rustc_data_structures/obligation_forest/mod.rs
1//! The `ObligationForest` is a utility data structure used in trait
2//! matching to track the set of outstanding obligations (those not yet
3//! resolved to success or error). It also tracks the "backtrace" of each
4//! pending obligation (why we are trying to figure this out in the first
5//! place).
6//!
7//! ### External view
8//!
9//! `ObligationForest` supports two main public operations (there are a
10//! few others not discussed here):
11//!
12//! 1. Add a new root obligations (`register_obligation`).
13//! 2. Process the pending obligations (`process_obligations`).
14//!
15//! When a new obligation `N` is added, it becomes the root of an
16//! obligation tree. This tree can also carry some per-tree state `T`,
17//! which is given at the same time. This tree is a singleton to start, so
18//! `N` is both the root and the only leaf. Each time the
19//! `process_obligations` method is called, it will invoke its callback
20//! with every pending obligation (so that will include `N`, the first
21//! time). The callback also receives a (mutable) reference to the
22//! per-tree state `T`. The callback should process the obligation `O`
23//! that it is given and return a `ProcessResult`:
24//!
25//! - `Unchanged` -> ambiguous result. Obligation was neither a success
26//! nor a failure. It is assumed that further attempts to process the
27//! obligation will yield the same result unless something in the
28//! surrounding environment changes.
29//! - `Changed(C)` - the obligation was *shallowly successful*. The
30//! vector `C` is a list of subobligations. The meaning of this is that
31//! `O` was successful on the assumption that all the obligations in `C`
32//! are also successful. Therefore, `O` is only considered a "true"
33//! success if `C` is empty. Otherwise, `O` is put into a suspended
34//! state and the obligations in `C` become the new pending
35//! obligations. They will be processed the next time you call
36//! `process_obligations`.
37//! - `Error(E)` -> obligation failed with error `E`. We will collect this
38//! error and return it from `process_obligations`, along with the
39//! "backtrace" of obligations (that is, the list of obligations up to
40//! and including the root of the failed obligation). No further
41//! obligations from that same tree will be processed, since the tree is
42//! now considered to be in error.
43//!
44//! When the call to `process_obligations` completes, you get back an `Outcome`,
45//! which includes two bits of information:
46//!
47//! - `completed`: a list of obligations where processing was fully
48//! completed without error (meaning that all transitive subobligations
49//! have also been completed). So, for example, if the callback from
50//! `process_obligations` returns `Changed(C)` for some obligation `O`,
51//! then `O` will be considered completed right away if `C` is the
52//! empty vector. Otherwise it will only be considered completed once
53//! all the obligations in `C` have been found completed.
54//! - `errors`: a list of errors that occurred and associated backtraces
55//! at the time of error, which can be used to give context to the user.
56//!
57//! Upon completion, none of the existing obligations were *shallowly
58//! successful* (that is, no callback returned `Changed(_)`). This implies that
59//! all obligations were either errors or returned an ambiguous result.
60//!
61//! ### Implementation details
62//!
63//! For the most part, comments specific to the implementation are in the
64//! code. This file only contains a very high-level overview. Basically,
65//! the forest is stored in a vector. Each element of the vector is a node
66//! in some tree. Each node in the vector has the index of its dependents,
67//! including the first dependent which is known as the parent. It also
68//! has a current state, described by `NodeState`. After each processing
69//! step, we compress the vector to remove completed and error nodes, which
70//! aren't needed anymore.
71
72use std::cell::Cell;
73use std::collections::hash_map::Entry;
74use std::fmt::Debug;
75use std::hash;
76use std::marker::PhantomData;
77
78use thin_vec::ThinVec;
79use tracing::debug;
80
81use crate::fx::{FxHashMap, FxHashSet};
82
83mod graphviz;
84
85#[cfg(test)]
86mod tests;
87
88pub trait ForestObligation: Clone + Debug {
89 type CacheKey: Clone + hash::Hash + Eq + Debug;
90
91 /// Converts this `ForestObligation` suitable for use as a cache key.
92 /// If two distinct `ForestObligations`s return the same cache key,
93 /// then it must be sound to use the result of processing one obligation
94 /// (e.g. success for error) for the other obligation
95 fn as_cache_key(&self) -> Self::CacheKey;
96}
97
98pub trait ObligationProcessor {
99 type Obligation: ForestObligation;
100 type Error: Debug;
101 type OUT: OutcomeTrait<Obligation = Self::Obligation, Error = Error<Self::Obligation, Self::Error>>;
102
103 /// Implementations can provide a fast-path to obligation-processing
104 /// by counting the prefix of the passed iterator for which
105 /// `needs_process_obligation` would return false.
106 fn skippable_obligations<'a>(
107 &'a self,
108 _it: impl Iterator<Item = &'a Self::Obligation>,
109 ) -> usize {
110 0
111 }
112
113 fn needs_process_obligation(&self, _obligation: &Self::Obligation) -> bool;
114
115 fn process_obligation(
116 &mut self,
117 obligation: &mut Self::Obligation,
118 ) -> ProcessResult<Self::Obligation, Self::Error>;
119
120 /// As we do the cycle check, we invoke this callback when we
121 /// encounter an actual cycle. `cycle` is an iterator that starts
122 /// at the start of the cycle in the stack and walks **toward the
123 /// top**.
124 ///
125 /// In other words, if we had O1 which required O2 which required
126 /// O3 which required O1, we would give an iterator yielding O1,
127 /// O2, O3 (O1 is not yielded twice).
128 fn process_backedge<'c, I>(
129 &mut self,
130 cycle: I,
131 _marker: PhantomData<&'c Self::Obligation>,
132 ) -> Result<(), Self::Error>
133 where
134 I: Clone + Iterator<Item = &'c Self::Obligation>;
135}
136
137/// The result type used by `process_obligation`.
138// `repr(C)` to inhibit the niche filling optimization. Otherwise, the `match` appearing
139// in `process_obligations` is significantly slower, which can substantially affect
140// benchmarks like `rustc-perf`'s inflate and keccak.
141#[repr(C)]
142#[derive(Debug)]
143pub enum ProcessResult<O, E> {
144 Unchanged,
145 Changed(ThinVec<O>),
146 Error(E),
147}
148
149#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
150struct ObligationTreeId(usize);
151
152pub struct ObligationForest<O: ForestObligation> {
153 /// The list of obligations. In between calls to [Self::process_obligations],
154 /// this list only contains nodes in the `Pending` or `Waiting` state.
155 ///
156 /// `usize` indices are used here and throughout this module, rather than
157 /// [`rustc_index::newtype_index!`] indices, because this code is hot enough
158 /// that the `u32`-to-`usize` conversions that would be required are
159 /// significant, and space considerations are not important.
160 nodes: Vec<Node<O>>,
161
162 /// A cache of predicates that have been successfully completed.
163 done_cache: FxHashSet<O::CacheKey>,
164
165 /// A cache of the nodes in `nodes`, indexed by predicate. Unfortunately,
166 /// its contents are not guaranteed to match those of `nodes`. See the
167 /// comments in `Self::process_obligation` for details.
168 active_cache: FxHashMap<O::CacheKey, usize>,
169
170 /// A vector reused in [Self::compress()] and [Self::find_cycles_from_node()],
171 /// to avoid allocating new vectors.
172 reused_node_vec: Vec<usize>,
173
174 obligation_tree_id_generator: ObligationTreeIdGenerator,
175
176 /// Per tree error cache. This is used to deduplicate errors,
177 /// which is necessary to avoid trait resolution overflow in
178 /// some cases.
179 ///
180 /// See [this][details] for details.
181 ///
182 /// [details]: https://github.com/rust-lang/rust/pull/53255#issuecomment-421184780
183 error_cache: FxHashMap<ObligationTreeId, FxHashSet<O::CacheKey>>,
184}
185
186#[derive(Debug)]
187struct Node<O> {
188 obligation: O,
189 state: Cell<NodeState>,
190
191 /// Obligations that depend on this obligation for their completion. They
192 /// must all be in a non-pending state.
193 dependents: Vec<usize>,
194
195 /// If true, `dependents[0]` points to a "parent" node, which requires
196 /// special treatment upon error but is otherwise treated the same.
197 /// (It would be more idiomatic to store the parent node in a separate
198 /// `Option<usize>` field, but that slows down the common case of
199 /// iterating over the parent and other descendants together.)
200 has_parent: bool,
201
202 /// Identifier of the obligation tree to which this node belongs.
203 obligation_tree_id: ObligationTreeId,
204}
205
206impl<O> Node<O> {
207 fn new(parent: Option<usize>, obligation: O, obligation_tree_id: ObligationTreeId) -> Node<O> {
208 Node {
209 obligation,
210 state: Cell::new(NodeState::Pending),
211 dependents: if let Some(parent_index) = parent { vec![parent_index] } else { vec![] },
212 has_parent: parent.is_some(),
213 obligation_tree_id,
214 }
215 }
216}
217
218/// The state of one node in some tree within the forest. This represents the
219/// current state of processing for the obligation (of type `O`) associated
220/// with this node.
221///
222/// The non-`Error` state transitions are as follows.
223/// ```text
224/// (Pre-creation)
225/// |
226/// | register_obligation_at() (called by process_obligations() and
227/// v from outside the crate)
228/// Pending
229/// |
230/// | process_obligations()
231/// v
232/// Success
233/// | ^
234/// | | mark_successes()
235/// | v
236/// | Waiting
237/// |
238/// | process_cycles()
239/// v
240/// Done
241/// |
242/// | compress()
243/// v
244/// (Removed)
245/// ```
246/// The `Error` state can be introduced in several places, via `error_at()`.
247///
248/// Outside of `ObligationForest` methods, nodes should be either `Pending` or
249/// `Waiting`.
250#[derive(Debug, Copy, Clone, PartialEq, Eq)]
251enum NodeState {
252 /// This obligation has not yet been selected successfully. Cannot have
253 /// subobligations.
254 Pending,
255
256 /// This obligation was selected successfully, but may or may not have
257 /// subobligations.
258 Success,
259
260 /// This obligation was selected successfully, but it has a pending
261 /// subobligation.
262 Waiting,
263
264 /// This obligation, along with its subobligations, are complete, and will
265 /// be removed in the next collection.
266 Done,
267
268 /// This obligation was resolved to an error. It will be removed by the
269 /// next compression step.
270 Error,
271}
272
273/// This trait allows us to have two different Outcome types:
274/// - the normal one that does as little as possible
275/// - one for tests that does some additional work and checking
276pub trait OutcomeTrait {
277 type Error;
278 type Obligation;
279
280 fn new() -> Self;
281 fn record_completed(&mut self, outcome: &Self::Obligation);
282 fn record_error(&mut self, error: Self::Error);
283}
284
285#[derive(Debug)]
286pub struct Outcome<O, E> {
287 /// Backtrace of obligations that were found to be in error.
288 pub errors: Vec<Error<O, E>>,
289}
290
291impl<O, E> OutcomeTrait for Outcome<O, E> {
292 type Error = Error<O, E>;
293 type Obligation = O;
294
295 fn new() -> Self {
296 Self { errors: vec![] }
297 }
298
299 fn record_completed(&mut self, _outcome: &Self::Obligation) {
300 // do nothing
301 }
302
303 fn record_error(&mut self, error: Self::Error) {
304 self.errors.push(error)
305 }
306}
307
308#[derive(Debug, PartialEq, Eq)]
309pub struct Error<O, E> {
310 pub error: E,
311 pub backtrace: Vec<O>,
312}
313
314mod helper {
315 use super::*;
316 pub(super) type ObligationTreeIdGenerator = impl Iterator<Item = ObligationTreeId>;
317 impl<O: ForestObligation> ObligationForest<O> {
318 #[cfg_attr(not(bootstrap), define_opaque(ObligationTreeIdGenerator))]
319 pub fn new() -> ObligationForest<O> {
320 ObligationForest {
321 nodes: vec![],
322 done_cache: Default::default(),
323 active_cache: Default::default(),
324 reused_node_vec: vec![],
325 obligation_tree_id_generator: (0..).map(ObligationTreeId),
326 error_cache: Default::default(),
327 }
328 }
329 }
330}
331use helper::*;
332
333impl<O: ForestObligation> ObligationForest<O> {
334 /// Returns the total number of nodes in the forest that have not
335 /// yet been fully resolved.
336 pub fn len(&self) -> usize {
337 self.nodes.len()
338 }
339
340 /// Registers an obligation.
341 pub fn register_obligation(&mut self, obligation: O) {
342 // Ignore errors here - there is no guarantee of success.
343 let _ = self.register_obligation_at(obligation, None);
344 }
345
346 // Returns Err(()) if we already know this obligation failed.
347 fn register_obligation_at(&mut self, obligation: O, parent: Option<usize>) -> Result<(), ()> {
348 let cache_key = obligation.as_cache_key();
349 if self.done_cache.contains(&cache_key) {
350 debug!("register_obligation_at: ignoring already done obligation: {:?}", obligation);
351 return Ok(());
352 }
353
354 match self.active_cache.entry(cache_key) {
355 Entry::Occupied(o) => {
356 let node = &mut self.nodes[*o.get()];
357 if let Some(parent_index) = parent {
358 // If the node is already in `active_cache`, it has already
359 // had its chance to be marked with a parent. So if it's
360 // not already present, just dump `parent` into the
361 // dependents as a non-parent.
362 if !node.dependents.contains(&parent_index) {
363 node.dependents.push(parent_index);
364 }
365 }
366 if let NodeState::Error = node.state.get() { Err(()) } else { Ok(()) }
367 }
368 Entry::Vacant(v) => {
369 let obligation_tree_id = match parent {
370 Some(parent_index) => self.nodes[parent_index].obligation_tree_id,
371 None => self.obligation_tree_id_generator.next().unwrap(),
372 };
373
374 let already_failed = parent.is_some()
375 && self
376 .error_cache
377 .get(&obligation_tree_id)
378 .is_some_and(|errors| errors.contains(v.key()));
379
380 if already_failed {
381 Err(())
382 } else {
383 let new_index = self.nodes.len();
384 v.insert(new_index);
385 self.nodes.push(Node::new(parent, obligation, obligation_tree_id));
386 Ok(())
387 }
388 }
389 }
390 }
391
392 /// Converts all remaining obligations to the given error.
393 pub fn to_errors<E: Clone>(&mut self, error: E) -> Vec<Error<O, E>> {
394 let errors = self
395 .nodes
396 .iter()
397 .enumerate()
398 .filter(|(_index, node)| node.state.get() == NodeState::Pending)
399 .map(|(index, _node)| Error { error: error.clone(), backtrace: self.error_at(index) })
400 .collect();
401
402 self.compress(|_| assert!(false));
403 errors
404 }
405
406 /// Returns the set of obligations that are in a pending state.
407 pub fn map_pending_obligations<P, F, R>(&self, f: F) -> R
408 where
409 F: Fn(&O) -> P,
410 R: FromIterator<P>,
411 {
412 self.nodes
413 .iter()
414 .filter(|node| node.state.get() == NodeState::Pending)
415 .map(|node| f(&node.obligation))
416 .collect()
417 }
418
419 pub fn has_pending_obligations(&self) -> bool {
420 self.nodes.iter().any(|node| node.state.get() == NodeState::Pending)
421 }
422
423 fn insert_into_error_cache(&mut self, index: usize) {
424 let node = &self.nodes[index];
425 self.error_cache
426 .entry(node.obligation_tree_id)
427 .or_default()
428 .insert(node.obligation.as_cache_key());
429 }
430
431 /// Performs a fixpoint computation over the obligation list.
432 #[inline(never)]
433 pub fn process_obligations<P>(&mut self, processor: &mut P) -> P::OUT
434 where
435 P: ObligationProcessor<Obligation = O>,
436 {
437 let mut outcome = P::OUT::new();
438
439 // Fixpoint computation: we repeat until the inner loop stalls.
440 loop {
441 let mut has_changed = false;
442
443 // This is the super fast path for cheap-to-check conditions.
444 let mut index =
445 processor.skippable_obligations(self.nodes.iter().map(|n| &n.obligation));
446
447 // Note that the loop body can append new nodes, and those new nodes
448 // will then be processed by subsequent iterations of the loop.
449 //
450 // We can't use an iterator for the loop because `self.nodes` is
451 // appended to and the borrow checker would complain. We also can't use
452 // `for index in 0..self.nodes.len() { ... }` because the range would
453 // be computed with the initial length, and we would miss the appended
454 // nodes. Therefore we use a `while` loop.
455 while let Some(node) = self.nodes.get_mut(index) {
456 // This is the moderately fast path when the prefix skipping above didn't work out.
457 if node.state.get() != NodeState::Pending
458 || !processor.needs_process_obligation(&node.obligation)
459 {
460 index += 1;
461 continue;
462 }
463
464 // `processor.process_obligation` can modify the predicate within
465 // `node.obligation`, and that predicate is the key used for
466 // `self.active_cache`. This means that `self.active_cache` can get
467 // out of sync with `nodes`. It's not very common, but it does
468 // happen, and code in `compress` has to allow for it.
469
470 // This code is much less hot.
471 match processor.process_obligation(&mut node.obligation) {
472 ProcessResult::Unchanged => {
473 // No change in state.
474 }
475 ProcessResult::Changed(children) => {
476 // We are not (yet) stalled.
477 has_changed = true;
478 node.state.set(NodeState::Success);
479
480 for child in children {
481 let st = self.register_obligation_at(child, Some(index));
482 if let Err(()) = st {
483 // Error already reported - propagate it
484 // to our node.
485 self.error_at(index);
486 }
487 }
488 }
489 ProcessResult::Error(err) => {
490 has_changed = true;
491 outcome.record_error(Error { error: err, backtrace: self.error_at(index) });
492 }
493 }
494 index += 1;
495 }
496
497 // If unchanged, then we saw no successful obligations, which means
498 // there is no point in further iteration. This is based on the
499 // assumption that when trait matching returns `Error` or
500 // `Unchanged`, those results do not affect environmental inference
501 // state. (Note that this will occur if we invoke
502 // `process_obligations` with no pending obligations.)
503 if !has_changed {
504 break;
505 }
506
507 self.mark_successes();
508 self.process_cycles(processor, &mut outcome);
509 self.compress(|obl| outcome.record_completed(obl));
510 }
511
512 outcome
513 }
514
515 /// Returns a vector of obligations for `p` and all of its
516 /// ancestors, putting them into the error state in the process.
517 fn error_at(&self, mut index: usize) -> Vec<O> {
518 let mut error_stack: Vec<usize> = vec![];
519 let mut trace = vec![];
520
521 loop {
522 let node = &self.nodes[index];
523 node.state.set(NodeState::Error);
524 trace.push(node.obligation.clone());
525 if node.has_parent {
526 // The first dependent is the parent, which is treated
527 // specially.
528 error_stack.extend(node.dependents.iter().skip(1));
529 index = node.dependents[0];
530 } else {
531 // No parent; treat all dependents non-specially.
532 error_stack.extend(node.dependents.iter());
533 break;
534 }
535 }
536
537 while let Some(index) = error_stack.pop() {
538 let node = &self.nodes[index];
539 if node.state.get() != NodeState::Error {
540 node.state.set(NodeState::Error);
541 error_stack.extend(node.dependents.iter());
542 }
543 }
544
545 trace
546 }
547
548 /// Mark all `Waiting` nodes as `Success`, except those that depend on a
549 /// pending node.
550 fn mark_successes(&self) {
551 // Convert all `Waiting` nodes to `Success`.
552 for node in &self.nodes {
553 if node.state.get() == NodeState::Waiting {
554 node.state.set(NodeState::Success);
555 }
556 }
557
558 // Convert `Success` nodes that depend on a pending node back to
559 // `Waiting`.
560 for node in &self.nodes {
561 if node.state.get() == NodeState::Pending {
562 // This call site is hot.
563 self.inlined_mark_dependents_as_waiting(node);
564 }
565 }
566 }
567
568 // This always-inlined function is for the hot call site.
569 #[inline(always)]
570 fn inlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
571 for &index in node.dependents.iter() {
572 let node = &self.nodes[index];
573 let state = node.state.get();
574 if state == NodeState::Success {
575 // This call site is cold.
576 self.uninlined_mark_dependents_as_waiting(node);
577 } else {
578 debug_assert!(state == NodeState::Waiting || state == NodeState::Error)
579 }
580 }
581 }
582
583 // This never-inlined function is for the cold call site.
584 #[inline(never)]
585 fn uninlined_mark_dependents_as_waiting(&self, node: &Node<O>) {
586 // Mark node Waiting in the cold uninlined code instead of the hot inlined
587 node.state.set(NodeState::Waiting);
588 self.inlined_mark_dependents_as_waiting(node)
589 }
590
591 /// Report cycles between all `Success` nodes, and convert all `Success`
592 /// nodes to `Done`. This must be called after `mark_successes`.
593 fn process_cycles<P>(&mut self, processor: &mut P, outcome: &mut P::OUT)
594 where
595 P: ObligationProcessor<Obligation = O>,
596 {
597 let mut stack = std::mem::take(&mut self.reused_node_vec);
598 for (index, node) in self.nodes.iter().enumerate() {
599 // For some benchmarks this state test is extremely hot. It's a win
600 // to handle the no-op cases immediately to avoid the cost of the
601 // function call.
602 if node.state.get() == NodeState::Success {
603 self.find_cycles_from_node(&mut stack, processor, index, outcome);
604 }
605 }
606
607 debug_assert!(stack.is_empty());
608 self.reused_node_vec = stack;
609 }
610
611 fn find_cycles_from_node<P>(
612 &self,
613 stack: &mut Vec<usize>,
614 processor: &mut P,
615 index: usize,
616 outcome: &mut P::OUT,
617 ) where
618 P: ObligationProcessor<Obligation = O>,
619 {
620 let node = &self.nodes[index];
621 if node.state.get() == NodeState::Success {
622 match stack.iter().rposition(|&n| n == index) {
623 None => {
624 stack.push(index);
625 for &dep_index in node.dependents.iter() {
626 self.find_cycles_from_node(stack, processor, dep_index, outcome);
627 }
628 stack.pop();
629 node.state.set(NodeState::Done);
630 }
631 Some(rpos) => {
632 // Cycle detected.
633 let result = processor.process_backedge(
634 stack[rpos..].iter().map(|&i| &self.nodes[i].obligation),
635 PhantomData,
636 );
637 if let Err(err) = result {
638 outcome.record_error(Error { error: err, backtrace: self.error_at(index) });
639 }
640 }
641 }
642 }
643 }
644
645 /// Compresses the vector, removing all popped nodes. This adjusts the
646 /// indices and hence invalidates any outstanding indices. `process_cycles`
647 /// must be run beforehand to remove any cycles on `Success` nodes.
648 #[inline(never)]
649 fn compress(&mut self, mut outcome_cb: impl FnMut(&O)) {
650 let orig_nodes_len = self.nodes.len();
651 let mut node_rewrites: Vec<_> = std::mem::take(&mut self.reused_node_vec);
652 debug_assert!(node_rewrites.is_empty());
653 node_rewrites.extend(0..orig_nodes_len);
654 let mut dead_nodes = 0;
655
656 // Move removable nodes to the end, preserving the order of the
657 // remaining nodes.
658 //
659 // LOOP INVARIANT:
660 // self.nodes[0..index - dead_nodes] are the first remaining nodes
661 // self.nodes[index - dead_nodes..index] are all dead
662 // self.nodes[index..] are unchanged
663 for index in 0..orig_nodes_len {
664 let node = &self.nodes[index];
665 match node.state.get() {
666 NodeState::Pending | NodeState::Waiting => {
667 if dead_nodes > 0 {
668 self.nodes.swap(index, index - dead_nodes);
669 node_rewrites[index] -= dead_nodes;
670 }
671 }
672 NodeState::Done => {
673 // The removal lookup might fail because the contents of
674 // `self.active_cache` are not guaranteed to match those of
675 // `self.nodes`. See the comment in `process_obligation`
676 // for more details.
677 let cache_key = node.obligation.as_cache_key();
678 self.active_cache.remove(&cache_key);
679 self.done_cache.insert(cache_key);
680
681 // Extract the success stories.
682 outcome_cb(&node.obligation);
683 node_rewrites[index] = orig_nodes_len;
684 dead_nodes += 1;
685 }
686 NodeState::Error => {
687 // We *intentionally* remove the node from the cache at this point. Otherwise
688 // tests must come up with a different type on every type error they
689 // check against.
690 self.active_cache.remove(&node.obligation.as_cache_key());
691 self.insert_into_error_cache(index);
692 node_rewrites[index] = orig_nodes_len;
693 dead_nodes += 1;
694 }
695 NodeState::Success => unreachable!(),
696 }
697 }
698
699 if dead_nodes > 0 {
700 // Remove the dead nodes and rewrite indices.
701 self.nodes.truncate(orig_nodes_len - dead_nodes);
702 self.apply_rewrites(&node_rewrites);
703 }
704
705 node_rewrites.truncate(0);
706 self.reused_node_vec = node_rewrites;
707 }
708
709 #[inline(never)]
710 fn apply_rewrites(&mut self, node_rewrites: &[usize]) {
711 let orig_nodes_len = node_rewrites.len();
712
713 for node in &mut self.nodes {
714 let mut i = 0;
715 while let Some(dependent) = node.dependents.get_mut(i) {
716 let new_index = node_rewrites[*dependent];
717 if new_index >= orig_nodes_len {
718 node.dependents.swap_remove(i);
719 if i == 0 && node.has_parent {
720 // We just removed the parent.
721 node.has_parent = false;
722 }
723 } else {
724 *dependent = new_index;
725 i += 1;
726 }
727 }
728 }
729
730 // This updating of `self.active_cache` is necessary because the
731 // removal of nodes within `compress` can fail. See above.
732 self.active_cache.retain(|_predicate, index| {
733 let new_index = node_rewrites[*index];
734 if new_index >= orig_nodes_len {
735 false
736 } else {
737 *index = new_index;
738 true
739 }
740 });
741 }
742}