1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
use rustc_infer::infer::canonical::Canonical;
use rustc_infer::infer::resolve::OpportunisticRegionResolver;
use rustc_infer::traits::query::OutlivesBound;
use rustc_macros::{HashStable, TypeFoldable, TypeVisitable};
use rustc_middle::infer::canonical::CanonicalQueryResponse;
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::{self, ParamEnvAnd, Ty, TyCtxt, TypeFolder, TypeVisitableExt};
use rustc_span::def_id::CRATE_DEF_ID;
use rustc_span::DUMMY_SP;
use rustc_type_ir::outlives::{push_outlives_components, Component};
use smallvec::{smallvec, SmallVec};
use tracing::debug;

use crate::traits::query::NoSolution;
use crate::traits::{wf, ObligationCtxt};

#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
pub struct ImpliedOutlivesBounds<'tcx> {
    pub ty: Ty<'tcx>,
}

impl<'tcx> super::QueryTypeOp<'tcx> for ImpliedOutlivesBounds<'tcx> {
    type QueryResponse = Vec<OutlivesBound<'tcx>>;

    fn try_fast_path(
        _tcx: TyCtxt<'tcx>,
        key: &ParamEnvAnd<'tcx, Self>,
    ) -> Option<Self::QueryResponse> {
        // Don't go into the query for things that can't possibly have lifetimes.
        match key.value.ty.kind() {
            ty::Tuple(elems) if elems.is_empty() => Some(vec![]),
            ty::Never | ty::Str | ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) => {
                Some(vec![])
            }
            _ => None,
        }
    }

    fn perform_query(
        tcx: TyCtxt<'tcx>,
        canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Self>>,
    ) -> Result<CanonicalQueryResponse<'tcx, Self::QueryResponse>, NoSolution> {
        // FIXME this `unchecked_map` is only necessary because the
        // query is defined as taking a `ParamEnvAnd<Ty>`; it should
        // take an `ImpliedOutlivesBounds` instead
        let canonicalized = canonicalized.unchecked_map(|ParamEnvAnd { param_env, value }| {
            let ImpliedOutlivesBounds { ty } = value;
            param_env.and(ty)
        });

        if tcx.sess.opts.unstable_opts.no_implied_bounds_compat {
            tcx.implied_outlives_bounds(canonicalized)
        } else {
            tcx.implied_outlives_bounds_compat(canonicalized)
        }
    }

    fn perform_locally_with_next_solver(
        ocx: &ObligationCtxt<'_, 'tcx>,
        key: ParamEnvAnd<'tcx, Self>,
    ) -> Result<Self::QueryResponse, NoSolution> {
        if ocx.infcx.tcx.sess.opts.unstable_opts.no_implied_bounds_compat {
            compute_implied_outlives_bounds_inner(ocx, key.param_env, key.value.ty)
        } else {
            compute_implied_outlives_bounds_compat_inner(ocx, key.param_env, key.value.ty)
        }
    }
}

pub fn compute_implied_outlives_bounds_inner<'tcx>(
    ocx: &ObligationCtxt<'_, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    ty: Ty<'tcx>,
) -> Result<Vec<OutlivesBound<'tcx>>, NoSolution> {
    let normalize_op = |ty| {
        let ty = ocx.normalize(&ObligationCause::dummy(), param_env, ty);
        if !ocx.select_all_or_error().is_empty() {
            return Err(NoSolution);
        }
        let ty = ocx.infcx.resolve_vars_if_possible(ty);
        let ty = OpportunisticRegionResolver::new(&ocx.infcx).fold_ty(ty);
        Ok(ty)
    };

    // Sometimes when we ask what it takes for T: WF, we get back that
    // U: WF is required; in that case, we push U onto this stack and
    // process it next. Because the resulting predicates aren't always
    // guaranteed to be a subset of the original type, so we need to store the
    // WF args we've computed in a set.
    let mut checked_wf_args = rustc_data_structures::fx::FxHashSet::default();
    let mut wf_args = vec![ty.into(), normalize_op(ty)?.into()];

    let mut outlives_bounds: Vec<OutlivesBound<'tcx>> = vec![];

    while let Some(arg) = wf_args.pop() {
        if !checked_wf_args.insert(arg) {
            continue;
        }

        // From the full set of obligations, just filter down to the region relationships.
        for obligation in
            wf::unnormalized_obligations(ocx.infcx, param_env, arg).into_iter().flatten()
        {
            assert!(!obligation.has_escaping_bound_vars());
            let Some(pred) = obligation.predicate.kind().no_bound_vars() else {
                continue;
            };
            match pred {
                // FIXME(const_generics): Make sure that `<'a, 'b, const N: &'a &'b u32>` is sound
                // if we ever support that
                ty::PredicateKind::Clause(ty::ClauseKind::Trait(..))
                | ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(..))
                | ty::PredicateKind::Subtype(..)
                | ty::PredicateKind::Coerce(..)
                | ty::PredicateKind::Clause(ty::ClauseKind::Projection(..))
                | ty::PredicateKind::ObjectSafe(..)
                | ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
                | ty::PredicateKind::ConstEquate(..)
                | ty::PredicateKind::Ambiguous
                | ty::PredicateKind::NormalizesTo(..)
                | ty::PredicateKind::AliasRelate(..) => {}

                // We need to search through *all* WellFormed predicates
                ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
                    wf_args.push(arg);
                }

                // We need to register region relationships
                ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(
                    ty::OutlivesPredicate(r_a, r_b),
                )) => outlives_bounds.push(OutlivesBound::RegionSubRegion(r_b, r_a)),

                ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(
                    ty_a,
                    r_b,
                ))) => {
                    let ty_a = normalize_op(ty_a)?;
                    let mut components = smallvec![];
                    push_outlives_components(ocx.infcx.tcx, ty_a, &mut components);
                    outlives_bounds.extend(implied_bounds_from_components(r_b, components))
                }
            }
        }
    }

    Ok(outlives_bounds)
}

pub fn compute_implied_outlives_bounds_compat_inner<'tcx>(
    ocx: &ObligationCtxt<'_, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    ty: Ty<'tcx>,
) -> Result<Vec<OutlivesBound<'tcx>>, NoSolution> {
    let tcx = ocx.infcx.tcx;

    // Sometimes when we ask what it takes for T: WF, we get back that
    // U: WF is required; in that case, we push U onto this stack and
    // process it next. Because the resulting predicates aren't always
    // guaranteed to be a subset of the original type, so we need to store the
    // WF args we've computed in a set.
    let mut checked_wf_args = rustc_data_structures::fx::FxHashSet::default();
    let mut wf_args = vec![ty.into()];

    let mut outlives_bounds: Vec<ty::OutlivesPredicate<'tcx, ty::GenericArg<'tcx>>> = vec![];

    while let Some(arg) = wf_args.pop() {
        if !checked_wf_args.insert(arg) {
            continue;
        }

        // Compute the obligations for `arg` to be well-formed. If `arg` is
        // an unresolved inference variable, just instantiated an empty set
        // -- because the return type here is going to be things we *add*
        // to the environment, it's always ok for this set to be smaller
        // than the ultimate set. (Note: normally there won't be
        // unresolved inference variables here anyway, but there might be
        // during typeck under some circumstances.)
        //
        // FIXME(@lcnr): It's not really "always fine", having fewer implied
        // bounds can be backward incompatible, e.g. #101951 was caused by
        // us not dealing with inference vars in `TypeOutlives` predicates.
        let obligations = wf::obligations(ocx.infcx, param_env, CRATE_DEF_ID, 0, arg, DUMMY_SP)
            .unwrap_or_default();

        for obligation in obligations {
            debug!(?obligation);
            assert!(!obligation.has_escaping_bound_vars());

            // While these predicates should all be implied by other parts of
            // the program, they are still relevant as they may constrain
            // inference variables, which is necessary to add the correct
            // implied bounds in some cases, mostly when dealing with projections.
            //
            // Another important point here: we only register `Projection`
            // predicates, since otherwise we might register outlives
            // predicates containing inference variables, and we don't
            // learn anything new from those.
            if obligation.predicate.has_non_region_infer() {
                match obligation.predicate.kind().skip_binder() {
                    ty::PredicateKind::Clause(ty::ClauseKind::Projection(..))
                    | ty::PredicateKind::AliasRelate(..) => {
                        ocx.register_obligation(obligation.clone());
                    }
                    _ => {}
                }
            }

            let pred = match obligation.predicate.kind().no_bound_vars() {
                None => continue,
                Some(pred) => pred,
            };
            match pred {
                // FIXME(const_generics): Make sure that `<'a, 'b, const N: &'a &'b u32>` is sound
                // if we ever support that
                ty::PredicateKind::Clause(ty::ClauseKind::Trait(..))
                | ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(..))
                | ty::PredicateKind::Subtype(..)
                | ty::PredicateKind::Coerce(..)
                | ty::PredicateKind::Clause(ty::ClauseKind::Projection(..))
                | ty::PredicateKind::ObjectSafe(..)
                | ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
                | ty::PredicateKind::ConstEquate(..)
                | ty::PredicateKind::Ambiguous
                | ty::PredicateKind::NormalizesTo(..)
                | ty::PredicateKind::AliasRelate(..) => {}

                // We need to search through *all* WellFormed predicates
                ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
                    wf_args.push(arg);
                }

                // We need to register region relationships
                ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(
                    ty::OutlivesPredicate(r_a, r_b),
                )) => outlives_bounds.push(ty::OutlivesPredicate(r_a.into(), r_b)),

                ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(
                    ty_a,
                    r_b,
                ))) => outlives_bounds.push(ty::OutlivesPredicate(ty_a.into(), r_b)),
            }
        }
    }

    // This call to `select_all_or_error` is necessary to constrain inference variables, which we
    // use further down when computing the implied bounds.
    match ocx.select_all_or_error().as_slice() {
        [] => (),
        _ => return Err(NoSolution),
    }

    // We lazily compute the outlives components as
    // `select_all_or_error` constrains inference variables.
    let mut implied_bounds = Vec::new();
    for ty::OutlivesPredicate(a, r_b) in outlives_bounds {
        match a.unpack() {
            ty::GenericArgKind::Lifetime(r_a) => {
                implied_bounds.push(OutlivesBound::RegionSubRegion(r_b, r_a))
            }
            ty::GenericArgKind::Type(ty_a) => {
                let mut ty_a = ocx.infcx.resolve_vars_if_possible(ty_a);
                // Need to manually normalize in the new solver as `wf::obligations` does not.
                if ocx.infcx.next_trait_solver() {
                    ty_a = ocx
                        .deeply_normalize(&ObligationCause::dummy(), param_env, ty_a)
                        .map_err(|_| NoSolution)?;
                }
                let mut components = smallvec![];
                push_outlives_components(tcx, ty_a, &mut components);
                implied_bounds.extend(implied_bounds_from_components(r_b, components))
            }
            ty::GenericArgKind::Const(_) => {
                unreachable!("consts do not participate in outlives bounds")
            }
        }
    }

    Ok(implied_bounds)
}

/// When we have an implied bound that `T: 'a`, we can further break
/// this down to determine what relationships would have to hold for
/// `T: 'a` to hold. We get to assume that the caller has validated
/// those relationships.
fn implied_bounds_from_components<'tcx>(
    sub_region: ty::Region<'tcx>,
    sup_components: SmallVec<[Component<TyCtxt<'tcx>>; 4]>,
) -> Vec<OutlivesBound<'tcx>> {
    sup_components
        .into_iter()
        .filter_map(|component| {
            match component {
                Component::Region(r) => Some(OutlivesBound::RegionSubRegion(sub_region, r)),
                Component::Param(p) => Some(OutlivesBound::RegionSubParam(sub_region, p)),
                Component::Alias(p) => Some(OutlivesBound::RegionSubAlias(sub_region, p)),
                Component::Placeholder(_p) => {
                    // FIXME(non_lifetime_binders): Placeholders don't currently
                    // imply anything for outlives, though they could easily.
                    None
                }
                Component::EscapingAlias(_) =>
                // If the projection has escaping regions, don't
                // try to infer any implied bounds even for its
                // free components. This is conservative, because
                // the caller will still have to prove that those
                // free components outlive `sub_region`. But the
                // idea is that the WAY that the caller proves
                // that may change in the future and we want to
                // give ourselves room to get smarter here.
                {
                    None
                }
                Component::UnresolvedInferenceVariable(..) => None,
            }
        })
        .collect()
}