                            // If someone changes that, please update this code path
973                            // to create a temporary.
974                            span_bug!(self.mir.span, "can't directly store to unaligned value");
975                        }
976
977                        let args: Vec<_> =
978                            args.iter().map(|arg| self.codegen_operand(bx, &arg.node)).collect();
979
980                        match self.codegen_intrinsic_call(bx, instance, &args, result, source_info)
981                        {
982                            Ok(()) => {
983                                if let Some(local) = store_in_local {
984                                    let op = bx.load_operand(result);
985                                    result.storage_dead(bx);
986                                    self.overwrite_local(local, LocalRef::Operand(op));
987                                    self.debug_introduce_local(bx, local);
988                                }
989
990                                return if let Some(target) = target {
991                                    helper.funclet_br(self, bx, target, mergeable_succ)
992                                } else {
993                                    bx.unreachable();
994                                    MergingSucc::False
995                                };
996                            }
997                            Err(instance) => {
998                                if intrinsic.must_be_overridden {
999                                    span_bug!(
1000                                        fn_span,
1001                                        "intrinsic {} must be overridden by codegen backend, but isn't",
1002                                        intrinsic.name,
1003                                    );
1004                                }
1005                                (Some(instance), None)
1006                            }
1007                        }
1008                    }
1009
1010                    _ if kind == CallKind::Tail
1011                        && instance.def.requires_caller_location(bx.tcx()) =>
1012                    {
1013                        if let Some(hir_id) =
1014                            terminator.source_info.scope.lint_root(&self.mir.source_scopes)
1015                        {
1016                            let msg = "tail calling a function marked with `#[track_caller]` has no special effect";
1017                            bx.tcx().node_lint(TAIL_CALL_TRACK_CALLER, hir_id, |d| {
1018                                _ = d.primary_message(msg).span(fn_span)
1019                            });
1020                        }
1021
1022                        let instance = ty::Instance::resolve_for_fn_ptr(
1023                            bx.tcx(),
1024                            bx.typing_env(),
1025                            def_id,
1026                            generic_args,
1027                        )
1028                        .unwrap();
1029
1030                        (None, Some(bx.get_fn_addr(instance)))
1031                    }
1032                    _ => (Some(instance), None),
1033                }
1034            }
1035            ty::FnPtr(..) => (None, Some(callee.immediate())),
1036            _ => bug!("{} is not callable", callee.layout.ty),
1037        };
1038
1039        // FIXME(eddyb) avoid computing this if possible, when `instance` is
1040        // available - right now `sig` is only needed for getting the `abi`
1041        // and figuring out how many extra args were passed to a C-variadic `fn`.
1042        let sig = callee.layout.ty.fn_sig(bx.tcx());
1043
1044        let extra_args = &args[sig.inputs().skip_binder().len()..];
1045        let extra_args = bx.tcx().mk_type_list_from_iter(extra_args.iter().map(|op_arg| {
1046            let op_ty = op_arg.node.ty(self.mir, bx.tcx());
1047            self.monomorphize(op_ty)
1048        }));
1049
1050        let fn_abi = match instance {
1051            Some(instance) => bx.fn_abi_of_instance(instance, extra_args),
1052            None => bx.fn_abi_of_fn_ptr(sig, extra_args),
1053        };
1054
1055        // The arguments we'll be passing. Plus one to account for outptr, if used.
1056        let arg_count = fn_abi.args.len() + fn_abi.ret.is_indirect() as usize;
1057
1058        let mut llargs = Vec::with_capacity(arg_count);
1059
1060        // We still need to call `make_return_dest` even if there's no `target`, since
1061        // `fn_abi.ret` could be `PassMode::Indirect`, even if it is uninhabited,
1062        // and `make_return_dest` adds the return-place indirect pointer to `llargs`.
1063        let destination = match kind {
1064            CallKind::Normal => {
1065                let return_dest = self.make_return_dest(bx, destination, &fn_abi.ret, &mut llargs);
1066                target.map(|target| (return_dest, target))
1067            }
1068            CallKind::Tail => {
1069                if fn_abi.ret.is_indirect() {
1070                    match self.make_return_dest(bx, destination, &fn_abi.ret, &mut llargs) {
1071                        ReturnDest::Nothing => {}
1072                        _ => bug!(
1073                            "tail calls to functions with indirect returns cannot store into a destination"
1074                        ),
1075                    }
1076                }
1077                None
1078            }
1079        };
1080
1081        // Split the rust-call tupled arguments off.
1082        let (first_args, untuple) = if sig.abi() == ExternAbi::RustCall
1083            && let Some((tup, args)) = args.split_last()
1084        {
1085            (args, Some(tup))
1086        } else {
1087            (args, None)
1088        };
1089
1090        // When generating arguments we sometimes introduce temporary allocations with lifetime
1091        // that extend for the duration of a call. Keep track of those allocations and their sizes
1092        // to generate `lifetime_end` when the call returns.
1093        let mut lifetime_ends_after_call: Vec<(Bx::Value, Size)> = Vec::new();
1094        'make_args: for (i, arg) in first_args.iter().enumerate() {
1095            if kind == CallKind::Tail && matches!(fn_abi.args[i].mode, PassMode::Indirect { .. }) {
1096                // FIXME: https://github.com/rust-lang/rust/pull/144232#discussion_r2218543841
1097                span_bug!(
1098                    fn_span,
1099                    "arguments using PassMode::Indirect are currently not supported for tail calls"
1100                );
1101            }
1102
1103            let mut op = self.codegen_operand(bx, &arg.node);
1104
1105            if let (0, Some(ty::InstanceKind::Virtual(_, idx))) = (i, instance.map(|i| i.def)) {
1106                match op.val {
1107                    Pair(data_ptr, meta) => {
1108                        // In the case of Rc<Self>, we need to explicitly pass a
1109                        // *mut RcInner<Self> with a Scalar (not ScalarPair) ABI. This is a hack
1110                        // that is understood elsewhere in the compiler as a method on
1111                        // `dyn Trait`.
1112                        // To get a `*mut RcInner<Self>`, we just keep unwrapping newtypes until
1113                        // we get a value of a built-in pointer type.
1114                        //
1115                        // This is also relevant for `Pin<&mut Self>`, where we need to peel the
1116                        // `Pin`.
1117                        while !op.layout.ty.is_raw_ptr() && !op.layout.ty.is_ref() {
1118                            let (idx, _) = op.layout.non_1zst_field(bx).expect(
1119                                "not exactly one non-1-ZST field in a `DispatchFromDyn` type",
1120                            );
1121                            op = op.extract_field(self, bx, idx.as_usize());
1122                        }
1123
1124                        // Now that we have `*dyn Trait` or `&dyn Trait`, split it up into its
1125                        // data pointer and vtable. Look up the method in the vtable, and pass
1126                        // the data pointer as the first argument.
1127                        llfn = Some(meth::VirtualIndex::from_index(idx).get_fn(
1128                            bx,
1129                            meta,
1130                            op.layout.ty,
1131                            fn_abi,
1132                        ));
1133                        llargs.push(data_ptr);
1134                        continue 'make_args;
1135                    }
1136                    Ref(PlaceValue { llval: data_ptr, llextra: Some(meta), .. }) => {
1137                        // by-value dynamic dispatch
1138                        llfn = Some(meth::VirtualIndex::from_index(idx).get_fn(
1139                            bx,
1140                            meta,
1141                            op.layout.ty,
1142                            fn_abi,
1143                        ));
1144                        llargs.push(data_ptr);
1145                        continue;
1146                    }
1147                    _ => {
1148                        span_bug!(fn_span, "can't codegen a virtual call on {:#?}", op);
1149                    }
1150                }
1151            }
1152
1153            // The callee needs to own the argument memory if we pass it
1154            // by-ref, so make a local copy of non-immediate constants.
1155            match (&arg.node, op.val) {
1156                (&mir::Operand::Copy(_), Ref(PlaceValue { llextra: None, .. }))
1157                | (&mir::Operand::Constant(_), Ref(PlaceValue { llextra: None, .. })) => {
1158                    let tmp = PlaceRef::alloca(bx, op.layout);
1159                    bx.lifetime_start(tmp.val.llval, tmp.layout.size);
1160                    op.store_with_annotation(bx, tmp);
1161                    op.val = Ref(tmp.val);
1162                    lifetime_ends_after_call.push((tmp.val.llval, tmp.layout.size));
1163                }
1164                _ => {}
1165            }
1166
1167            self.codegen_argument(
1168                bx,
1169                op,
1170                &mut llargs,
1171                &fn_abi.args[i],
1172                &mut lifetime_ends_after_call,
1173            );
1174        }
1175        let num_untupled = untuple.map(|tup| {
1176            self.codegen_arguments_untupled(
1177                bx,
1178                &tup.node,
1179                &mut llargs,
1180                &fn_abi.args[first_args.len()..],
1181                &mut lifetime_ends_after_call,
1182            )
1183        });
1184
1185        let needs_location =
1186            instance.is_some_and(|i| i.def.requires_caller_location(self.cx.tcx()));
1187        if needs_location {
1188            let mir_args = if let Some(num_untupled) = num_untupled {
1189                first_args.len() + num_untupled
1190            } else {
1191                args.len()
1192            };
1193            assert_eq!(
1194                fn_abi.args.len(),
1195                mir_args + 1,
1196                "#[track_caller] fn's must have 1 more argument in their ABI than in their MIR: {instance:?} {fn_span:?} {fn_abi:?}",
1197            );
1198            let location = self.get_caller_location(bx, source_info);
1199            debug!(
1200                "codegen_call_terminator({:?}): location={:?} (fn_span {:?})",
1201                terminator, location, fn_span
1202            );
1203
1204            let last_arg = fn_abi.args.last().unwrap();
1205            self.codegen_argument(
1206                bx,
1207                location,
1208                &mut llargs,
1209                last_arg,
1210                &mut lifetime_ends_after_call,
1211            );
1212        }
1213
1214        let fn_ptr = match (instance, llfn) {
1215            (Some(instance), None) => bx.get_fn_addr(instance),
1216            (_, Some(llfn)) => llfn,
1217            _ => span_bug!(fn_span, "no instance or llfn for call"),
1218        };
1219        self.set_debug_loc(bx, source_info);
1220        helper.do_call(
1221            self,
1222            bx,
1223            fn_abi,
1224            fn_ptr,
1225            &llargs,
1226            destination,
1227            unwind,
1228            &lifetime_ends_after_call,
1229            instance,
1230            kind,
1231            mergeable_succ,
1232        )
1233    }
1234
1235    fn codegen_asm_terminator(
1236        &mut self,
1237        helper: TerminatorCodegenHelper<'tcx>,
1238        bx: &mut Bx,
1239        asm_macro: InlineAsmMacro,
1240        terminator: &mir::Terminator<'tcx>,
1241        template: &[ast::InlineAsmTemplatePiece],
1242        operands: &[mir::InlineAsmOperand<'tcx>],
1243        options: ast::InlineAsmOptions,
1244        line_spans: &[Span],
1245        targets: &[mir::BasicBlock],
1246        unwind: mir::UnwindAction,
1247        instance: Instance<'_>,
1248        mergeable_succ: bool,
1249    ) -> MergingSucc {
1250        let span = terminator.source_info.span;
1251
1252        let operands: Vec<_> = operands
1253            .iter()
1254            .map(|op| match *op {
1255                mir::InlineAsmOperand::In { reg, ref value } => {
1256                    let value = self.codegen_operand(bx, value);
1257                    InlineAsmOperandRef::In { reg, value }
1258                }
1259                mir::InlineAsmOperand::Out { reg, late, ref place } => {
1260                    let place = place.map(|place| self.codegen_place(bx, place.as_ref()));
1261                    InlineAsmOperandRef::Out { reg, late, place }
1262                }
1263                mir::InlineAsmOperand::InOut { reg, late, ref in_value, ref out_place } => {
1264                    let in_value = self.codegen_operand(bx, in_value);
1265                    let out_place =
1266                        out_place.map(|out_place| self.codegen_place(bx, out_place.as_ref()));
1267                    InlineAsmOperandRef::InOut { reg, late, in_value, out_place }
1268                }
1269                mir::InlineAsmOperand::Const { ref value } => {
1270                    let const_value = self.eval_mir_constant(value);
1271                    let string = common::asm_const_to_str(
1272                        bx.tcx(),
1273                        span,
1274                        const_value,
1275                        bx.layout_of(value.ty()),
1276                    );
1277                    InlineAsmOperandRef::Const { string }
1278                }
1279                mir::InlineAsmOperand::SymFn { ref value } => {
1280                    let const_ = self.monomorphize(value.const_);
1281                    if let ty::FnDef(def_id, args) = *const_.ty().kind() {
1282                        let instance = ty::Instance::resolve_for_fn_ptr(
1283                            bx.tcx(),
1284                            bx.typing_env(),
1285                            def_id,
1286                            args,
1287                        )
1288                        .unwrap();
1289                        InlineAsmOperandRef::SymFn { instance }
1290                    } else {
1291                        span_bug!(span, "invalid type for asm sym (fn)");
1292                    }
1293                }
1294                mir::InlineAsmOperand::SymStatic { def_id } => {
1295                    InlineAsmOperandRef::SymStatic { def_id }
1296                }
1297                mir::InlineAsmOperand::Label { target_index } => {
1298                    InlineAsmOperandRef::Label { label: self.llbb(targets[target_index]) }
1299                }
1300            })
1301            .collect();
1302
1303        helper.do_inlineasm(
1304            self,
1305            bx,
1306            template,
1307            &operands,
1308            options,
1309            line_spans,
1310            if asm_macro.diverges(options) { None } else { targets.get(0).copied() },
1311            unwind,
1312            instance,
1313            mergeable_succ,
1314        )
1315    }
1316
1317    pub(crate) fn codegen_block(&mut self, mut bb: mir::BasicBlock) {
1318        let llbb = match self.try_llbb(bb) {
1319            Some(llbb) => llbb,
1320            None => return,
1321        };
1322        let bx = &mut Bx::build(self.cx, llbb);
1323        let mir = self.mir;
1324
1325        // MIR basic blocks stop at any function call. This may not be the case
1326        // for the backend's basic blocks, in which case we might be able to
1327        // combine multiple MIR basic blocks into a single backend basic block.
1328        loop {
1329            let data = &mir[bb];
1330
1331            debug!("codegen_block({:?}={:?})", bb, data);
1332
1333            for statement in &data.statements {
1334                self.codegen_statement(bx, statement);
1335            }
1336            self.codegen_stmt_debuginfos(bx, &data.after_last_stmt_debuginfos);
1337
1338            let merging_succ = self.codegen_terminator(bx, bb, data.terminator());
1339            if let MergingSucc::False = merging_succ {
1340                break;
1341            }
1342
1343            // We are merging the successor into the produced backend basic
1344            // block. Record that the successor should be skipped when it is
1345            // reached.
1346            //
1347            // Note: we must not have already generated code for the successor.
1348            // This is implicitly ensured by the reverse postorder traversal,
1349            // and the assertion explicitly guarantees that.
1350            let mut successors = data.terminator().successors();
1351            let succ = successors.next().unwrap();
1352            assert!(matches!(self.cached_llbbs[succ], CachedLlbb::None));
1353            self.cached_llbbs[succ] = CachedLlbb::Skip;
1354            bb = succ;
1355        }
1356    }
1357
1358    pub(crate) fn codegen_block_as_unreachable(&mut self, bb: mir::BasicBlock) {
1359        let llbb = match self.try_llbb(bb) {
1360            Some(llbb) => llbb,
1361            None => return,
1362        };
1363        let bx = &mut Bx::build(self.cx, llbb);
1364        debug!("codegen_block_as_unreachable({:?})", bb);
1365        bx.unreachable();
1366    }
1367
1368    fn codegen_terminator(
1369        &mut self,
1370        bx: &mut Bx,
1371        bb: mir::BasicBlock,
1372        terminator: &'tcx mir::Terminator<'tcx>,
1373    ) -> MergingSucc {
1374        debug!("codegen_terminator: {:?}", terminator);
1375
1376        let helper = TerminatorCodegenHelper { bb, terminator };
1377
1378        let mergeable_succ = || {
1379            // Note: any call to `switch_to_block` will invalidate a `true` value
1380            // of `mergeable_succ`.
1381            let mut successors = terminator.successors();
1382            if let Some(succ) = successors.next()
1383                && successors.next().is_none()
1384                && let &[succ_pred] = self.mir.basic_blocks.predecessors()[succ].as_slice()
1385            {
1386                // bb has a single successor, and bb is its only predecessor. This
1387                // makes it a candidate for merging.
1388                assert_eq!(succ_pred, bb);
1389                true
1390            } else {
1391                false
1392            }
1393        };
1394
1395        self.set_debug_loc(bx, terminator.source_info);
1396        match terminator.kind {
1397            mir::TerminatorKind::UnwindResume => {
1398                self.codegen_resume_terminator(helper, bx);
1399                MergingSucc::False
1400            }
1401
1402            mir::TerminatorKind::UnwindTerminate(reason) => {
1403                self.codegen_terminate_terminator(helper, bx, terminator, reason);
1404                MergingSucc::False
1405            }
1406
1407            mir::TerminatorKind::Goto { target } => {
1408                helper.funclet_br(self, bx, target, mergeable_succ())
1409            }
1410
1411            mir::TerminatorKind::SwitchInt { ref discr, ref targets } => {
1412                self.codegen_switchint_terminator(helper, bx, discr, targets);
1413                MergingSucc::False
1414            }
1415
1416            mir::TerminatorKind::Return => {
1417                self.codegen_return_terminator(bx);
1418                MergingSucc::False
1419            }
1420
1421            mir::TerminatorKind::Unreachable => {
1422                bx.unreachable();
1423                MergingSucc::False
1424            }
1425
1426            mir::TerminatorKind::Drop { place, target, unwind, replace: _, drop, async_fut } => {
1427                assert!(
1428                    async_fut.is_none() && drop.is_none(),
1429                    "Async Drop must be expanded or reset to sync before codegen"
1430                );
1431                self.codegen_drop_terminator(
1432                    helper,
1433                    bx,
1434                    &terminator.source_info,
1435                    place,
1436                    target,
1437                    unwind,
1438                    mergeable_succ(),
1439                )
1440            }
1441
1442            mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, unwind } => self
1443                .codegen_assert_terminator(
1444                    helper,
1445                    bx,
1446                    terminator,
1447                    cond,
1448                    expected,
1449                    msg,
1450                    target,
1451                    unwind,
1452                    mergeable_succ(),
1453                ),
1454
1455            mir::TerminatorKind::Call {
1456                ref func,
1457                ref args,
1458                destination,
1459                target,
1460                unwind,
1461                call_source: _,
1462                fn_span,
1463            } => self.codegen_call_terminator(
1464                helper,
1465                bx,
1466                terminator,
1467                func,
1468                args,
1469                destination,
1470                target,
1471                unwind,
1472                fn_span,
1473                CallKind::Normal,
1474                mergeable_succ(),
1475            ),
1476            mir::TerminatorKind::TailCall { ref func, ref args, fn_span } => self
1477                .codegen_call_terminator(
1478                    helper,
1479                    bx,
1480                    terminator,
1481                    func,
1482                    args,
1483                    mir::Place::from(mir::RETURN_PLACE),
1484                    None,
1485                    mir::UnwindAction::Unreachable,
1486                    fn_span,
1487                    CallKind::Tail,
1488                    mergeable_succ(),
1489                ),
1490            mir::TerminatorKind::CoroutineDrop | mir::TerminatorKind::Yield { .. } => {
1491                bug!("coroutine ops in codegen")
1492            }
1493            mir::TerminatorKind::FalseEdge { .. } | mir::TerminatorKind::FalseUnwind { .. } => {
1494                bug!("borrowck false edges in codegen")
1495            }
1496
1497            mir::TerminatorKind::InlineAsm {
1498                asm_macro,
1499                template,
1500                ref operands,
1501                options,
1502                line_spans,
1503                ref targets,
1504                unwind,
1505            } => self.codegen_asm_terminator(
1506                helper,
1507                bx,
1508                asm_macro,
1509                terminator,
1510                template,
1511                operands,
1512                options,
1513                line_spans,
1514                targets,
1515                unwind,
1516                self.instance,
1517                mergeable_succ(),
1518            ),
1519        }
1520    }
1521
1522    fn codegen_argument(
1523        &mut self,
1524        bx: &mut Bx,
1525        op: OperandRef<'tcx, Bx::Value>,
1526        llargs: &mut Vec<Bx::Value>,
1527        arg: &ArgAbi<'tcx, Ty<'tcx>>,
1528        lifetime_ends_after_call: &mut Vec<(Bx::Value, Size)>,
1529    ) {
1530        match arg.mode {
1531            PassMode::Ignore => return,
1532            PassMode::Cast { pad_i32: true, .. } => {
1533                // Fill padding with undef value, where applicable.
1534                llargs.push(bx.const_undef(bx.reg_backend_type(&Reg::i32())));
1535            }
1536            PassMode::Pair(..) => match op.val {
1537                Pair(a, b) => {
1538                    llargs.push(a);
1539                    llargs.push(b);
1540                    return;
1541                }
1542                _ => bug!("codegen_argument: {:?} invalid for pair argument", op),
1543            },
1544            PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => match op.val {
1545                Ref(PlaceValue { llval: a, llextra: Some(b), .. }) => {
1546                    llargs.push(a);
1547                    llargs.push(b);
1548                    return;
1549                }
1550                _ => bug!("codegen_argument: {:?} invalid for unsized indirect argument", op),
1551            },
1552            _ => {}
1553        }
1554
1555        // Force by-ref if we have to load through a cast pointer.
1556        let (mut llval, align, by_ref) = match op.val {
1557            Immediate(_) | Pair(..) => match arg.mode {
1558                PassMode::Indirect { attrs, .. } => {
1559                    // Indirect argument may have higher alignment requirements than the type's
1560                    // alignment. This can happen, e.g. when passing types with <4 byte alignment
1561                    // on the stack on x86.
1562                    let required_align = match attrs.pointee_align {
1563                        Some(pointee_align) => cmp::max(pointee_align, arg.layout.align.abi),
1564                        None => arg.layout.align.abi,
1565                    };
1566                    let scratch = PlaceValue::alloca(bx, arg.layout.size, required_align);
1567                    bx.lifetime_start(scratch.llval, arg.layout.size);
1568                    op.store_with_annotation(bx, scratch.with_type(arg.layout));
1569                    lifetime_ends_after_call.push((scratch.llval, arg.layout.size));
1570                    (scratch.llval, scratch.align, true)
1571                }
1572                PassMode::Cast { .. } => {
1573                    let scratch = PlaceRef::alloca(bx, arg.layout);
1574                    op.store_with_annotation(bx, scratch);
1575                    (scratch.val.llval, scratch.val.align, true)
1576                }
1577                _ => (op.immediate_or_packed_pair(bx), arg.layout.align.abi, false),
1578            },
1579            Ref(op_place_val) => match arg.mode {
1580                PassMode::Indirect { attrs, .. } => {
1581                    let required_align = match attrs.pointee_align {
1582                        Some(pointee_align) => cmp::max(pointee_align, arg.layout.align.abi),
1583                        None => arg.layout.align.abi,
1584                    };
1585                    if op_place_val.align < required_align {
1586                        // For `foo(packed.large_field)`, and types with <4 byte alignment on x86,
1587                        // alignment requirements may be higher than the type's alignment, so copy
1588                        // to a higher-aligned alloca.
1589                        let scratch = PlaceValue::alloca(bx, arg.layout.size, required_align);
1590                        bx.lifetime_start(scratch.llval, arg.layout.size);
1591                        bx.typed_place_copy(scratch, op_place_val, op.layout);
1592                        lifetime_ends_after_call.push((scratch.llval, arg.layout.size));
1593                        (scratch.llval, scratch.align, true)
1594                    } else {
1595                        (op_place_val.llval, op_place_val.align, true)
1596                    }
1597                }
1598                _ => (op_place_val.llval, op_place_val.align, true),
1599            },
1600            ZeroSized => match arg.mode {
1601                PassMode::Indirect { on_stack, .. } => {
1602                    if on_stack {
1603                        // It doesn't seem like any target can have `byval` ZSTs, so this assert
1604                        // is here to replace a would-be untested codepath.
1605                        bug!("ZST {op:?} passed on stack with abi {arg:?}");
1606                    }
1607                    // Though `extern "Rust"` doesn't pass ZSTs, some ABIs pass
1608                    // a pointer for `repr(C)` structs even when empty, so get
1609                    // one from an `alloca` (which can be left uninitialized).
1610                    let scratch = PlaceRef::alloca(bx, arg.layout);
1611                    (scratch.val.llval, scratch.val.align, true)
1612                }
1613                _ => bug!("ZST {op:?} wasn't ignored, but was passed with abi {arg:?}"),
1614            },
1615        };
1616
1617        if by_ref && !arg.is_indirect() {
1618            // Have to load the argument, maybe while casting it.
1619            if let PassMode::Cast { cast, pad_i32: _ } = &arg.mode {
1620                // The ABI mandates that the value is passed as a different struct representation.
1621                // Spill and reload it from the stack to convert from the Rust representation to
1622                // the ABI representation.
1623                let scratch_size = cast.size(bx);
1624                let scratch_align = cast.align(bx);
1625                // Note that the ABI type may be either larger or smaller than the Rust type,
1626                // due to the presence or absence of trailing padding. For example:
1627                // - On some ABIs, the Rust layout { f64, f32, <f32 padding> } may omit padding
1628                //   when passed by value, making it smaller.
1629                // - On some ABIs, the Rust layout { u16, u16, u16 } may be padded up to 8 bytes
1630                //   when passed by value, making it larger.
1631                let copy_bytes = cmp::min(cast.unaligned_size(bx).bytes(), arg.layout.size.bytes());
1632                // Allocate some scratch space...
1633                let llscratch = bx.alloca(scratch_size, scratch_align);
1634                bx.lifetime_start(llscratch, scratch_size);
1635                // ...memcpy the value...
1636                bx.memcpy(
1637                    llscratch,
1638                    scratch_align,
1639                    llval,
1640                    align,
1641                    bx.const_usize(copy_bytes),
1642                    MemFlags::empty(),
1643                    None,
1644                );
1645                // ...and then load it with the ABI type.
1646                llval = load_cast(bx, cast, llscratch, scratch_align);
1647                bx.lifetime_end(llscratch, scratch_size);
1648            } else {
1649                // We can't use `PlaceRef::load` here because the argument
1650                // may have a type we don't treat as immediate, but the ABI
1651                // used for this call is passing it by-value. In that case,
1652                // the load would just produce `OperandValue::Ref` instead
1653                // of the `OperandValue::Immediate` we need for the call.
1654                llval = bx.load(bx.backend_type(arg.layout), llval, align);
1655                if let BackendRepr::Scalar(scalar) = arg.layout.backend_repr {
1656                    if scalar.is_bool() {
1657                        bx.range_metadata(llval, WrappingRange { start: 0, end: 1 });
1658                    }
1659                    // We store bools as `i8` so we need to truncate to `i1`.
1660                    llval = bx.to_immediate_scalar(llval, scalar);
1661                }
1662            }
1663        }
1664
1665        llargs.push(llval);
1666    }
1667
1668    fn codegen_arguments_untupled(
1669        &mut self,
1670        bx: &mut Bx,
1671        operand: &mir::Operand<'tcx>,
1672        llargs: &mut Vec<Bx::Value>,
1673        args: &[ArgAbi<'tcx, Ty<'tcx>>],
1674        lifetime_ends_after_call: &mut Vec<(Bx::Value, Size)>,
1675    ) -> usize {
1676        let tuple = self.codegen_operand(bx, operand);
1677
1678        // Handle both by-ref and immediate tuples.
1679        if let Ref(place_val) = tuple.val {
1680            if place_val.llextra.is_some() {
1681                bug!("closure arguments must be sized");
1682            }
1683            let tuple_ptr = place_val.with_type(tuple.layout);
1684            for i in 0..tuple.layout.fields.count() {
1685                let field_ptr = tuple_ptr.project_field(bx, i);
1686                let field = bx.load_operand(field_ptr);
1687                self.codegen_argument(bx, field, llargs, &args[i], lifetime_ends_after_call);
1688            }
1689        } else {
1690            // If the tuple is immediate, the elements are as well.
1691            for i in 0..tuple.layout.fields.count() {
1692                let op = tuple.extract_field(self, bx, i);
1693                self.codegen_argument(bx, op, llargs, &args[i], lifetime_ends_after_call);
1694            }
1695        }
1696        tuple.layout.fields.count()
1697    }
1698
1699    pub(super) fn get_caller_location(
1700        &mut self,
1701        bx: &mut Bx,
1702        source_info: mir::SourceInfo,
1703    ) -> OperandRef<'tcx, Bx::Value> {
1704        self.mir.caller_location_span(source_info, self.caller_location, bx.tcx(), |span: Span| {
1705            let const_loc = bx.tcx().span_as_caller_location(span);
1706            OperandRef::from_const(bx, const_loc, bx.tcx().caller_location_ty())
1707        })
1708    }
1709
1710    fn get_personality_slot(&mut self, bx: &mut Bx) -> PlaceRef<'tcx, Bx::Value> {
1711        let cx = bx.cx();
1712        if let Some(slot) = self.personality_slot {
1713            slot
1714        } else {
1715            let layout = cx.layout_of(Ty::new_tup(
1716                cx.tcx(),
1717                &[Ty::new_mut_ptr(cx.tcx(), cx.tcx().types.u8), cx.tcx().types.i32],
1718            ));
1719            let slot = PlaceRef::alloca(bx, layout);
1720            self.personality_slot = Some(slot);
1721            slot
1722        }
1723    }
1724
1725    /// Returns the landing/cleanup pad wrapper around the given basic block.
1726    // FIXME(eddyb) rename this to `eh_pad_for`.
1727    fn landing_pad_for(&mut self, bb: mir::BasicBlock) -> Bx::BasicBlock {
1728        if let Some(landing_pad) = self.landing_pads[bb] {
1729            return landing_pad;
1730        }
1731
1732        let landing_pad = self.landing_pad_for_uncached(bb);
1733        self.landing_pads[bb] = Some(landing_pad);
1734        landing_pad
1735    }
1736
1737    // FIXME(eddyb) rename this to `eh_pad_for_uncached`.
1738    fn landing_pad_for_uncached(&mut self, bb: mir::BasicBlock) -> Bx::BasicBlock {
1739        let llbb = self.llbb(bb);
1740        if base::wants_new_eh_instructions(self.cx.sess()) {
1741            let cleanup_bb = Bx::append_block(self.cx, self.llfn, &format!("funclet_{bb:?}"));
1742            let mut cleanup_bx = Bx::build(self.cx, cleanup_bb);
1743            let funclet = cleanup_bx.cleanup_pad(None, &[]);
1744            cleanup_bx.br(llbb);
1745            self.funclets[bb] = Some(funclet);
1746            cleanup_bb
1747        } else {
1748            let cleanup_llbb = Bx::append_block(self.cx, self.llfn, "cleanup");
1749            let mut cleanup_bx = Bx::build(self.cx, cleanup_llbb);
1750
1751            let llpersonality = self.cx.eh_personality();
1752            let (exn0, exn1) = cleanup_bx.cleanup_landing_pad(llpersonality);
1753
1754            let slot = self.get_personality_slot(&mut cleanup_bx);
1755            slot.storage_live(&mut cleanup_bx);
1756            Pair(exn0, exn1).store(&mut cleanup_bx, slot);
1757
1758            cleanup_bx.br(llbb);
1759            cleanup_llbb
1760        }
1761    }
1762
1763    fn unreachable_block(&mut self) -> Bx::BasicBlock {
1764        self.unreachable_block.unwrap_or_else(|| {
1765            let llbb = Bx::append_block(self.cx, self.llfn, "unreachable");
1766            let mut bx = Bx::build(self.cx, llbb);
1767            bx.unreachable();
1768            self.unreachable_block = Some(llbb);
1769            llbb
1770        })
1771    }
1772
1773    fn terminate_block(&mut self, reason: UnwindTerminateReason) -> Bx::BasicBlock {
1774        if let Some((cached_bb, cached_reason)) = self.terminate_block
1775            && reason == cached_reason
1776        {
1777            return cached_bb;
1778        }
1779
1780        let funclet;
1781        let llbb;
1782        let mut bx;
1783        if base::wants_new_eh_instructions(self.cx.sess()) {
1784            // This is a basic block that we're aborting the program for,
1785            // notably in an `extern` function. These basic blocks are inserted
1786            // so that we assert that `extern` functions do indeed not panic,
1787            // and if they do we abort the process.
1788            //
1789            // On MSVC these are tricky though (where we're doing funclets). If
1790            // we were to do a cleanuppad (like below) the normal functions like
1791            // `longjmp` would trigger the abort logic, terminating the
1792            // program. Instead we insert the equivalent of `catch(...)` for C++
1793            // which magically doesn't trigger when `longjmp` files over this
1794            // frame.
1795            //
1796            // Lots more discussion can be found on #48251 but this codegen is
1797            // modeled after clang's for:
1798            //
1799            //      try {
1800            //          foo();
1801            //      } catch (...) {
1802            //          bar();
1803            //      }
1804            //
1805            // which creates an IR snippet like
1806            //
1807            //      cs_terminate:
1808            //         %cs = catchswitch within none [%cp_terminate] unwind to caller
1809            //      cp_terminate:
1810            //         %cp = catchpad within %cs [null, i32 64, null]
1811            //         ...
1812
1813            llbb = Bx::append_block(self.cx, self.llfn, "cs_terminate");
1814            let cp_llbb = Bx::append_block(self.cx, self.llfn, "cp_terminate");
1815
1816            let mut cs_bx = Bx::build(self.cx, llbb);
1817            let cs = cs_bx.catch_switch(None, None, &[cp_llbb]);
1818
1819            bx = Bx::build(self.cx, cp_llbb);
1820            let null =
1821                bx.const_null(bx.type_ptr_ext(bx.cx().data_layout().instruction_address_space));
1822
1823            // The `null` in first argument here is actually a RTTI type
1824            // descriptor for the C++ personality function, but `catch (...)`
1825            // has no type so it's null.
1826            let args = if base::wants_msvc_seh(self.cx.sess()) {
1827                // This bitmask is a single `HT_IsStdDotDot` flag, which
1828                // represents that this is a C++-style `catch (...)` block that
1829                // only captures programmatic exceptions, not all SEH
1830                // exceptions. The second `null` points to a non-existent
1831                // `alloca` instruction, which an LLVM pass would inline into
1832                // the initial SEH frame allocation.
1833                let adjectives = bx.const_i32(0x40);
1834                &[null, adjectives, null] as &[_]
1835            } else {
1836                // Specifying more arguments than necessary usually doesn't
1837                // hurt, but the `WasmEHPrepare` LLVM pass does not recognize
1838                // anything other than a single `null` as a `catch (...)` block,
1839                // leading to problems down the line during instruction
1840                // selection.
1841                &[null] as &[_]
1842            };
1843
1844            funclet = Some(bx.catch_pad(cs, args));
1845        } else {
1846            llbb = Bx::append_block(self.cx, self.llfn, "terminate");
1847            bx = Bx::build(self.cx, llbb);
1848
1849            let llpersonality = self.cx.eh_personality();
1850            bx.filter_landing_pad(llpersonality);
1851
1852            funclet = None;
1853        }
1854
1855        self.set_debug_loc(&mut bx, mir::SourceInfo::outermost(self.mir.span));
1856
1857        let (fn_abi, fn_ptr, instance) =
1858            common::build_langcall(&bx, self.mir.span, reason.lang_item());
1859        if is_call_from_compiler_builtins_to_upstream_monomorphization(bx.tcx(), instance) {
1860            bx.abort();
1861        } else {
1862            let fn_ty = bx.fn_decl_backend_type(fn_abi);
1863
1864            let llret = bx.call(fn_ty, None, Some(fn_abi), fn_ptr, &[], funclet.as_ref(), None);
1865            bx.apply_attrs_to_cleanup_callsite(llret);
1866        }
1867
1868        bx.unreachable();
1869
1870        self.terminate_block = Some((llbb, reason));
1871        llbb
1872    }
1873
1874    /// Get the backend `BasicBlock` for a MIR `BasicBlock`, either already
1875    /// cached in `self.cached_llbbs`, or created on demand (and cached).
1876    // FIXME(eddyb) rename `llbb` and other `ll`-prefixed things to use a
1877    // more backend-agnostic prefix such as `cg` (i.e. this would be `cgbb`).
1878    pub fn llbb(&mut self, bb: mir::BasicBlock) -> Bx::BasicBlock {
1879        self.try_llbb(bb).unwrap()
1880    }
1881
1882    /// Like `llbb`, but may fail if the basic block should be skipped.
1883    pub(crate) fn try_llbb(&mut self, bb: mir::BasicBlock) -> Option<Bx::BasicBlock> {
1884        match self.cached_llbbs[bb] {
1885            CachedLlbb::None => {
1886                let llbb = Bx::append_block(self.cx, self.llfn, &format!("{bb:?}"));
1887                self.cached_llbbs[bb] = CachedLlbb::Some(llbb);
1888                Some(llbb)
1889            }
1890            CachedLlbb::Some(llbb) => Some(llbb),
1891            CachedLlbb::Skip => None,
1892        }
1893    }
1894
1895    fn make_return_dest(
1896        &mut self,
1897        bx: &mut Bx,
1898        dest: mir::Place<'tcx>,
1899        fn_ret: &ArgAbi<'tcx, Ty<'tcx>>,
1900        llargs: &mut Vec<Bx::Value>,
1901    ) -> ReturnDest<'tcx, Bx::Value> {
1902        // If the return is ignored, we can just return a do-nothing `ReturnDest`.
1903        if fn_ret.is_ignore() {
1904            return ReturnDest::Nothing;
1905        }
1906        let dest = if let Some(index) = dest.as_local() {
1907            match self.locals[index] {
1908                LocalRef::Place(dest) => dest,
1909                LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
1910                LocalRef::PendingOperand => {
1911                    // Handle temporary places, specifically `Operand` ones, as
1912                    // they don't have `alloca`s.
1913                    return if fn_ret.is_indirect() {
1914                        // Odd, but possible, case, we have an operand temporary,
1915                        // but the calling convention has an indirect return.
1916                        let tmp = PlaceRef::alloca(bx, fn_ret.layout);
1917                        tmp.storage_live(bx);
1918                        llargs.push(tmp.val.llval);
1919                        ReturnDest::IndirectOperand(tmp, index)
1920                    } else {
1921                        ReturnDest::DirectOperand(index)
1922                    };
1923                }
1924                LocalRef::Operand(_) => {
1925                    bug!("place local already assigned to");
1926                }
1927            }
1928        } else {
1929            self.codegen_place(bx, dest.as_ref())
1930        };
1931        if fn_ret.is_indirect() {
1932            if dest.val.align < dest.layout.align.abi {
1933                // Currently, MIR code generation does not create calls
1934                // that store directly to fields of packed structs (in
1935                // fact, the calls it creates write only to temps).
1936                //
1937                // If someone changes that, please update this code path
1938                // to create a temporary.
1939                span_bug!(self.mir.span, "can't directly store to unaligned value");
1940            }
1941            llargs.push(dest.val.llval);
1942            ReturnDest::Nothing
1943        } else {
1944            ReturnDest::Store(dest)
1945        }
1946    }
1947
1948    // Stores the return value of a function call into it's final location.
1949    fn store_return(
1950        &mut self,
1951        bx: &mut Bx,
1952        dest: ReturnDest<'tcx, Bx::Value>,
1953        ret_abi: &ArgAbi<'tcx, Ty<'tcx>>,
1954        llval: Bx::Value,
1955    ) {
1956        use self::ReturnDest::*;
1957
1958        match dest {
1959            Nothing => (),
1960            Store(dst) => bx.store_arg(ret_abi, llval, dst),
1961            IndirectOperand(tmp, index) => {
1962                let op = bx.load_operand(tmp);
1963                tmp.storage_dead(bx);
1964                self.overwrite_local(index, LocalRef::Operand(op));
1965                self.debug_introduce_local(bx, index);
1966            }
1967            DirectOperand(index) => {
1968                // If there is a cast, we have to store and reload.
1969                let op = if let PassMode::Cast { .. } = ret_abi.mode {
1970                    let tmp = PlaceRef::alloca(bx, ret_abi.layout);
1971                    tmp.storage_live(bx);
1972                    bx.store_arg(ret_abi, llval, tmp);
1973                    let op = bx.load_operand(tmp);
1974                    tmp.storage_dead(bx);
1975                    op
1976                } else {
1977                    OperandRef::from_immediate_or_packed_pair(bx, llval, ret_abi.layout)
1978                };
1979                self.overwrite_local(index, LocalRef::Operand(op));
1980                self.debug_introduce_local(bx, index);
1981            }
1982        }
1983    }
1984}
1985
1986enum ReturnDest<'tcx, V> {
1987    /// Do nothing; the return value is indirect or ignored.
1988    Nothing,
1989    /// Store the return value to the pointer.
1990    Store(PlaceRef<'tcx, V>),
1991    /// Store an indirect return value to an operand local place.
1992    IndirectOperand(PlaceRef<'tcx, V>, mir::Local),
1993    /// Store a direct return value to an operand local place.
1994    DirectOperand(mir::Local),
1995}
1996
1997fn load_cast<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
1998    bx: &mut Bx,
1999    cast: &CastTarget,
2000    ptr: Bx::Value,
2001    align: Align,
2002) -> Bx::Value {
2003    let cast_ty = bx.cast_backend_type(cast);
2004    if let Some(offset_from_start) = cast.rest_offset {
2005        assert!(cast.prefix[1..].iter().all(|p| p.is_none()));
2006        assert_eq!(cast.rest.unit.size, cast.rest.total);
2007        let first_ty = bx.reg_backend_type(&cast.prefix[0].unwrap());
2008        let second_ty = bx.reg_backend_type(&cast.rest.unit);
2009        let first = bx.load(first_ty, ptr, align);
2010        let second_ptr = bx.inbounds_ptradd(ptr, bx.const_usize(offset_from_start.bytes()));
2011        let second = bx.load(second_ty, second_ptr, align.restrict_for_offset(offset_from_start));
2012        let res = bx.cx().const_poison(cast_ty);
2013        let res = bx.insert_value(res, first, 0);
2014        bx.insert_value(res, second, 1)
2015    } else {
2016        bx.load(cast_ty, ptr, align)
2017    }
2018}
2019
2020pub fn store_cast<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
2021    bx: &mut Bx,
2022    cast: &CastTarget,
2023    value: Bx::Value,
2024    ptr: Bx::Value,
2025    align: Align,
2026) {
2027    if let Some(offset_from_start) = cast.rest_offset {
2028        assert!(cast.prefix[1..].iter().all(|p| p.is_none()));
2029        assert_eq!(cast.rest.unit.size, cast.rest.total);
2030        assert!(cast.prefix[0].is_some());
2031        let first = bx.extract_value(value, 0);
2032        let second = bx.extract_value(value, 1);
2033        bx.store(first, ptr, align);
2034        let second_ptr = bx.inbounds_ptradd(ptr, bx.const_usize(offset_from_start.bytes()));
2035        bx.store(second, second_ptr, align.restrict_for_offset(offset_from_start));
2036    } else {
2037        bx.store(value, ptr, align);
2038    };
2039}