miri/borrow_tracker/tree_borrows/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
use rustc_abi::{BackendRepr, Size};
use rustc_middle::mir::{Mutability, RetagKind};
use rustc_middle::ty::layout::HasTypingEnv;
use rustc_middle::ty::{self, Ty};
use rustc_span::def_id::DefId;
use crate::borrow_tracker::{GlobalState, GlobalStateInner, ProtectorKind};
use crate::concurrency::data_race::NaReadType;
use crate::*;
pub mod diagnostics;
mod perms;
mod tree;
mod unimap;
#[cfg(test)]
mod exhaustive;
use self::perms::Permission;
pub use self::tree::Tree;
pub type AllocState = Tree;
impl<'tcx> Tree {
/// Create a new allocation, i.e. a new tree
pub fn new_allocation(
id: AllocId,
size: Size,
state: &mut GlobalStateInner,
_kind: MemoryKind,
machine: &MiriMachine<'tcx>,
) -> Self {
let tag = state.root_ptr_tag(id, machine); // Fresh tag for the root
let span = machine.current_span();
Tree::new(tag, size, span)
}
/// Check that an access on the entire range is permitted, and update
/// the tree.
pub fn before_memory_access(
&mut self,
access_kind: AccessKind,
alloc_id: AllocId,
prov: ProvenanceExtra,
range: AllocRange,
machine: &MiriMachine<'tcx>,
) -> InterpResult<'tcx> {
trace!(
"{} with tag {:?}: {:?}, size {}",
access_kind,
prov,
interpret::Pointer::new(alloc_id, range.start),
range.size.bytes(),
);
// TODO: for now we bail out on wildcard pointers. Eventually we should
// handle them as much as we can.
let tag = match prov {
ProvenanceExtra::Concrete(tag) => tag,
ProvenanceExtra::Wildcard => return interp_ok(()),
};
let global = machine.borrow_tracker.as_ref().unwrap();
let span = machine.current_span();
self.perform_access(
tag,
Some((range, access_kind, diagnostics::AccessCause::Explicit(access_kind))),
global,
alloc_id,
span,
)
}
/// Check that this pointer has permission to deallocate this range.
pub fn before_memory_deallocation(
&mut self,
alloc_id: AllocId,
prov: ProvenanceExtra,
size: Size,
machine: &MiriMachine<'tcx>,
) -> InterpResult<'tcx> {
// TODO: for now we bail out on wildcard pointers. Eventually we should
// handle them as much as we can.
let tag = match prov {
ProvenanceExtra::Concrete(tag) => tag,
ProvenanceExtra::Wildcard => return interp_ok(()),
};
let global = machine.borrow_tracker.as_ref().unwrap();
let span = machine.current_span();
self.dealloc(tag, alloc_range(Size::ZERO, size), global, alloc_id, span)
}
pub fn expose_tag(&mut self, _tag: BorTag) {
// TODO
}
/// A tag just lost its protector.
///
/// This emits a special kind of access that is only applied
/// to initialized locations, as a protection against other
/// tags not having been made aware of the existence of this
/// protector.
pub fn release_protector(
&mut self,
machine: &MiriMachine<'tcx>,
global: &GlobalState,
tag: BorTag,
alloc_id: AllocId, // diagnostics
) -> InterpResult<'tcx> {
let span = machine.current_span();
// `None` makes it the magic on-protector-end operation
self.perform_access(tag, None, global, alloc_id, span)
}
}
/// Policy for a new borrow.
#[derive(Debug, Clone, Copy)]
struct NewPermission {
/// Optionally ignore the actual size to do a zero-size reborrow.
/// If this is set then `dereferenceable` is not enforced.
zero_size: bool,
/// Which permission should the pointer start with.
initial_state: Permission,
/// Whether this pointer is part of the arguments of a function call.
/// `protector` is `Some(_)` for all pointers marked `noalias`.
protector: Option<ProtectorKind>,
}
impl<'tcx> NewPermission {
/// Determine NewPermission of the reference from the type of the pointee.
fn from_ref_ty(
pointee: Ty<'tcx>,
mutability: Mutability,
kind: RetagKind,
cx: &crate::MiriInterpCx<'tcx>,
) -> Option<Self> {
let ty_is_freeze = pointee.is_freeze(*cx.tcx, cx.typing_env());
let ty_is_unpin = pointee.is_unpin(*cx.tcx, cx.typing_env());
let is_protected = kind == RetagKind::FnEntry;
// As demonstrated by `tests/fail/tree_borrows/reservedim_spurious_write.rs`,
// interior mutability and protectors interact poorly.
// To eliminate the case of Protected Reserved IM we override interior mutability
// in the case of a protected reference: protected references are always considered
// "freeze" in their reservation phase.
let initial_state = match mutability {
Mutability::Mut if ty_is_unpin => Permission::new_reserved(ty_is_freeze, is_protected),
Mutability::Not if ty_is_freeze => Permission::new_frozen(),
// Raw pointers never enter this function so they are not handled.
// However raw pointers are not the only pointers that take the parent
// tag, this also happens for `!Unpin` `&mut`s and interior mutable
// `&`s, which are excluded above.
_ => return None,
};
let protector = is_protected.then_some(ProtectorKind::StrongProtector);
Some(Self { zero_size: false, initial_state, protector })
}
/// Compute permission for `Box`-like type (`Box` always, and also `Unique` if enabled).
/// These pointers allow deallocation so need a different kind of protector not handled
/// by `from_ref_ty`.
fn from_unique_ty(
ty: Ty<'tcx>,
kind: RetagKind,
cx: &crate::MiriInterpCx<'tcx>,
zero_size: bool,
) -> Option<Self> {
let pointee = ty.builtin_deref(true).unwrap();
pointee.is_unpin(*cx.tcx, cx.typing_env()).then_some(()).map(|()| {
// Regular `Unpin` box, give it `noalias` but only a weak protector
// because it is valid to deallocate it within the function.
let ty_is_freeze = ty.is_freeze(*cx.tcx, cx.typing_env());
let protected = kind == RetagKind::FnEntry;
let initial_state = Permission::new_reserved(ty_is_freeze, protected);
Self {
zero_size,
initial_state,
protector: protected.then_some(ProtectorKind::WeakProtector),
}
})
}
}
/// Retagging/reborrowing.
/// Policy on which permission to grant to each pointer should be left to
/// the implementation of NewPermission.
impl<'tcx> EvalContextPrivExt<'tcx> for crate::MiriInterpCx<'tcx> {}
trait EvalContextPrivExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Returns the provenance that should be used henceforth.
fn tb_reborrow(
&mut self,
place: &MPlaceTy<'tcx>, // parent tag extracted from here
ptr_size: Size,
new_perm: NewPermission,
new_tag: BorTag,
) -> InterpResult<'tcx, Option<Provenance>> {
let this = self.eval_context_mut();
// Make sure the new permission makes sense as the initial permission of a fresh tag.
assert!(new_perm.initial_state.is_initial());
// Ensure we bail out if the pointer goes out-of-bounds (see miri#1050).
this.check_ptr_access(place.ptr(), ptr_size, CheckInAllocMsg::InboundsTest)?;
// It is crucial that this gets called on all code paths, to ensure we track tag creation.
let log_creation = |this: &MiriInterpCx<'tcx>,
loc: Option<(AllocId, Size, ProvenanceExtra)>| // alloc_id, base_offset, orig_tag
-> InterpResult<'tcx> {
let global = this.machine.borrow_tracker.as_ref().unwrap().borrow();
let ty = place.layout.ty;
if global.tracked_pointer_tags.contains(&new_tag) {
let kind_str = format!("initial state {} (pointee type {ty})", new_perm.initial_state);
this.emit_diagnostic(NonHaltingDiagnostic::CreatedPointerTag(
new_tag.inner(),
Some(kind_str),
loc.map(|(alloc_id, base_offset, orig_tag)| (alloc_id, alloc_range(base_offset, ptr_size), orig_tag)),
));
}
drop(global); // don't hold that reference any longer than we have to
interp_ok(())
};
trace!("Reborrow of size {:?}", ptr_size);
let (alloc_id, base_offset, parent_prov) = match this.ptr_try_get_alloc_id(place.ptr(), 0) {
Ok(data) => {
// Unlike SB, we *do* a proper retag for size 0 if can identify the allocation.
// After all, the pointer may be lazily initialized outside this initial range.
data
}
Err(_) => {
assert_eq!(ptr_size, Size::ZERO); // we did the deref check above, size has to be 0 here
// This pointer doesn't come with an AllocId, so there's no
// memory to do retagging in.
trace!(
"reborrow of size 0: reference {:?} derived from {:?} (pointee {})",
new_tag,
place.ptr(),
place.layout.ty,
);
log_creation(this, None)?;
// Keep original provenance.
return interp_ok(place.ptr().provenance);
}
};
log_creation(this, Some((alloc_id, base_offset, parent_prov)))?;
let orig_tag = match parent_prov {
ProvenanceExtra::Wildcard => return interp_ok(place.ptr().provenance), // TODO: handle wildcard pointers
ProvenanceExtra::Concrete(tag) => tag,
};
trace!(
"reborrow: reference {:?} derived from {:?} (pointee {}): {:?}, size {}",
new_tag,
orig_tag,
place.layout.ty,
interpret::Pointer::new(alloc_id, base_offset),
ptr_size.bytes()
);
if let Some(protect) = new_perm.protector {
// We register the protection in two different places.
// This makes creating a protector slower, but checking whether a tag
// is protected faster.
this.frame_mut()
.extra
.borrow_tracker
.as_mut()
.unwrap()
.protected_tags
.push((alloc_id, new_tag));
this.machine
.borrow_tracker
.as_mut()
.expect("We should have borrow tracking data")
.get_mut()
.protected_tags
.insert(new_tag, protect);
}
let alloc_kind = this.get_alloc_info(alloc_id).kind;
if !matches!(alloc_kind, AllocKind::LiveData) {
assert_eq!(ptr_size, Size::ZERO); // we did the deref check above, size has to be 0 here
// There's not actually any bytes here where accesses could even be tracked.
// Just produce the new provenance, nothing else to do.
return interp_ok(Some(Provenance::Concrete { alloc_id, tag: new_tag }));
}
let span = this.machine.current_span();
let alloc_extra = this.get_alloc_extra(alloc_id)?;
let range = alloc_range(base_offset, ptr_size);
let mut tree_borrows = alloc_extra.borrow_tracker_tb().borrow_mut();
// All reborrows incur a (possibly zero-sized) read access to the parent
tree_borrows.perform_access(
orig_tag,
Some((range, AccessKind::Read, diagnostics::AccessCause::Reborrow)),
this.machine.borrow_tracker.as_ref().unwrap(),
alloc_id,
this.machine.current_span(),
)?;
// Record the parent-child pair in the tree.
tree_borrows.new_child(orig_tag, new_tag, new_perm.initial_state, range, span)?;
drop(tree_borrows);
// Also inform the data race model (but only if any bytes are actually affected).
if range.size.bytes() > 0 {
if let Some(data_race) = alloc_extra.data_race.as_ref() {
data_race.read(
alloc_id,
range,
NaReadType::Retag,
Some(place.layout.ty),
&this.machine,
)?;
}
}
interp_ok(Some(Provenance::Concrete { alloc_id, tag: new_tag }))
}
fn tb_retag_place(
&mut self,
place: &MPlaceTy<'tcx>,
new_perm: NewPermission,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
let this = self.eval_context_mut();
// Determine the size of the reborrow.
// For most types this is the entire size of the place, however
// - when `extern type` is involved we use the size of the known prefix,
// - if the pointer is not reborrowed (raw pointer) or if `zero_size` is set
// then we override the size to do a zero-length reborrow.
let reborrow_size = match new_perm {
NewPermission { zero_size: false, .. } =>
this.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
.unwrap_or(place.layout.size),
_ => Size::from_bytes(0),
};
trace!("Creating new permission: {:?} with size {:?}", new_perm, reborrow_size);
// This new tag is not guaranteed to actually be used.
//
// If you run out of tags, consider the following optimization: adjust `tb_reborrow`
// so that rather than taking as input a fresh tag and deciding whether it uses this
// one or the parent it instead just returns whether a new tag should be created.
// This will avoid creating tags than end up never being used.
let new_tag = this.machine.borrow_tracker.as_mut().unwrap().get_mut().new_ptr();
// Compute the actual reborrow.
let new_prov = this.tb_reborrow(place, reborrow_size, new_perm, new_tag)?;
// Adjust place.
// (If the closure gets called, that means the old provenance was `Some`, and hence the new
// one must also be `Some`.)
interp_ok(place.clone().map_provenance(|_| new_prov.unwrap()))
}
/// Retags an individual pointer, returning the retagged version.
fn tb_retag_reference(
&mut self,
val: &ImmTy<'tcx>,
new_perm: NewPermission,
) -> InterpResult<'tcx, ImmTy<'tcx>> {
let this = self.eval_context_mut();
let place = this.ref_to_mplace(val)?;
let new_place = this.tb_retag_place(&place, new_perm)?;
interp_ok(ImmTy::from_immediate(new_place.to_ref(this), val.layout))
}
}
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Retag a pointer. References are passed to `from_ref_ty` and
/// raw pointers are never reborrowed.
fn tb_retag_ptr_value(
&mut self,
kind: RetagKind,
val: &ImmTy<'tcx>,
) -> InterpResult<'tcx, ImmTy<'tcx>> {
let this = self.eval_context_mut();
let new_perm = match val.layout.ty.kind() {
&ty::Ref(_, pointee, mutability) =>
NewPermission::from_ref_ty(pointee, mutability, kind, this),
_ => None,
};
if let Some(new_perm) = new_perm {
this.tb_retag_reference(val, new_perm)
} else {
interp_ok(val.clone())
}
}
/// Retag all pointers that are stored in this place.
fn tb_retag_place_contents(
&mut self,
kind: RetagKind,
place: &PlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let options = this.machine.borrow_tracker.as_mut().unwrap().get_mut();
let retag_fields = options.retag_fields;
let unique_did =
options.unique_is_unique.then(|| this.tcx.lang_items().ptr_unique()).flatten();
let mut visitor = RetagVisitor { ecx: this, kind, retag_fields, unique_did };
return visitor.visit_value(place);
// The actual visitor.
struct RetagVisitor<'ecx, 'tcx> {
ecx: &'ecx mut MiriInterpCx<'tcx>,
kind: RetagKind,
retag_fields: RetagFields,
unique_did: Option<DefId>,
}
impl<'ecx, 'tcx> RetagVisitor<'ecx, 'tcx> {
#[inline(always)] // yes this helps in our benchmarks
fn retag_ptr_inplace(
&mut self,
place: &PlaceTy<'tcx>,
new_perm: Option<NewPermission>,
) -> InterpResult<'tcx> {
if let Some(new_perm) = new_perm {
let val = self.ecx.read_immediate(&self.ecx.place_to_op(place)?)?;
let val = self.ecx.tb_retag_reference(&val, new_perm)?;
self.ecx.write_immediate(*val, place)?;
}
interp_ok(())
}
}
impl<'ecx, 'tcx> ValueVisitor<'tcx, MiriMachine<'tcx>> for RetagVisitor<'ecx, 'tcx> {
type V = PlaceTy<'tcx>;
#[inline(always)]
fn ecx(&self) -> &MiriInterpCx<'tcx> {
self.ecx
}
/// Regardless of how `Unique` is handled, Boxes are always reborrowed.
/// When `Unique` is also reborrowed, then it behaves exactly like `Box`
/// except for the fact that `Box` has a non-zero-sized reborrow.
fn visit_box(&mut self, box_ty: Ty<'tcx>, place: &PlaceTy<'tcx>) -> InterpResult<'tcx> {
// Only boxes for the global allocator get any special treatment.
if box_ty.is_box_global(*self.ecx.tcx) {
let new_perm = NewPermission::from_unique_ty(
place.layout.ty,
self.kind,
self.ecx,
/* zero_size */ false,
);
self.retag_ptr_inplace(place, new_perm)?;
}
interp_ok(())
}
fn visit_value(&mut self, place: &PlaceTy<'tcx>) -> InterpResult<'tcx> {
// If this place is smaller than a pointer, we know that it can't contain any
// pointers we need to retag, so we can stop recursion early.
// This optimization is crucial for ZSTs, because they can contain way more fields
// than we can ever visit.
if place.layout.is_sized() && place.layout.size < self.ecx.pointer_size() {
return interp_ok(());
}
// Check the type of this value to see what to do with it (retag, or recurse).
match place.layout.ty.kind() {
&ty::Ref(_, pointee, mutability) => {
let new_perm =
NewPermission::from_ref_ty(pointee, mutability, self.kind, self.ecx);
self.retag_ptr_inplace(place, new_perm)?;
}
ty::RawPtr(_, _) => {
// We definitely do *not* want to recurse into raw pointers -- wide raw
// pointers have fields, and for dyn Trait pointees those can have reference
// type!
// We also do not want to reborrow them.
}
ty::Adt(adt, _) if adt.is_box() => {
// Recurse for boxes, they require some tricky handling and will end up in `visit_box` above.
// (Yes this means we technically also recursively retag the allocator itself
// even if field retagging is not enabled. *shrug*)
self.walk_value(place)?;
}
ty::Adt(adt, _) if self.unique_did == Some(adt.did()) => {
let place = inner_ptr_of_unique(self.ecx, place)?;
let new_perm = NewPermission::from_unique_ty(
place.layout.ty,
self.kind,
self.ecx,
/* zero_size */ true,
);
self.retag_ptr_inplace(&place, new_perm)?;
}
_ => {
// Not a reference/pointer/box. Only recurse if configured appropriately.
let recurse = match self.retag_fields {
RetagFields::No => false,
RetagFields::Yes => true,
RetagFields::OnlyScalar => {
// Matching `ArgAbi::new` at the time of writing, only fields of
// `Scalar` and `ScalarPair` ABI are considered.
matches!(
place.layout.backend_repr,
BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)
)
}
};
if recurse {
self.walk_value(place)?;
}
}
}
interp_ok(())
}
}
}
/// Protect a place so that it cannot be used any more for the duration of the current function
/// call.
///
/// This is used to ensure soundness of in-place function argument/return passing.
fn tb_protect_place(&mut self, place: &MPlaceTy<'tcx>) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
let this = self.eval_context_mut();
// Note: if we were to inline `new_reserved` below we would find out that
// `ty_is_freeze` is eventually unused because it appears in a `ty_is_freeze || true`.
// We are nevertheless including it here for clarity.
let ty_is_freeze = place.layout.ty.is_freeze(*this.tcx, this.typing_env());
// Retag it. With protection! That is the entire point.
let new_perm = NewPermission {
initial_state: Permission::new_reserved(ty_is_freeze, /* protected */ true),
zero_size: false,
protector: Some(ProtectorKind::StrongProtector),
};
this.tb_retag_place(place, new_perm)
}
/// Mark the given tag as exposed. It was found on a pointer with the given AllocId.
fn tb_expose_tag(&mut self, alloc_id: AllocId, tag: BorTag) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// Function pointers and dead objects don't have an alloc_extra so we ignore them.
// This is okay because accessing them is UB anyway, no need for any Tree Borrows checks.
// NOT using `get_alloc_extra_mut` since this might be a read-only allocation!
let kind = this.get_alloc_info(alloc_id).kind;
match kind {
AllocKind::LiveData => {
// This should have alloc_extra data, but `get_alloc_extra` can still fail
// if converting this alloc_id from a global to a local one
// uncovers a non-supported `extern static`.
let alloc_extra = this.get_alloc_extra(alloc_id)?;
trace!("Tree Borrows tag {tag:?} exposed in {alloc_id:?}");
alloc_extra.borrow_tracker_tb().borrow_mut().expose_tag(tag);
}
AllocKind::Function | AllocKind::VTable | AllocKind::Dead => {
// No tree borrows on these allocations.
}
}
interp_ok(())
}
/// Display the tree.
fn print_tree(&mut self, alloc_id: AllocId, show_unnamed: bool) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let alloc_extra = this.get_alloc_extra(alloc_id)?;
let tree_borrows = alloc_extra.borrow_tracker_tb().borrow();
let borrow_tracker = &this.machine.borrow_tracker.as_ref().unwrap().borrow();
tree_borrows.print_tree(&borrow_tracker.protected_tags, show_unnamed)
}
/// Give a name to the pointer, usually the name it has in the source code (for debugging).
/// The name given is `name` and the pointer that receives it is the `nth_parent`
/// of `ptr` (with 0 representing `ptr` itself)
fn tb_give_pointer_debug_name(
&mut self,
ptr: Pointer,
nth_parent: u8,
name: &str,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let (tag, alloc_id) = match ptr.provenance {
Some(Provenance::Concrete { tag, alloc_id }) => (tag, alloc_id),
_ => {
eprintln!("Can't give the name {name} to Wildcard pointer");
return interp_ok(());
}
};
let alloc_extra = this.get_alloc_extra(alloc_id)?;
let mut tree_borrows = alloc_extra.borrow_tracker_tb().borrow_mut();
tree_borrows.give_pointer_debug_name(tag, nth_parent, name)
}
}
/// Takes a place for a `Unique` and turns it into a place with the inner raw pointer.
/// I.e. input is what you get from the visitor upon encountering an `adt` that is `Unique`,
/// and output can be used by `retag_ptr_inplace`.
fn inner_ptr_of_unique<'tcx>(
ecx: &MiriInterpCx<'tcx>,
place: &PlaceTy<'tcx>,
) -> InterpResult<'tcx, PlaceTy<'tcx>> {
// Follows the same layout as `interpret/visitor.rs:walk_value` for `Box` in
// `rustc_const_eval`, just with one fewer layer.
// Here we have a `Unique(NonNull(*mut), PhantomData)`
assert_eq!(place.layout.fields.count(), 2, "Unique must have exactly 2 fields");
let (nonnull, phantom) = (ecx.project_field(place, 0)?, ecx.project_field(place, 1)?);
assert!(
phantom.layout.ty.ty_adt_def().is_some_and(|adt| adt.is_phantom_data()),
"2nd field of `Unique` should be `PhantomData` but is `{:?}`",
phantom.layout.ty,
);
// Now down to `NonNull(*mut)`
assert_eq!(nonnull.layout.fields.count(), 1, "NonNull must have exactly 1 field");
let ptr = ecx.project_field(&nonnull, 0)?;
// Finally a plain `*mut`
interp_ok(ptr)
}