1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
use super::operand::OperandRef;
use super::operand::OperandValue::{Immediate, Pair, Ref};
use super::place::PlaceRef;
use super::{CachedLlbb, FunctionCx, LocalRef};

use crate::base;
use crate::common::{self, IntPredicate};
use crate::meth;
use crate::traits::*;
use crate::MemFlags;

use rustc_ast as ast;
use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_hir::lang_items::LangItem;
use rustc_index::vec::Idx;
use rustc_middle::mir::{self, AssertKind, SwitchTargets};
use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf};
use rustc_middle::ty::print::{with_no_trimmed_paths, with_no_visible_paths};
use rustc_middle::ty::{self, Instance, Ty, TypeVisitable};
use rustc_session::config::OptLevel;
use rustc_span::source_map::Span;
use rustc_span::{sym, Symbol};
use rustc_symbol_mangling::typeid::typeid_for_fnabi;
use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode, Reg};
use rustc_target::abi::{self, HasDataLayout, WrappingRange};
use rustc_target::spec::abi::Abi;

// Indicates if we are in the middle of merging a BB's successor into it. This
// can happen when BB jumps directly to its successor and the successor has no
// other predecessors.
#[derive(Debug, PartialEq)]
enum MergingSucc {
    False,
    True,
}

/// Used by `FunctionCx::codegen_terminator` for emitting common patterns
/// e.g., creating a basic block, calling a function, etc.
struct TerminatorCodegenHelper<'tcx> {
    bb: mir::BasicBlock,
    terminator: &'tcx mir::Terminator<'tcx>,
}

impl<'a, 'tcx> TerminatorCodegenHelper<'tcx> {
    /// Returns the appropriate `Funclet` for the current funclet, if on MSVC,
    /// either already previously cached, or newly created, by `landing_pad_for`.
    fn funclet<'b, Bx: BuilderMethods<'a, 'tcx>>(
        &self,
        fx: &'b mut FunctionCx<'a, 'tcx, Bx>,
    ) -> Option<&'b Bx::Funclet> {
        let cleanup_kinds = (&fx.cleanup_kinds).as_ref()?;
        let funclet_bb = cleanup_kinds[self.bb].funclet_bb(self.bb)?;
        // If `landing_pad_for` hasn't been called yet to create the `Funclet`,
        // it has to be now. This may not seem necessary, as RPO should lead
        // to all the unwind edges being visited (and so to `landing_pad_for`
        // getting called for them), before building any of the blocks inside
        // the funclet itself - however, if MIR contains edges that end up not
        // being needed in the LLVM IR after monomorphization, the funclet may
        // be unreachable, and we don't have yet a way to skip building it in
        // such an eventuality (which may be a better solution than this).
        if fx.funclets[funclet_bb].is_none() {
            fx.landing_pad_for(funclet_bb);
        }
        Some(
            fx.funclets[funclet_bb]
                .as_ref()
                .expect("landing_pad_for didn't also create funclets entry"),
        )
    }

    /// Get a basic block (creating it if necessary), possibly with cleanup
    /// stuff in it or next to it.
    fn llbb_with_cleanup<Bx: BuilderMethods<'a, 'tcx>>(
        &self,
        fx: &mut FunctionCx<'a, 'tcx, Bx>,
        target: mir::BasicBlock,
    ) -> Bx::BasicBlock {
        let (needs_landing_pad, is_cleanupret) = self.llbb_characteristics(fx, target);
        let mut lltarget = fx.llbb(target);
        if needs_landing_pad {
            lltarget = fx.landing_pad_for(target);
        }
        if is_cleanupret {
            // MSVC cross-funclet jump - need a trampoline
            debug_assert!(base::wants_msvc_seh(fx.cx.tcx().sess));
            debug!("llbb_with_cleanup: creating cleanup trampoline for {:?}", target);
            let name = &format!("{:?}_cleanup_trampoline_{:?}", self.bb, target);
            let trampoline_llbb = Bx::append_block(fx.cx, fx.llfn, name);
            let mut trampoline_bx = Bx::build(fx.cx, trampoline_llbb);
            trampoline_bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
            trampoline_llbb
        } else {
            lltarget
        }
    }

    fn llbb_characteristics<Bx: BuilderMethods<'a, 'tcx>>(
        &self,
        fx: &mut FunctionCx<'a, 'tcx, Bx>,
        target: mir::BasicBlock,
    ) -> (bool, bool) {
        if let Some(ref cleanup_kinds) = fx.cleanup_kinds {
            let funclet_bb = cleanup_kinds[self.bb].funclet_bb(self.bb);
            let target_funclet = cleanup_kinds[target].funclet_bb(target);
            let (needs_landing_pad, is_cleanupret) = match (funclet_bb, target_funclet) {
                (None, None) => (false, false),
                (None, Some(_)) => (true, false),
                (Some(f), Some(t_f)) => (f != t_f, f != t_f),
                (Some(_), None) => {
                    let span = self.terminator.source_info.span;
                    span_bug!(span, "{:?} - jump out of cleanup?", self.terminator);
                }
            };
            (needs_landing_pad, is_cleanupret)
        } else {
            let needs_landing_pad = !fx.mir[self.bb].is_cleanup && fx.mir[target].is_cleanup;
            let is_cleanupret = false;
            (needs_landing_pad, is_cleanupret)
        }
    }

    fn funclet_br<Bx: BuilderMethods<'a, 'tcx>>(
        &self,
        fx: &mut FunctionCx<'a, 'tcx, Bx>,
        bx: &mut Bx,
        target: mir::BasicBlock,
        mergeable_succ: bool,
    ) -> MergingSucc {
        let (needs_landing_pad, is_cleanupret) = self.llbb_characteristics(fx, target);
        if mergeable_succ && !needs_landing_pad && !is_cleanupret {
            // We can merge the successor into this bb, so no need for a `br`.
            MergingSucc::True
        } else {
            let mut lltarget = fx.llbb(target);
            if needs_landing_pad {
                lltarget = fx.landing_pad_for(target);
            }
            if is_cleanupret {
                // micro-optimization: generate a `ret` rather than a jump
                // to a trampoline.
                bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
            } else {
                bx.br(lltarget);
            }
            MergingSucc::False
        }
    }

    /// Call `fn_ptr` of `fn_abi` with the arguments `llargs`, the optional
    /// return destination `destination` and the cleanup function `cleanup`.
    fn do_call<Bx: BuilderMethods<'a, 'tcx>>(
        &self,
        fx: &mut FunctionCx<'a, 'tcx, Bx>,
        bx: &mut Bx,
        fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
        fn_ptr: Bx::Value,
        llargs: &[Bx::Value],
        destination: Option<(ReturnDest<'tcx, Bx::Value>, mir::BasicBlock)>,
        cleanup: Option<mir::BasicBlock>,
        copied_constant_arguments: &[PlaceRef<'tcx, <Bx as BackendTypes>::Value>],
        mergeable_succ: bool,
    ) -> MergingSucc {
        // If there is a cleanup block and the function we're calling can unwind, then
        // do an invoke, otherwise do a call.
        let fn_ty = bx.fn_decl_backend_type(&fn_abi);

        let unwind_block = if let Some(cleanup) = cleanup.filter(|_| fn_abi.can_unwind) {
            Some(self.llbb_with_cleanup(fx, cleanup))
        } else if fx.mir[self.bb].is_cleanup
            && fn_abi.can_unwind
            && !base::wants_msvc_seh(fx.cx.tcx().sess)
        {
            // Exception must not propagate out of the execution of a cleanup (doing so
            // can cause undefined behaviour). We insert a double unwind guard for
            // functions that can potentially unwind to protect against this.
            //
            // This is not necessary for SEH which does not use successive unwinding
            // like Itanium EH. EH frames in SEH are different from normal function
            // frames and SEH will abort automatically if an exception tries to
            // propagate out from cleanup.
            Some(fx.double_unwind_guard())
        } else {
            None
        };

        if let Some(unwind_block) = unwind_block {
            let ret_llbb = if let Some((_, target)) = destination {
                fx.llbb(target)
            } else {
                fx.unreachable_block()
            };
            let invokeret = bx.invoke(
                fn_ty,
                Some(&fn_abi),
                fn_ptr,
                &llargs,
                ret_llbb,
                unwind_block,
                self.funclet(fx),
            );
            if fx.mir[self.bb].is_cleanup {
                bx.do_not_inline(invokeret);
            }

            if let Some((ret_dest, target)) = destination {
                bx.switch_to_block(fx.llbb(target));
                fx.set_debug_loc(bx, self.terminator.source_info);
                for tmp in copied_constant_arguments {
                    bx.lifetime_end(tmp.llval, tmp.layout.size);
                }
                fx.store_return(bx, ret_dest, &fn_abi.ret, invokeret);
            }
            MergingSucc::False
        } else {
            let llret = bx.call(fn_ty, Some(&fn_abi), fn_ptr, &llargs, self.funclet(fx));
            if fx.mir[self.bb].is_cleanup {
                // Cleanup is always the cold path. Don't inline
                // drop glue. Also, when there is a deeply-nested
                // struct, there are "symmetry" issues that cause
                // exponential inlining - see issue #41696.
                bx.do_not_inline(llret);
            }

            if let Some((ret_dest, target)) = destination {
                for tmp in copied_constant_arguments {
                    bx.lifetime_end(tmp.llval, tmp.layout.size);
                }
                fx.store_return(bx, ret_dest, &fn_abi.ret, llret);
                self.funclet_br(fx, bx, target, mergeable_succ)
            } else {
                bx.unreachable();
                MergingSucc::False
            }
        }
    }

    /// Generates inline assembly with optional `destination` and `cleanup`.
    fn do_inlineasm<Bx: BuilderMethods<'a, 'tcx>>(
        &self,
        fx: &mut FunctionCx<'a, 'tcx, Bx>,
        bx: &mut Bx,
        template: &[InlineAsmTemplatePiece],
        operands: &[InlineAsmOperandRef<'tcx, Bx>],
        options: InlineAsmOptions,
        line_spans: &[Span],
        destination: Option<mir::BasicBlock>,
        cleanup: Option<mir::BasicBlock>,
        instance: Instance<'_>,
        mergeable_succ: bool,
    ) -> MergingSucc {
        if let Some(cleanup) = cleanup {
            let ret_llbb = if let Some(target) = destination {
                fx.llbb(target)
            } else {
                fx.unreachable_block()
            };

            bx.codegen_inline_asm(
                template,
                &operands,
                options,
                line_spans,
                instance,
                Some((ret_llbb, self.llbb_with_cleanup(fx, cleanup), self.funclet(fx))),
            );
            MergingSucc::False
        } else {
            bx.codegen_inline_asm(template, &operands, options, line_spans, instance, None);

            if let Some(target) = destination {
                self.funclet_br(fx, bx, target, mergeable_succ)
            } else {
                bx.unreachable();
                MergingSucc::False
            }
        }
    }
}

/// Codegen implementations for some terminator variants.
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
    /// Generates code for a `Resume` terminator.
    fn codegen_resume_terminator(&mut self, helper: TerminatorCodegenHelper<'tcx>, bx: &mut Bx) {
        if let Some(funclet) = helper.funclet(self) {
            bx.cleanup_ret(funclet, None);
        } else {
            let slot = self.get_personality_slot(bx);
            let exn0 = slot.project_field(bx, 0);
            let exn0 = bx.load_operand(exn0).immediate();
            let exn1 = slot.project_field(bx, 1);
            let exn1 = bx.load_operand(exn1).immediate();
            slot.storage_dead(bx);

            bx.resume(exn0, exn1);
        }
    }

    fn codegen_switchint_terminator(
        &mut self,
        helper: TerminatorCodegenHelper<'tcx>,
        bx: &mut Bx,
        discr: &mir::Operand<'tcx>,
        targets: &SwitchTargets,
    ) {
        let discr = self.codegen_operand(bx, &discr);
        let switch_ty = discr.layout.ty;
        let mut target_iter = targets.iter();
        if target_iter.len() == 1 {
            // If there are two targets (one conditional, one fallback), emit `br` instead of
            // `switch`.
            let (test_value, target) = target_iter.next().unwrap();
            let lltrue = helper.llbb_with_cleanup(self, target);
            let llfalse = helper.llbb_with_cleanup(self, targets.otherwise());
            if switch_ty == bx.tcx().types.bool {
                // Don't generate trivial icmps when switching on bool.
                match test_value {
                    0 => bx.cond_br(discr.immediate(), llfalse, lltrue),
                    1 => bx.cond_br(discr.immediate(), lltrue, llfalse),
                    _ => bug!(),
                }
            } else {
                let switch_llty = bx.immediate_backend_type(bx.layout_of(switch_ty));
                let llval = bx.const_uint_big(switch_llty, test_value);
                let cmp = bx.icmp(IntPredicate::IntEQ, discr.immediate(), llval);
                bx.cond_br(cmp, lltrue, llfalse);
            }
        } else if self.cx.sess().opts.optimize == OptLevel::No
            && target_iter.len() == 2
            && self.mir[targets.otherwise()].is_empty_unreachable()
        {
            // In unoptimized builds, if there are two normal targets and the `otherwise` target is
            // an unreachable BB, emit `br` instead of `switch`. This leaves behind the unreachable
            // BB, which will usually (but not always) be dead code.
            //
            // Why only in unoptimized builds?
            // - In unoptimized builds LLVM uses FastISel which does not support switches, so it
            //   must fall back to the to the slower SelectionDAG isel. Therefore, using `br` gives
            //   significant compile time speedups for unoptimized builds.
            // - In optimized builds the above doesn't hold, and using `br` sometimes results in
            //   worse generated code because LLVM can no longer tell that the value being switched
            //   on can only have two values, e.g. 0 and 1.
            //
            let (test_value1, target1) = target_iter.next().unwrap();
            let (_test_value2, target2) = target_iter.next().unwrap();
            let ll1 = helper.llbb_with_cleanup(self, target1);
            let ll2 = helper.llbb_with_cleanup(self, target2);
            let switch_llty = bx.immediate_backend_type(bx.layout_of(switch_ty));
            let llval = bx.const_uint_big(switch_llty, test_value1);
            let cmp = bx.icmp(IntPredicate::IntEQ, discr.immediate(), llval);
            bx.cond_br(cmp, ll1, ll2);
        } else {
            bx.switch(
                discr.immediate(),
                helper.llbb_with_cleanup(self, targets.otherwise()),
                target_iter.map(|(value, target)| (value, helper.llbb_with_cleanup(self, target))),
            );
        }
    }

    fn codegen_return_terminator(&mut self, bx: &mut Bx) {
        // Call `va_end` if this is the definition of a C-variadic function.
        if self.fn_abi.c_variadic {
            // The `VaList` "spoofed" argument is just after all the real arguments.
            let va_list_arg_idx = self.fn_abi.args.len();
            match self.locals[mir::Local::new(1 + va_list_arg_idx)] {
                LocalRef::Place(va_list) => {
                    bx.va_end(va_list.llval);
                }
                _ => bug!("C-variadic function must have a `VaList` place"),
            }
        }
        if self.fn_abi.ret.layout.abi.is_uninhabited() {
            // Functions with uninhabited return values are marked `noreturn`,
            // so we should make sure that we never actually do.
            // We play it safe by using a well-defined `abort`, but we could go for immediate UB
            // if that turns out to be helpful.
            bx.abort();
            // `abort` does not terminate the block, so we still need to generate
            // an `unreachable` terminator after it.
            bx.unreachable();
            return;
        }
        let llval = match &self.fn_abi.ret.mode {
            PassMode::Ignore | PassMode::Indirect { .. } => {
                bx.ret_void();
                return;
            }

            PassMode::Direct(_) | PassMode::Pair(..) => {
                let op = self.codegen_consume(bx, mir::Place::return_place().as_ref());
                if let Ref(llval, _, align) = op.val {
                    bx.load(bx.backend_type(op.layout), llval, align)
                } else {
                    op.immediate_or_packed_pair(bx)
                }
            }

            PassMode::Cast(cast_ty, _) => {
                let op = match self.locals[mir::RETURN_PLACE] {
                    LocalRef::Operand(Some(op)) => op,
                    LocalRef::Operand(None) => bug!("use of return before def"),
                    LocalRef::Place(cg_place) => OperandRef {
                        val: Ref(cg_place.llval, None, cg_place.align),
                        layout: cg_place.layout,
                    },
                    LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
                };
                let llslot = match op.val {
                    Immediate(_) | Pair(..) => {
                        let scratch = PlaceRef::alloca(bx, self.fn_abi.ret.layout);
                        op.val.store(bx, scratch);
                        scratch.llval
                    }
                    Ref(llval, _, align) => {
                        assert_eq!(align, op.layout.align.abi, "return place is unaligned!");
                        llval
                    }
                };
                let ty = bx.cast_backend_type(cast_ty);
                let addr = bx.pointercast(llslot, bx.type_ptr_to(ty));
                bx.load(ty, addr, self.fn_abi.ret.layout.align.abi)
            }
        };
        bx.ret(llval);
    }

    #[tracing::instrument(level = "trace", skip(self, helper, bx))]
    fn codegen_drop_terminator(
        &mut self,
        helper: TerminatorCodegenHelper<'tcx>,
        bx: &mut Bx,
        location: mir::Place<'tcx>,
        target: mir::BasicBlock,
        unwind: Option<mir::BasicBlock>,
        mergeable_succ: bool,
    ) -> MergingSucc {
        let ty = location.ty(self.mir, bx.tcx()).ty;
        let ty = self.monomorphize(ty);
        let drop_fn = Instance::resolve_drop_in_place(bx.tcx(), ty);

        if let ty::InstanceDef::DropGlue(_, None) = drop_fn.def {
            // we don't actually need to drop anything.
            return helper.funclet_br(self, bx, target, mergeable_succ);
        }

        let place = self.codegen_place(bx, location.as_ref());
        let (args1, args2);
        let mut args = if let Some(llextra) = place.llextra {
            args2 = [place.llval, llextra];
            &args2[..]
        } else {
            args1 = [place.llval];
            &args1[..]
        };
        let (drop_fn, fn_abi) = match ty.kind() {
            // FIXME(eddyb) perhaps move some of this logic into
            // `Instance::resolve_drop_in_place`?
            ty::Dynamic(_, _, ty::Dyn) => {
                // IN THIS ARM, WE HAVE:
                // ty = *mut (dyn Trait)
                // which is: exists<T> ( *mut T,    Vtable<T: Trait> )
                //                       args[0]    args[1]
                //
                // args = ( Data, Vtable )
                //                  |
                //                  v
                //                /-------\
                //                | ...   |
                //                \-------/
                //
                let virtual_drop = Instance {
                    def: ty::InstanceDef::Virtual(drop_fn.def_id(), 0),
                    substs: drop_fn.substs,
                };
                debug!("ty = {:?}", ty);
                debug!("drop_fn = {:?}", drop_fn);
                debug!("args = {:?}", args);
                let fn_abi = bx.fn_abi_of_instance(virtual_drop, ty::List::empty());
                let vtable = args[1];
                // Truncate vtable off of args list
                args = &args[..1];
                (
                    meth::VirtualIndex::from_index(ty::COMMON_VTABLE_ENTRIES_DROPINPLACE)
                        .get_fn(bx, vtable, ty, &fn_abi),
                    fn_abi,
                )
            }
            ty::Dynamic(_, _, ty::DynStar) => {
                // IN THIS ARM, WE HAVE:
                // ty = *mut (dyn* Trait)
                // which is: *mut exists<T: sizeof(T) == sizeof(usize)> (T, Vtable<T: Trait>)
                //
                // args = [ * ]
                //          |
                //          v
                //      ( Data, Vtable )
                //                |
                //                v
                //              /-------\
                //              | ...   |
                //              \-------/
                //
                //
                // WE CAN CONVERT THIS INTO THE ABOVE LOGIC BY DOING
                //
                // data = &(*args[0]).0    // gives a pointer to Data above (really the same pointer)
                // vtable = (*args[0]).1   // loads the vtable out
                // (data, vtable)          // an equivalent Rust `*mut dyn Trait`
                //
                // SO THEN WE CAN USE THE ABOVE CODE.
                let virtual_drop = Instance {
                    def: ty::InstanceDef::Virtual(drop_fn.def_id(), 0),
                    substs: drop_fn.substs,
                };
                debug!("ty = {:?}", ty);
                debug!("drop_fn = {:?}", drop_fn);
                debug!("args = {:?}", args);
                let fn_abi = bx.fn_abi_of_instance(virtual_drop, ty::List::empty());
                let data = args[0];
                let data_ty = bx.cx().backend_type(place.layout);
                let vtable_ptr =
                    bx.gep(data_ty, data, &[bx.cx().const_i32(0), bx.cx().const_i32(1)]);
                let vtable = bx.load(bx.type_i8p(), vtable_ptr, abi::Align::ONE);
                // Truncate vtable off of args list
                args = &args[..1];
                debug!("args' = {:?}", args);
                (
                    meth::VirtualIndex::from_index(ty::COMMON_VTABLE_ENTRIES_DROPINPLACE)
                        .get_fn(bx, vtable, ty, &fn_abi),
                    fn_abi,
                )
            }
            _ => (bx.get_fn_addr(drop_fn), bx.fn_abi_of_instance(drop_fn, ty::List::empty())),
        };
        helper.do_call(
            self,
            bx,
            fn_abi,
            drop_fn,
            args,
            Some((ReturnDest::Nothing, target)),
            unwind,
            &[],
            mergeable_succ,
        )
    }

    fn codegen_assert_terminator(
        &mut self,
        helper: TerminatorCodegenHelper<'tcx>,
        bx: &mut Bx,
        terminator: &mir::Terminator<'tcx>,
        cond: &mir::Operand<'tcx>,
        expected: bool,
        msg: &mir::AssertMessage<'tcx>,
        target: mir::BasicBlock,
        cleanup: Option<mir::BasicBlock>,
        mergeable_succ: bool,
    ) -> MergingSucc {
        let span = terminator.source_info.span;
        let cond = self.codegen_operand(bx, cond).immediate();
        let mut const_cond = bx.const_to_opt_u128(cond, false).map(|c| c == 1);

        // This case can currently arise only from functions marked
        // with #[rustc_inherit_overflow_checks] and inlined from
        // another crate (mostly core::num generic/#[inline] fns),
        // while the current crate doesn't use overflow checks.
        // NOTE: Unlike binops, negation doesn't have its own
        // checked operation, just a comparison with the minimum
        // value, so we have to check for the assert message.
        if !bx.check_overflow() {
            if let AssertKind::OverflowNeg(_) = *msg {
                const_cond = Some(expected);
            }
        }

        // Don't codegen the panic block if success if known.
        if const_cond == Some(expected) {
            return helper.funclet_br(self, bx, target, mergeable_succ);
        }

        // Pass the condition through llvm.expect for branch hinting.
        let cond = bx.expect(cond, expected);

        // Create the failure block and the conditional branch to it.
        let lltarget = helper.llbb_with_cleanup(self, target);
        let panic_block = bx.append_sibling_block("panic");
        if expected {
            bx.cond_br(cond, lltarget, panic_block);
        } else {
            bx.cond_br(cond, panic_block, lltarget);
        }

        // After this point, bx is the block for the call to panic.
        bx.switch_to_block(panic_block);
        self.set_debug_loc(bx, terminator.source_info);

        // Get the location information.
        let location = self.get_caller_location(bx, terminator.source_info).immediate();

        // Put together the arguments to the panic entry point.
        let (lang_item, args) = match msg {
            AssertKind::BoundsCheck { ref len, ref index } => {
                let len = self.codegen_operand(bx, len).immediate();
                let index = self.codegen_operand(bx, index).immediate();
                // It's `fn panic_bounds_check(index: usize, len: usize)`,
                // and `#[track_caller]` adds an implicit third argument.
                (LangItem::PanicBoundsCheck, vec![index, len, location])
            }
            _ => {
                let msg = bx.const_str(msg.description());
                // It's `pub fn panic(expr: &str)`, with the wide reference being passed
                // as two arguments, and `#[track_caller]` adds an implicit third argument.
                (LangItem::Panic, vec![msg.0, msg.1, location])
            }
        };

        let (fn_abi, llfn) = common::build_langcall(bx, Some(span), lang_item);

        // Codegen the actual panic invoke/call.
        let merging_succ = helper.do_call(self, bx, fn_abi, llfn, &args, None, cleanup, &[], false);
        assert_eq!(merging_succ, MergingSucc::False);
        MergingSucc::False
    }

    fn codegen_abort_terminator(
        &mut self,
        helper: TerminatorCodegenHelper<'tcx>,
        bx: &mut Bx,
        terminator: &mir::Terminator<'tcx>,
    ) {
        let span = terminator.source_info.span;
        self.set_debug_loc(bx, terminator.source_info);

        // Obtain the panic entry point.
        let (fn_abi, llfn) = common::build_langcall(bx, Some(span), LangItem::PanicCannotUnwind);

        // Codegen the actual panic invoke/call.
        let merging_succ = helper.do_call(self, bx, fn_abi, llfn, &[], None, None, &[], false);
        assert_eq!(merging_succ, MergingSucc::False);
    }

    /// Returns `Some` if this is indeed a panic intrinsic and codegen is done.
    fn codegen_panic_intrinsic(
        &mut self,
        helper: &TerminatorCodegenHelper<'tcx>,
        bx: &mut Bx,
        intrinsic: Option<Symbol>,
        instance: Option<Instance<'tcx>>,
        source_info: mir::SourceInfo,
        target: Option<mir::BasicBlock>,
        cleanup: Option<mir::BasicBlock>,
        mergeable_succ: bool,
    ) -> Option<MergingSucc> {
        // Emit a panic or a no-op for `assert_*` intrinsics.
        // These are intrinsics that compile to panics so that we can get a message
        // which mentions the offending type, even from a const context.
        #[derive(Debug, PartialEq)]
        enum AssertIntrinsic {
            Inhabited,
            ZeroValid,
            MemUninitializedValid,
        }
        let panic_intrinsic = intrinsic.and_then(|i| match i {
            sym::assert_inhabited => Some(AssertIntrinsic::Inhabited),
            sym::assert_zero_valid => Some(AssertIntrinsic::ZeroValid),
            sym::assert_mem_uninitialized_valid => Some(AssertIntrinsic::MemUninitializedValid),
            _ => None,
        });
        if let Some(intrinsic) = panic_intrinsic {
            use AssertIntrinsic::*;

            let ty = instance.unwrap().substs.type_at(0);
            let layout = bx.layout_of(ty);
            let do_panic = match intrinsic {
                Inhabited => layout.abi.is_uninhabited(),
                ZeroValid => !bx.tcx().permits_zero_init(bx.param_env().and(layout)),
                MemUninitializedValid => !bx.tcx().permits_uninit_init(bx.param_env().and(layout)),
            };
            Some(if do_panic {
                let msg_str = with_no_visible_paths!({
                    with_no_trimmed_paths!({
                        if layout.abi.is_uninhabited() {
                            // Use this error even for the other intrinsics as it is more precise.
                            format!("attempted to instantiate uninhabited type `{}`", ty)
                        } else if intrinsic == ZeroValid {
                            format!("attempted to zero-initialize type `{}`, which is invalid", ty)
                        } else {
                            format!(
                                "attempted to leave type `{}` uninitialized, which is invalid",
                                ty
                            )
                        }
                    })
                });
                let msg = bx.const_str(&msg_str);

                // Obtain the panic entry point.
                let (fn_abi, llfn) =
                    common::build_langcall(bx, Some(source_info.span), LangItem::PanicNounwind);

                // Codegen the actual panic invoke/call.
                helper.do_call(
                    self,
                    bx,
                    fn_abi,
                    llfn,
                    &[msg.0, msg.1],
                    target.as_ref().map(|bb| (ReturnDest::Nothing, *bb)),
                    cleanup,
                    &[],
                    mergeable_succ,
                )
            } else {
                // a NOP
                let target = target.unwrap();
                helper.funclet_br(self, bx, target, mergeable_succ)
            })
        } else {
            None
        }
    }

    fn codegen_call_terminator(
        &mut self,
        helper: TerminatorCodegenHelper<'tcx>,
        bx: &mut Bx,
        terminator: &mir::Terminator<'tcx>,
        func: &mir::Operand<'tcx>,
        args: &[mir::Operand<'tcx>],
        destination: mir::Place<'tcx>,
        target: Option<mir::BasicBlock>,
        cleanup: Option<mir::BasicBlock>,
        fn_span: Span,
        mergeable_succ: bool,
    ) -> MergingSucc {
        let source_info = terminator.source_info;
        let span = source_info.span;

        // Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar.
        let callee = self.codegen_operand(bx, func);

        let (instance, mut llfn) = match *callee.layout.ty.kind() {
            ty::FnDef(def_id, substs) => (
                Some(
                    ty::Instance::expect_resolve(
                        bx.tcx(),
                        ty::ParamEnv::reveal_all(),
                        def_id,
                        substs,
                    )
                    .polymorphize(bx.tcx()),
                ),
                None,
            ),
            ty::FnPtr(_) => (None, Some(callee.immediate())),
            _ => bug!("{} is not callable", callee.layout.ty),
        };
        let def = instance.map(|i| i.def);

        if let Some(ty::InstanceDef::DropGlue(_, None)) = def {
            // Empty drop glue; a no-op.
            let target = target.unwrap();
            return helper.funclet_br(self, bx, target, mergeable_succ);
        }

        // FIXME(eddyb) avoid computing this if possible, when `instance` is
        // available - right now `sig` is only needed for getting the `abi`
        // and figuring out how many extra args were passed to a C-variadic `fn`.
        let sig = callee.layout.ty.fn_sig(bx.tcx());
        let abi = sig.abi();

        // Handle intrinsics old codegen wants Expr's for, ourselves.
        let intrinsic = match def {
            Some(ty::InstanceDef::Intrinsic(def_id)) => Some(bx.tcx().item_name(def_id)),
            _ => None,
        };

        let extra_args = &args[sig.inputs().skip_binder().len()..];
        let extra_args = bx.tcx().mk_type_list(extra_args.iter().map(|op_arg| {
            let op_ty = op_arg.ty(self.mir, bx.tcx());
            self.monomorphize(op_ty)
        }));

        let fn_abi = match instance {
            Some(instance) => bx.fn_abi_of_instance(instance, extra_args),
            None => bx.fn_abi_of_fn_ptr(sig, extra_args),
        };

        if intrinsic == Some(sym::transmute) {
            return if let Some(target) = target {
                self.codegen_transmute(bx, &args[0], destination);
                helper.funclet_br(self, bx, target, mergeable_succ)
            } else {
                // If we are trying to transmute to an uninhabited type,
                // it is likely there is no allotted destination. In fact,
                // transmuting to an uninhabited type is UB, which means
                // we can do what we like. Here, we declare that transmuting
                // into an uninhabited type is impossible, so anything following
                // it must be unreachable.
                assert_eq!(fn_abi.ret.layout.abi, abi::Abi::Uninhabited);
                bx.unreachable();
                MergingSucc::False
            };
        }

        if let Some(merging_succ) = self.codegen_panic_intrinsic(
            &helper,
            bx,
            intrinsic,
            instance,
            source_info,
            target,
            cleanup,
            mergeable_succ,
        ) {
            return merging_succ;
        }

        // The arguments we'll be passing. Plus one to account for outptr, if used.
        let arg_count = fn_abi.args.len() + fn_abi.ret.is_indirect() as usize;
        let mut llargs = Vec::with_capacity(arg_count);

        // Prepare the return value destination
        let ret_dest = if target.is_some() {
            let is_intrinsic = intrinsic.is_some();
            self.make_return_dest(bx, destination, &fn_abi.ret, &mut llargs, is_intrinsic)
        } else {
            ReturnDest::Nothing
        };

        if intrinsic == Some(sym::caller_location) {
            return if let Some(target) = target {
                let location =
                    self.get_caller_location(bx, mir::SourceInfo { span: fn_span, ..source_info });

                if let ReturnDest::IndirectOperand(tmp, _) = ret_dest {
                    location.val.store(bx, tmp);
                }
                self.store_return(bx, ret_dest, &fn_abi.ret, location.immediate());
                helper.funclet_br(self, bx, target, mergeable_succ)
            } else {
                MergingSucc::False
            };
        }

        match intrinsic {
            None | Some(sym::drop_in_place) => {}
            Some(sym::copy_nonoverlapping) => unreachable!(),
            Some(intrinsic) => {
                let dest = match ret_dest {
                    _ if fn_abi.ret.is_indirect() => llargs[0],
                    ReturnDest::Nothing => {
                        bx.const_undef(bx.type_ptr_to(bx.arg_memory_ty(&fn_abi.ret)))
                    }
                    ReturnDest::IndirectOperand(dst, _) | ReturnDest::Store(dst) => dst.llval,
                    ReturnDest::DirectOperand(_) => {
                        bug!("Cannot use direct operand with an intrinsic call")
                    }
                };

                let args: Vec<_> = args
                    .iter()
                    .enumerate()
                    .map(|(i, arg)| {
                        // The indices passed to simd_shuffle* in the
                        // third argument must be constant. This is
                        // checked by const-qualification, which also
                        // promotes any complex rvalues to constants.
                        if i == 2 && intrinsic.as_str().starts_with("simd_shuffle") {
                            if let mir::Operand::Constant(constant) = arg {
                                let c = self.eval_mir_constant(constant);
                                let (llval, ty) = self.simd_shuffle_indices(
                                    &bx,
                                    constant.span,
                                    self.monomorphize(constant.ty()),
                                    c,
                                );
                                return OperandRef {
                                    val: Immediate(llval),
                                    layout: bx.layout_of(ty),
                                };
                            } else {
                                span_bug!(span, "shuffle indices must be constant");
                            }
                        }

                        self.codegen_operand(bx, arg)
                    })
                    .collect();

                Self::codegen_intrinsic_call(
                    bx,
                    *instance.as_ref().unwrap(),
                    &fn_abi,
                    &args,
                    dest,
                    span,
                );

                if let ReturnDest::IndirectOperand(dst, _) = ret_dest {
                    self.store_return(bx, ret_dest, &fn_abi.ret, dst.llval);
                }

                return if let Some(target) = target {
                    helper.funclet_br(self, bx, target, mergeable_succ)
                } else {
                    bx.unreachable();
                    MergingSucc::False
                };
            }
        }

        // Split the rust-call tupled arguments off.
        let (first_args, untuple) = if abi == Abi::RustCall && !args.is_empty() {
            let (tup, args) = args.split_last().unwrap();
            (args, Some(tup))
        } else {
            (args, None)
        };

        let mut copied_constant_arguments = vec![];
        'make_args: for (i, arg) in first_args.iter().enumerate() {
            let mut op = self.codegen_operand(bx, arg);

            if let (0, Some(ty::InstanceDef::Virtual(_, idx))) = (i, def) {
                match op.val {
                    Pair(data_ptr, meta) => {
                        // In the case of Rc<Self>, we need to explicitly pass a
                        // *mut RcBox<Self> with a Scalar (not ScalarPair) ABI. This is a hack
                        // that is understood elsewhere in the compiler as a method on
                        // `dyn Trait`.
                        // To get a `*mut RcBox<Self>`, we just keep unwrapping newtypes until
                        // we get a value of a built-in pointer type.
                        //
                        // This is also relevant for `Pin<&mut Self>`, where we need to peel the `Pin`.
                        'descend_newtypes: while !op.layout.ty.is_unsafe_ptr()
                            && !op.layout.ty.is_region_ptr()
                        {
                            for i in 0..op.layout.fields.count() {
                                let field = op.extract_field(bx, i);
                                if !field.layout.is_zst() {
                                    // we found the one non-zero-sized field that is allowed
                                    // now find *its* non-zero-sized field, or stop if it's a
                                    // pointer
                                    op = field;
                                    continue 'descend_newtypes;
                                }
                            }

                            span_bug!(span, "receiver has no non-zero-sized fields {:?}", op);
                        }

                        // now that we have `*dyn Trait` or `&dyn Trait`, split it up into its
                        // data pointer and vtable. Look up the method in the vtable, and pass
                        // the data pointer as the first argument
                        llfn = Some(meth::VirtualIndex::from_index(idx).get_fn(
                            bx,
                            meta,
                            op.layout.ty,
                            &fn_abi,
                        ));
                        llargs.push(data_ptr);
                        continue 'make_args;
                    }
                    Ref(data_ptr, Some(meta), _) => {
                        // by-value dynamic dispatch
                        llfn = Some(meth::VirtualIndex::from_index(idx).get_fn(
                            bx,
                            meta,
                            op.layout.ty,
                            &fn_abi,
                        ));
                        llargs.push(data_ptr);
                        continue;
                    }
                    Immediate(_) => {
                        // See comment above explaining why we peel these newtypes
                        'descend_newtypes: while !op.layout.ty.is_unsafe_ptr()
                            && !op.layout.ty.is_region_ptr()
                        {
                            for i in 0..op.layout.fields.count() {
                                let field = op.extract_field(bx, i);
                                if !field.layout.is_zst() {
                                    // we found the one non-zero-sized field that is allowed
                                    // now find *its* non-zero-sized field, or stop if it's a
                                    // pointer
                                    op = field;
                                    continue 'descend_newtypes;
                                }
                            }

                            span_bug!(span, "receiver has no non-zero-sized fields {:?}", op);
                        }

                        // Make sure that we've actually unwrapped the rcvr down
                        // to a pointer or ref to `dyn* Trait`.
                        if !op.layout.ty.builtin_deref(true).unwrap().ty.is_dyn_star() {
                            span_bug!(span, "can't codegen a virtual call on {:#?}", op);
                        }
                        let place = op.deref(bx.cx());
                        let data_ptr = place.project_field(bx, 0);
                        let meta_ptr = place.project_field(bx, 1);
                        let meta = bx.load_operand(meta_ptr);
                        llfn = Some(meth::VirtualIndex::from_index(idx).get_fn(
                            bx,
                            meta.immediate(),
                            op.layout.ty,
                            &fn_abi,
                        ));
                        llargs.push(data_ptr.llval);
                        continue;
                    }
                    _ => {
                        span_bug!(span, "can't codegen a virtual call on {:#?}", op);
                    }
                }
            }

            // The callee needs to own the argument memory if we pass it
            // by-ref, so make a local copy of non-immediate constants.
            match (arg, op.val) {
                (&mir::Operand::Copy(_), Ref(_, None, _))
                | (&mir::Operand::Constant(_), Ref(_, None, _)) => {
                    let tmp = PlaceRef::alloca(bx, op.layout);
                    bx.lifetime_start(tmp.llval, tmp.layout.size);
                    op.val.store(bx, tmp);
                    op.val = Ref(tmp.llval, None, tmp.align);
                    copied_constant_arguments.push(tmp);
                }
                _ => {}
            }

            self.codegen_argument(bx, op, &mut llargs, &fn_abi.args[i]);
        }
        let num_untupled = untuple.map(|tup| {
            self.codegen_arguments_untupled(bx, tup, &mut llargs, &fn_abi.args[first_args.len()..])
        });

        let needs_location =
            instance.map_or(false, |i| i.def.requires_caller_location(self.cx.tcx()));
        if needs_location {
            let mir_args = if let Some(num_untupled) = num_untupled {
                first_args.len() + num_untupled
            } else {
                args.len()
            };
            assert_eq!(
                fn_abi.args.len(),
                mir_args + 1,
                "#[track_caller] fn's must have 1 more argument in their ABI than in their MIR: {:?} {:?} {:?}",
                instance,
                fn_span,
                fn_abi,
            );
            let location =
                self.get_caller_location(bx, mir::SourceInfo { span: fn_span, ..source_info });
            debug!(
                "codegen_call_terminator({:?}): location={:?} (fn_span {:?})",
                terminator, location, fn_span
            );

            let last_arg = fn_abi.args.last().unwrap();
            self.codegen_argument(bx, location, &mut llargs, last_arg);
        }

        let (is_indirect_call, fn_ptr) = match (llfn, instance) {
            (Some(llfn), _) => (true, llfn),
            (None, Some(instance)) => (false, bx.get_fn_addr(instance)),
            _ => span_bug!(span, "no llfn for call"),
        };

        // For backends that support CFI using type membership (i.e., testing whether a given
        // pointer is associated with a type identifier).
        if bx.tcx().sess.is_sanitizer_cfi_enabled() && is_indirect_call {
            // Emit type metadata and checks.
            // FIXME(rcvalle): Add support for generalized identifiers.
            // FIXME(rcvalle): Create distinct unnamed MDNodes for internal identifiers.
            let typeid = typeid_for_fnabi(bx.tcx(), fn_abi);
            let typeid_metadata = self.cx.typeid_metadata(typeid);

            // Test whether the function pointer is associated with the type identifier.
            let cond = bx.type_test(fn_ptr, typeid_metadata);
            let bb_pass = bx.append_sibling_block("type_test.pass");
            let bb_fail = bx.append_sibling_block("type_test.fail");
            bx.cond_br(cond, bb_pass, bb_fail);

            bx.switch_to_block(bb_pass);
            let merging_succ = helper.do_call(
                self,
                bx,
                fn_abi,
                fn_ptr,
                &llargs,
                target.as_ref().map(|&target| (ret_dest, target)),
                cleanup,
                &copied_constant_arguments,
                false,
            );
            assert_eq!(merging_succ, MergingSucc::False);

            bx.switch_to_block(bb_fail);
            bx.abort();
            bx.unreachable();

            return MergingSucc::False;
        }

        helper.do_call(
            self,
            bx,
            fn_abi,
            fn_ptr,
            &llargs,
            target.as_ref().map(|&target| (ret_dest, target)),
            cleanup,
            &copied_constant_arguments,
            mergeable_succ,
        )
    }

    fn codegen_asm_terminator(
        &mut self,
        helper: TerminatorCodegenHelper<'tcx>,
        bx: &mut Bx,
        terminator: &mir::Terminator<'tcx>,
        template: &[ast::InlineAsmTemplatePiece],
        operands: &[mir::InlineAsmOperand<'tcx>],
        options: ast::InlineAsmOptions,
        line_spans: &[Span],
        destination: Option<mir::BasicBlock>,
        cleanup: Option<mir::BasicBlock>,
        instance: Instance<'_>,
        mergeable_succ: bool,
    ) -> MergingSucc {
        let span = terminator.source_info.span;

        let operands: Vec<_> = operands
            .iter()
            .map(|op| match *op {
                mir::InlineAsmOperand::In { reg, ref value } => {
                    let value = self.codegen_operand(bx, value);
                    InlineAsmOperandRef::In { reg, value }
                }
                mir::InlineAsmOperand::Out { reg, late, ref place } => {
                    let place = place.map(|place| self.codegen_place(bx, place.as_ref()));
                    InlineAsmOperandRef::Out { reg, late, place }
                }
                mir::InlineAsmOperand::InOut { reg, late, ref in_value, ref out_place } => {
                    let in_value = self.codegen_operand(bx, in_value);
                    let out_place =
                        out_place.map(|out_place| self.codegen_place(bx, out_place.as_ref()));
                    InlineAsmOperandRef::InOut { reg, late, in_value, out_place }
                }
                mir::InlineAsmOperand::Const { ref value } => {
                    let const_value = self
                        .eval_mir_constant(value)
                        .unwrap_or_else(|_| span_bug!(span, "asm const cannot be resolved"));
                    let string = common::asm_const_to_str(
                        bx.tcx(),
                        span,
                        const_value,
                        bx.layout_of(value.ty()),
                    );
                    InlineAsmOperandRef::Const { string }
                }
                mir::InlineAsmOperand::SymFn { ref value } => {
                    let literal = self.monomorphize(value.literal);
                    if let ty::FnDef(def_id, substs) = *literal.ty().kind() {
                        let instance = ty::Instance::resolve_for_fn_ptr(
                            bx.tcx(),
                            ty::ParamEnv::reveal_all(),
                            def_id,
                            substs,
                        )
                        .unwrap();
                        InlineAsmOperandRef::SymFn { instance }
                    } else {
                        span_bug!(span, "invalid type for asm sym (fn)");
                    }
                }
                mir::InlineAsmOperand::SymStatic { def_id } => {
                    InlineAsmOperandRef::SymStatic { def_id }
                }
            })
            .collect();

        helper.do_inlineasm(
            self,
            bx,
            template,
            &operands,
            options,
            line_spans,
            destination,
            cleanup,
            instance,
            mergeable_succ,
        )
    }
}

impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
    pub fn codegen_block(&mut self, mut bb: mir::BasicBlock) {
        let llbb = match self.try_llbb(bb) {
            Some(llbb) => llbb,
            None => return,
        };
        let bx = &mut Bx::build(self.cx, llbb);
        let mir = self.mir;

        // MIR basic blocks stop at any function call. This may not be the case
        // for the backend's basic blocks, in which case we might be able to
        // combine multiple MIR basic blocks into a single backend basic block.
        loop {
            let data = &mir[bb];

            debug!("codegen_block({:?}={:?})", bb, data);

            for statement in &data.statements {
                self.codegen_statement(bx, statement);
            }

            let merging_succ = self.codegen_terminator(bx, bb, data.terminator());
            if let MergingSucc::False = merging_succ {
                break;
            }

            // We are merging the successor into the produced backend basic
            // block. Record that the successor should be skipped when it is
            // reached.
            //
            // Note: we must not have already generated code for the successor.
            // This is implicitly ensured by the reverse postorder traversal,
            // and the assertion explicitly guarantees that.
            let mut successors = data.terminator().successors();
            let succ = successors.next().unwrap();
            assert!(matches!(self.cached_llbbs[succ], CachedLlbb::None));
            self.cached_llbbs[succ] = CachedLlbb::Skip;
            bb = succ;
        }
    }

    fn codegen_terminator(
        &mut self,
        bx: &mut Bx,
        bb: mir::BasicBlock,
        terminator: &'tcx mir::Terminator<'tcx>,
    ) -> MergingSucc {
        debug!("codegen_terminator: {:?}", terminator);

        let helper = TerminatorCodegenHelper { bb, terminator };

        let mergeable_succ = || {
            // Note: any call to `switch_to_block` will invalidate a `true` value
            // of `mergeable_succ`.
            let mut successors = terminator.successors();
            if let Some(succ) = successors.next()
                && successors.next().is_none()
                && let &[succ_pred] = self.mir.basic_blocks.predecessors()[succ].as_slice()
            {
                // bb has a single successor, and bb is its only predecessor. This
                // makes it a candidate for merging.
                assert_eq!(succ_pred, bb);
                true
            } else {
                false
            }
        };

        self.set_debug_loc(bx, terminator.source_info);
        match terminator.kind {
            mir::TerminatorKind::Resume => {
                self.codegen_resume_terminator(helper, bx);
                MergingSucc::False
            }

            mir::TerminatorKind::Abort => {
                self.codegen_abort_terminator(helper, bx, terminator);
                MergingSucc::False
            }

            mir::TerminatorKind::Goto { target } => {
                helper.funclet_br(self, bx, target, mergeable_succ())
            }

            mir::TerminatorKind::SwitchInt { ref discr, ref targets } => {
                self.codegen_switchint_terminator(helper, bx, discr, targets);
                MergingSucc::False
            }

            mir::TerminatorKind::Return => {
                self.codegen_return_terminator(bx);
                MergingSucc::False
            }

            mir::TerminatorKind::Unreachable => {
                bx.unreachable();
                MergingSucc::False
            }

            mir::TerminatorKind::Drop { place, target, unwind } => {
                self.codegen_drop_terminator(helper, bx, place, target, unwind, mergeable_succ())
            }

            mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, cleanup } => self
                .codegen_assert_terminator(
                    helper,
                    bx,
                    terminator,
                    cond,
                    expected,
                    msg,
                    target,
                    cleanup,
                    mergeable_succ(),
                ),

            mir::TerminatorKind::DropAndReplace { .. } => {
                bug!("undesugared DropAndReplace in codegen: {:?}", terminator);
            }

            mir::TerminatorKind::Call {
                ref func,
                ref args,
                destination,
                target,
                cleanup,
                from_hir_call: _,
                fn_span,
            } => self.codegen_call_terminator(
                helper,
                bx,
                terminator,
                func,
                args,
                destination,
                target,
                cleanup,
                fn_span,
                mergeable_succ(),
            ),
            mir::TerminatorKind::GeneratorDrop | mir::TerminatorKind::Yield { .. } => {
                bug!("generator ops in codegen")
            }
            mir::TerminatorKind::FalseEdge { .. } | mir::TerminatorKind::FalseUnwind { .. } => {
                bug!("borrowck false edges in codegen")
            }

            mir::TerminatorKind::InlineAsm {
                template,
                ref operands,
                options,
                line_spans,
                destination,
                cleanup,
            } => self.codegen_asm_terminator(
                helper,
                bx,
                terminator,
                template,
                operands,
                options,
                line_spans,
                destination,
                cleanup,
                self.instance,
                mergeable_succ(),
            ),
        }
    }

    fn codegen_argument(
        &mut self,
        bx: &mut Bx,
        op: OperandRef<'tcx, Bx::Value>,
        llargs: &mut Vec<Bx::Value>,
        arg: &ArgAbi<'tcx, Ty<'tcx>>,
    ) {
        match arg.mode {
            PassMode::Ignore => return,
            PassMode::Cast(_, true) => {
                // Fill padding with undef value, where applicable.
                llargs.push(bx.const_undef(bx.reg_backend_type(&Reg::i32())));
            }
            PassMode::Pair(..) => match op.val {
                Pair(a, b) => {
                    llargs.push(a);
                    llargs.push(b);
                    return;
                }
                _ => bug!("codegen_argument: {:?} invalid for pair argument", op),
            },
            PassMode::Indirect { attrs: _, extra_attrs: Some(_), on_stack: _ } => match op.val {
                Ref(a, Some(b), _) => {
                    llargs.push(a);
                    llargs.push(b);
                    return;
                }
                _ => bug!("codegen_argument: {:?} invalid for unsized indirect argument", op),
            },
            _ => {}
        }

        // Force by-ref if we have to load through a cast pointer.
        let (mut llval, align, by_ref) = match op.val {
            Immediate(_) | Pair(..) => match arg.mode {
                PassMode::Indirect { .. } | PassMode::Cast(..) => {
                    let scratch = PlaceRef::alloca(bx, arg.layout);
                    op.val.store(bx, scratch);
                    (scratch.llval, scratch.align, true)
                }
                _ => (op.immediate_or_packed_pair(bx), arg.layout.align.abi, false),
            },
            Ref(llval, _, align) => {
                if arg.is_indirect() && align < arg.layout.align.abi {
                    // `foo(packed.large_field)`. We can't pass the (unaligned) field directly. I
                    // think that ATM (Rust 1.16) we only pass temporaries, but we shouldn't
                    // have scary latent bugs around.

                    let scratch = PlaceRef::alloca(bx, arg.layout);
                    base::memcpy_ty(
                        bx,
                        scratch.llval,
                        scratch.align,
                        llval,
                        align,
                        op.layout,
                        MemFlags::empty(),
                    );
                    (scratch.llval, scratch.align, true)
                } else {
                    (llval, align, true)
                }
            }
        };

        if by_ref && !arg.is_indirect() {
            // Have to load the argument, maybe while casting it.
            if let PassMode::Cast(ty, _) = &arg.mode {
                let llty = bx.cast_backend_type(ty);
                let addr = bx.pointercast(llval, bx.type_ptr_to(llty));
                llval = bx.load(llty, addr, align.min(arg.layout.align.abi));
            } else {
                // We can't use `PlaceRef::load` here because the argument
                // may have a type we don't treat as immediate, but the ABI
                // used for this call is passing it by-value. In that case,
                // the load would just produce `OperandValue::Ref` instead
                // of the `OperandValue::Immediate` we need for the call.
                llval = bx.load(bx.backend_type(arg.layout), llval, align);
                if let abi::Abi::Scalar(scalar) = arg.layout.abi {
                    if scalar.is_bool() {
                        bx.range_metadata(llval, WrappingRange { start: 0, end: 1 });
                    }
                }
                // We store bools as `i8` so we need to truncate to `i1`.
                llval = bx.to_immediate(llval, arg.layout);
            }
        }

        llargs.push(llval);
    }

    fn codegen_arguments_untupled(
        &mut self,
        bx: &mut Bx,
        operand: &mir::Operand<'tcx>,
        llargs: &mut Vec<Bx::Value>,
        args: &[ArgAbi<'tcx, Ty<'tcx>>],
    ) -> usize {
        let tuple = self.codegen_operand(bx, operand);

        // Handle both by-ref and immediate tuples.
        if let Ref(llval, None, align) = tuple.val {
            let tuple_ptr = PlaceRef::new_sized_aligned(llval, tuple.layout, align);
            for i in 0..tuple.layout.fields.count() {
                let field_ptr = tuple_ptr.project_field(bx, i);
                let field = bx.load_operand(field_ptr);
                self.codegen_argument(bx, field, llargs, &args[i]);
            }
        } else if let Ref(_, Some(_), _) = tuple.val {
            bug!("closure arguments must be sized")
        } else {
            // If the tuple is immediate, the elements are as well.
            for i in 0..tuple.layout.fields.count() {
                let op = tuple.extract_field(bx, i);
                self.codegen_argument(bx, op, llargs, &args[i]);
            }
        }
        tuple.layout.fields.count()
    }

    fn get_caller_location(
        &mut self,
        bx: &mut Bx,
        mut source_info: mir::SourceInfo,
    ) -> OperandRef<'tcx, Bx::Value> {
        let tcx = bx.tcx();

        let mut span_to_caller_location = |span: Span| {
            let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
            let caller = tcx.sess.source_map().lookup_char_pos(topmost.lo());
            let const_loc = tcx.const_caller_location((
                Symbol::intern(&caller.file.name.prefer_remapped().to_string_lossy()),
                caller.line as u32,
                caller.col_display as u32 + 1,
            ));
            OperandRef::from_const(bx, const_loc, bx.tcx().caller_location_ty())
        };

        // Walk up the `SourceScope`s, in case some of them are from MIR inlining.
        // If so, the starting `source_info.span` is in the innermost inlined
        // function, and will be replaced with outer callsite spans as long
        // as the inlined functions were `#[track_caller]`.
        loop {
            let scope_data = &self.mir.source_scopes[source_info.scope];

            if let Some((callee, callsite_span)) = scope_data.inlined {
                // Stop inside the most nested non-`#[track_caller]` function,
                // before ever reaching its caller (which is irrelevant).
                if !callee.def.requires_caller_location(tcx) {
                    return span_to_caller_location(source_info.span);
                }
                source_info.span = callsite_span;
            }

            // Skip past all of the parents with `inlined: None`.
            match scope_data.inlined_parent_scope {
                Some(parent) => source_info.scope = parent,
                None => break,
            }
        }

        // No inlined `SourceScope`s, or all of them were `#[track_caller]`.
        self.caller_location.unwrap_or_else(|| span_to_caller_location(source_info.span))
    }

    fn get_personality_slot(&mut self, bx: &mut Bx) -> PlaceRef<'tcx, Bx::Value> {
        let cx = bx.cx();
        if let Some(slot) = self.personality_slot {
            slot
        } else {
            let layout = cx.layout_of(
                cx.tcx().intern_tup(&[cx.tcx().mk_mut_ptr(cx.tcx().types.u8), cx.tcx().types.i32]),
            );
            let slot = PlaceRef::alloca(bx, layout);
            self.personality_slot = Some(slot);
            slot
        }
    }

    /// Returns the landing/cleanup pad wrapper around the given basic block.
    // FIXME(eddyb) rename this to `eh_pad_for`.
    fn landing_pad_for(&mut self, bb: mir::BasicBlock) -> Bx::BasicBlock {
        if let Some(landing_pad) = self.landing_pads[bb] {
            return landing_pad;
        }

        let landing_pad = self.landing_pad_for_uncached(bb);
        self.landing_pads[bb] = Some(landing_pad);
        landing_pad
    }

    // FIXME(eddyb) rename this to `eh_pad_for_uncached`.
    fn landing_pad_for_uncached(&mut self, bb: mir::BasicBlock) -> Bx::BasicBlock {
        let llbb = self.llbb(bb);
        if base::wants_msvc_seh(self.cx.sess()) {
            let funclet;
            let ret_llbb;
            match self.mir[bb].terminator.as_ref().map(|t| &t.kind) {
                // This is a basic block that we're aborting the program for,
                // notably in an `extern` function. These basic blocks are inserted
                // so that we assert that `extern` functions do indeed not panic,
                // and if they do we abort the process.
                //
                // On MSVC these are tricky though (where we're doing funclets). If
                // we were to do a cleanuppad (like below) the normal functions like
                // `longjmp` would trigger the abort logic, terminating the
                // program. Instead we insert the equivalent of `catch(...)` for C++
                // which magically doesn't trigger when `longjmp` files over this
                // frame.
                //
                // Lots more discussion can be found on #48251 but this codegen is
                // modeled after clang's for:
                //
                //      try {
                //          foo();
                //      } catch (...) {
                //          bar();
                //      }
                Some(&mir::TerminatorKind::Abort) => {
                    let cs_llbb =
                        Bx::append_block(self.cx, self.llfn, &format!("cs_funclet{:?}", bb));
                    let cp_llbb =
                        Bx::append_block(self.cx, self.llfn, &format!("cp_funclet{:?}", bb));
                    ret_llbb = cs_llbb;

                    let mut cs_bx = Bx::build(self.cx, cs_llbb);
                    let cs = cs_bx.catch_switch(None, None, &[cp_llbb]);

                    // The "null" here is actually a RTTI type descriptor for the
                    // C++ personality function, but `catch (...)` has no type so
                    // it's null. The 64 here is actually a bitfield which
                    // represents that this is a catch-all block.
                    let mut cp_bx = Bx::build(self.cx, cp_llbb);
                    let null = cp_bx.const_null(
                        cp_bx.type_i8p_ext(cp_bx.cx().data_layout().instruction_address_space),
                    );
                    let sixty_four = cp_bx.const_i32(64);
                    funclet = cp_bx.catch_pad(cs, &[null, sixty_four, null]);
                    cp_bx.br(llbb);
                }
                _ => {
                    let cleanup_llbb =
                        Bx::append_block(self.cx, self.llfn, &format!("funclet_{:?}", bb));
                    ret_llbb = cleanup_llbb;
                    let mut cleanup_bx = Bx::build(self.cx, cleanup_llbb);
                    funclet = cleanup_bx.cleanup_pad(None, &[]);
                    cleanup_bx.br(llbb);
                }
            }
            self.funclets[bb] = Some(funclet);
            ret_llbb
        } else {
            let cleanup_llbb = Bx::append_block(self.cx, self.llfn, "cleanup");
            let mut cleanup_bx = Bx::build(self.cx, cleanup_llbb);

            let llpersonality = self.cx.eh_personality();
            let (exn0, exn1) = cleanup_bx.cleanup_landing_pad(llpersonality);

            let slot = self.get_personality_slot(&mut cleanup_bx);
            slot.storage_live(&mut cleanup_bx);
            Pair(exn0, exn1).store(&mut cleanup_bx, slot);

            cleanup_bx.br(llbb);
            cleanup_llbb
        }
    }

    fn unreachable_block(&mut self) -> Bx::BasicBlock {
        self.unreachable_block.unwrap_or_else(|| {
            let llbb = Bx::append_block(self.cx, self.llfn, "unreachable");
            let mut bx = Bx::build(self.cx, llbb);
            bx.unreachable();
            self.unreachable_block = Some(llbb);
            llbb
        })
    }

    fn double_unwind_guard(&mut self) -> Bx::BasicBlock {
        self.double_unwind_guard.unwrap_or_else(|| {
            assert!(!base::wants_msvc_seh(self.cx.sess()));

            let llbb = Bx::append_block(self.cx, self.llfn, "abort");
            let mut bx = Bx::build(self.cx, llbb);
            self.set_debug_loc(&mut bx, mir::SourceInfo::outermost(self.mir.span));

            let llpersonality = self.cx.eh_personality();
            bx.cleanup_landing_pad(llpersonality);

            let (fn_abi, fn_ptr) = common::build_langcall(&bx, None, LangItem::PanicCannotUnwind);
            let fn_ty = bx.fn_decl_backend_type(&fn_abi);

            let llret = bx.call(fn_ty, Some(&fn_abi), fn_ptr, &[], None);
            bx.do_not_inline(llret);

            bx.unreachable();

            self.double_unwind_guard = Some(llbb);
            llbb
        })
    }

    /// Get the backend `BasicBlock` for a MIR `BasicBlock`, either already
    /// cached in `self.cached_llbbs`, or created on demand (and cached).
    // FIXME(eddyb) rename `llbb` and other `ll`-prefixed things to use a
    // more backend-agnostic prefix such as `cg` (i.e. this would be `cgbb`).
    pub fn llbb(&mut self, bb: mir::BasicBlock) -> Bx::BasicBlock {
        self.try_llbb(bb).unwrap()
    }

    /// Like `llbb`, but may fail if the basic block should be skipped.
    pub fn try_llbb(&mut self, bb: mir::BasicBlock) -> Option<Bx::BasicBlock> {
        match self.cached_llbbs[bb] {
            CachedLlbb::None => {
                // FIXME(eddyb) only name the block if `fewer_names` is `false`.
                let llbb = Bx::append_block(self.cx, self.llfn, &format!("{:?}", bb));
                self.cached_llbbs[bb] = CachedLlbb::Some(llbb);
                Some(llbb)
            }
            CachedLlbb::Some(llbb) => Some(llbb),
            CachedLlbb::Skip => None,
        }
    }

    fn make_return_dest(
        &mut self,
        bx: &mut Bx,
        dest: mir::Place<'tcx>,
        fn_ret: &ArgAbi<'tcx, Ty<'tcx>>,
        llargs: &mut Vec<Bx::Value>,
        is_intrinsic: bool,
    ) -> ReturnDest<'tcx, Bx::Value> {
        // If the return is ignored, we can just return a do-nothing `ReturnDest`.
        if fn_ret.is_ignore() {
            return ReturnDest::Nothing;
        }
        let dest = if let Some(index) = dest.as_local() {
            match self.locals[index] {
                LocalRef::Place(dest) => dest,
                LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
                LocalRef::Operand(None) => {
                    // Handle temporary places, specifically `Operand` ones, as
                    // they don't have `alloca`s.
                    return if fn_ret.is_indirect() {
                        // Odd, but possible, case, we have an operand temporary,
                        // but the calling convention has an indirect return.
                        let tmp = PlaceRef::alloca(bx, fn_ret.layout);
                        tmp.storage_live(bx);
                        llargs.push(tmp.llval);
                        ReturnDest::IndirectOperand(tmp, index)
                    } else if is_intrinsic {
                        // Currently, intrinsics always need a location to store
                        // the result, so we create a temporary `alloca` for the
                        // result.
                        let tmp = PlaceRef::alloca(bx, fn_ret.layout);
                        tmp.storage_live(bx);
                        ReturnDest::IndirectOperand(tmp, index)
                    } else {
                        ReturnDest::DirectOperand(index)
                    };
                }
                LocalRef::Operand(Some(_)) => {
                    bug!("place local already assigned to");
                }
            }
        } else {
            self.codegen_place(
                bx,
                mir::PlaceRef { local: dest.local, projection: &dest.projection },
            )
        };
        if fn_ret.is_indirect() {
            if dest.align < dest.layout.align.abi {
                // Currently, MIR code generation does not create calls
                // that store directly to fields of packed structs (in
                // fact, the calls it creates write only to temps).
                //
                // If someone changes that, please update this code path
                // to create a temporary.
                span_bug!(self.mir.span, "can't directly store to unaligned value");
            }
            llargs.push(dest.llval);
            ReturnDest::Nothing
        } else {
            ReturnDest::Store(dest)
        }
    }

    fn codegen_transmute(&mut self, bx: &mut Bx, src: &mir::Operand<'tcx>, dst: mir::Place<'tcx>) {
        if let Some(index) = dst.as_local() {
            match self.locals[index] {
                LocalRef::Place(place) => self.codegen_transmute_into(bx, src, place),
                LocalRef::UnsizedPlace(_) => bug!("transmute must not involve unsized locals"),
                LocalRef::Operand(None) => {
                    let dst_layout = bx.layout_of(self.monomorphized_place_ty(dst.as_ref()));
                    assert!(!dst_layout.ty.has_erasable_regions());
                    let place = PlaceRef::alloca(bx, dst_layout);
                    place.storage_live(bx);
                    self.codegen_transmute_into(bx, src, place);
                    let op = bx.load_operand(place);
                    place.storage_dead(bx);
                    self.locals[index] = LocalRef::Operand(Some(op));
                    self.debug_introduce_local(bx, index);
                }
                LocalRef::Operand(Some(op)) => {
                    assert!(op.layout.is_zst(), "assigning to initialized SSAtemp");
                }
            }
        } else {
            let dst = self.codegen_place(bx, dst.as_ref());
            self.codegen_transmute_into(bx, src, dst);
        }
    }

    fn codegen_transmute_into(
        &mut self,
        bx: &mut Bx,
        src: &mir::Operand<'tcx>,
        dst: PlaceRef<'tcx, Bx::Value>,
    ) {
        let src = self.codegen_operand(bx, src);

        // Special-case transmutes between scalars as simple bitcasts.
        match (src.layout.abi, dst.layout.abi) {
            (abi::Abi::Scalar(src_scalar), abi::Abi::Scalar(dst_scalar)) => {
                // HACK(eddyb) LLVM doesn't like `bitcast`s between pointers and non-pointers.
                let src_is_ptr = matches!(src_scalar.primitive(), abi::Pointer(_));
                let dst_is_ptr = matches!(dst_scalar.primitive(), abi::Pointer(_));
                if src_is_ptr == dst_is_ptr {
                    assert_eq!(src.layout.size, dst.layout.size);

                    // NOTE(eddyb) the `from_immediate` and `to_immediate_scalar`
                    // conversions allow handling `bool`s the same as `u8`s.
                    let src = bx.from_immediate(src.immediate());
                    // LLVM also doesn't like `bitcast`s between pointers in different address spaces.
                    let src_as_dst = if src_is_ptr {
                        bx.pointercast(src, bx.backend_type(dst.layout))
                    } else {
                        bx.bitcast(src, bx.backend_type(dst.layout))
                    };
                    Immediate(bx.to_immediate_scalar(src_as_dst, dst_scalar)).store(bx, dst);
                    return;
                }
            }
            _ => {}
        }

        let llty = bx.backend_type(src.layout);
        let cast_ptr = bx.pointercast(dst.llval, bx.type_ptr_to(llty));
        let align = src.layout.align.abi.min(dst.align);
        src.val.store(bx, PlaceRef::new_sized_aligned(cast_ptr, src.layout, align));
    }

    // Stores the return value of a function call into it's final location.
    fn store_return(
        &mut self,
        bx: &mut Bx,
        dest: ReturnDest<'tcx, Bx::Value>,
        ret_abi: &ArgAbi<'tcx, Ty<'tcx>>,
        llval: Bx::Value,
    ) {
        use self::ReturnDest::*;

        match dest {
            Nothing => (),
            Store(dst) => bx.store_arg(&ret_abi, llval, dst),
            IndirectOperand(tmp, index) => {
                let op = bx.load_operand(tmp);
                tmp.storage_dead(bx);
                self.locals[index] = LocalRef::Operand(Some(op));
                self.debug_introduce_local(bx, index);
            }
            DirectOperand(index) => {
                // If there is a cast, we have to store and reload.
                let op = if let PassMode::Cast(..) = ret_abi.mode {
                    let tmp = PlaceRef::alloca(bx, ret_abi.layout);
                    tmp.storage_live(bx);
                    bx.store_arg(&ret_abi, llval, tmp);
                    let op = bx.load_operand(tmp);
                    tmp.storage_dead(bx);
                    op
                } else {
                    OperandRef::from_immediate_or_packed_pair(bx, llval, ret_abi.layout)
                };
                self.locals[index] = LocalRef::Operand(Some(op));
                self.debug_introduce_local(bx, index);
            }
        }
    }
}

enum ReturnDest<'tcx, V> {
    // Do nothing; the return value is indirect or ignored.
    Nothing,
    // Store the return value to the pointer.
    Store(PlaceRef<'tcx, V>),
    // Store an indirect return value to an operand local place.
    IndirectOperand(PlaceRef<'tcx, V>, mir::Local),
    // Store a direct return value to an operand local place.
    DirectOperand(mir::Local),
}