1pub mod attr;
2mod attr_wrapper;
3mod diagnostics;
4mod expr;
5mod generics;
6mod item;
7mod nonterminal;
8mod pat;
9mod path;
10mod stmt;
11pub mod token_type;
12mod ty;
1314// Parsers for non-functionlike builtin macros are defined in rustc_parse so they can be used by
15// both rustc_builtin_macros and rustfmt.
16pub mod asm;
17pub mod cfg_select;
1819use std::{fmt, mem, slice};
2021use attr_wrapper::{AttrWrapper, UsePreAttrPos};
22pub use diagnostics::AttemptLocalParseRecovery;
23// Public to use it for custom `if` expressions in rustfmt forks like https://github.com/tucant/rustfmt
24pub use expr::LetChainsPolicy;
25pub(crate) use item::{FnContext, FnParseMode};
26pub use pat::{CommaRecoveryMode, RecoverColon, RecoverComma};
27pub use path::PathStyle;
28use rustc_ast::token::{
29self, IdentIsRaw, InvisibleOrigin, MetaVarKind, NtExprKind, NtPatKind, Token, TokenKind,
30};
31use rustc_ast::tokenstream::{
32ParserRange, ParserReplacement, Spacing, TokenCursor, TokenStream, TokenTree, TokenTreeCursor,
33};
34use rustc_ast::util::case::Case;
35use rustc_ast::{
36selfas ast, AnonConst, AttrArgs, AttrId, BlockCheckMode, ByRef, Const, CoroutineKind,
37DUMMY_NODE_ID, DelimArgs, Expr, ExprKind, Extern, HasAttrs, HasTokens, MgcaDisambiguation,
38Mutability, Recovered, Safety, StrLit, Visibility, VisibilityKind,
39};
40use rustc_ast_pretty::pprust;
41use rustc_data_structures::debug_assert_matches;
42use rustc_data_structures::fx::FxHashMap;
43use rustc_errors::{Applicability, Diag, FatalError, MultiSpan, PResult};
44use rustc_index::interval::IntervalSet;
45use rustc_session::parse::ParseSess;
46use rustc_span::{Ident, Span, Symbol, kw, sym};
47use thin_vec::ThinVec;
48use token_type::TokenTypeSet;
49pub use token_type::{ExpKeywordPair, ExpTokenPair, TokenType};
50use tracing::debug;
5152use crate::errors::{self, IncorrectVisibilityRestriction, NonStringAbiLiteral, TokenDescription};
53use crate::exp;
5455#[cfg(test)]
56mod tests;
5758// Ideally, these tests would be in `rustc_ast`. But they depend on having a
59// parser, so they are here.
60#[cfg(test)]
61mod tokenstream {
62mod tests;
63}
6465bitflags::bitflags! {
66/// Restrictions applied while parsing.
67 ///
68 /// The parser maintains a bitset of restrictions it will honor while
69 /// parsing. This is essentially used as a way of tracking state of what
70 /// is being parsed and to change behavior based on that.
71#[derive(#[automatically_derived]
impl ::core::clone::Clone for Restrictions {
#[inline]
fn clone(&self) -> Restrictions {
let _:
::core::clone::AssertParamIsClone<<Restrictions as
::bitflags::__private::PublicFlags>::Internal>;
*self
}
}
impl Restrictions {
#[doc = r" Restricts expressions for use in statement position."]
#[doc = r""]
#[doc =
r" When expressions are used in various places, like statements or"]
#[doc =
r" match arms, this is used to stop parsing once certain tokens are"]
#[doc = r" reached."]
#[doc = r""]
#[doc =
r" For example, `if true {} & 1` with `STMT_EXPR` in effect is parsed"]
#[doc =
r" as two separate expression statements (`if` and a reference to 1)."]
#[doc =
r" Otherwise it is parsed as a bitwise AND where `if` is on the left"]
#[doc = r" and 1 is on the right."]
#[allow(deprecated, non_upper_case_globals,)]
pub const STMT_EXPR: Self = Self::from_bits_retain(1 << 0);
#[doc = r" Do not allow struct literals."]
#[doc = r""]
#[doc =
r" There are several places in the grammar where we don't want to"]
#[doc = r" allow struct literals because they can require lookahead, or"]
#[doc = r" otherwise could be ambiguous or cause confusion. For example,"]
#[doc =
r" `if Foo {} {}` isn't clear if it is `Foo{}` struct literal, or"]
#[doc = r" just `Foo` is the condition, followed by a consequent block,"]
#[doc = r" followed by an empty block."]
#[doc = r""]
#[doc =
r" See [RFC 92](https://rust-lang.github.io/rfcs/0092-struct-grammar.html)."]
#[allow(deprecated, non_upper_case_globals,)]
pub const NO_STRUCT_LITERAL: Self = Self::from_bits_retain(1 << 1);
#[doc =
r" Used to provide better error messages for const generic arguments."]
#[doc = r""]
#[doc =
r" An un-braced const generic argument is limited to a very small"]
#[doc =
r" subset of expressions. This is used to detect the situation where"]
#[doc =
r" an expression outside of that subset is used, and to suggest to"]
#[doc = r" wrap the expression in braces."]
#[allow(deprecated, non_upper_case_globals,)]
pub const CONST_EXPR: Self = Self::from_bits_retain(1 << 2);
#[doc = r" Allows `let` expressions."]
#[doc = r""]
#[doc =
r" `let pattern = scrutinee` is parsed as an expression, but it is"]
#[doc = r" only allowed in let chains (`if` and `while` conditions)."]
#[doc =
r" Otherwise it is not an expression (note that `let` in statement"]
#[doc =
r" positions is treated as a `StmtKind::Let` statement, which has a"]
#[doc = r" slightly different grammar)."]
#[allow(deprecated, non_upper_case_globals,)]
pub const ALLOW_LET: Self = Self::from_bits_retain(1 << 3);
#[doc = r" Used to detect a missing `=>` in a match guard."]
#[doc = r""]
#[doc =
r" This is used for error handling in a match guard to give a better"]
#[doc =
r" error message if the `=>` is missing. It is set when parsing the"]
#[doc = r" guard expression."]
#[allow(deprecated, non_upper_case_globals,)]
pub const IN_IF_GUARD: Self = Self::from_bits_retain(1 << 4);
#[doc = r" Used to detect the incorrect use of expressions in patterns."]
#[doc = r""]
#[doc =
r" This is used for error handling while parsing a pattern. During"]
#[doc =
r" error recovery, this will be set to try to parse the pattern as an"]
#[doc =
r" expression, but halts parsing the expression when reaching certain"]
#[doc = r" tokens like `=`."]
#[allow(deprecated, non_upper_case_globals,)]
pub const IS_PAT: Self = Self::from_bits_retain(1 << 5);
}
impl ::bitflags::Flags for Restrictions {
const FLAGS: &'static [::bitflags::Flag<Restrictions>] =
&[{
#[allow(deprecated, non_upper_case_globals,)]
::bitflags::Flag::new("STMT_EXPR", Restrictions::STMT_EXPR)
},
{
#[allow(deprecated, non_upper_case_globals,)]
::bitflags::Flag::new("NO_STRUCT_LITERAL",
Restrictions::NO_STRUCT_LITERAL)
},
{
#[allow(deprecated, non_upper_case_globals,)]
::bitflags::Flag::new("CONST_EXPR",
Restrictions::CONST_EXPR)
},
{
#[allow(deprecated, non_upper_case_globals,)]
::bitflags::Flag::new("ALLOW_LET", Restrictions::ALLOW_LET)
},
{
#[allow(deprecated, non_upper_case_globals,)]
::bitflags::Flag::new("IN_IF_GUARD",
Restrictions::IN_IF_GUARD)
},
{
#[allow(deprecated, non_upper_case_globals,)]
::bitflags::Flag::new("IS_PAT", Restrictions::IS_PAT)
}];
type Bits = u8;
fn bits(&self) -> u8 { Restrictions::bits(self) }
fn from_bits_retain(bits: u8) -> Restrictions {
Restrictions::from_bits_retain(bits)
}
}
#[allow(dead_code, deprecated, unused_doc_comments, unused_attributes,
unused_mut, unused_imports, non_upper_case_globals, clippy ::
assign_op_pattern, clippy :: indexing_slicing, clippy :: same_name_method,
clippy :: iter_without_into_iter,)]
const _: () =
{
#[repr(transparent)]
struct InternalBitFlags(u8);
#[automatically_derived]
#[doc(hidden)]
unsafe impl ::core::clone::TrivialClone for InternalBitFlags { }
#[automatically_derived]
impl ::core::clone::Clone for InternalBitFlags {
#[inline]
fn clone(&self) -> InternalBitFlags {
let _: ::core::clone::AssertParamIsClone<u8>;
*self
}
}
#[automatically_derived]
impl ::core::marker::Copy for InternalBitFlags { }
#[automatically_derived]
impl ::core::marker::StructuralPartialEq for InternalBitFlags { }
#[automatically_derived]
impl ::core::cmp::PartialEq for InternalBitFlags {
#[inline]
fn eq(&self, other: &InternalBitFlags) -> bool {
self.0 == other.0
}
}
#[automatically_derived]
impl ::core::cmp::Eq for InternalBitFlags {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) {
let _: ::core::cmp::AssertParamIsEq<u8>;
}
}
#[automatically_derived]
impl ::core::cmp::PartialOrd for InternalBitFlags {
#[inline]
fn partial_cmp(&self, other: &InternalBitFlags)
-> ::core::option::Option<::core::cmp::Ordering> {
::core::cmp::PartialOrd::partial_cmp(&self.0, &other.0)
}
}
#[automatically_derived]
impl ::core::cmp::Ord for InternalBitFlags {
#[inline]
fn cmp(&self, other: &InternalBitFlags) -> ::core::cmp::Ordering {
::core::cmp::Ord::cmp(&self.0, &other.0)
}
}
#[automatically_derived]
impl ::core::hash::Hash for InternalBitFlags {
#[inline]
fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) {
::core::hash::Hash::hash(&self.0, state)
}
}
impl ::bitflags::__private::PublicFlags for Restrictions {
type Primitive = u8;
type Internal = InternalBitFlags;
}
impl ::bitflags::__private::core::default::Default for
InternalBitFlags {
#[inline]
fn default() -> Self { InternalBitFlags::empty() }
}
impl ::bitflags::__private::core::fmt::Debug for InternalBitFlags {
fn fmt(&self,
f: &mut ::bitflags::__private::core::fmt::Formatter<'_>)
-> ::bitflags::__private::core::fmt::Result {
if self.is_empty() {
f.write_fmt(format_args!("{0:#x}",
<u8 as ::bitflags::Bits>::EMPTY))
} else {
::bitflags::__private::core::fmt::Display::fmt(self, f)
}
}
}
impl ::bitflags::__private::core::fmt::Display for InternalBitFlags {
fn fmt(&self,
f: &mut ::bitflags::__private::core::fmt::Formatter<'_>)
-> ::bitflags::__private::core::fmt::Result {
::bitflags::parser::to_writer(&Restrictions(*self), f)
}
}
impl ::bitflags::__private::core::str::FromStr for InternalBitFlags {
type Err = ::bitflags::parser::ParseError;
fn from_str(s: &str)
->
::bitflags::__private::core::result::Result<Self,
Self::Err> {
::bitflags::parser::from_str::<Restrictions>(s).map(|flags|
flags.0)
}
}
impl ::bitflags::__private::core::convert::AsRef<u8> for
InternalBitFlags {
fn as_ref(&self) -> &u8 { &self.0 }
}
impl ::bitflags::__private::core::convert::From<u8> for
InternalBitFlags {
fn from(bits: u8) -> Self { Self::from_bits_retain(bits) }
}
#[allow(dead_code, deprecated, unused_attributes)]
impl InternalBitFlags {
/// Get a flags value with all bits unset.
#[inline]
pub const fn empty() -> Self {
Self(<u8 as ::bitflags::Bits>::EMPTY)
}
/// Get a flags value with all known bits set.
#[inline]
pub const fn all() -> Self {
let mut truncated = <u8 as ::bitflags::Bits>::EMPTY;
let mut i = 0;
{
{
let flag =
<Restrictions as
::bitflags::Flags>::FLAGS[i].value().bits();
truncated = truncated | flag;
i += 1;
}
};
{
{
let flag =
<Restrictions as
::bitflags::Flags>::FLAGS[i].value().bits();
truncated = truncated | flag;
i += 1;
}
};
{
{
let flag =
<Restrictions as
::bitflags::Flags>::FLAGS[i].value().bits();
truncated = truncated | flag;
i += 1;
}
};
{
{
let flag =
<Restrictions as
::bitflags::Flags>::FLAGS[i].value().bits();
truncated = truncated | flag;
i += 1;
}
};
{
{
let flag =
<Restrictions as
::bitflags::Flags>::FLAGS[i].value().bits();
truncated = truncated | flag;
i += 1;
}
};
{
{
let flag =
<Restrictions as
::bitflags::Flags>::FLAGS[i].value().bits();
truncated = truncated | flag;
i += 1;
}
};
let _ = i;
Self(truncated)
}
/// Get the underlying bits value.
///
/// The returned value is exactly the bits set in this flags value.
#[inline]
pub const fn bits(&self) -> u8 { self.0 }
/// Convert from a bits value.
///
/// This method will return `None` if any unknown bits are set.
#[inline]
pub const fn from_bits(bits: u8)
-> ::bitflags::__private::core::option::Option<Self> {
let truncated = Self::from_bits_truncate(bits).0;
if truncated == bits {
::bitflags::__private::core::option::Option::Some(Self(bits))
} else { ::bitflags::__private::core::option::Option::None }
}
/// Convert from a bits value, unsetting any unknown bits.
#[inline]
pub const fn from_bits_truncate(bits: u8) -> Self {
Self(bits & Self::all().0)
}
/// Convert from a bits value exactly.
#[inline]
pub const fn from_bits_retain(bits: u8) -> Self { Self(bits) }
/// Get a flags value with the bits of a flag with the given name set.
///
/// This method will return `None` if `name` is empty or doesn't
/// correspond to any named flag.
#[inline]
pub fn from_name(name: &str)
-> ::bitflags::__private::core::option::Option<Self> {
{
if name == "STMT_EXPR" {
return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::STMT_EXPR.bits()));
}
};
;
{
if name == "NO_STRUCT_LITERAL" {
return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::NO_STRUCT_LITERAL.bits()));
}
};
;
{
if name == "CONST_EXPR" {
return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::CONST_EXPR.bits()));
}
};
;
{
if name == "ALLOW_LET" {
return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::ALLOW_LET.bits()));
}
};
;
{
if name == "IN_IF_GUARD" {
return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::IN_IF_GUARD.bits()));
}
};
;
{
if name == "IS_PAT" {
return ::bitflags::__private::core::option::Option::Some(Self(Restrictions::IS_PAT.bits()));
}
};
;
let _ = name;
::bitflags::__private::core::option::Option::None
}
/// Whether all bits in this flags value are unset.
#[inline]
pub const fn is_empty(&self) -> bool {
self.0 == <u8 as ::bitflags::Bits>::EMPTY
}
/// Whether all known bits in this flags value are set.
#[inline]
pub const fn is_all(&self) -> bool {
Self::all().0 | self.0 == self.0
}
/// Whether any set bits in a source flags value are also set in a target flags value.
#[inline]
pub const fn intersects(&self, other: Self) -> bool {
self.0 & other.0 != <u8 as ::bitflags::Bits>::EMPTY
}
/// Whether all set bits in a source flags value are also set in a target flags value.
#[inline]
pub const fn contains(&self, other: Self) -> bool {
self.0 & other.0 == other.0
}
/// The bitwise or (`|`) of the bits in two flags values.
#[inline]
pub fn insert(&mut self, other: Self) {
*self = Self(self.0).union(other);
}
/// The intersection of a source flags value with the complement of a target flags
/// value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `remove` won't truncate `other`, but the `!` operator will.
#[inline]
pub fn remove(&mut self, other: Self) {
*self = Self(self.0).difference(other);
}
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
#[inline]
pub fn toggle(&mut self, other: Self) {
*self = Self(self.0).symmetric_difference(other);
}
/// Call `insert` when `value` is `true` or `remove` when `value` is `false`.
#[inline]
pub fn set(&mut self, other: Self, value: bool) {
if value { self.insert(other); } else { self.remove(other); }
}
/// The bitwise and (`&`) of the bits in two flags values.
#[inline]
#[must_use]
pub const fn intersection(self, other: Self) -> Self {
Self(self.0 & other.0)
}
/// The bitwise or (`|`) of the bits in two flags values.
#[inline]
#[must_use]
pub const fn union(self, other: Self) -> Self {
Self(self.0 | other.0)
}
/// The intersection of a source flags value with the complement of a target flags
/// value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `difference` won't truncate `other`, but the `!` operator will.
#[inline]
#[must_use]
pub const fn difference(self, other: Self) -> Self {
Self(self.0 & !other.0)
}
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
#[inline]
#[must_use]
pub const fn symmetric_difference(self, other: Self) -> Self {
Self(self.0 ^ other.0)
}
/// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
#[inline]
#[must_use]
pub const fn complement(self) -> Self {
Self::from_bits_truncate(!self.0)
}
}
impl ::bitflags::__private::core::fmt::Binary for InternalBitFlags {
fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
-> ::bitflags::__private::core::fmt::Result {
let inner = self.0;
::bitflags::__private::core::fmt::Binary::fmt(&inner, f)
}
}
impl ::bitflags::__private::core::fmt::Octal for InternalBitFlags {
fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
-> ::bitflags::__private::core::fmt::Result {
let inner = self.0;
::bitflags::__private::core::fmt::Octal::fmt(&inner, f)
}
}
impl ::bitflags::__private::core::fmt::LowerHex for InternalBitFlags {
fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
-> ::bitflags::__private::core::fmt::Result {
let inner = self.0;
::bitflags::__private::core::fmt::LowerHex::fmt(&inner, f)
}
}
impl ::bitflags::__private::core::fmt::UpperHex for InternalBitFlags {
fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
-> ::bitflags::__private::core::fmt::Result {
let inner = self.0;
::bitflags::__private::core::fmt::UpperHex::fmt(&inner, f)
}
}
impl ::bitflags::__private::core::ops::BitOr for InternalBitFlags {
type Output = Self;
/// The bitwise or (`|`) of the bits in two flags values.
#[inline]
fn bitor(self, other: InternalBitFlags) -> Self {
self.union(other)
}
}
impl ::bitflags::__private::core::ops::BitOrAssign for
InternalBitFlags {
/// The bitwise or (`|`) of the bits in two flags values.
#[inline]
fn bitor_assign(&mut self, other: Self) { self.insert(other); }
}
impl ::bitflags::__private::core::ops::BitXor for InternalBitFlags {
type Output = Self;
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
#[inline]
fn bitxor(self, other: Self) -> Self {
self.symmetric_difference(other)
}
}
impl ::bitflags::__private::core::ops::BitXorAssign for
InternalBitFlags {
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
#[inline]
fn bitxor_assign(&mut self, other: Self) { self.toggle(other); }
}
impl ::bitflags::__private::core::ops::BitAnd for InternalBitFlags {
type Output = Self;
/// The bitwise and (`&`) of the bits in two flags values.
#[inline]
fn bitand(self, other: Self) -> Self { self.intersection(other) }
}
impl ::bitflags::__private::core::ops::BitAndAssign for
InternalBitFlags {
/// The bitwise and (`&`) of the bits in two flags values.
#[inline]
fn bitand_assign(&mut self, other: Self) {
*self =
Self::from_bits_retain(self.bits()).intersection(other);
}
}
impl ::bitflags::__private::core::ops::Sub for InternalBitFlags {
type Output = Self;
/// The intersection of a source flags value with the complement of a target flags value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `difference` won't truncate `other`, but the `!` operator will.
#[inline]
fn sub(self, other: Self) -> Self { self.difference(other) }
}
impl ::bitflags::__private::core::ops::SubAssign for InternalBitFlags
{
/// The intersection of a source flags value with the complement of a target flags value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `difference` won't truncate `other`, but the `!` operator will.
#[inline]
fn sub_assign(&mut self, other: Self) { self.remove(other); }
}
impl ::bitflags::__private::core::ops::Not for InternalBitFlags {
type Output = Self;
/// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
#[inline]
fn not(self) -> Self { self.complement() }
}
impl ::bitflags::__private::core::iter::Extend<InternalBitFlags> for
InternalBitFlags {
/// The bitwise or (`|`) of the bits in each flags value.
fn extend<T: ::bitflags::__private::core::iter::IntoIterator<Item
= Self>>(&mut self, iterator: T) {
for item in iterator { self.insert(item) }
}
}
impl ::bitflags::__private::core::iter::FromIterator<InternalBitFlags>
for InternalBitFlags {
/// The bitwise or (`|`) of the bits in each flags value.
fn from_iter<T: ::bitflags::__private::core::iter::IntoIterator<Item
= Self>>(iterator: T) -> Self {
use ::bitflags::__private::core::iter::Extend;
let mut result = Self::empty();
result.extend(iterator);
result
}
}
impl InternalBitFlags {
/// Yield a set of contained flags values.
///
/// Each yielded flags value will correspond to a defined named flag. Any unknown bits
/// will be yielded together as a final flags value.
#[inline]
pub const fn iter(&self) -> ::bitflags::iter::Iter<Restrictions> {
::bitflags::iter::Iter::__private_const_new(<Restrictions as
::bitflags::Flags>::FLAGS,
Restrictions::from_bits_retain(self.bits()),
Restrictions::from_bits_retain(self.bits()))
}
/// Yield a set of contained named flags values.
///
/// This method is like [`iter`](#method.iter), except only yields bits in contained named flags.
/// Any unknown bits, or bits not corresponding to a contained flag will not be yielded.
#[inline]
pub const fn iter_names(&self)
-> ::bitflags::iter::IterNames<Restrictions> {
::bitflags::iter::IterNames::__private_const_new(<Restrictions
as ::bitflags::Flags>::FLAGS,
Restrictions::from_bits_retain(self.bits()),
Restrictions::from_bits_retain(self.bits()))
}
}
impl ::bitflags::__private::core::iter::IntoIterator for
InternalBitFlags {
type Item = Restrictions;
type IntoIter = ::bitflags::iter::Iter<Restrictions>;
fn into_iter(self) -> Self::IntoIter { self.iter() }
}
impl InternalBitFlags {
/// Returns a mutable reference to the raw value of the flags currently stored.
#[inline]
pub fn bits_mut(&mut self) -> &mut u8 { &mut self.0 }
}
#[allow(dead_code, deprecated, unused_attributes)]
impl Restrictions {
/// Get a flags value with all bits unset.
#[inline]
pub const fn empty() -> Self { Self(InternalBitFlags::empty()) }
/// Get a flags value with all known bits set.
#[inline]
pub const fn all() -> Self { Self(InternalBitFlags::all()) }
/// Get the underlying bits value.
///
/// The returned value is exactly the bits set in this flags value.
#[inline]
pub const fn bits(&self) -> u8 { self.0.bits() }
/// Convert from a bits value.
///
/// This method will return `None` if any unknown bits are set.
#[inline]
pub const fn from_bits(bits: u8)
-> ::bitflags::__private::core::option::Option<Self> {
match InternalBitFlags::from_bits(bits) {
::bitflags::__private::core::option::Option::Some(bits) =>
::bitflags::__private::core::option::Option::Some(Self(bits)),
::bitflags::__private::core::option::Option::None =>
::bitflags::__private::core::option::Option::None,
}
}
/// Convert from a bits value, unsetting any unknown bits.
#[inline]
pub const fn from_bits_truncate(bits: u8) -> Self {
Self(InternalBitFlags::from_bits_truncate(bits))
}
/// Convert from a bits value exactly.
#[inline]
pub const fn from_bits_retain(bits: u8) -> Self {
Self(InternalBitFlags::from_bits_retain(bits))
}
/// Get a flags value with the bits of a flag with the given name set.
///
/// This method will return `None` if `name` is empty or doesn't
/// correspond to any named flag.
#[inline]
pub fn from_name(name: &str)
-> ::bitflags::__private::core::option::Option<Self> {
match InternalBitFlags::from_name(name) {
::bitflags::__private::core::option::Option::Some(bits) =>
::bitflags::__private::core::option::Option::Some(Self(bits)),
::bitflags::__private::core::option::Option::None =>
::bitflags::__private::core::option::Option::None,
}
}
/// Whether all bits in this flags value are unset.
#[inline]
pub const fn is_empty(&self) -> bool { self.0.is_empty() }
/// Whether all known bits in this flags value are set.
#[inline]
pub const fn is_all(&self) -> bool { self.0.is_all() }
/// Whether any set bits in a source flags value are also set in a target flags value.
#[inline]
pub const fn intersects(&self, other: Self) -> bool {
self.0.intersects(other.0)
}
/// Whether all set bits in a source flags value are also set in a target flags value.
#[inline]
pub const fn contains(&self, other: Self) -> bool {
self.0.contains(other.0)
}
/// The bitwise or (`|`) of the bits in two flags values.
#[inline]
pub fn insert(&mut self, other: Self) { self.0.insert(other.0) }
/// The intersection of a source flags value with the complement of a target flags
/// value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `remove` won't truncate `other`, but the `!` operator will.
#[inline]
pub fn remove(&mut self, other: Self) { self.0.remove(other.0) }
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
#[inline]
pub fn toggle(&mut self, other: Self) { self.0.toggle(other.0) }
/// Call `insert` when `value` is `true` or `remove` when `value` is `false`.
#[inline]
pub fn set(&mut self, other: Self, value: bool) {
self.0.set(other.0, value)
}
/// The bitwise and (`&`) of the bits in two flags values.
#[inline]
#[must_use]
pub const fn intersection(self, other: Self) -> Self {
Self(self.0.intersection(other.0))
}
/// The bitwise or (`|`) of the bits in two flags values.
#[inline]
#[must_use]
pub const fn union(self, other: Self) -> Self {
Self(self.0.union(other.0))
}
/// The intersection of a source flags value with the complement of a target flags
/// value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `difference` won't truncate `other`, but the `!` operator will.
#[inline]
#[must_use]
pub const fn difference(self, other: Self) -> Self {
Self(self.0.difference(other.0))
}
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
#[inline]
#[must_use]
pub const fn symmetric_difference(self, other: Self) -> Self {
Self(self.0.symmetric_difference(other.0))
}
/// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
#[inline]
#[must_use]
pub const fn complement(self) -> Self {
Self(self.0.complement())
}
}
impl ::bitflags::__private::core::fmt::Binary for Restrictions {
fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
-> ::bitflags::__private::core::fmt::Result {
let inner = self.0;
::bitflags::__private::core::fmt::Binary::fmt(&inner, f)
}
}
impl ::bitflags::__private::core::fmt::Octal for Restrictions {
fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
-> ::bitflags::__private::core::fmt::Result {
let inner = self.0;
::bitflags::__private::core::fmt::Octal::fmt(&inner, f)
}
}
impl ::bitflags::__private::core::fmt::LowerHex for Restrictions {
fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
-> ::bitflags::__private::core::fmt::Result {
let inner = self.0;
::bitflags::__private::core::fmt::LowerHex::fmt(&inner, f)
}
}
impl ::bitflags::__private::core::fmt::UpperHex for Restrictions {
fn fmt(&self, f: &mut ::bitflags::__private::core::fmt::Formatter)
-> ::bitflags::__private::core::fmt::Result {
let inner = self.0;
::bitflags::__private::core::fmt::UpperHex::fmt(&inner, f)
}
}
impl ::bitflags::__private::core::ops::BitOr for Restrictions {
type Output = Self;
/// The bitwise or (`|`) of the bits in two flags values.
#[inline]
fn bitor(self, other: Restrictions) -> Self { self.union(other) }
}
impl ::bitflags::__private::core::ops::BitOrAssign for Restrictions {
/// The bitwise or (`|`) of the bits in two flags values.
#[inline]
fn bitor_assign(&mut self, other: Self) { self.insert(other); }
}
impl ::bitflags::__private::core::ops::BitXor for Restrictions {
type Output = Self;
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
#[inline]
fn bitxor(self, other: Self) -> Self {
self.symmetric_difference(other)
}
}
impl ::bitflags::__private::core::ops::BitXorAssign for Restrictions {
/// The bitwise exclusive-or (`^`) of the bits in two flags values.
#[inline]
fn bitxor_assign(&mut self, other: Self) { self.toggle(other); }
}
impl ::bitflags::__private::core::ops::BitAnd for Restrictions {
type Output = Self;
/// The bitwise and (`&`) of the bits in two flags values.
#[inline]
fn bitand(self, other: Self) -> Self { self.intersection(other) }
}
impl ::bitflags::__private::core::ops::BitAndAssign for Restrictions {
/// The bitwise and (`&`) of the bits in two flags values.
#[inline]
fn bitand_assign(&mut self, other: Self) {
*self =
Self::from_bits_retain(self.bits()).intersection(other);
}
}
impl ::bitflags::__private::core::ops::Sub for Restrictions {
type Output = Self;
/// The intersection of a source flags value with the complement of a target flags value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `difference` won't truncate `other`, but the `!` operator will.
#[inline]
fn sub(self, other: Self) -> Self { self.difference(other) }
}
impl ::bitflags::__private::core::ops::SubAssign for Restrictions {
/// The intersection of a source flags value with the complement of a target flags value (`&!`).
///
/// This method is not equivalent to `self & !other` when `other` has unknown bits set.
/// `difference` won't truncate `other`, but the `!` operator will.
#[inline]
fn sub_assign(&mut self, other: Self) { self.remove(other); }
}
impl ::bitflags::__private::core::ops::Not for Restrictions {
type Output = Self;
/// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
#[inline]
fn not(self) -> Self { self.complement() }
}
impl ::bitflags::__private::core::iter::Extend<Restrictions> for
Restrictions {
/// The bitwise or (`|`) of the bits in each flags value.
fn extend<T: ::bitflags::__private::core::iter::IntoIterator<Item
= Self>>(&mut self, iterator: T) {
for item in iterator { self.insert(item) }
}
}
impl ::bitflags::__private::core::iter::FromIterator<Restrictions> for
Restrictions {
/// The bitwise or (`|`) of the bits in each flags value.
fn from_iter<T: ::bitflags::__private::core::iter::IntoIterator<Item
= Self>>(iterator: T) -> Self {
use ::bitflags::__private::core::iter::Extend;
let mut result = Self::empty();
result.extend(iterator);
result
}
}
impl Restrictions {
/// Yield a set of contained flags values.
///
/// Each yielded flags value will correspond to a defined named flag. Any unknown bits
/// will be yielded together as a final flags value.
#[inline]
pub const fn iter(&self) -> ::bitflags::iter::Iter<Restrictions> {
::bitflags::iter::Iter::__private_const_new(<Restrictions as
::bitflags::Flags>::FLAGS,
Restrictions::from_bits_retain(self.bits()),
Restrictions::from_bits_retain(self.bits()))
}
/// Yield a set of contained named flags values.
///
/// This method is like [`iter`](#method.iter), except only yields bits in contained named flags.
/// Any unknown bits, or bits not corresponding to a contained flag will not be yielded.
#[inline]
pub const fn iter_names(&self)
-> ::bitflags::iter::IterNames<Restrictions> {
::bitflags::iter::IterNames::__private_const_new(<Restrictions
as ::bitflags::Flags>::FLAGS,
Restrictions::from_bits_retain(self.bits()),
Restrictions::from_bits_retain(self.bits()))
}
}
impl ::bitflags::__private::core::iter::IntoIterator for Restrictions
{
type Item = Restrictions;
type IntoIter = ::bitflags::iter::Iter<Restrictions>;
fn into_iter(self) -> Self::IntoIter { self.iter() }
}
};Clone, #[automatically_derived]
impl ::core::marker::Copy for Restrictions { }Copy, #[automatically_derived]
impl ::core::fmt::Debug for Restrictions {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Restrictions",
&&self.0)
}
}Debug)]
72struct Restrictions: u8 {
73/// Restricts expressions for use in statement position.
74 ///
75 /// When expressions are used in various places, like statements or
76 /// match arms, this is used to stop parsing once certain tokens are
77 /// reached.
78 ///
79 /// For example, `if true {} & 1` with `STMT_EXPR` in effect is parsed
80 /// as two separate expression statements (`if` and a reference to 1).
81 /// Otherwise it is parsed as a bitwise AND where `if` is on the left
82 /// and 1 is on the right.
83const STMT_EXPR = 1 << 0;
84/// Do not allow struct literals.
85 ///
86 /// There are several places in the grammar where we don't want to
87 /// allow struct literals because they can require lookahead, or
88 /// otherwise could be ambiguous or cause confusion. For example,
89 /// `if Foo {} {}` isn't clear if it is `Foo{}` struct literal, or
90 /// just `Foo` is the condition, followed by a consequent block,
91 /// followed by an empty block.
92 ///
93 /// See [RFC 92](https://rust-lang.github.io/rfcs/0092-struct-grammar.html).
94const NO_STRUCT_LITERAL = 1 << 1;
95/// Used to provide better error messages for const generic arguments.
96 ///
97 /// An un-braced const generic argument is limited to a very small
98 /// subset of expressions. This is used to detect the situation where
99 /// an expression outside of that subset is used, and to suggest to
100 /// wrap the expression in braces.
101const CONST_EXPR = 1 << 2;
102/// Allows `let` expressions.
103 ///
104 /// `let pattern = scrutinee` is parsed as an expression, but it is
105 /// only allowed in let chains (`if` and `while` conditions).
106 /// Otherwise it is not an expression (note that `let` in statement
107 /// positions is treated as a `StmtKind::Let` statement, which has a
108 /// slightly different grammar).
109const ALLOW_LET = 1 << 3;
110/// Used to detect a missing `=>` in a match guard.
111 ///
112 /// This is used for error handling in a match guard to give a better
113 /// error message if the `=>` is missing. It is set when parsing the
114 /// guard expression.
115const IN_IF_GUARD = 1 << 4;
116/// Used to detect the incorrect use of expressions in patterns.
117 ///
118 /// This is used for error handling while parsing a pattern. During
119 /// error recovery, this will be set to try to parse the pattern as an
120 /// expression, but halts parsing the expression when reaching certain
121 /// tokens like `=`.
122const IS_PAT = 1 << 5;
123 }
124}
125126#[derive(#[automatically_derived]
impl ::core::clone::Clone for SemiColonMode {
#[inline]
fn clone(&self) -> SemiColonMode { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for SemiColonMode { }Copy, #[automatically_derived]
impl ::core::cmp::PartialEq for SemiColonMode {
#[inline]
fn eq(&self, other: &SemiColonMode) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr
}
}PartialEq, #[automatically_derived]
impl ::core::fmt::Debug for SemiColonMode {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self {
SemiColonMode::Break => "Break",
SemiColonMode::Ignore => "Ignore",
SemiColonMode::Comma => "Comma",
})
}
}Debug)]
127enum SemiColonMode {
128 Break,
129 Ignore,
130 Comma,
131}
132133#[derive(#[automatically_derived]
impl ::core::clone::Clone for BlockMode {
#[inline]
fn clone(&self) -> BlockMode { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for BlockMode { }Copy, #[automatically_derived]
impl ::core::cmp::PartialEq for BlockMode {
#[inline]
fn eq(&self, other: &BlockMode) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr
}
}PartialEq, #[automatically_derived]
impl ::core::fmt::Debug for BlockMode {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self {
BlockMode::Break => "Break",
BlockMode::Ignore => "Ignore",
})
}
}Debug)]
134enum BlockMode {
135 Break,
136 Ignore,
137}
138139/// Whether or not we should force collection of tokens for an AST node,
140/// regardless of whether or not it has attributes
141#[derive(#[automatically_derived]
impl ::core::clone::Clone for ForceCollect {
#[inline]
fn clone(&self) -> ForceCollect { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for ForceCollect { }Copy, #[automatically_derived]
impl ::core::fmt::Debug for ForceCollect {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self {
ForceCollect::Yes => "Yes",
ForceCollect::No => "No",
})
}
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for ForceCollect {
#[inline]
fn eq(&self, other: &ForceCollect) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr
}
}PartialEq)]
142pub enum ForceCollect {
143 Yes,
144 No,
145}
146147/// Whether to accept `const { ... }` as a shorthand for `const _: () = const { ... }`.
148#[derive(#[automatically_derived]
impl ::core::clone::Clone for AllowConstBlockItems {
#[inline]
fn clone(&self) -> AllowConstBlockItems { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for AllowConstBlockItems { }Copy, #[automatically_derived]
impl ::core::fmt::Debug for AllowConstBlockItems {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self {
AllowConstBlockItems::Yes => "Yes",
AllowConstBlockItems::No => "No",
AllowConstBlockItems::DoesNotMatter => "DoesNotMatter",
})
}
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for AllowConstBlockItems {
#[inline]
fn eq(&self, other: &AllowConstBlockItems) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr
}
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for AllowConstBlockItems {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) {}
}Eq)]
149pub enum AllowConstBlockItems {
150 Yes,
151 No,
152 DoesNotMatter,
153}
154155/// If the next tokens are ill-formed `$ty::` recover them as `<$ty>::`.
156#[macro_export]
157macro_rules!maybe_recover_from_interpolated_ty_qpath {
158 ($self: expr, $allow_qpath_recovery: expr) => {
159if $allow_qpath_recovery
160&& $self.may_recover()
161 && let Some(mv_kind) = $self.token.is_metavar_seq()
162 && let token::MetaVarKind::Ty { .. } = mv_kind
163 && $self.check_noexpect_past_close_delim(&token::PathSep)
164 {
165// Reparse the type, then move to recovery.
166let ty = $self
167.eat_metavar_seq(mv_kind, |this| this.parse_ty_no_question_mark_recover())
168 .expect("metavar seq ty");
169170return $self.maybe_recover_from_bad_qpath_stage_2($self.prev_token.span, ty);
171 }
172 };
173}
174175#[derive(#[automatically_derived]
impl ::core::clone::Clone for Recovery {
#[inline]
fn clone(&self) -> Recovery { *self }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for Recovery { }Copy, #[automatically_derived]
impl ::core::fmt::Debug for Recovery {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self {
Recovery::Allowed => "Allowed",
Recovery::Forbidden => "Forbidden",
})
}
}Debug)]
176pub enum Recovery {
177 Allowed,
178 Forbidden,
179}
180181#[derive(#[automatically_derived]
impl<'a> ::core::clone::Clone for Parser<'a> {
#[inline]
fn clone(&self) -> Parser<'a> {
Parser {
psess: ::core::clone::Clone::clone(&self.psess),
token: ::core::clone::Clone::clone(&self.token),
token_spacing: ::core::clone::Clone::clone(&self.token_spacing),
prev_token: ::core::clone::Clone::clone(&self.prev_token),
capture_cfg: ::core::clone::Clone::clone(&self.capture_cfg),
restrictions: ::core::clone::Clone::clone(&self.restrictions),
expected_token_types: ::core::clone::Clone::clone(&self.expected_token_types),
token_cursor: ::core::clone::Clone::clone(&self.token_cursor),
num_bump_calls: ::core::clone::Clone::clone(&self.num_bump_calls),
break_last_token: ::core::clone::Clone::clone(&self.break_last_token),
unmatched_angle_bracket_count: ::core::clone::Clone::clone(&self.unmatched_angle_bracket_count),
angle_bracket_nesting: ::core::clone::Clone::clone(&self.angle_bracket_nesting),
parsing_generics: ::core::clone::Clone::clone(&self.parsing_generics),
last_unexpected_token_span: ::core::clone::Clone::clone(&self.last_unexpected_token_span),
subparser_name: ::core::clone::Clone::clone(&self.subparser_name),
capture_state: ::core::clone::Clone::clone(&self.capture_state),
current_closure: ::core::clone::Clone::clone(&self.current_closure),
recovery: ::core::clone::Clone::clone(&self.recovery),
}
}
}Clone)]
182pub struct Parser<'a> {
183pub psess: &'a ParseSess,
184/// The current token.
185pub token: Token = Token::dummy(),
186/// The spacing for the current token.
187token_spacing: Spacing = Spacing::Alone,
188/// The previous token.
189pub prev_token: Token = Token::dummy(),
190pub capture_cfg: bool = false,
191 restrictions: Restrictions = Restrictions::empty(),
192 expected_token_types: TokenTypeSet = TokenTypeSet::new(),
193 token_cursor: TokenCursor,
194// The number of calls to `bump`, i.e. the position in the token stream.
195num_bump_calls: u32 = 0,
196// During parsing we may sometimes need to "unglue" a glued token into two
197 // or three component tokens (e.g. `>>` into `>` and `>`, or `>>=` into `>`
198 // and `>` and `=`), so the parser can consume them one at a time. This
199 // process bypasses the normal capturing mechanism (e.g. `num_bump_calls`
200 // will not be incremented), since the "unglued" tokens due not exist in
201 // the original `TokenStream`.
202 //
203 // If we end up consuming all the component tokens, this is not an issue,
204 // because we'll end up capturing the single "glued" token.
205 //
206 // However, sometimes we may want to capture not all of the original
207 // token. For example, capturing the `Vec<u8>` in `Option<Vec<u8>>`
208 // requires us to unglue the trailing `>>` token. The `break_last_token`
209 // field is used to track these tokens. They get appended to the captured
210 // stream when we evaluate a `LazyAttrTokenStream`.
211 //
212 // This value is always 0, 1, or 2. It can only reach 2 when splitting
213 // `>>=` or `<<=`.
214break_last_token: u32 = 0,
215/// This field is used to keep track of how many left angle brackets we have seen. This is
216 /// required in order to detect extra leading left angle brackets (`<` characters) and error
217 /// appropriately.
218 ///
219 /// See the comments in the `parse_path_segment` function for more details.
220unmatched_angle_bracket_count: u16 = 0,
221 angle_bracket_nesting: u16 = 0,
222/// Keep track of when we're within `<...>` for proper error recovery.
223parsing_generics: bool = false,
224225 last_unexpected_token_span: Option<Span> = None,
226/// If present, this `Parser` is not parsing Rust code but rather a macro call.
227subparser_name: Option<&'static str>,
228 capture_state: CaptureState,
229/// This allows us to recover when the user forget to add braces around
230 /// multiple statements in the closure body.
231current_closure: Option<ClosureSpans> = None,
232/// Whether the parser is allowed to do recovery.
233 /// This is disabled when parsing macro arguments, see #103534
234recovery: Recovery = Recovery::Allowed,
235}
236237// This type is used a lot, e.g. it's cloned when matching many declarative macro rules with
238// nonterminals. Make sure it doesn't unintentionally get bigger. We only check a few arches
239// though, because `TokenTypeSet(u128)` alignment varies on others, changing the total size.
240#[cfg(all(target_pointer_width = "64", any(target_arch = "aarch64", target_arch = "x86_64")))]
241const _: [(); 288] = [(); ::std::mem::size_of::<Parser<'_>>()];rustc_data_structures::static_assert_size!(Parser<'_>, 288);
242243/// Stores span information about a closure.
244#[derive(#[automatically_derived]
impl ::core::clone::Clone for ClosureSpans {
#[inline]
fn clone(&self) -> ClosureSpans {
ClosureSpans {
whole_closure: ::core::clone::Clone::clone(&self.whole_closure),
closing_pipe: ::core::clone::Clone::clone(&self.closing_pipe),
body: ::core::clone::Clone::clone(&self.body),
}
}
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for ClosureSpans {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::debug_struct_field3_finish(f, "ClosureSpans",
"whole_closure", &self.whole_closure, "closing_pipe",
&self.closing_pipe, "body", &&self.body)
}
}Debug)]
245struct ClosureSpans {
246 whole_closure: Span,
247 closing_pipe: Span,
248 body: Span,
249}
250251/// Controls how we capture tokens. Capturing can be expensive,
252/// so we try to avoid performing capturing in cases where
253/// we will never need an `AttrTokenStream`.
254#[derive(#[automatically_derived]
impl ::core::marker::Copy for Capturing { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Capturing {
#[inline]
fn clone(&self) -> Capturing { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Capturing {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self { Capturing::No => "No", Capturing::Yes => "Yes", })
}
}Debug)]
255enum Capturing {
256/// We aren't performing any capturing - this is the default mode.
257No,
258/// We are capturing tokens
259Yes,
260}
261262// This state is used by `Parser::collect_tokens`.
263#[derive(#[automatically_derived]
impl ::core::clone::Clone for CaptureState {
#[inline]
fn clone(&self) -> CaptureState {
CaptureState {
capturing: ::core::clone::Clone::clone(&self.capturing),
parser_replacements: ::core::clone::Clone::clone(&self.parser_replacements),
inner_attr_parser_ranges: ::core::clone::Clone::clone(&self.inner_attr_parser_ranges),
seen_attrs: ::core::clone::Clone::clone(&self.seen_attrs),
}
}
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for CaptureState {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::debug_struct_field4_finish(f, "CaptureState",
"capturing", &self.capturing, "parser_replacements",
&self.parser_replacements, "inner_attr_parser_ranges",
&self.inner_attr_parser_ranges, "seen_attrs", &&self.seen_attrs)
}
}Debug)]
264struct CaptureState {
265 capturing: Capturing,
266 parser_replacements: Vec<ParserReplacement>,
267 inner_attr_parser_ranges: FxHashMap<AttrId, ParserRange>,
268// `IntervalSet` is good for perf because attrs are mostly added to this
269 // set in contiguous ranges.
270seen_attrs: IntervalSet<AttrId>,
271}
272273/// A sequence separator.
274#[derive(#[automatically_derived]
impl ::core::fmt::Debug for SeqSep {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::debug_struct_field2_finish(f, "SeqSep", "sep",
&self.sep, "trailing_sep_allowed", &&self.trailing_sep_allowed)
}
}Debug)]
275struct SeqSep {
276/// The separator token.
277sep: Option<ExpTokenPair>,
278/// `true` if a trailing separator is allowed.
279trailing_sep_allowed: bool,
280}
281282impl SeqSep {
283fn trailing_allowed(sep: ExpTokenPair) -> SeqSep {
284SeqSep { sep: Some(sep), trailing_sep_allowed: true }
285 }
286287fn none() -> SeqSep {
288SeqSep { sep: None, trailing_sep_allowed: false }
289 }
290}
291292#[derive(#[automatically_derived]
impl ::core::fmt::Debug for FollowedByType {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self {
FollowedByType::Yes => "Yes",
FollowedByType::No => "No",
})
}
}Debug)]
293pub enum FollowedByType {
294 Yes,
295 No,
296}
297298#[derive(#[automatically_derived]
impl ::core::marker::Copy for Trailing { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Trailing {
#[inline]
fn clone(&self) -> Trailing { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Trailing {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(f,
match self { Trailing::No => "No", Trailing::Yes => "Yes", })
}
}Debug)]
299pub enum Trailing {
300 No,
301 Yes,
302}
303304impl From<bool> for Trailing {
305fn from(b: bool) -> Trailing {
306if b { Trailing::Yes } else { Trailing::No }
307 }
308}
309310pub fn token_descr(token: &Token) -> String {
311let s = pprust::token_to_string(token).to_string();
312313match (TokenDescription::from_token(token), &token.kind) {
314 (Some(TokenDescription::ReservedIdentifier), _) => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("reserved identifier `{0}`", s))
})format!("reserved identifier `{s}`"),
315 (Some(TokenDescription::Keyword), _) => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("keyword `{0}`", s))
})format!("keyword `{s}`"),
316 (Some(TokenDescription::ReservedKeyword), _) => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("reserved keyword `{0}`", s))
})format!("reserved keyword `{s}`"),
317 (Some(TokenDescription::DocComment), _) => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("doc comment `{0}`", s))
})format!("doc comment `{s}`"),
318// Deliberately doesn't print `s`, which is empty.
319 (Some(TokenDescription::MetaVar(kind)), _) => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("`{0}` metavariable", kind))
})format!("`{kind}` metavariable"),
320 (None, TokenKind::NtIdent(..)) => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("identifier `{0}`", s))
})format!("identifier `{s}`"),
321 (None, TokenKind::NtLifetime(..)) => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("lifetime `{0}`", s))
})format!("lifetime `{s}`"),
322 (None, _) => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("`{0}`", s))
})format!("`{s}`"),
323 }
324}
325326impl<'a> Parser<'a> {
327pub fn new(
328 psess: &'a ParseSess,
329 stream: TokenStream,
330 subparser_name: Option<&'static str>,
331 ) -> Self {
332let mut parser = Parser {
333psess,
334 token_cursor: TokenCursor { curr: TokenTreeCursor::new(stream), stack: Vec::new() },
335subparser_name,
336 capture_state: CaptureState {
337 capturing: Capturing::No,
338 parser_replacements: Vec::new(),
339 inner_attr_parser_ranges: Default::default(),
340 seen_attrs: IntervalSet::new(u32::MAXas usize),
341 },
342 ..
343 };
344345// Make parser point to the first token.
346parser.bump();
347348// Change this from 1 back to 0 after the bump. This eases debugging of
349 // `Parser::collect_tokens` because 0-indexed token positions are nicer
350 // than 1-indexed token positions.
351parser.num_bump_calls = 0;
352353parser354 }
355356#[inline]
357pub fn recovery(mut self, recovery: Recovery) -> Self {
358self.recovery = recovery;
359self360 }
361362#[inline]
363fn with_recovery<T>(&mut self, recovery: Recovery, f: impl FnOnce(&mut Self) -> T) -> T {
364let old = mem::replace(&mut self.recovery, recovery);
365let res = f(self);
366self.recovery = old;
367res368 }
369370/// Whether the parser is allowed to recover from broken code.
371 ///
372 /// If this returns false, recovering broken code into valid code (especially if this recovery does lookahead)
373 /// is not allowed. All recovery done by the parser must be gated behind this check.
374 ///
375 /// Technically, this only needs to restrict eager recovery by doing lookahead at more tokens.
376 /// But making the distinction is very subtle, and simply forbidding all recovery is a lot simpler to uphold.
377#[inline]
378fn may_recover(&self) -> bool {
379#[allow(non_exhaustive_omitted_patterns)] match self.recovery {
Recovery::Allowed => true,
_ => false,
}matches!(self.recovery, Recovery::Allowed)380 }
381382/// Version of [`unexpected`](Parser::unexpected) that "returns" any type in the `Ok`
383 /// (both those functions never return "Ok", and so can lie like that in the type).
384pub fn unexpected_any<T>(&mut self) -> PResult<'a, T> {
385match self.expect_one_of(&[], &[]) {
386Err(e) => Err(e),
387// We can get `Ok(true)` from `recover_closing_delimiter`
388 // which is called in `expected_one_of_not_found`.
389Ok(_) => FatalError.raise(),
390 }
391 }
392393pub fn unexpected(&mut self) -> PResult<'a, ()> {
394self.unexpected_any()
395 }
396397/// Expects and consumes the token `t`. Signals an error if the next token is not `t`.
398pub fn expect(&mut self, exp: ExpTokenPair) -> PResult<'a, Recovered> {
399if self.expected_token_types.is_empty() {
400if self.token == exp.tok {
401self.bump();
402Ok(Recovered::No)
403 } else {
404self.unexpected_try_recover(&exp.tok)
405 }
406 } else {
407self.expect_one_of(slice::from_ref(&exp), &[])
408 }
409 }
410411/// Expect next token to be edible or inedible token. If edible,
412 /// then consume it; if inedible, then return without consuming
413 /// anything. Signal a fatal error if next token is unexpected.
414fn expect_one_of(
415&mut self,
416 edible: &[ExpTokenPair],
417 inedible: &[ExpTokenPair],
418 ) -> PResult<'a, Recovered> {
419if edible.iter().any(|exp| exp.tok == self.token.kind) {
420self.bump();
421Ok(Recovered::No)
422 } else if inedible.iter().any(|exp| exp.tok == self.token.kind) {
423// leave it in the input
424Ok(Recovered::No)
425 } else if self.token != token::Eof426 && self.last_unexpected_token_span == Some(self.token.span)
427 {
428FatalError.raise();
429 } else {
430self.expected_one_of_not_found(edible, inedible)
431 .map(|error_guaranteed| Recovered::Yes(error_guaranteed))
432 }
433 }
434435// Public for rustfmt usage.
436pub fn parse_ident(&mut self) -> PResult<'a, Ident> {
437self.parse_ident_common(self.may_recover())
438 }
439440pub(crate) fn parse_ident_common(&mut self, recover: bool) -> PResult<'a, Ident> {
441let (ident, is_raw) = self.ident_or_err(recover)?;
442443if is_raw == IdentIsRaw::No && ident.is_reserved() {
444let err = self.expected_ident_found_err();
445if recover {
446err.emit();
447 } else {
448return Err(err);
449 }
450 }
451self.bump();
452Ok(ident)
453 }
454455fn ident_or_err(&mut self, recover: bool) -> PResult<'a, (Ident, IdentIsRaw)> {
456match self.token.ident() {
457Some(ident) => Ok(ident),
458None => self.expected_ident_found(recover),
459 }
460 }
461462/// Checks if the next token is `tok`, and returns `true` if so.
463 ///
464 /// This method will automatically add `tok` to `expected_token_types` if `tok` is not
465 /// encountered.
466#[inline]
467pub fn check(&mut self, exp: ExpTokenPair) -> bool {
468let is_present = self.token == exp.tok;
469if !is_present {
470self.expected_token_types.insert(exp.token_type);
471 }
472is_present473 }
474475#[inline]
476 #[must_use]
477fn check_noexpect(&self, tok: &TokenKind) -> bool {
478self.token == *tok479 }
480481// Check the first token after the delimiter that closes the current
482 // delimited sequence. (Panics if used in the outermost token stream, which
483 // has no delimiters.) It uses a clone of the relevant tree cursor to skip
484 // past the entire `TokenTree::Delimited` in a single step, avoiding the
485 // need for unbounded token lookahead.
486 //
487 // Primarily used when `self.token` matches `OpenInvisible(_))`, to look
488 // ahead through the current metavar expansion.
489fn check_noexpect_past_close_delim(&self, tok: &TokenKind) -> bool {
490let mut tree_cursor = self.token_cursor.stack.last().unwrap().clone();
491tree_cursor.bump();
492#[allow(non_exhaustive_omitted_patterns)] match tree_cursor.curr() {
Some(TokenTree::Token(token::Token { kind, .. }, _)) if kind == tok =>
true,
_ => false,
}matches!(
493 tree_cursor.curr(),
494Some(TokenTree::Token(token::Token { kind, .. }, _)) if kind == tok
495 )496 }
497498/// Consumes a token 'tok' if it exists. Returns whether the given token was present.
499 ///
500 /// the main purpose of this function is to reduce the cluttering of the suggestions list
501 /// which using the normal eat method could introduce in some cases.
502#[inline]
503 #[must_use]
504fn eat_noexpect(&mut self, tok: &TokenKind) -> bool {
505let is_present = self.check_noexpect(tok);
506if is_present {
507self.bump()
508 }
509is_present510 }
511512/// Consumes a token 'tok' if it exists. Returns whether the given token was present.
513#[inline]
514 #[must_use]
515pub fn eat(&mut self, exp: ExpTokenPair) -> bool {
516let is_present = self.check(exp);
517if is_present {
518self.bump()
519 }
520is_present521 }
522523/// If the next token is the given keyword, returns `true` without eating it.
524 /// An expectation is also added for diagnostics purposes.
525#[inline]
526 #[must_use]
527fn check_keyword(&mut self, exp: ExpKeywordPair) -> bool {
528let is_keyword = self.token.is_keyword(exp.kw);
529if !is_keyword {
530self.expected_token_types.insert(exp.token_type);
531 }
532is_keyword533 }
534535#[inline]
536 #[must_use]
537fn check_keyword_case(&mut self, exp: ExpKeywordPair, case: Case) -> bool {
538if self.check_keyword(exp) {
539true
540} else if case == Case::Insensitive541 && let Some((ident, IdentIsRaw::No)) = self.token.ident()
542// Do an ASCII case-insensitive match, because all keywords are ASCII.
543&& ident.as_str().eq_ignore_ascii_case(exp.kw.as_str())
544 {
545true
546} else {
547false
548}
549 }
550551/// If the next token is the given keyword, eats it and returns `true`.
552 /// Otherwise, returns `false`. An expectation is also added for diagnostics purposes.
553// Public for rustc_builtin_macros and rustfmt usage.
554#[inline]
555 #[must_use]
556pub fn eat_keyword(&mut self, exp: ExpKeywordPair) -> bool {
557let is_keyword = self.check_keyword(exp);
558if is_keyword {
559self.bump();
560 }
561is_keyword562 }
563564/// Eats a keyword, optionally ignoring the case.
565 /// If the case differs (and is ignored) an error is issued.
566 /// This is useful for recovery.
567#[inline]
568 #[must_use]
569fn eat_keyword_case(&mut self, exp: ExpKeywordPair, case: Case) -> bool {
570if self.eat_keyword(exp) {
571true
572} else if case == Case::Insensitive573 && let Some((ident, IdentIsRaw::No)) = self.token.ident()
574// Do an ASCII case-insensitive match, because all keywords are ASCII.
575&& ident.as_str().eq_ignore_ascii_case(exp.kw.as_str())
576 {
577let kw = exp.kw.as_str();
578let is_upper = kw.chars().all(char::is_uppercase);
579let is_lower = kw.chars().all(char::is_lowercase);
580581let case = match (is_upper, is_lower) {
582 (true, true) => {
583{
::core::panicking::panic_fmt(format_args!("internal error: entered unreachable code: {0}",
format_args!("keyword that is both fully upper- and fully lowercase")));
}unreachable!("keyword that is both fully upper- and fully lowercase")584 }
585 (true, false) => errors::Case::Upper,
586 (false, true) => errors::Case::Lower,
587 (false, false) => errors::Case::Mixed,
588 };
589590self.dcx().emit_err(errors::KwBadCase { span: ident.span, kw, case });
591self.bump();
592true
593} else {
594false
595}
596 }
597598/// If the next token is the given keyword, eats it and returns `true`.
599 /// Otherwise, returns `false`. No expectation is added.
600// Public for rustc_builtin_macros usage.
601#[inline]
602 #[must_use]
603pub fn eat_keyword_noexpect(&mut self, kw: Symbol) -> bool {
604let is_keyword = self.token.is_keyword(kw);
605if is_keyword {
606self.bump();
607 }
608is_keyword609 }
610611/// If the given word is not a keyword, signals an error.
612 /// If the next token is not the given word, signals an error.
613 /// Otherwise, eats it.
614pub fn expect_keyword(&mut self, exp: ExpKeywordPair) -> PResult<'a, ()> {
615if !self.eat_keyword(exp) { self.unexpected() } else { Ok(()) }
616 }
617618/// Consume a sequence produced by a metavar expansion, if present.
619pub fn eat_metavar_seq<T>(
620&mut self,
621 mv_kind: MetaVarKind,
622 f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
623 ) -> Option<T> {
624self.eat_metavar_seq_with_matcher(|mvk| mvk == mv_kind, f)
625 }
626627/// A slightly more general form of `eat_metavar_seq`, for use with the
628 /// `MetaVarKind` variants that have parameters, where an exact match isn't
629 /// desired.
630fn eat_metavar_seq_with_matcher<T>(
631&mut self,
632 match_mv_kind: impl Fn(MetaVarKind) -> bool,
633mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
634 ) -> Option<T> {
635if let token::OpenInvisible(InvisibleOrigin::MetaVar(mv_kind)) = self.token.kind
636 && match_mv_kind(mv_kind)
637 {
638self.bump();
639640// Recovery is disabled when parsing macro arguments, so it must
641 // also be disabled when reparsing pasted macro arguments,
642 // otherwise we get inconsistent results (e.g. #137874).
643let res = self.with_recovery(Recovery::Forbidden, |this| f(this));
644645let res = match res {
646Ok(res) => res,
647Err(err) => {
648// This can occur in unusual error cases, e.g. #139445.
649err.delay_as_bug();
650return None;
651 }
652 };
653654if let token::CloseInvisible(InvisibleOrigin::MetaVar(mv_kind)) = self.token.kind
655 && match_mv_kind(mv_kind)
656 {
657self.bump();
658Some(res)
659 } else {
660// This can occur when invalid syntax is passed to a decl macro. E.g. see #139248,
661 // where the reparse attempt of an invalid expr consumed the trailing invisible
662 // delimiter.
663self.dcx()
664 .span_delayed_bug(self.token.span, "no close delim with reparsing {mv_kind:?}");
665None666 }
667 } else {
668None669 }
670 }
671672/// Is the given keyword `kw` followed by a non-reserved identifier?
673fn is_kw_followed_by_ident(&self, kw: Symbol) -> bool {
674self.token.is_keyword(kw) && self.look_ahead(1, |t| t.is_non_reserved_ident())
675 }
676677#[inline]
678fn check_or_expected(&mut self, ok: bool, token_type: TokenType) -> bool {
679if !ok {
680self.expected_token_types.insert(token_type);
681 }
682ok683 }
684685fn check_ident(&mut self) -> bool {
686self.check_or_expected(self.token.is_ident(), TokenType::Ident)
687 }
688689fn check_path(&mut self) -> bool {
690self.check_or_expected(self.token.is_path_start(), TokenType::Path)
691 }
692693fn check_type(&mut self) -> bool {
694self.check_or_expected(self.token.can_begin_type(), TokenType::Type)
695 }
696697fn check_const_arg(&mut self) -> bool {
698let is_mcg_arg = self.check_or_expected(self.token.can_begin_const_arg(), TokenType::Const);
699let is_mgca_arg = self.is_keyword_ahead(0, &[kw::Const])
700 && self.look_ahead(1, |t| *t == token::OpenBrace);
701is_mcg_arg || is_mgca_arg702 }
703704fn check_const_closure(&self) -> bool {
705self.is_keyword_ahead(0, &[kw::Const])
706 && self.look_ahead(1, |t| match &t.kind {
707// async closures do not work with const closures, so we do not parse that here.
708token::Ident(kw::Move | kw::Use | kw::Static, IdentIsRaw::No)
709 | token::OrOr710 | token::Or => true,
711_ => false,
712 })
713 }
714715fn check_inline_const(&self, dist: usize) -> bool {
716self.is_keyword_ahead(dist, &[kw::Const])
717 && self.look_ahead(dist + 1, |t| match &t.kind {
718 token::OpenBrace => true,
719 token::OpenInvisible(InvisibleOrigin::MetaVar(MetaVarKind::Block)) => true,
720_ => false,
721 })
722 }
723724/// Checks to see if the next token is either `+` or `+=`.
725 /// Otherwise returns `false`.
726#[inline]
727fn check_plus(&mut self) -> bool {
728self.check_or_expected(self.token.is_like_plus(), TokenType::Plus)
729 }
730731/// Eats the expected token if it's present possibly breaking
732 /// compound tokens like multi-character operators in process.
733 /// Returns `true` if the token was eaten.
734fn break_and_eat(&mut self, exp: ExpTokenPair) -> bool {
735if self.token == exp.tok {
736self.bump();
737return true;
738 }
739match self.token.kind.break_two_token_op(1) {
740Some((first, second)) if first == exp.tok => {
741let first_span = self.psess.source_map().start_point(self.token.span);
742let second_span = self.token.span.with_lo(first_span.hi());
743self.token = Token::new(first, first_span);
744// Keep track of this token - if we end token capturing now,
745 // we'll want to append this token to the captured stream.
746 //
747 // If we consume any additional tokens, then this token
748 // is not needed (we'll capture the entire 'glued' token),
749 // and `bump` will set this field to 0.
750self.break_last_token += 1;
751// Use the spacing of the glued token as the spacing of the
752 // unglued second token.
753self.bump_with((Token::new(second, second_span), self.token_spacing));
754true
755}
756_ => {
757self.expected_token_types.insert(exp.token_type);
758false
759}
760 }
761 }
762763/// Eats `+` possibly breaking tokens like `+=` in process.
764fn eat_plus(&mut self) -> bool {
765self.break_and_eat(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::Plus,
token_type: crate::parser::token_type::TokenType::Plus,
}exp!(Plus))
766 }
767768/// Eats `&` possibly breaking tokens like `&&` in process.
769 /// Signals an error if `&` is not eaten.
770fn expect_and(&mut self) -> PResult<'a, ()> {
771if self.break_and_eat(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::And,
token_type: crate::parser::token_type::TokenType::And,
}exp!(And)) { Ok(()) } else { self.unexpected() }
772 }
773774/// Eats `|` possibly breaking tokens like `||` in process.
775 /// Signals an error if `|` was not eaten.
776fn expect_or(&mut self) -> PResult<'a, ()> {
777if self.break_and_eat(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::Or,
token_type: crate::parser::token_type::TokenType::Or,
}exp!(Or)) { Ok(()) } else { self.unexpected() }
778 }
779780/// Eats `<` possibly breaking tokens like `<<` in process.
781fn eat_lt(&mut self) -> bool {
782let ate = self.break_and_eat(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::Lt,
token_type: crate::parser::token_type::TokenType::Lt,
}exp!(Lt));
783if ate {
784// See doc comment for `unmatched_angle_bracket_count`.
785self.unmatched_angle_bracket_count += 1;
786{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_parse/src/parser/mod.rs:786",
"rustc_parse::parser", ::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_parse/src/parser/mod.rs"),
::tracing_core::__macro_support::Option::Some(786u32),
::tracing_core::__macro_support::Option::Some("rustc_parse::parser"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("eat_lt: (increment) count={0:?}",
self.unmatched_angle_bracket_count) as &dyn Value))])
});
} else { ; }
};debug!("eat_lt: (increment) count={:?}", self.unmatched_angle_bracket_count);
787 }
788ate789 }
790791/// Eats `<` possibly breaking tokens like `<<` in process.
792 /// Signals an error if `<` was not eaten.
793fn expect_lt(&mut self) -> PResult<'a, ()> {
794if self.eat_lt() { Ok(()) } else { self.unexpected() }
795 }
796797/// Eats `>` possibly breaking tokens like `>>` in process.
798 /// Signals an error if `>` was not eaten.
799fn expect_gt(&mut self) -> PResult<'a, ()> {
800if self.break_and_eat(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::Gt,
token_type: crate::parser::token_type::TokenType::Gt,
}exp!(Gt)) {
801// See doc comment for `unmatched_angle_bracket_count`.
802if self.unmatched_angle_bracket_count > 0 {
803self.unmatched_angle_bracket_count -= 1;
804{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_parse/src/parser/mod.rs:804",
"rustc_parse::parser", ::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_parse/src/parser/mod.rs"),
::tracing_core::__macro_support::Option::Some(804u32),
::tracing_core::__macro_support::Option::Some("rustc_parse::parser"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("expect_gt: (decrement) count={0:?}",
self.unmatched_angle_bracket_count) as &dyn Value))])
});
} else { ; }
};debug!("expect_gt: (decrement) count={:?}", self.unmatched_angle_bracket_count);
805 }
806Ok(())
807 } else {
808self.unexpected()
809 }
810 }
811812/// Checks if the next token is contained within `closes`, and returns `true` if so.
813fn expect_any_with_type(
814&mut self,
815 closes_expected: &[ExpTokenPair],
816 closes_not_expected: &[&TokenKind],
817 ) -> bool {
818closes_expected.iter().any(|&close| self.check(close))
819 || closes_not_expected.iter().any(|k| self.check_noexpect(k))
820 }
821822/// Parses a sequence until the specified delimiters. The function
823 /// `f` must consume tokens until reaching the next separator or
824 /// closing bracket.
825fn parse_seq_to_before_tokens<T>(
826&mut self,
827 closes_expected: &[ExpTokenPair],
828 closes_not_expected: &[&TokenKind],
829 sep: SeqSep,
830mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
831 ) -> PResult<'a, (ThinVec<T>, Trailing, Recovered)> {
832let mut first = true;
833let mut recovered = Recovered::No;
834let mut trailing = Trailing::No;
835let mut v = ThinVec::new();
836837while !self.expect_any_with_type(closes_expected, closes_not_expected) {
838if self.token.kind.is_close_delim_or_eof() {
839break;
840 }
841if let Some(exp) = sep.sep {
842if first {
843// no separator for the first element
844first = false;
845 } else {
846// check for separator
847match self.expect(exp) {
848Ok(Recovered::No) => {
849self.current_closure.take();
850 }
851Ok(Recovered::Yes(guar)) => {
852self.current_closure.take();
853 recovered = Recovered::Yes(guar);
854break;
855 }
856Err(mut expect_err) => {
857let sp = self.prev_token.span.shrink_to_hi();
858let token_str = pprust::token_kind_to_string(&exp.tok);
859860match self.current_closure.take() {
861Some(closure_spans) if self.token == TokenKind::Semi => {
862// Finding a semicolon instead of a comma
863 // after a closure body indicates that the
864 // closure body may be a block but the user
865 // forgot to put braces around its
866 // statements.
867868self.recover_missing_braces_around_closure_body(
869 closure_spans,
870 expect_err,
871 )?;
872873continue;
874 }
875876_ => {
877// Attempt to keep parsing if it was a similar separator.
878if exp.tok.similar_tokens().contains(&self.token.kind) {
879self.bump();
880 }
881 }
882 }
883884// If this was a missing `@` in a binding pattern
885 // bail with a suggestion
886 // https://github.com/rust-lang/rust/issues/72373
887if self.prev_token.is_ident() && self.token == token::DotDot {
888let msg = ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("if you meant to bind the contents of the rest of the array pattern into `{0}`, use `@`",
pprust::token_to_string(&self.prev_token)))
})format!(
889"if you meant to bind the contents of the rest of the array \
890 pattern into `{}`, use `@`",
891 pprust::token_to_string(&self.prev_token)
892 );
893 expect_err
894 .with_span_suggestion_verbose(
895self.prev_token.span.shrink_to_hi().until(self.token.span),
896 msg,
897" @ ",
898 Applicability::MaybeIncorrect,
899 )
900 .emit();
901break;
902 }
903904// Attempt to keep parsing if it was an omitted separator.
905self.last_unexpected_token_span = None;
906match f(self) {
907Ok(t) => {
908// Parsed successfully, therefore most probably the code only
909 // misses a separator.
910expect_err
911 .with_span_suggestion_short(
912 sp,
913::alloc::__export::must_use({
::alloc::fmt::format(format_args!("missing `{0}`", token_str))
})format!("missing `{token_str}`"),
914 token_str,
915 Applicability::MaybeIncorrect,
916 )
917 .emit();
918919 v.push(t);
920continue;
921 }
922Err(e) => {
923// Parsing failed, therefore it must be something more serious
924 // than just a missing separator.
925for xx in &e.children {
926// Propagate the help message from sub error `e` to main
927 // error `expect_err`.
928expect_err.children.push(xx.clone());
929 }
930 e.cancel();
931if self.token == token::Colon {
932// We will try to recover in
933 // `maybe_recover_struct_lit_bad_delims`.
934return Err(expect_err);
935 } else if let [exp] = closes_expected
936 && exp.token_type == TokenType::CloseParen
937 {
938return Err(expect_err);
939 } else {
940 expect_err.emit();
941break;
942 }
943 }
944 }
945 }
946 }
947 }
948 }
949if sep.trailing_sep_allowed
950 && self.expect_any_with_type(closes_expected, closes_not_expected)
951 {
952 trailing = Trailing::Yes;
953break;
954 }
955956let t = f(self)?;
957 v.push(t);
958 }
959960Ok((v, trailing, recovered))
961 }
962963fn recover_missing_braces_around_closure_body(
964&mut self,
965 closure_spans: ClosureSpans,
966mut expect_err: Diag<'_>,
967 ) -> PResult<'a, ()> {
968let initial_semicolon = self.token.span;
969970while self.eat(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::Semi,
token_type: crate::parser::token_type::TokenType::Semi,
}exp!(Semi)) {
971let _ = self
972.parse_stmt_without_recovery(false, ForceCollect::No, false)
973 .unwrap_or_else(|e| {
974 e.cancel();
975None
976});
977 }
978979expect_err980 .primary_message("closure bodies that contain statements must be surrounded by braces");
981982let preceding_pipe_span = closure_spans.closing_pipe;
983let following_token_span = self.token.span;
984985let mut first_note = MultiSpan::from(<[_]>::into_vec(::alloc::boxed::box_new([initial_semicolon]))vec![initial_semicolon]);
986first_note.push_span_label(
987initial_semicolon,
988"this `;` turns the preceding closure into a statement",
989 );
990first_note.push_span_label(
991closure_spans.body,
992"this expression is a statement because of the trailing semicolon",
993 );
994expect_err.span_note(first_note, "statement found outside of a block");
995996let mut second_note = MultiSpan::from(<[_]>::into_vec(::alloc::boxed::box_new([closure_spans.whole_closure]))vec![closure_spans.whole_closure]);
997second_note.push_span_label(closure_spans.whole_closure, "this is the parsed closure...");
998second_note.push_span_label(
999following_token_span,
1000"...but likely you meant the closure to end here",
1001 );
1002expect_err.span_note(second_note, "the closure body may be incorrectly delimited");
10031004expect_err.span(<[_]>::into_vec(::alloc::boxed::box_new([preceding_pipe_span,
following_token_span]))vec![preceding_pipe_span, following_token_span]);
10051006let opening_suggestion_str = " {".to_string();
1007let closing_suggestion_str = "}".to_string();
10081009expect_err.multipart_suggestion(
1010"try adding braces",
1011<[_]>::into_vec(::alloc::boxed::box_new([(preceding_pipe_span.shrink_to_hi(),
opening_suggestion_str),
(following_token_span.shrink_to_lo(),
closing_suggestion_str)]))vec![
1012 (preceding_pipe_span.shrink_to_hi(), opening_suggestion_str),
1013 (following_token_span.shrink_to_lo(), closing_suggestion_str),
1014 ],
1015 Applicability::MaybeIncorrect,
1016 );
10171018expect_err.emit();
10191020Ok(())
1021 }
10221023/// Parses a sequence, not including the delimiters. The function
1024 /// `f` must consume tokens until reaching the next separator or
1025 /// closing bracket.
1026fn parse_seq_to_before_end<T>(
1027&mut self,
1028 close: ExpTokenPair,
1029 sep: SeqSep,
1030 f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1031 ) -> PResult<'a, (ThinVec<T>, Trailing, Recovered)> {
1032self.parse_seq_to_before_tokens(&[close], &[], sep, f)
1033 }
10341035/// Parses a sequence, including only the closing delimiter. The function
1036 /// `f` must consume tokens until reaching the next separator or
1037 /// closing bracket.
1038fn parse_seq_to_end<T>(
1039&mut self,
1040 close: ExpTokenPair,
1041 sep: SeqSep,
1042 f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1043 ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1044let (val, trailing, recovered) = self.parse_seq_to_before_end(close, sep, f)?;
1045if #[allow(non_exhaustive_omitted_patterns)] match recovered {
Recovered::No => true,
_ => false,
}matches!(recovered, Recovered::No) && !self.eat(close) {
1046self.dcx().span_delayed_bug(
1047self.token.span,
1048"recovered but `parse_seq_to_before_end` did not give us the close token",
1049 );
1050 }
1051Ok((val, trailing))
1052 }
10531054/// Parses a sequence, including both delimiters. The function
1055 /// `f` must consume tokens until reaching the next separator or
1056 /// closing bracket.
1057fn parse_unspanned_seq<T>(
1058&mut self,
1059 open: ExpTokenPair,
1060 close: ExpTokenPair,
1061 sep: SeqSep,
1062 f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1063 ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1064self.expect(open)?;
1065self.parse_seq_to_end(close, sep, f)
1066 }
10671068/// Parses a comma-separated sequence, including both delimiters.
1069 /// The function `f` must consume tokens until reaching the next separator or
1070 /// closing bracket.
1071fn parse_delim_comma_seq<T>(
1072&mut self,
1073 open: ExpTokenPair,
1074 close: ExpTokenPair,
1075 f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1076 ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1077self.parse_unspanned_seq(open, close, SeqSep::trailing_allowed(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::Comma,
token_type: crate::parser::token_type::TokenType::Comma,
}exp!(Comma)), f)
1078 }
10791080/// Parses a comma-separated sequence delimited by parentheses (e.g. `(x, y)`).
1081 /// The function `f` must consume tokens until reaching the next separator or
1082 /// closing bracket.
1083pub fn parse_paren_comma_seq<T>(
1084&mut self,
1085 f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1086 ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1087self.parse_delim_comma_seq(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::OpenParen,
token_type: crate::parser::token_type::TokenType::OpenParen,
}exp!(OpenParen), crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::CloseParen,
token_type: crate::parser::token_type::TokenType::CloseParen,
}exp!(CloseParen), f)
1088 }
10891090/// Advance the parser by one token using provided token as the next one.
1091fn bump_with(&mut self, next: (Token, Spacing)) {
1092self.inlined_bump_with(next)
1093 }
10941095/// This always-inlined version should only be used on hot code paths.
1096#[inline(always)]
1097fn inlined_bump_with(&mut self, (next_token, next_spacing): (Token, Spacing)) {
1098// Update the current and previous tokens.
1099self.prev_token = mem::replace(&mut self.token, next_token);
1100self.token_spacing = next_spacing;
11011102// Diagnostics.
1103self.expected_token_types.clear();
1104 }
11051106/// Advance the parser by one token.
1107pub fn bump(&mut self) {
1108// Note: destructuring here would give nicer code, but it was found in #96210 to be slower
1109 // than `.0`/`.1` access.
1110let mut next = self.token_cursor.inlined_next();
1111self.num_bump_calls += 1;
1112// We got a token from the underlying cursor and no longer need to
1113 // worry about an unglued token. See `break_and_eat` for more details.
1114self.break_last_token = 0;
1115if next.0.span.is_dummy() {
1116// Tweak the location for better diagnostics, but keep syntactic context intact.
1117let fallback_span = self.token.span;
1118next.0.span = fallback_span.with_ctxt(next.0.span.ctxt());
1119 }
1120if true {
if !!#[allow(non_exhaustive_omitted_patterns)] match next.0.kind {
token::OpenInvisible(origin) | token::CloseInvisible(origin)
if origin.skip() => true,
_ => false,
} {
::core::panicking::panic("assertion failed: !matches!(next.0.kind, token::OpenInvisible(origin) |\n token::CloseInvisible(origin) if origin.skip())")
};
};debug_assert!(!matches!(
1121 next.0.kind,
1122 token::OpenInvisible(origin) | token::CloseInvisible(origin) if origin.skip()
1123 ));
1124self.inlined_bump_with(next)
1125 }
11261127/// Look-ahead `dist` tokens of `self.token` and get access to that token there.
1128 /// When `dist == 0` then the current token is looked at. `Eof` will be
1129 /// returned if the look-ahead is any distance past the end of the tokens.
1130pub fn look_ahead<R>(&self, dist: usize, looker: impl FnOnce(&Token) -> R) -> R {
1131if dist == 0 {
1132return looker(&self.token);
1133 }
11341135// Typically around 98% of the `dist > 0` cases have `dist == 1`, so we
1136 // have a fast special case for that.
1137if dist == 1 {
1138// The index is zero because the tree cursor's index always points
1139 // to the next token to be gotten.
1140match self.token_cursor.curr.curr() {
1141Some(tree) => {
1142// Indexing stayed within the current token tree.
1143match tree {
1144 TokenTree::Token(token, _) => return looker(token),
1145&TokenTree::Delimited(dspan, _, delim, _) => {
1146if !delim.skip() {
1147return looker(&Token::new(delim.as_open_token_kind(), dspan.open));
1148 }
1149 }
1150 }
1151 }
1152None => {
1153// The tree cursor lookahead went (one) past the end of the
1154 // current token tree. Try to return a close delimiter.
1155if let Some(last) = self.token_cursor.stack.last()
1156 && let Some(&TokenTree::Delimited(span, _, delim, _)) = last.curr()
1157 && !delim.skip()
1158 {
1159// We are not in the outermost token stream, so we have
1160 // delimiters. Also, those delimiters are not skipped.
1161return looker(&Token::new(delim.as_close_token_kind(), span.close));
1162 }
1163 }
1164 }
1165 }
11661167// Just clone the token cursor and use `next`, skipping delimiters as
1168 // necessary. Slow but simple.
1169let mut cursor = self.token_cursor.clone();
1170let mut i = 0;
1171let mut token = Token::dummy();
1172while i < dist {
1173 token = cursor.next().0;
1174if let token::OpenInvisible(origin) | token::CloseInvisible(origin) = token.kind
1175 && origin.skip()
1176 {
1177continue;
1178 }
1179 i += 1;
1180 }
1181looker(&token)
1182 }
11831184/// Like `lookahead`, but skips over token trees rather than tokens. Useful
1185 /// when looking past possible metavariable pasting sites.
1186pub fn tree_look_ahead<R>(
1187&self,
1188 dist: usize,
1189 looker: impl FnOnce(&TokenTree) -> R,
1190 ) -> Option<R> {
1191match (&dist, &0) {
(left_val, right_val) => {
if *left_val == *right_val {
let kind = ::core::panicking::AssertKind::Ne;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::None);
}
}
};assert_ne!(dist, 0);
1192self.token_cursor.curr.look_ahead(dist - 1).map(looker)
1193 }
11941195/// Returns whether any of the given keywords are `dist` tokens ahead of the current one.
1196pub(crate) fn is_keyword_ahead(&self, dist: usize, kws: &[Symbol]) -> bool {
1197self.look_ahead(dist, |t| kws.iter().any(|&kw| t.is_keyword(kw)))
1198 }
11991200/// Parses asyncness: `async` or nothing.
1201fn parse_coroutine_kind(&mut self, case: Case) -> Option<CoroutineKind> {
1202let span = self.token_uninterpolated_span();
1203if self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Async,
token_type: crate::parser::token_type::TokenType::KwAsync,
}exp!(Async), case) {
1204// FIXME(gen_blocks): Do we want to unconditionally parse `gen` and then
1205 // error if edition <= 2024, like we do with async and edition <= 2018?
1206if self.token_uninterpolated_span().at_least_rust_2024()
1207 && self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Gen,
token_type: crate::parser::token_type::TokenType::KwGen,
}exp!(Gen), case)
1208 {
1209let gen_span = self.prev_token_uninterpolated_span();
1210Some(CoroutineKind::AsyncGen {
1211 span: span.to(gen_span),
1212 closure_id: DUMMY_NODE_ID,
1213 return_impl_trait_id: DUMMY_NODE_ID,
1214 })
1215 } else {
1216Some(CoroutineKind::Async {
1217span,
1218 closure_id: DUMMY_NODE_ID,
1219 return_impl_trait_id: DUMMY_NODE_ID,
1220 })
1221 }
1222 } else if self.token_uninterpolated_span().at_least_rust_2024()
1223 && self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Gen,
token_type: crate::parser::token_type::TokenType::KwGen,
}exp!(Gen), case)
1224 {
1225Some(CoroutineKind::Gen {
1226span,
1227 closure_id: DUMMY_NODE_ID,
1228 return_impl_trait_id: DUMMY_NODE_ID,
1229 })
1230 } else {
1231None1232 }
1233 }
12341235/// Parses fn unsafety: `unsafe`, `safe` or nothing.
1236fn parse_safety(&mut self, case: Case) -> Safety {
1237if self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Unsafe,
token_type: crate::parser::token_type::TokenType::KwUnsafe,
}exp!(Unsafe), case) {
1238 Safety::Unsafe(self.prev_token_uninterpolated_span())
1239 } else if self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Safe,
token_type: crate::parser::token_type::TokenType::KwSafe,
}exp!(Safe), case) {
1240 Safety::Safe(self.prev_token_uninterpolated_span())
1241 } else {
1242 Safety::Default1243 }
1244 }
12451246/// Parses constness: `const` or nothing.
1247fn parse_constness(&mut self, case: Case) -> Const {
1248self.parse_constness_(case, false)
1249 }
12501251/// Parses constness for closures (case sensitive, feature-gated)
1252fn parse_closure_constness(&mut self) -> Const {
1253let constness = self.parse_constness_(Case::Sensitive, true);
1254if let Const::Yes(span) = constness {
1255self.psess.gated_spans.gate(sym::const_closures, span);
1256 }
1257constness1258 }
12591260fn parse_constness_(&mut self, case: Case, is_closure: bool) -> Const {
1261// Avoid const blocks and const closures to be parsed as const items
1262if (self.check_const_closure() == is_closure)
1263 && !self.look_ahead(1, |t| *t == token::OpenBrace || t.is_metavar_block())
1264 && self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Const,
token_type: crate::parser::token_type::TokenType::KwConst,
}exp!(Const), case)
1265 {
1266 Const::Yes(self.prev_token_uninterpolated_span())
1267 } else {
1268 Const::No1269 }
1270 }
12711272fn parse_mgca_const_block(&mut self, gate_syntax: bool) -> PResult<'a, AnonConst> {
1273let kw_span = self.prev_token.span;
1274let value = self.parse_expr_block(None, kw_span, BlockCheckMode::Default)?;
1275if gate_syntax {
1276self.psess.gated_spans.gate(sym::min_generic_const_args, kw_span.to(value.span));
1277 }
1278Ok(AnonConst {
1279 id: ast::DUMMY_NODE_ID,
1280value,
1281 mgca_disambiguation: MgcaDisambiguation::AnonConst,
1282 })
1283 }
12841285/// Parses inline const expressions.
1286fn parse_const_block(&mut self, span: Span) -> PResult<'a, Box<Expr>> {
1287self.expect_keyword(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Const,
token_type: crate::parser::token_type::TokenType::KwConst,
}exp!(Const))?;
1288let (attrs, blk) = self.parse_inner_attrs_and_block(None)?;
1289let anon_const = AnonConst {
1290 id: DUMMY_NODE_ID,
1291 value: self.mk_expr(blk.span, ExprKind::Block(blk, None)),
1292 mgca_disambiguation: MgcaDisambiguation::AnonConst,
1293 };
1294let blk_span = anon_const.value.span;
1295let kind = ExprKind::ConstBlock(anon_const);
1296Ok(self.mk_expr_with_attrs(span.to(blk_span), kind, attrs))
1297 }
12981299/// Parses mutability (`mut` or nothing).
1300fn parse_mutability(&mut self) -> Mutability {
1301if self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Mut,
token_type: crate::parser::token_type::TokenType::KwMut,
}exp!(Mut)) { Mutability::Mut } else { Mutability::Not }
1302 }
13031304/// Parses reference binding mode (`ref`, `ref mut`, `ref pin const`, `ref pin mut`, or nothing).
1305fn parse_byref(&mut self) -> ByRef {
1306if self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Ref,
token_type: crate::parser::token_type::TokenType::KwRef,
}exp!(Ref)) {
1307let (pinnedness, mutability) = self.parse_pin_and_mut();
1308 ByRef::Yes(pinnedness, mutability)
1309 } else {
1310 ByRef::No1311 }
1312 }
13131314/// Possibly parses mutability (`const` or `mut`).
1315fn parse_const_or_mut(&mut self) -> Option<Mutability> {
1316if self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Mut,
token_type: crate::parser::token_type::TokenType::KwMut,
}exp!(Mut)) {
1317Some(Mutability::Mut)
1318 } else if self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Const,
token_type: crate::parser::token_type::TokenType::KwConst,
}exp!(Const)) {
1319Some(Mutability::Not)
1320 } else {
1321None1322 }
1323 }
13241325fn parse_field_name(&mut self) -> PResult<'a, Ident> {
1326if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) = self.token.kind
1327 {
1328if let Some(suffix) = suffix {
1329self.dcx().emit_err(errors::InvalidLiteralSuffixOnTupleIndex {
1330 span: self.token.span,
1331suffix,
1332 });
1333 }
1334self.bump();
1335Ok(Ident::new(symbol, self.prev_token.span))
1336 } else {
1337self.parse_ident_common(true)
1338 }
1339 }
13401341fn parse_delim_args(&mut self) -> PResult<'a, Box<DelimArgs>> {
1342if let Some(args) = self.parse_delim_args_inner() {
1343Ok(Box::new(args))
1344 } else {
1345self.unexpected_any()
1346 }
1347 }
13481349fn parse_attr_args(&mut self) -> PResult<'a, AttrArgs> {
1350Ok(if let Some(args) = self.parse_delim_args_inner() {
1351 AttrArgs::Delimited(args)
1352 } else if self.eat(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::Eq,
token_type: crate::parser::token_type::TokenType::Eq,
}exp!(Eq)) {
1353let eq_span = self.prev_token.span;
1354let expr = self.parse_expr_force_collect()?;
1355 AttrArgs::Eq { eq_span, expr }
1356 } else {
1357 AttrArgs::Empty1358 })
1359 }
13601361fn parse_delim_args_inner(&mut self) -> Option<DelimArgs> {
1362let delimited = self.check(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::OpenParen,
token_type: crate::parser::token_type::TokenType::OpenParen,
}exp!(OpenParen))
1363 || self.check(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::OpenBracket,
token_type: crate::parser::token_type::TokenType::OpenBracket,
}exp!(OpenBracket))
1364 || self.check(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::OpenBrace,
token_type: crate::parser::token_type::TokenType::OpenBrace,
}exp!(OpenBrace));
13651366delimited.then(|| {
1367let TokenTree::Delimited(dspan, _, delim, tokens) = self.parse_token_tree() else {
1368::core::panicking::panic("internal error: entered unreachable code")unreachable!()1369 };
1370DelimArgs { dspan, delim, tokens }
1371 })
1372 }
13731374/// Parses a single token tree from the input.
1375pub fn parse_token_tree(&mut self) -> TokenTree {
1376if self.token.kind.open_delim().is_some() {
1377// Clone the `TokenTree::Delimited` that we are currently
1378 // within. That's what we are going to return.
1379let tree = self.token_cursor.stack.last().unwrap().curr().unwrap().clone();
1380if true {
match tree {
TokenTree::Delimited(..) => {}
ref left_val => {
::core::panicking::assert_matches_failed(left_val,
"TokenTree::Delimited(..)", ::core::option::Option::None);
}
};
};debug_assert_matches!(tree, TokenTree::Delimited(..));
13811382// Advance the token cursor through the entire delimited
1383 // sequence. After getting the `OpenDelim` we are *within* the
1384 // delimited sequence, i.e. at depth `d`. After getting the
1385 // matching `CloseDelim` we are *after* the delimited sequence,
1386 // i.e. at depth `d - 1`.
1387let target_depth = self.token_cursor.stack.len() - 1;
13881389if let Capturing::No = self.capture_state.capturing {
1390// We are not capturing tokens, so skip to the end of the
1391 // delimited sequence. This is a perf win when dealing with
1392 // declarative macros that pass large `tt` fragments through
1393 // multiple rules, as seen in the uom-0.37.0 crate.
1394self.token_cursor.curr.bump_to_end();
1395self.bump();
1396if true {
match (&self.token_cursor.stack.len(), &target_depth) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val,
&*right_val, ::core::option::Option::None);
}
}
};
};debug_assert_eq!(self.token_cursor.stack.len(), target_depth);
1397 } else {
1398loop {
1399// Advance one token at a time, so `TokenCursor::next()`
1400 // can capture these tokens if necessary.
1401self.bump();
1402if self.token_cursor.stack.len() == target_depth {
1403break;
1404 }
1405 }
1406 }
1407if true {
if !self.token.kind.close_delim().is_some() {
::core::panicking::panic("assertion failed: self.token.kind.close_delim().is_some()")
};
};debug_assert!(self.token.kind.close_delim().is_some());
14081409// Consume close delimiter
1410self.bump();
1411tree1412 } else {
1413if !!self.token.kind.is_close_delim_or_eof() {
::core::panicking::panic("assertion failed: !self.token.kind.is_close_delim_or_eof()")
};assert!(!self.token.kind.is_close_delim_or_eof());
1414let prev_spacing = self.token_spacing;
1415self.bump();
1416 TokenTree::Token(self.prev_token, prev_spacing)
1417 }
1418 }
14191420pub fn parse_tokens(&mut self) -> TokenStream {
1421let mut result = Vec::new();
1422loop {
1423if self.token.kind.is_close_delim_or_eof() {
1424break;
1425 } else {
1426result.push(self.parse_token_tree());
1427 }
1428 }
1429TokenStream::new(result)
1430 }
14311432/// Evaluates the closure with restrictions in place.
1433 ///
1434 /// Afters the closure is evaluated, restrictions are reset.
1435fn with_res<T>(&mut self, res: Restrictions, f: impl FnOnce(&mut Self) -> T) -> T {
1436let old = self.restrictions;
1437self.restrictions = res;
1438let res = f(self);
1439self.restrictions = old;
1440res1441 }
14421443/// Parses `pub` and `pub(in path)` plus shortcuts `pub(crate)` for `pub(in crate)`, `pub(self)`
1444 /// for `pub(in self)` and `pub(super)` for `pub(in super)`.
1445 /// If the following element can't be a tuple (i.e., it's a function definition), then
1446 /// it's not a tuple struct field), and the contents within the parentheses aren't valid,
1447 /// so emit a proper diagnostic.
1448// Public for rustfmt usage.
1449pub fn parse_visibility(&mut self, fbt: FollowedByType) -> PResult<'a, Visibility> {
1450if let Some(vis) = self1451 .eat_metavar_seq(MetaVarKind::Vis, |this| this.parse_visibility(FollowedByType::Yes))
1452 {
1453return Ok(vis);
1454 }
14551456if !self.eat_keyword(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Pub,
token_type: crate::parser::token_type::TokenType::KwPub,
}exp!(Pub)) {
1457// We need a span for our `Spanned<VisibilityKind>`, but there's inherently no
1458 // keyword to grab a span from for inherited visibility; an empty span at the
1459 // beginning of the current token would seem to be the "Schelling span".
1460return Ok(Visibility {
1461 span: self.token.span.shrink_to_lo(),
1462 kind: VisibilityKind::Inherited,
1463 tokens: None,
1464 });
1465 }
1466let lo = self.prev_token.span;
14671468if self.check(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::OpenParen,
token_type: crate::parser::token_type::TokenType::OpenParen,
}exp!(OpenParen)) {
1469// We don't `self.bump()` the `(` yet because this might be a struct definition where
1470 // `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`.
1471 // Because of this, we only `bump` the `(` if we're assured it is appropriate to do so
1472 // by the following tokens.
1473if self.is_keyword_ahead(1, &[kw::In]) {
1474// Parse `pub(in path)`.
1475self.bump(); // `(`
1476self.bump(); // `in`
1477let path = self.parse_path(PathStyle::Mod)?; // `path`
1478self.expect(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::CloseParen,
token_type: crate::parser::token_type::TokenType::CloseParen,
}exp!(CloseParen))?; // `)`
1479let vis = VisibilityKind::Restricted {
1480 path: Box::new(path),
1481 id: ast::DUMMY_NODE_ID,
1482 shorthand: false,
1483 };
1484return Ok(Visibility {
1485 span: lo.to(self.prev_token.span),
1486 kind: vis,
1487 tokens: None,
1488 });
1489 } else if self.look_ahead(2, |t| t == &token::CloseParen)
1490 && self.is_keyword_ahead(1, &[kw::Crate, kw::Super, kw::SelfLower])
1491 {
1492// Parse `pub(crate)`, `pub(self)`, or `pub(super)`.
1493self.bump(); // `(`
1494let path = self.parse_path(PathStyle::Mod)?; // `crate`/`super`/`self`
1495self.expect(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::CloseParen,
token_type: crate::parser::token_type::TokenType::CloseParen,
}exp!(CloseParen))?; // `)`
1496let vis = VisibilityKind::Restricted {
1497 path: Box::new(path),
1498 id: ast::DUMMY_NODE_ID,
1499 shorthand: true,
1500 };
1501return Ok(Visibility {
1502 span: lo.to(self.prev_token.span),
1503 kind: vis,
1504 tokens: None,
1505 });
1506 } else if let FollowedByType::No = fbt {
1507// Provide this diagnostic if a type cannot follow;
1508 // in particular, if this is not a tuple struct.
1509self.recover_incorrect_vis_restriction()?;
1510// Emit diagnostic, but continue with public visibility.
1511}
1512 }
15131514Ok(Visibility { span: lo, kind: VisibilityKind::Public, tokens: None })
1515 }
15161517/// Recovery for e.g. `pub(something) fn ...` or `struct X { pub(something) y: Z }`
1518fn recover_incorrect_vis_restriction(&mut self) -> PResult<'a, ()> {
1519self.bump(); // `(`
1520let path = self.parse_path(PathStyle::Mod)?;
1521self.expect(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::CloseParen,
token_type: crate::parser::token_type::TokenType::CloseParen,
}exp!(CloseParen))?; // `)`
15221523let path_str = pprust::path_to_string(&path);
1524self.dcx()
1525 .emit_err(IncorrectVisibilityRestriction { span: path.span, inner_str: path_str });
15261527Ok(())
1528 }
15291530/// Parses `extern string_literal?`.
1531fn parse_extern(&mut self, case: Case) -> Extern {
1532if self.eat_keyword_case(crate::parser::token_type::ExpKeywordPair {
kw: rustc_span::symbol::kw::Extern,
token_type: crate::parser::token_type::TokenType::KwExtern,
}exp!(Extern), case) {
1533let mut extern_span = self.prev_token.span;
1534let abi = self.parse_abi();
1535if let Some(abi) = abi {
1536extern_span = extern_span.to(abi.span);
1537 }
1538Extern::from_abi(abi, extern_span)
1539 } else {
1540 Extern::None1541 }
1542 }
15431544/// Parses a string literal as an ABI spec.
1545fn parse_abi(&mut self) -> Option<StrLit> {
1546match self.parse_str_lit() {
1547Ok(str_lit) => Some(str_lit),
1548Err(Some(lit)) => match lit.kind {
1549 ast::LitKind::Err(_) => None,
1550_ => {
1551self.dcx().emit_err(NonStringAbiLiteral { span: lit.span });
1552None1553 }
1554 },
1555Err(None) => None,
1556 }
1557 }
15581559fn collect_tokens_no_attrs<R: HasAttrs + HasTokens>(
1560&mut self,
1561 f: impl FnOnce(&mut Self) -> PResult<'a, R>,
1562 ) -> PResult<'a, R> {
1563// The only reason to call `collect_tokens_no_attrs` is if you want tokens, so use
1564 // `ForceCollect::Yes`
1565self.collect_tokens(None, AttrWrapper::empty(), ForceCollect::Yes, |this, _attrs| {
1566Ok((f(this)?, Trailing::No, UsePreAttrPos::No))
1567 })
1568 }
15691570/// Checks for `::` or, potentially, `:::` and then look ahead after it.
1571fn check_path_sep_and_look_ahead(&mut self, looker: impl Fn(&Token) -> bool) -> bool {
1572if self.check(crate::parser::token_type::ExpTokenPair {
tok: rustc_ast::token::PathSep,
token_type: crate::parser::token_type::TokenType::PathSep,
}exp!(PathSep)) {
1573if self.may_recover() && self.look_ahead(1, |t| t.kind == token::Colon) {
1574if true {
if !!self.look_ahead(1, &looker) {
{
::core::panicking::panic_fmt(format_args!("Looker must not match on colon"));
}
};
};debug_assert!(!self.look_ahead(1, &looker), "Looker must not match on colon");
1575self.look_ahead(2, looker)
1576 } else {
1577self.look_ahead(1, looker)
1578 }
1579 } else {
1580false
1581}
1582 }
15831584/// `::{` or `::*`
1585fn is_import_coupler(&mut self) -> bool {
1586self.check_path_sep_and_look_ahead(|t| #[allow(non_exhaustive_omitted_patterns)] match t.kind {
token::OpenBrace | token::Star => true,
_ => false,
}matches!(t.kind, token::OpenBrace | token::Star))
1587 }
15881589// Debug view of the parser's token stream, up to `{lookahead}` tokens.
1590 // Only used when debugging.
1591#[allow(unused)]
1592pub(crate) fn debug_lookahead(&self, lookahead: usize) -> impl fmt::Debug {
1593 fmt::from_fn(move |f| {
1594let mut dbg_fmt = f.debug_struct("Parser"); // or at least, one view of
15951596 // we don't need N spans, but we want at least one, so print all of prev_token
1597dbg_fmt.field("prev_token", &self.prev_token);
1598let mut tokens = ::alloc::vec::Vec::new()vec![];
1599for i in 0..lookahead {
1600let tok = self.look_ahead(i, |tok| tok.kind);
1601let is_eof = tok == TokenKind::Eof;
1602 tokens.push(tok);
1603if is_eof {
1604// Don't look ahead past EOF.
1605break;
1606 }
1607 }
1608dbg_fmt.field_with("tokens", |field| field.debug_list().entries(tokens).finish());
1609dbg_fmt.field("approx_token_stream_pos", &self.num_bump_calls);
16101611// some fields are interesting for certain values, as they relate to macro parsing
1612if let Some(subparser) = self.subparser_name {
1613dbg_fmt.field("subparser_name", &subparser);
1614 }
1615if let Recovery::Forbidden = self.recovery {
1616dbg_fmt.field("recovery", &self.recovery);
1617 }
16181619// imply there's "more to know" than this view
1620dbg_fmt.finish_non_exhaustive()
1621 })
1622 }
16231624pub fn clear_expected_token_types(&mut self) {
1625self.expected_token_types.clear();
1626 }
16271628pub fn approx_token_stream_pos(&self) -> u32 {
1629self.num_bump_calls
1630 }
16311632/// For interpolated `self.token`, returns a span of the fragment to which
1633 /// the interpolated token refers. For all other tokens this is just a
1634 /// regular span. It is particularly important to use this for identifiers
1635 /// and lifetimes for which spans affect name resolution and edition
1636 /// checks. Note that keywords are also identifiers, so they should use
1637 /// this if they keep spans or perform edition checks.
1638pub fn token_uninterpolated_span(&self) -> Span {
1639match &self.token.kind {
1640 token::NtIdent(ident, _) | token::NtLifetime(ident, _) => ident.span,
1641 token::OpenInvisible(InvisibleOrigin::MetaVar(_)) => self.look_ahead(1, |t| t.span),
1642_ => self.token.span,
1643 }
1644 }
16451646/// Like `token_uninterpolated_span`, but works on `self.prev_token`.
1647pub fn prev_token_uninterpolated_span(&self) -> Span {
1648match &self.prev_token.kind {
1649 token::NtIdent(ident, _) | token::NtLifetime(ident, _) => ident.span,
1650 token::OpenInvisible(InvisibleOrigin::MetaVar(_)) => self.look_ahead(0, |t| t.span),
1651_ => self.prev_token.span,
1652 }
1653 }
1654}
16551656// Metavar captures of various kinds.
1657#[derive(#[automatically_derived]
impl ::core::clone::Clone for ParseNtResult {
#[inline]
fn clone(&self) -> ParseNtResult {
match self {
ParseNtResult::Tt(__self_0) =>
ParseNtResult::Tt(::core::clone::Clone::clone(__self_0)),
ParseNtResult::Ident(__self_0, __self_1) =>
ParseNtResult::Ident(::core::clone::Clone::clone(__self_0),
::core::clone::Clone::clone(__self_1)),
ParseNtResult::Lifetime(__self_0, __self_1) =>
ParseNtResult::Lifetime(::core::clone::Clone::clone(__self_0),
::core::clone::Clone::clone(__self_1)),
ParseNtResult::Item(__self_0) =>
ParseNtResult::Item(::core::clone::Clone::clone(__self_0)),
ParseNtResult::Block(__self_0) =>
ParseNtResult::Block(::core::clone::Clone::clone(__self_0)),
ParseNtResult::Stmt(__self_0) =>
ParseNtResult::Stmt(::core::clone::Clone::clone(__self_0)),
ParseNtResult::Pat(__self_0, __self_1) =>
ParseNtResult::Pat(::core::clone::Clone::clone(__self_0),
::core::clone::Clone::clone(__self_1)),
ParseNtResult::Expr(__self_0, __self_1) =>
ParseNtResult::Expr(::core::clone::Clone::clone(__self_0),
::core::clone::Clone::clone(__self_1)),
ParseNtResult::Literal(__self_0) =>
ParseNtResult::Literal(::core::clone::Clone::clone(__self_0)),
ParseNtResult::Ty(__self_0) =>
ParseNtResult::Ty(::core::clone::Clone::clone(__self_0)),
ParseNtResult::Meta(__self_0) =>
ParseNtResult::Meta(::core::clone::Clone::clone(__self_0)),
ParseNtResult::Path(__self_0) =>
ParseNtResult::Path(::core::clone::Clone::clone(__self_0)),
ParseNtResult::Vis(__self_0) =>
ParseNtResult::Vis(::core::clone::Clone::clone(__self_0)),
}
}
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for ParseNtResult {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
ParseNtResult::Tt(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Tt",
&__self_0),
ParseNtResult::Ident(__self_0, __self_1) =>
::core::fmt::Formatter::debug_tuple_field2_finish(f, "Ident",
__self_0, &__self_1),
ParseNtResult::Lifetime(__self_0, __self_1) =>
::core::fmt::Formatter::debug_tuple_field2_finish(f,
"Lifetime", __self_0, &__self_1),
ParseNtResult::Item(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Item",
&__self_0),
ParseNtResult::Block(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Block",
&__self_0),
ParseNtResult::Stmt(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Stmt",
&__self_0),
ParseNtResult::Pat(__self_0, __self_1) =>
::core::fmt::Formatter::debug_tuple_field2_finish(f, "Pat",
__self_0, &__self_1),
ParseNtResult::Expr(__self_0, __self_1) =>
::core::fmt::Formatter::debug_tuple_field2_finish(f, "Expr",
__self_0, &__self_1),
ParseNtResult::Literal(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f,
"Literal", &__self_0),
ParseNtResult::Ty(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Ty",
&__self_0),
ParseNtResult::Meta(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Meta",
&__self_0),
ParseNtResult::Path(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Path",
&__self_0),
ParseNtResult::Vis(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Vis",
&__self_0),
}
}
}Debug)]
1658pub enum ParseNtResult {
1659 Tt(TokenTree),
1660 Ident(Ident, IdentIsRaw),
1661 Lifetime(Ident, IdentIsRaw),
1662 Item(Box<ast::Item>),
1663 Block(Box<ast::Block>),
1664 Stmt(Box<ast::Stmt>),
1665 Pat(Box<ast::Pat>, NtPatKind),
1666 Expr(Box<ast::Expr>, NtExprKind),
1667 Literal(Box<ast::Expr>),
1668 Ty(Box<ast::Ty>),
1669 Meta(Box<ast::AttrItem>),
1670 Path(Box<ast::Path>),
1671 Vis(Box<ast::Visibility>),
1672}