1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
//! This file declares the `ScopeTree` type, which describes
//! the parent links in the region hierarchy.
//!
//! For more information about how MIR-based region-checking works,
//! see the [rustc dev guide].
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html
use std::fmt;
use std::ops::Deref;
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::unord::UnordMap;
use rustc_hir as hir;
use rustc_hir::{HirId, HirIdMap, Node};
use rustc_macros::{HashStable, TyDecodable, TyEncodable};
use rustc_span::{Span, DUMMY_SP};
use tracing::debug;
use crate::ty::TyCtxt;
/// Represents a statically-describable scope that can be used to
/// bound the lifetime/region for values.
///
/// `Node(node_id)`: Any AST node that has any scope at all has the
/// `Node(node_id)` scope. Other variants represent special cases not
/// immediately derivable from the abstract syntax tree structure.
///
/// `DestructionScope(node_id)` represents the scope of destructors
/// implicitly-attached to `node_id` that run immediately after the
/// expression for `node_id` itself. Not every AST node carries a
/// `DestructionScope`, but those that are `terminating_scopes` do;
/// see discussion with `ScopeTree`.
///
/// `Remainder { block, statement_index }` represents
/// the scope of user code running immediately after the initializer
/// expression for the indexed statement, until the end of the block.
///
/// So: the following code can be broken down into the scopes beneath:
///
/// ```text
/// let a = f().g( 'b: { let x = d(); let y = d(); x.h(y) } ) ;
///
/// +-+ (D12.)
/// +-+ (D11.)
/// +---------+ (R10.)
/// +-+ (D9.)
/// +----------+ (M8.)
/// +----------------------+ (R7.)
/// +-+ (D6.)
/// +----------+ (M5.)
/// +-----------------------------------+ (M4.)
/// +--------------------------------------------------+ (M3.)
/// +--+ (M2.)
/// +-----------------------------------------------------------+ (M1.)
///
/// (M1.): Node scope of the whole `let a = ...;` statement.
/// (M2.): Node scope of the `f()` expression.
/// (M3.): Node scope of the `f().g(..)` expression.
/// (M4.): Node scope of the block labeled `'b:`.
/// (M5.): Node scope of the `let x = d();` statement
/// (D6.): DestructionScope for temporaries created during M5.
/// (R7.): Remainder scope for block `'b:`, stmt 0 (let x = ...).
/// (M8.): Node scope of the `let y = d();` statement.
/// (D9.): DestructionScope for temporaries created during M8.
/// (R10.): Remainder scope for block `'b:`, stmt 1 (let y = ...).
/// (D11.): DestructionScope for temporaries and bindings from block `'b:`.
/// (D12.): DestructionScope for temporaries created during M1 (e.g., f()).
/// ```
///
/// Note that while the above picture shows the destruction scopes
/// as following their corresponding node scopes, in the internal
/// data structures of the compiler the destruction scopes are
/// represented as enclosing parents. This is sound because we use the
/// enclosing parent relationship just to ensure that referenced
/// values live long enough; phrased another way, the starting point
/// of each range is not really the important thing in the above
/// picture, but rather the ending point.
//
// FIXME(pnkfelix): this currently derives `PartialOrd` and `Ord` to
// placate the same deriving in `ty::LateParamRegion`, but we may want to
// actually attach a more meaningful ordering to scopes than the one
// generated via deriving here.
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Copy, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct Scope {
pub id: hir::ItemLocalId,
pub data: ScopeData,
}
impl fmt::Debug for Scope {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.data {
ScopeData::Node => write!(fmt, "Node({:?})", self.id),
ScopeData::CallSite => write!(fmt, "CallSite({:?})", self.id),
ScopeData::Arguments => write!(fmt, "Arguments({:?})", self.id),
ScopeData::Destruction => write!(fmt, "Destruction({:?})", self.id),
ScopeData::IfThen => write!(fmt, "IfThen({:?})", self.id),
ScopeData::IfThenRescope => write!(fmt, "IfThen[edition2024]({:?})", self.id),
ScopeData::Remainder(fsi) => write!(
fmt,
"Remainder {{ block: {:?}, first_statement_index: {}}}",
self.id,
fsi.as_u32(),
),
}
}
}
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Debug, Copy, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub enum ScopeData {
Node,
/// Scope of the call-site for a function or closure
/// (outlives the arguments as well as the body).
CallSite,
/// Scope of arguments passed to a function or closure
/// (they outlive its body).
Arguments,
/// Scope of destructors for temporaries of node-id.
Destruction,
/// Scope of the condition and then block of an if expression
/// Used for variables introduced in an if-let expression.
IfThen,
/// Scope of the condition and then block of an if expression
/// Used for variables introduced in an if-let expression,
/// whose lifetimes do not cross beyond this scope.
IfThenRescope,
/// Scope following a `let id = expr;` binding in a block.
Remainder(FirstStatementIndex),
}
rustc_index::newtype_index! {
/// Represents a subscope of `block` for a binding that is introduced
/// by `block.stmts[first_statement_index]`. Such subscopes represent
/// a suffix of the block. Note that each subscope does not include
/// the initializer expression, if any, for the statement indexed by
/// `first_statement_index`.
///
/// For example, given `{ let (a, b) = EXPR_1; let c = EXPR_2; ... }`:
///
/// * The subscope with `first_statement_index == 0` is scope of both
/// `a` and `b`; it does not include EXPR_1, but does include
/// everything after that first `let`. (If you want a scope that
/// includes EXPR_1 as well, then do not use `Scope::Remainder`,
/// but instead another `Scope` that encompasses the whole block,
/// e.g., `Scope::Node`.
///
/// * The subscope with `first_statement_index == 1` is scope of `c`,
/// and thus does not include EXPR_2, but covers the `...`.
#[derive(HashStable)]
#[encodable]
#[orderable]
pub struct FirstStatementIndex {}
}
// compilation error if size of `ScopeData` is not the same as a `u32`
rustc_data_structures::static_assert_size!(ScopeData, 4);
impl Scope {
/// Returns an item-local ID associated with this scope.
///
/// N.B., likely to be replaced as API is refined; e.g., pnkfelix
/// anticipates `fn entry_node_id` and `fn each_exit_node_id`.
pub fn item_local_id(&self) -> hir::ItemLocalId {
self.id
}
pub fn hir_id(&self, scope_tree: &ScopeTree) -> Option<HirId> {
scope_tree
.root_body
.map(|hir_id| HirId { owner: hir_id.owner, local_id: self.item_local_id() })
}
/// Returns the span of this `Scope`. Note that in general the
/// returned span may not correspond to the span of any `NodeId` in
/// the AST.
pub fn span(&self, tcx: TyCtxt<'_>, scope_tree: &ScopeTree) -> Span {
let Some(hir_id) = self.hir_id(scope_tree) else {
return DUMMY_SP;
};
let span = tcx.hir().span(hir_id);
if let ScopeData::Remainder(first_statement_index) = self.data {
if let Node::Block(blk) = tcx.hir_node(hir_id) {
// Want span for scope starting after the
// indexed statement and ending at end of
// `blk`; reuse span of `blk` and shift `lo`
// forward to end of indexed statement.
//
// (This is the special case alluded to in the
// doc-comment for this method)
let stmt_span = blk.stmts[first_statement_index.index()].span;
// To avoid issues with macro-generated spans, the span
// of the statement must be nested in that of the block.
if span.lo() <= stmt_span.lo() && stmt_span.lo() <= span.hi() {
return span.with_lo(stmt_span.lo());
}
}
}
span
}
}
pub type ScopeDepth = u32;
/// The region scope tree encodes information about region relationships.
#[derive(Default, Debug, HashStable)]
pub struct ScopeTree {
/// If not empty, this body is the root of this region hierarchy.
pub root_body: Option<HirId>,
/// Maps from a scope ID to the enclosing scope id;
/// this is usually corresponding to the lexical nesting, though
/// in the case of closures the parent scope is the innermost
/// conditional expression or repeating block. (Note that the
/// enclosing scope ID for the block associated with a closure is
/// the closure itself.)
pub parent_map: FxIndexMap<Scope, (Scope, ScopeDepth)>,
/// Maps from a variable or binding ID to the block in which that
/// variable is declared.
var_map: FxIndexMap<hir::ItemLocalId, Scope>,
/// Identifies expressions which, if captured into a temporary, ought to
/// have a temporary whose lifetime extends to the end of the enclosing *block*,
/// and not the enclosing *statement*. Expressions that are not present in this
/// table are not rvalue candidates. The set of rvalue candidates is computed
/// during type check based on a traversal of the AST.
pub rvalue_candidates: HirIdMap<RvalueCandidateType>,
/// If there are any `yield` nested within a scope, this map
/// stores the `Span` of the last one and its index in the
/// postorder of the Visitor traversal on the HIR.
///
/// HIR Visitor postorder indexes might seem like a peculiar
/// thing to care about. but it turns out that HIR bindings
/// and the temporary results of HIR expressions are never
/// storage-live at the end of HIR nodes with postorder indexes
/// lower than theirs, and therefore don't need to be suspended
/// at yield-points at these indexes.
///
/// For an example, suppose we have some code such as:
/// ```rust,ignore (example)
/// foo(f(), yield y, bar(g()))
/// ```
///
/// With the HIR tree (calls numbered for expository purposes)
///
/// ```text
/// Call#0(foo, [Call#1(f), Yield(y), Call#2(bar, Call#3(g))])
/// ```
///
/// Obviously, the result of `f()` was created before the yield
/// (and therefore needs to be kept valid over the yield) while
/// the result of `g()` occurs after the yield (and therefore
/// doesn't). If we want to infer that, we can look at the
/// postorder traversal:
/// ```plain,ignore
/// `foo` `f` Call#1 `y` Yield `bar` `g` Call#3 Call#2 Call#0
/// ```
///
/// In which we can easily see that `Call#1` occurs before the yield,
/// and `Call#3` after it.
///
/// To see that this method works, consider:
///
/// Let `D` be our binding/temporary and `U` be our other HIR node, with
/// `HIR-postorder(U) < HIR-postorder(D)`. Suppose, as in our example,
/// U is the yield and D is one of the calls.
/// Let's show that `D` is storage-dead at `U`.
///
/// Remember that storage-live/storage-dead refers to the state of
/// the *storage*, and does not consider moves/drop flags.
///
/// Then:
///
/// 1. From the ordering guarantee of HIR visitors (see
/// `rustc_hir::intravisit`), `D` does not dominate `U`.
///
/// 2. Therefore, `D` is *potentially* storage-dead at `U` (because
/// we might visit `U` without ever getting to `D`).
///
/// 3. However, we guarantee that at each HIR point, each
/// binding/temporary is always either always storage-live
/// or always storage-dead. This is what is being guaranteed
/// by `terminating_scopes` including all blocks where the
/// count of executions is not guaranteed.
///
/// 4. By `2.` and `3.`, `D` is *statically* storage-dead at `U`,
/// QED.
///
/// This property ought to not on (3) in an essential way -- it
/// is probably still correct even if we have "unrestricted" terminating
/// scopes. However, why use the complicated proof when a simple one
/// works?
///
/// A subtle thing: `box` expressions, such as `box (&x, yield 2, &y)`. It
/// might seem that a `box` expression creates a `Box<T>` temporary
/// when it *starts* executing, at `HIR-preorder(BOX-EXPR)`. That might
/// be true in the MIR desugaring, but it is not important in the semantics.
///
/// The reason is that semantically, until the `box` expression returns,
/// the values are still owned by their containing expressions. So
/// we'll see that `&x`.
pub yield_in_scope: UnordMap<Scope, Vec<YieldData>>,
}
/// Identifies the reason that a given expression is an rvalue candidate
/// (see the `rvalue_candidates` field for more information what rvalue
/// candidates in general). In constants, the `lifetime` field is None
/// to indicate that certain expressions escape into 'static and
/// should have no local cleanup scope.
#[derive(Debug, Copy, Clone, HashStable)]
pub enum RvalueCandidateType {
Borrow { target: hir::ItemLocalId, lifetime: Option<Scope> },
Pattern { target: hir::ItemLocalId, lifetime: Option<Scope> },
}
#[derive(Debug, Copy, Clone, HashStable)]
pub struct YieldData {
/// The `Span` of the yield.
pub span: Span,
/// The number of expressions and patterns appearing before the `yield` in the body, plus one.
pub expr_and_pat_count: usize,
pub source: hir::YieldSource,
}
impl ScopeTree {
pub fn record_scope_parent(&mut self, child: Scope, parent: Option<(Scope, ScopeDepth)>) {
debug!("{:?}.parent = {:?}", child, parent);
if let Some(p) = parent {
let prev = self.parent_map.insert(child, p);
assert!(prev.is_none());
}
}
pub fn record_var_scope(&mut self, var: hir::ItemLocalId, lifetime: Scope) {
debug!("record_var_scope(sub={:?}, sup={:?})", var, lifetime);
assert!(var != lifetime.item_local_id());
self.var_map.insert(var, lifetime);
}
pub fn record_rvalue_candidate(&mut self, var: HirId, candidate_type: RvalueCandidateType) {
debug!("record_rvalue_candidate(var={var:?}, type={candidate_type:?})");
match &candidate_type {
RvalueCandidateType::Borrow { lifetime: Some(lifetime), .. }
| RvalueCandidateType::Pattern { lifetime: Some(lifetime), .. } => {
assert!(var.local_id != lifetime.item_local_id())
}
_ => {}
}
self.rvalue_candidates.insert(var, candidate_type);
}
/// Returns the narrowest scope that encloses `id`, if any.
pub fn opt_encl_scope(&self, id: Scope) -> Option<Scope> {
self.parent_map.get(&id).cloned().map(|(p, _)| p)
}
/// Returns the lifetime of the local variable `var_id`, if any.
pub fn var_scope(&self, var_id: hir::ItemLocalId) -> Option<Scope> {
self.var_map.get(&var_id).cloned()
}
/// Returns `true` if `subscope` is equal to or is lexically nested inside `superscope`, and
/// `false` otherwise.
///
/// Used by clippy.
pub fn is_subscope_of(&self, subscope: Scope, superscope: Scope) -> bool {
let mut s = subscope;
debug!("is_subscope_of({:?}, {:?})", subscope, superscope);
while superscope != s {
match self.opt_encl_scope(s) {
None => {
debug!("is_subscope_of({:?}, {:?}, s={:?})=false", subscope, superscope, s);
return false;
}
Some(scope) => s = scope,
}
}
debug!("is_subscope_of({:?}, {:?})=true", subscope, superscope);
true
}
/// Checks whether the given scope contains a `yield`. If so,
/// returns `Some(YieldData)`. If not, returns `None`.
pub fn yield_in_scope(&self, scope: Scope) -> Option<&[YieldData]> {
self.yield_in_scope.get(&scope).map(Deref::deref)
}
}