rustc_monomorphize/mono_checks/
abi_check.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
//! This module ensures that if a function's ABI requires a particular target feature,
//! that target feature is enabled both on the callee and all callers.
use rustc_hir::CRATE_HIR_ID;
use rustc_middle::mir::{self, traversal};
use rustc_middle::ty::inherent::*;
use rustc_middle::ty::{self, Instance, InstanceKind, Ty, TyCtxt};
use rustc_session::lint::builtin::ABI_UNSUPPORTED_VECTOR_TYPES;
use rustc_span::def_id::DefId;
use rustc_span::{DUMMY_SP, Span, Symbol};
use rustc_target::abi::call::{FnAbi, PassMode};
use rustc_target::abi::{BackendRepr, RegKind};

use crate::errors::{
    AbiErrorDisabledVectorTypeCall, AbiErrorDisabledVectorTypeDef,
    AbiErrorUnsupportedVectorTypeCall, AbiErrorUnsupportedVectorTypeDef,
};

fn uses_vector_registers(mode: &PassMode, repr: &BackendRepr) -> bool {
    match mode {
        PassMode::Ignore | PassMode::Indirect { .. } => false,
        PassMode::Cast { pad_i32: _, cast } => {
            cast.prefix.iter().any(|r| r.is_some_and(|x| x.kind == RegKind::Vector))
                || cast.rest.unit.kind == RegKind::Vector
        }
        PassMode::Direct(..) | PassMode::Pair(..) => matches!(repr, BackendRepr::Vector { .. }),
    }
}

/// Checks whether a certain function ABI is compatible with the target features currently enabled
/// for a certain function.
/// If not, `emit_err` is called, with `Some(feature)` if a certain feature should be enabled and
/// with `None` if no feature is known that would make the ABI compatible.
fn do_check_abi<'tcx>(
    tcx: TyCtxt<'tcx>,
    abi: &FnAbi<'tcx, Ty<'tcx>>,
    target_feature_def: DefId,
    mut emit_err: impl FnMut(Option<&'static str>),
) {
    let feature_def = tcx.sess.target.features_for_correct_vector_abi();
    let codegen_attrs = tcx.codegen_fn_attrs(target_feature_def);
    for arg_abi in abi.args.iter().chain(std::iter::once(&abi.ret)) {
        let size = arg_abi.layout.size;
        if uses_vector_registers(&arg_abi.mode, &arg_abi.layout.backend_repr) {
            // Find the first feature that provides at least this vector size.
            let feature = match feature_def.iter().find(|(bits, _)| size.bits() <= *bits) {
                Some((_, feature)) => feature,
                None => {
                    emit_err(None);
                    continue;
                }
            };
            let feature_sym = Symbol::intern(feature);
            if !tcx.sess.unstable_target_features.contains(&feature_sym)
                && !codegen_attrs.target_features.iter().any(|x| x.name == feature_sym)
            {
                emit_err(Some(&feature));
            }
        }
    }
}

/// Checks that the ABI of a given instance of a function does not contain vector-passed arguments
/// or return values for which the corresponding target feature is not enabled.
fn check_instance_abi<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
    let typing_env = ty::TypingEnv::fully_monomorphized();
    let Ok(abi) = tcx.fn_abi_of_instance(typing_env.as_query_input((instance, ty::List::empty())))
    else {
        // An error will be reported during codegen if we cannot determine the ABI of this
        // function.
        return;
    };
    do_check_abi(tcx, abi, instance.def_id(), |required_feature| {
        let span = tcx.def_span(instance.def_id());
        if let Some(required_feature) = required_feature {
            tcx.emit_node_span_lint(
                ABI_UNSUPPORTED_VECTOR_TYPES,
                CRATE_HIR_ID,
                span,
                AbiErrorDisabledVectorTypeDef { span, required_feature },
            );
        } else {
            tcx.emit_node_span_lint(
                ABI_UNSUPPORTED_VECTOR_TYPES,
                CRATE_HIR_ID,
                span,
                AbiErrorUnsupportedVectorTypeDef { span },
            );
        }
    })
}

/// Checks that a call expression does not try to pass a vector-passed argument which requires a
/// target feature that the caller does not have, as doing so causes UB because of ABI mismatch.
fn check_call_site_abi<'tcx>(
    tcx: TyCtxt<'tcx>,
    callee: Ty<'tcx>,
    span: Span,
    caller: InstanceKind<'tcx>,
) {
    if callee.fn_sig(tcx).abi().is_rust() {
        // "Rust" ABI never passes arguments in vector registers.
        return;
    }
    let typing_env = ty::TypingEnv::fully_monomorphized();
    let callee_abi = match *callee.kind() {
        ty::FnPtr(..) => {
            tcx.fn_abi_of_fn_ptr(typing_env.as_query_input((callee.fn_sig(tcx), ty::List::empty())))
        }
        ty::FnDef(def_id, args) => {
            // Intrinsics are handled separately by the compiler.
            if tcx.intrinsic(def_id).is_some() {
                return;
            }
            let instance = ty::Instance::expect_resolve(tcx, typing_env, def_id, args, DUMMY_SP);
            tcx.fn_abi_of_instance(typing_env.as_query_input((instance, ty::List::empty())))
        }
        _ => {
            panic!("Invalid function call");
        }
    };

    let Ok(callee_abi) = callee_abi else {
        // ABI failed to compute; this will not get through codegen.
        return;
    };
    do_check_abi(tcx, callee_abi, caller.def_id(), |required_feature| {
        if let Some(required_feature) = required_feature {
            tcx.emit_node_span_lint(
                ABI_UNSUPPORTED_VECTOR_TYPES,
                CRATE_HIR_ID,
                span,
                AbiErrorDisabledVectorTypeCall { span, required_feature },
            );
        } else {
            tcx.emit_node_span_lint(
                ABI_UNSUPPORTED_VECTOR_TYPES,
                CRATE_HIR_ID,
                span,
                AbiErrorUnsupportedVectorTypeCall { span },
            );
        }
    });
}

fn check_callees_abi<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, body: &mir::Body<'tcx>) {
    // Check all function call terminators.
    for (bb, _data) in traversal::mono_reachable(body, tcx, instance) {
        let terminator = body.basic_blocks[bb].terminator();
        match terminator.kind {
            mir::TerminatorKind::Call { ref func, ref fn_span, .. }
            | mir::TerminatorKind::TailCall { ref func, ref fn_span, .. } => {
                let callee_ty = func.ty(body, tcx);
                let callee_ty = instance.instantiate_mir_and_normalize_erasing_regions(
                    tcx,
                    ty::TypingEnv::fully_monomorphized(),
                    ty::EarlyBinder::bind(callee_ty),
                );
                check_call_site_abi(tcx, callee_ty, *fn_span, body.source.instance);
            }
            _ => {}
        }
    }
}

pub(crate) fn check_feature_dependent_abi<'tcx>(
    tcx: TyCtxt<'tcx>,
    instance: Instance<'tcx>,
    body: &'tcx mir::Body<'tcx>,
) {
    check_instance_abi(tcx, instance);
    check_callees_abi(tcx, instance, body);
}