rustdoc/clean/render_macro_matchers.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
use rustc_ast::token::{self, BinOpToken, Delimiter, IdentIsRaw};
use rustc_ast::tokenstream::{TokenStream, TokenTree};
use rustc_ast_pretty::pprust::PrintState;
use rustc_ast_pretty::pprust::state::State as Printer;
use rustc_middle::ty::TyCtxt;
use rustc_session::parse::ParseSess;
use rustc_span::Span;
use rustc_span::symbol::{Ident, Symbol, kw};
/// Render a macro matcher in a format suitable for displaying to the user
/// as part of an item declaration.
pub(super) fn render_macro_matcher(tcx: TyCtxt<'_>, matcher: &TokenTree) -> String {
if let Some(snippet) = snippet_equal_to_token(tcx, matcher) {
// If the original source code is known, we display the matcher exactly
// as present in the source code.
return snippet;
}
// If the matcher is macro-generated or some other reason the source code
// snippet is not available, we attempt to nicely render the token tree.
let mut printer = Printer::new();
// If the inner ibox fits on one line, we get:
//
// macro_rules! macroname {
// (the matcher) => {...};
// }
//
// If the inner ibox gets wrapped, the cbox will break and get indented:
//
// macro_rules! macroname {
// (
// the matcher ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~!
// ) => {...};
// }
printer.cbox(8);
printer.word("(");
printer.zerobreak();
printer.ibox(0);
match matcher {
TokenTree::Delimited(_span, _spacing, _delim, tts) => print_tts(&mut printer, tts),
// Matcher which is not a Delimited is unexpected and should've failed
// to compile, but we render whatever it is wrapped in parens.
TokenTree::Token(..) => print_tt(&mut printer, matcher),
}
printer.end();
printer.break_offset_if_not_bol(0, -4);
printer.word(")");
printer.end();
printer.s.eof()
}
/// Find the source snippet for this token's Span, reparse it, and return the
/// snippet if the reparsed TokenTree matches the argument TokenTree.
fn snippet_equal_to_token(tcx: TyCtxt<'_>, matcher: &TokenTree) -> Option<String> {
// Find what rustc thinks is the source snippet.
// This may not actually be anything meaningful if this matcher was itself
// generated by a macro.
let source_map = tcx.sess.source_map();
let span = matcher.span();
let snippet = source_map.span_to_snippet(span).ok()?;
// Create a Parser.
let psess = ParseSess::new(rustc_driver::DEFAULT_LOCALE_RESOURCES.to_vec());
let file_name = source_map.span_to_filename(span);
let mut parser =
match rustc_parse::new_parser_from_source_str(&psess, file_name, snippet.clone()) {
Ok(parser) => parser,
Err(errs) => {
errs.into_iter().for_each(|err| err.cancel());
return None;
}
};
// Reparse a single token tree.
if parser.token == token::Eof {
return None;
}
let reparsed_tree = parser.parse_token_tree();
if parser.token != token::Eof {
return None;
}
// Compare against the original tree.
if reparsed_tree.eq_unspanned(matcher) { Some(snippet) } else { None }
}
fn print_tt(printer: &mut Printer<'_>, tt: &TokenTree) {
match tt {
TokenTree::Token(token, _) => {
let token_str = printer.token_to_string(token);
printer.word(token_str);
if let token::DocComment(..) = token.kind {
printer.hardbreak()
}
}
TokenTree::Delimited(_span, _spacing, delim, tts) => {
let open_delim = printer.token_kind_to_string(&token::OpenDelim(*delim));
printer.word(open_delim);
if !tts.is_empty() {
if *delim == Delimiter::Brace {
printer.space();
}
print_tts(printer, tts);
if *delim == Delimiter::Brace {
printer.space();
}
}
let close_delim = printer.token_kind_to_string(&token::CloseDelim(*delim));
printer.word(close_delim);
}
}
}
fn print_tts(printer: &mut Printer<'_>, tts: &TokenStream) {
#[derive(Copy, Clone, PartialEq)]
enum State {
Start,
Dollar,
DollarIdent,
DollarIdentColon,
DollarParen,
DollarParenSep,
Pound,
PoundBang,
Ident,
Other,
}
use State::*;
let mut state = Start;
for tt in tts.iter() {
let (needs_space, next_state) = match &tt {
TokenTree::Token(tt, _) => match (state, &tt.kind) {
(Dollar, token::Ident(..)) => (false, DollarIdent),
(DollarIdent, token::Colon) => (false, DollarIdentColon),
(DollarIdentColon, token::Ident(..)) => (false, Other),
(
DollarParen,
token::BinOp(BinOpToken::Plus | BinOpToken::Star) | token::Question,
) => (false, Other),
(DollarParen, _) => (false, DollarParenSep),
(DollarParenSep, token::BinOp(BinOpToken::Plus | BinOpToken::Star)) => {
(false, Other)
}
(Pound, token::Not) => (false, PoundBang),
(_, token::Ident(symbol, IdentIsRaw::No))
if !usually_needs_space_between_keyword_and_open_delim(*symbol, tt.span) =>
{
(true, Ident)
}
(_, token::Comma | token::Semi) => (false, Other),
(_, token::Dollar) => (true, Dollar),
(_, token::Pound) => (true, Pound),
(_, _) => (true, Other),
},
TokenTree::Delimited(.., delim, _) => match (state, delim) {
(Dollar, Delimiter::Parenthesis) => (false, DollarParen),
(Pound | PoundBang, Delimiter::Bracket) => (false, Other),
(Ident, Delimiter::Parenthesis | Delimiter::Bracket) => (false, Other),
(_, _) => (true, Other),
},
};
if state != Start && needs_space {
printer.space();
}
print_tt(printer, tt);
state = next_state;
}
}
fn usually_needs_space_between_keyword_and_open_delim(symbol: Symbol, span: Span) -> bool {
let ident = Ident { name: symbol, span };
let is_keyword = ident.is_used_keyword() || ident.is_unused_keyword();
if !is_keyword {
// An identifier that is not a keyword usually does not need a space
// before an open delim. For example: `f(0)` or `f[0]`.
return false;
}
match symbol {
// No space after keywords that are syntactically an expression. For
// example: a tuple struct created with `let _ = Self(0, 0)`, or if
// someone has `impl Index<MyStruct> for bool` then `true[MyStruct]`.
kw::False | kw::SelfLower | kw::SelfUpper | kw::True => false,
// No space, as in `let _: fn();`
kw::Fn => false,
// No space, as in `pub(crate) type T;`
kw::Pub => false,
// No space for keywords that can end an expression, as in `fut.await()`
// where fut's Output type is `fn()`.
kw::Await => false,
// Otherwise space after keyword. Some examples:
//
// `expr as [T; 2]`
// ^
// `box (tuple,)`
// ^
// `break (tuple,)`
// ^
// `type T = dyn (Fn() -> dyn Trait) + Send;`
// ^
// `for (tuple,) in iter {}`
// ^
// `if (tuple,) == v {}`
// ^
// `impl [T] {}`
// ^
// `for x in [..] {}`
// ^
// `let () = unit;`
// ^
// `match [x, y] {...}`
// ^
// `&mut (x as T)`
// ^
// `return [];`
// ^
// `fn f<T>() where (): Into<T>`
// ^
// `while (a + b).what() {}`
// ^
// `yield [];`
// ^
_ => true,
}
}