1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
//! Code that is useful in various codegen modules.

use crate::consts::const_alloc_to_llvm;
pub use crate::context::CodegenCx;
use crate::llvm::{self, BasicBlock, Bool, ConstantInt, False, OperandBundleDef, True};
use crate::type_::Type;
use crate::value::Value;

use rustc_ast::Mutability;
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::stable_hasher::{Hash128, HashStable, StableHasher};
use rustc_hir::def_id::DefId;
use rustc_middle::bug;
use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc, Scalar};
use rustc_middle::ty::TyCtxt;
use rustc_session::cstore::{DllCallingConvention, DllImport, PeImportNameType};
use rustc_target::abi::{self, AddressSpace, HasDataLayout, Pointer};
use rustc_target::spec::Target;

use libc::{c_char, c_uint};
use std::fmt::Write;

/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/

/// A structure representing an active landing pad for the duration of a basic
/// block.
///
/// Each `Block` may contain an instance of this, indicating whether the block
/// is part of a landing pad or not. This is used to make decision about whether
/// to emit `invoke` instructions (e.g., in a landing pad we don't continue to
/// use `invoke`) and also about various function call metadata.
///
/// For GNU exceptions (`landingpad` + `resume` instructions) this structure is
/// just a bunch of `None` instances (not too interesting), but for MSVC
/// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data.
/// When inside of a landing pad, each function call in LLVM IR needs to be
/// annotated with which landing pad it's a part of. This is accomplished via
/// the `OperandBundleDef` value created for MSVC landing pads.
pub struct Funclet<'ll> {
    cleanuppad: &'ll Value,
    operand: OperandBundleDef<'ll>,
}

impl<'ll> Funclet<'ll> {
    pub fn new(cleanuppad: &'ll Value) -> Self {
        Funclet { cleanuppad, operand: OperandBundleDef::new("funclet", &[cleanuppad]) }
    }

    pub fn cleanuppad(&self) -> &'ll Value {
        self.cleanuppad
    }

    pub fn bundle(&self) -> &OperandBundleDef<'ll> {
        &self.operand
    }
}

impl<'ll> BackendTypes for CodegenCx<'ll, '_> {
    type Value = &'ll Value;
    // FIXME(eddyb) replace this with a `Function` "subclass" of `Value`.
    type Function = &'ll Value;

    type BasicBlock = &'ll BasicBlock;
    type Type = &'ll Type;
    type Funclet = Funclet<'ll>;

    type DIScope = &'ll llvm::debuginfo::DIScope;
    type DILocation = &'ll llvm::debuginfo::DILocation;
    type DIVariable = &'ll llvm::debuginfo::DIVariable;
}

impl<'ll> CodegenCx<'ll, '_> {
    pub fn const_array(&self, ty: &'ll Type, elts: &[&'ll Value]) -> &'ll Value {
        let len = u64::try_from(elts.len()).expect("LLVMConstArray2 elements len overflow");
        unsafe { llvm::LLVMConstArray2(ty, elts.as_ptr(), len) }
    }

    pub fn const_vector(&self, elts: &[&'ll Value]) -> &'ll Value {
        let len = c_uint::try_from(elts.len()).expect("LLVMConstVector elements len overflow");
        unsafe { llvm::LLVMConstVector(elts.as_ptr(), len) }
    }

    pub fn const_bytes(&self, bytes: &[u8]) -> &'ll Value {
        bytes_in_context(self.llcx, bytes)
    }

    pub fn const_get_elt(&self, v: &'ll Value, idx: u64) -> &'ll Value {
        unsafe {
            let idx = c_uint::try_from(idx).expect("LLVMGetAggregateElement index overflow");
            let r = llvm::LLVMGetAggregateElement(v, idx).unwrap();

            debug!("const_get_elt(v={:?}, idx={}, r={:?})", v, idx, r);

            r
        }
    }
}

impl<'ll, 'tcx> ConstMethods<'tcx> for CodegenCx<'ll, 'tcx> {
    fn const_null(&self, t: &'ll Type) -> &'ll Value {
        unsafe { llvm::LLVMConstNull(t) }
    }

    fn const_undef(&self, t: &'ll Type) -> &'ll Value {
        unsafe { llvm::LLVMGetUndef(t) }
    }

    fn const_poison(&self, t: &'ll Type) -> &'ll Value {
        unsafe { llvm::LLVMGetPoison(t) }
    }

    fn const_int(&self, t: &'ll Type, i: i64) -> &'ll Value {
        unsafe { llvm::LLVMConstInt(t, i as u64, True) }
    }

    fn const_uint(&self, t: &'ll Type, i: u64) -> &'ll Value {
        unsafe { llvm::LLVMConstInt(t, i, False) }
    }

    fn const_uint_big(&self, t: &'ll Type, u: u128) -> &'ll Value {
        unsafe {
            let words = [u as u64, (u >> 64) as u64];
            llvm::LLVMConstIntOfArbitraryPrecision(t, 2, words.as_ptr())
        }
    }

    fn const_bool(&self, val: bool) -> &'ll Value {
        self.const_uint(self.type_i1(), val as u64)
    }

    fn const_i16(&self, i: i16) -> &'ll Value {
        self.const_int(self.type_i16(), i as i64)
    }

    fn const_i32(&self, i: i32) -> &'ll Value {
        self.const_int(self.type_i32(), i as i64)
    }

    fn const_i8(&self, i: i8) -> &'ll Value {
        self.const_int(self.type_i8(), i as i64)
    }

    fn const_u32(&self, i: u32) -> &'ll Value {
        self.const_uint(self.type_i32(), i as u64)
    }

    fn const_u64(&self, i: u64) -> &'ll Value {
        self.const_uint(self.type_i64(), i)
    }

    fn const_u128(&self, i: u128) -> &'ll Value {
        self.const_uint_big(self.type_i128(), i)
    }

    fn const_usize(&self, i: u64) -> &'ll Value {
        let bit_size = self.data_layout().pointer_size.bits();
        if bit_size < 64 {
            // make sure it doesn't overflow
            assert!(i < (1 << bit_size));
        }

        self.const_uint(self.isize_ty, i)
    }

    fn const_u8(&self, i: u8) -> &'ll Value {
        self.const_uint(self.type_i8(), i as u64)
    }

    fn const_real(&self, t: &'ll Type, val: f64) -> &'ll Value {
        unsafe { llvm::LLVMConstReal(t, val) }
    }

    fn const_str(&self, s: &str) -> (&'ll Value, &'ll Value) {
        let str_global = *self
            .const_str_cache
            .borrow_mut()
            .raw_entry_mut()
            .from_key(s)
            .or_insert_with(|| {
                let sc = self.const_bytes(s.as_bytes());
                let sym = self.generate_local_symbol_name("str");
                let g = self.define_global(&sym, self.val_ty(sc)).unwrap_or_else(|| {
                    bug!("symbol `{}` is already defined", sym);
                });
                unsafe {
                    llvm::LLVMSetInitializer(g, sc);
                    llvm::LLVMSetGlobalConstant(g, True);
                    llvm::LLVMSetUnnamedAddress(g, llvm::UnnamedAddr::Global);
                    llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage);
                }
                (s.to_owned(), g)
            })
            .1;
        let len = s.len();
        (str_global, self.const_usize(len as u64))
    }

    fn const_struct(&self, elts: &[&'ll Value], packed: bool) -> &'ll Value {
        struct_in_context(self.llcx, elts, packed)
    }

    fn const_to_opt_uint(&self, v: &'ll Value) -> Option<u64> {
        try_as_const_integral(v).and_then(|v| unsafe {
            let mut i = 0u64;
            let success = llvm::LLVMRustConstIntGetZExtValue(v, &mut i);
            success.then_some(i)
        })
    }

    fn const_to_opt_u128(&self, v: &'ll Value, sign_ext: bool) -> Option<u128> {
        try_as_const_integral(v).and_then(|v| unsafe {
            let (mut lo, mut hi) = (0u64, 0u64);
            let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo);
            success.then_some(hi_lo_to_u128(lo, hi))
        })
    }

    fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, llty: &'ll Type) -> &'ll Value {
        let bitsize = if layout.is_bool() { 1 } else { layout.size(self).bits() };
        match cv {
            Scalar::Int(int) => {
                let data = int.assert_bits(layout.size(self));
                let llval = self.const_uint_big(self.type_ix(bitsize), data);
                if matches!(layout.primitive(), Pointer(_)) {
                    unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
                } else {
                    self.const_bitcast(llval, llty)
                }
            }
            Scalar::Ptr(ptr, _size) => {
                let (prov, offset) = ptr.into_parts();
                let (base_addr, base_addr_space) = match self.tcx.global_alloc(prov.alloc_id()) {
                    GlobalAlloc::Memory(alloc) => {
                        let init = const_alloc_to_llvm(self, alloc);
                        let alloc = alloc.inner();
                        let value = match alloc.mutability {
                            Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None),
                            _ => self.static_addr_of(init, alloc.align, None),
                        };
                        if !self.sess().fewer_names() && llvm::get_value_name(value).is_empty() {
                            let hash = self.tcx.with_stable_hashing_context(|mut hcx| {
                                let mut hasher = StableHasher::new();
                                alloc.hash_stable(&mut hcx, &mut hasher);
                                hasher.finish::<Hash128>()
                            });
                            llvm::set_value_name(value, format!("alloc_{hash:032x}").as_bytes());
                        }
                        (value, AddressSpace::DATA)
                    }
                    GlobalAlloc::Function(fn_instance) => (
                        self.get_fn_addr(fn_instance.polymorphize(self.tcx)),
                        self.data_layout().instruction_address_space,
                    ),
                    GlobalAlloc::VTable(ty, trait_ref) => {
                        let alloc = self
                            .tcx
                            .global_alloc(self.tcx.vtable_allocation((ty, trait_ref)))
                            .unwrap_memory();
                        let init = const_alloc_to_llvm(self, alloc);
                        let value = self.static_addr_of(init, alloc.inner().align, None);
                        (value, AddressSpace::DATA)
                    }
                    GlobalAlloc::Static(def_id) => {
                        assert!(self.tcx.is_static(def_id));
                        assert!(!self.tcx.is_thread_local_static(def_id));
                        (self.get_static(def_id), AddressSpace::DATA)
                    }
                };
                let llval = unsafe {
                    llvm::LLVMConstInBoundsGEP2(
                        self.type_i8(),
                        self.const_bitcast(base_addr, self.type_ptr_ext(base_addr_space)),
                        &self.const_usize(offset.bytes()),
                        1,
                    )
                };
                if !matches!(layout.primitive(), Pointer(_)) {
                    unsafe { llvm::LLVMConstPtrToInt(llval, llty) }
                } else {
                    self.const_bitcast(llval, llty)
                }
            }
        }
    }

    fn const_data_from_alloc(&self, alloc: ConstAllocation<'tcx>) -> Self::Value {
        const_alloc_to_llvm(self, alloc)
    }

    fn const_bitcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value {
        self.const_bitcast(val, ty)
    }

    fn const_ptr_byte_offset(&self, base_addr: Self::Value, offset: abi::Size) -> Self::Value {
        unsafe {
            llvm::LLVMConstInBoundsGEP2(
                self.type_i8(),
                base_addr,
                &self.const_usize(offset.bytes()),
                1,
            )
        }
    }
}

/// Get the [LLVM type][Type] of a [`Value`].
pub fn val_ty(v: &Value) -> &Type {
    unsafe { llvm::LLVMTypeOf(v) }
}

pub fn bytes_in_context<'ll>(llcx: &'ll llvm::Context, bytes: &[u8]) -> &'ll Value {
    unsafe {
        let ptr = bytes.as_ptr() as *const c_char;
        llvm::LLVMConstStringInContext2(llcx, ptr, bytes.len(), True)
    }
}

pub fn struct_in_context<'ll>(
    llcx: &'ll llvm::Context,
    elts: &[&'ll Value],
    packed: bool,
) -> &'ll Value {
    let len = c_uint::try_from(elts.len()).expect("LLVMConstStructInContext elements len overflow");
    unsafe { llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), len, packed as Bool) }
}

#[inline]
fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 {
    ((hi as u128) << 64) | (lo as u128)
}

fn try_as_const_integral(v: &Value) -> Option<&ConstantInt> {
    unsafe { llvm::LLVMIsAConstantInt(v) }
}

pub(crate) fn get_dllimport<'tcx>(
    tcx: TyCtxt<'tcx>,
    id: DefId,
    name: &str,
) -> Option<&'tcx DllImport> {
    tcx.native_library(id)
        .and_then(|lib| lib.dll_imports.iter().find(|di| di.name.as_str() == name))
}

pub(crate) fn is_mingw_gnu_toolchain(target: &Target) -> bool {
    target.vendor == "pc" && target.os == "windows" && target.env == "gnu" && target.abi.is_empty()
}

pub(crate) fn i686_decorated_name(
    dll_import: &DllImport,
    mingw: bool,
    disable_name_mangling: bool,
) -> String {
    let name = dll_import.name.as_str();

    let (add_prefix, add_suffix) = match dll_import.import_name_type {
        Some(PeImportNameType::NoPrefix) => (false, true),
        Some(PeImportNameType::Undecorated) => (false, false),
        _ => (true, true),
    };

    // Worst case: +1 for disable name mangling, +1 for prefix, +4 for suffix (@@__).
    let mut decorated_name = String::with_capacity(name.len() + 6);

    if disable_name_mangling {
        // LLVM uses a binary 1 ('\x01') prefix to a name to indicate that mangling needs to be disabled.
        decorated_name.push('\x01');
    }

    let prefix = if add_prefix && dll_import.is_fn {
        match dll_import.calling_convention {
            DllCallingConvention::C | DllCallingConvention::Vectorcall(_) => None,
            DllCallingConvention::Stdcall(_) => (!mingw
                || dll_import.import_name_type == Some(PeImportNameType::Decorated))
            .then_some('_'),
            DllCallingConvention::Fastcall(_) => Some('@'),
        }
    } else if !dll_import.is_fn && !mingw {
        // For static variables, prefix with '_' on MSVC.
        Some('_')
    } else {
        None
    };
    if let Some(prefix) = prefix {
        decorated_name.push(prefix);
    }

    decorated_name.push_str(name);

    if add_suffix && dll_import.is_fn {
        match dll_import.calling_convention {
            DllCallingConvention::C => {}
            DllCallingConvention::Stdcall(arg_list_size)
            | DllCallingConvention::Fastcall(arg_list_size) => {
                write!(&mut decorated_name, "@{arg_list_size}").unwrap();
            }
            DllCallingConvention::Vectorcall(arg_list_size) => {
                write!(&mut decorated_name, "@@{arg_list_size}").unwrap();
            }
        }
    }

    decorated_name
}