1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
use rustc_middle::{
    mir::{Mutability, RetagKind},
    ty::{
        self,
        layout::{HasParamEnv, HasTyCtxt},
        Ty,
    },
};
use rustc_span::def_id::DefId;
use rustc_target::abi::{Abi, Size};

use crate::*;
use crate::{
    borrow_tracker::{GlobalState, GlobalStateInner, ProtectorKind},
    concurrency::data_race::NaReadType,
};

pub mod diagnostics;
mod perms;
mod tree;
mod unimap;

#[cfg(test)]
mod exhaustive;

use perms::Permission;
pub use tree::Tree;

pub type AllocState = Tree;

impl<'tcx> Tree {
    /// Create a new allocation, i.e. a new tree
    pub fn new_allocation(
        id: AllocId,
        size: Size,
        state: &mut GlobalStateInner,
        _kind: MemoryKind,
        machine: &MiriMachine<'_, 'tcx>,
    ) -> Self {
        let tag = state.root_ptr_tag(id, machine); // Fresh tag for the root
        let span = machine.current_span();
        Tree::new(tag, size, span)
    }

    /// Check that an access on the entire range is permitted, and update
    /// the tree.
    pub fn before_memory_access(
        &mut self,
        access_kind: AccessKind,
        alloc_id: AllocId,
        prov: ProvenanceExtra,
        range: AllocRange,
        machine: &MiriMachine<'_, 'tcx>,
    ) -> InterpResult<'tcx> {
        trace!(
            "{} with tag {:?}: {:?}, size {}",
            access_kind,
            prov,
            Pointer::new(alloc_id, range.start),
            range.size.bytes(),
        );
        // TODO: for now we bail out on wildcard pointers. Eventually we should
        // handle them as much as we can.
        let tag = match prov {
            ProvenanceExtra::Concrete(tag) => tag,
            ProvenanceExtra::Wildcard => return Ok(()),
        };
        let global = machine.borrow_tracker.as_ref().unwrap();
        let span = machine.current_span();
        self.perform_access(
            access_kind,
            tag,
            Some(range),
            global,
            alloc_id,
            span,
            diagnostics::AccessCause::Explicit(access_kind),
        )
    }

    /// Check that this pointer has permission to deallocate this range.
    pub fn before_memory_deallocation(
        &mut self,
        alloc_id: AllocId,
        prov: ProvenanceExtra,
        size: Size,
        machine: &MiriMachine<'_, 'tcx>,
    ) -> InterpResult<'tcx> {
        // TODO: for now we bail out on wildcard pointers. Eventually we should
        // handle them as much as we can.
        let tag = match prov {
            ProvenanceExtra::Concrete(tag) => tag,
            ProvenanceExtra::Wildcard => return Ok(()),
        };
        let global = machine.borrow_tracker.as_ref().unwrap();
        let span = machine.current_span();
        self.dealloc(tag, alloc_range(Size::ZERO, size), global, alloc_id, span)
    }

    pub fn expose_tag(&mut self, _tag: BorTag) {
        // TODO
    }

    /// A tag just lost its protector.
    ///
    /// This emits a special kind of access that is only applied
    /// to initialized locations, as a protection against other
    /// tags not having been made aware of the existence of this
    /// protector.
    pub fn release_protector(
        &mut self,
        machine: &MiriMachine<'_, 'tcx>,
        global: &GlobalState,
        tag: BorTag,
        alloc_id: AllocId, // diagnostics
    ) -> InterpResult<'tcx> {
        let span = machine.current_span();
        self.perform_access(
            AccessKind::Read,
            tag,
            None, // no specified range because it occurs on the entire allocation
            global,
            alloc_id,
            span,
            diagnostics::AccessCause::FnExit,
        )
    }
}

/// Policy for a new borrow.
#[derive(Debug, Clone, Copy)]
struct NewPermission {
    /// Optionally ignore the actual size to do a zero-size reborrow.
    /// If this is set then `dereferenceable` is not enforced.
    zero_size: bool,
    /// Which permission should the pointer start with.
    initial_state: Permission,
    /// Whether this pointer is part of the arguments of a function call.
    /// `protector` is `Some(_)` for all pointers marked `noalias`.
    protector: Option<ProtectorKind>,
}

impl<'tcx> NewPermission {
    /// Determine NewPermission of the reference from the type of the pointee.
    fn from_ref_ty(
        pointee: Ty<'tcx>,
        mutability: Mutability,
        kind: RetagKind,
        cx: &crate::MiriInterpCx<'_, 'tcx>,
    ) -> Option<Self> {
        let ty_is_freeze = pointee.is_freeze(*cx.tcx, cx.param_env());
        let ty_is_unpin = pointee.is_unpin(*cx.tcx, cx.param_env());
        let initial_state = match mutability {
            Mutability::Mut if ty_is_unpin => Permission::new_reserved(ty_is_freeze),
            Mutability::Not if ty_is_freeze => Permission::new_frozen(),
            // Raw pointers never enter this function so they are not handled.
            // However raw pointers are not the only pointers that take the parent
            // tag, this also happens for `!Unpin` `&mut`s and interior mutable
            // `&`s, which are excluded above.
            _ => return None,
        };

        let protector = (kind == RetagKind::FnEntry).then_some(ProtectorKind::StrongProtector);
        Some(Self { zero_size: false, initial_state, protector })
    }

    /// Compute permission for `Box`-like type (`Box` always, and also `Unique` if enabled).
    /// These pointers allow deallocation so need a different kind of protector not handled
    /// by `from_ref_ty`.
    fn from_unique_ty(
        ty: Ty<'tcx>,
        kind: RetagKind,
        cx: &crate::MiriInterpCx<'_, 'tcx>,
        zero_size: bool,
    ) -> Option<Self> {
        let pointee = ty.builtin_deref(true).unwrap().ty;
        pointee.is_unpin(*cx.tcx, cx.param_env()).then_some(()).map(|()| {
            // Regular `Unpin` box, give it `noalias` but only a weak protector
            // because it is valid to deallocate it within the function.
            let ty_is_freeze = ty.is_freeze(*cx.tcx, cx.param_env());
            Self {
                zero_size,
                initial_state: Permission::new_reserved(ty_is_freeze),
                protector: (kind == RetagKind::FnEntry).then_some(ProtectorKind::WeakProtector),
            }
        })
    }
}

/// Retagging/reborrowing.
/// Policy on which permission to grant to each pointer should be left to
/// the implementation of NewPermission.
impl<'mir: 'ecx, 'tcx: 'mir, 'ecx> EvalContextPrivExt<'mir, 'tcx, 'ecx>
    for crate::MiriInterpCx<'mir, 'tcx>
{
}
trait EvalContextPrivExt<'mir: 'ecx, 'tcx: 'mir, 'ecx>: crate::MiriInterpCxExt<'mir, 'tcx> {
    /// Returns the provenance that should be used henceforth.
    fn tb_reborrow(
        &mut self,
        place: &MPlaceTy<'tcx, Provenance>, // parent tag extracted from here
        ptr_size: Size,
        new_perm: NewPermission,
        new_tag: BorTag,
    ) -> InterpResult<'tcx, Option<Provenance>> {
        let this = self.eval_context_mut();
        // Make sure the new permission makes sense as the initial permission of a fresh tag.
        assert!(new_perm.initial_state.is_initial());
        // Ensure we bail out if the pointer goes out-of-bounds (see miri#1050).
        this.check_ptr_access(place.ptr(), ptr_size, CheckInAllocMsg::InboundsTest)?;

        // It is crucial that this gets called on all code paths, to ensure we track tag creation.
        let log_creation = |this: &MiriInterpCx<'mir, 'tcx>,
                            loc: Option<(AllocId, Size, ProvenanceExtra)>| // alloc_id, base_offset, orig_tag
         -> InterpResult<'tcx> {
            let global = this.machine.borrow_tracker.as_ref().unwrap().borrow();
            let ty = place.layout.ty;
            if global.tracked_pointer_tags.contains(&new_tag) {
                let kind_str = format!("initial state {} (pointee type {ty})", new_perm.initial_state);
                this.emit_diagnostic(NonHaltingDiagnostic::CreatedPointerTag(
                    new_tag.inner(),
                    Some(kind_str),
                    loc.map(|(alloc_id, base_offset, orig_tag)| (alloc_id, alloc_range(base_offset, ptr_size), orig_tag)),
                ));
            }
            drop(global); // don't hold that reference any longer than we have to
            Ok(())
        };

        trace!("Reborrow of size {:?}", ptr_size);
        let (alloc_id, base_offset, parent_prov) = match this.ptr_try_get_alloc_id(place.ptr()) {
            Ok(data) => {
                // Unlike SB, we *do* a proper retag for size 0 if can identify the allocation.
                // After all, the pointer may be lazily initialized outside this initial range.
                data
            }
            Err(_) => {
                assert_eq!(ptr_size, Size::ZERO); // we did the deref check above, size has to be 0 here
                // This pointer doesn't come with an AllocId, so there's no
                // memory to do retagging in.
                trace!(
                    "reborrow of size 0: reference {:?} derived from {:?} (pointee {})",
                    new_tag,
                    place.ptr(),
                    place.layout.ty,
                );
                log_creation(this, None)?;
                // Keep original provenance.
                return Ok(place.ptr().provenance);
            }
        };
        log_creation(this, Some((alloc_id, base_offset, parent_prov)))?;

        let orig_tag = match parent_prov {
            ProvenanceExtra::Wildcard => return Ok(place.ptr().provenance), // TODO: handle wildcard pointers
            ProvenanceExtra::Concrete(tag) => tag,
        };

        trace!(
            "reborrow: reference {:?} derived from {:?} (pointee {}): {:?}, size {}",
            new_tag,
            orig_tag,
            place.layout.ty,
            Pointer::new(alloc_id, base_offset),
            ptr_size.bytes()
        );

        if let Some(protect) = new_perm.protector {
            // We register the protection in two different places.
            // This makes creating a protector slower, but checking whether a tag
            // is protected faster.
            this.frame_mut()
                .extra
                .borrow_tracker
                .as_mut()
                .unwrap()
                .protected_tags
                .push((alloc_id, new_tag));
            this.machine
                .borrow_tracker
                .as_mut()
                .expect("We should have borrow tracking data")
                .get_mut()
                .protected_tags
                .insert(new_tag, protect);
        }

        let alloc_kind = this.get_alloc_info(alloc_id).2;
        if !matches!(alloc_kind, AllocKind::LiveData) {
            assert_eq!(ptr_size, Size::ZERO); // we did the deref check above, size has to be 0 here
            // There's not actually any bytes here where accesses could even be tracked.
            // Just produce the new provenance, nothing else to do.
            return Ok(Some(Provenance::Concrete { alloc_id, tag: new_tag }));
        }

        let span = this.machine.current_span();
        let alloc_extra = this.get_alloc_extra(alloc_id)?;
        let range = alloc_range(base_offset, ptr_size);
        let mut tree_borrows = alloc_extra.borrow_tracker_tb().borrow_mut();

        // All reborrows incur a (possibly zero-sized) read access to the parent
        tree_borrows.perform_access(
            AccessKind::Read,
            orig_tag,
            Some(range),
            this.machine.borrow_tracker.as_ref().unwrap(),
            alloc_id,
            this.machine.current_span(),
            diagnostics::AccessCause::Reborrow,
        )?;
        // Record the parent-child pair in the tree.
        tree_borrows.new_child(orig_tag, new_tag, new_perm.initial_state, range, span)?;
        drop(tree_borrows);

        // Also inform the data race model (but only if any bytes are actually affected).
        if range.size.bytes() > 0 {
            if let Some(data_race) = alloc_extra.data_race.as_ref() {
                data_race.read(
                    alloc_id,
                    range,
                    NaReadType::Retag,
                    Some(place.layout.ty),
                    &this.machine,
                )?;
            }
        }

        Ok(Some(Provenance::Concrete { alloc_id, tag: new_tag }))
    }

    fn tb_retag_place(
        &mut self,
        place: &MPlaceTy<'tcx, Provenance>,
        new_perm: NewPermission,
    ) -> InterpResult<'tcx, MPlaceTy<'tcx, Provenance>> {
        let this = self.eval_context_mut();

        // Determine the size of the reborrow.
        // For most types this is the entire size of the place, however
        // - when `extern type` is involved we use the size of the known prefix,
        // - if the pointer is not reborrowed (raw pointer) or if `zero_size` is set
        // then we override the size to do a zero-length reborrow.
        let reborrow_size = match new_perm {
            NewPermission { zero_size: false, .. } =>
                this.size_and_align_of_mplace(place)?
                    .map(|(size, _)| size)
                    .unwrap_or(place.layout.size),
            _ => Size::from_bytes(0),
        };
        trace!("Creating new permission: {:?} with size {:?}", new_perm, reborrow_size);

        // This new tag is not guaranteed to actually be used.
        //
        // If you run out of tags, consider the following optimization: adjust `tb_reborrow`
        // so that rather than taking as input a fresh tag and deciding whether it uses this
        // one or the parent it instead just returns whether a new tag should be created.
        // This will avoid creating tags than end up never being used.
        let new_tag = this.machine.borrow_tracker.as_mut().unwrap().get_mut().new_ptr();

        // Compute the actual reborrow.
        let new_prov = this.tb_reborrow(place, reborrow_size, new_perm, new_tag)?;

        // Adjust place.
        // (If the closure gets called, that means the old provenance was `Some`, and hence the new
        // one must also be `Some`.)
        Ok(place.clone().map_provenance(|_| new_prov.unwrap()))
    }

    /// Retags an individual pointer, returning the retagged version.
    fn tb_retag_reference(
        &mut self,
        val: &ImmTy<'tcx, Provenance>,
        new_perm: NewPermission,
    ) -> InterpResult<'tcx, ImmTy<'tcx, Provenance>> {
        let this = self.eval_context_mut();
        let place = this.ref_to_mplace(val)?;
        let new_place = this.tb_retag_place(&place, new_perm)?;
        Ok(ImmTy::from_immediate(new_place.to_ref(this), val.layout))
    }
}

impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
    /// Retag a pointer. References are passed to `from_ref_ty` and
    /// raw pointers are never reborrowed.
    fn tb_retag_ptr_value(
        &mut self,
        kind: RetagKind,
        val: &ImmTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, ImmTy<'tcx, Provenance>> {
        let this = self.eval_context_mut();
        let new_perm = match val.layout.ty.kind() {
            &ty::Ref(_, pointee, mutability) =>
                NewPermission::from_ref_ty(pointee, mutability, kind, this),
            _ => None,
        };
        if let Some(new_perm) = new_perm {
            this.tb_retag_reference(val, new_perm)
        } else {
            Ok(val.clone())
        }
    }

    /// Retag all pointers that are stored in this place.
    fn tb_retag_place_contents(
        &mut self,
        kind: RetagKind,
        place: &PlaceTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        let options = this.machine.borrow_tracker.as_mut().unwrap().get_mut();
        let retag_fields = options.retag_fields;
        let unique_did =
            options.unique_is_unique.then(|| this.tcx.lang_items().ptr_unique()).flatten();
        let mut visitor = RetagVisitor { ecx: this, kind, retag_fields, unique_did };
        return visitor.visit_value(place);

        // The actual visitor.
        struct RetagVisitor<'ecx, 'mir, 'tcx> {
            ecx: &'ecx mut MiriInterpCx<'mir, 'tcx>,
            kind: RetagKind,
            retag_fields: RetagFields,
            unique_did: Option<DefId>,
        }
        impl<'ecx, 'mir, 'tcx> RetagVisitor<'ecx, 'mir, 'tcx> {
            #[inline(always)] // yes this helps in our benchmarks
            fn retag_ptr_inplace(
                &mut self,
                place: &PlaceTy<'tcx, Provenance>,
                new_perm: Option<NewPermission>,
            ) -> InterpResult<'tcx> {
                if let Some(new_perm) = new_perm {
                    let val = self.ecx.read_immediate(&self.ecx.place_to_op(place)?)?;
                    let val = self.ecx.tb_retag_reference(&val, new_perm)?;
                    self.ecx.write_immediate(*val, place)?;
                }
                Ok(())
            }
        }
        impl<'ecx, 'mir, 'tcx> ValueVisitor<'mir, 'tcx, MiriMachine<'mir, 'tcx>>
            for RetagVisitor<'ecx, 'mir, 'tcx>
        {
            type V = PlaceTy<'tcx, Provenance>;

            #[inline(always)]
            fn ecx(&self) -> &MiriInterpCx<'mir, 'tcx> {
                self.ecx
            }

            /// Regardless of how `Unique` is handled, Boxes are always reborrowed.
            /// When `Unique` is also reborrowed, then it behaves exactly like `Box`
            /// except for the fact that `Box` has a non-zero-sized reborrow.
            fn visit_box(
                &mut self,
                box_ty: Ty<'tcx>,
                place: &PlaceTy<'tcx, Provenance>,
            ) -> InterpResult<'tcx> {
                // Only boxes for the global allocator get any special treatment.
                if box_ty.is_box_global(*self.ecx.tcx) {
                    let new_perm = NewPermission::from_unique_ty(
                        place.layout.ty,
                        self.kind,
                        self.ecx,
                        /* zero_size */ false,
                    );
                    self.retag_ptr_inplace(place, new_perm)?;
                }
                Ok(())
            }

            fn visit_value(&mut self, place: &PlaceTy<'tcx, Provenance>) -> InterpResult<'tcx> {
                // If this place is smaller than a pointer, we know that it can't contain any
                // pointers we need to retag, so we can stop recursion early.
                // This optimization is crucial for ZSTs, because they can contain way more fields
                // than we can ever visit.
                if place.layout.is_sized() && place.layout.size < self.ecx.pointer_size() {
                    return Ok(());
                }

                // Check the type of this value to see what to do with it (retag, or recurse).
                match place.layout.ty.kind() {
                    &ty::Ref(_, pointee, mutability) => {
                        let new_perm =
                            NewPermission::from_ref_ty(pointee, mutability, self.kind, self.ecx);
                        self.retag_ptr_inplace(place, new_perm)?;
                    }
                    ty::RawPtr(_, _) => {
                        // We definitely do *not* want to recurse into raw pointers -- wide raw
                        // pointers have fields, and for dyn Trait pointees those can have reference
                        // type!
                        // We also do not want to reborrow them.
                    }
                    ty::Adt(adt, _) if adt.is_box() => {
                        // Recurse for boxes, they require some tricky handling and will end up in `visit_box` above.
                        // (Yes this means we technically also recursively retag the allocator itself
                        // even if field retagging is not enabled. *shrug*)
                        self.walk_value(place)?;
                    }
                    ty::Adt(adt, _) if self.unique_did == Some(adt.did()) => {
                        let place = inner_ptr_of_unique(self.ecx, place)?;
                        let new_perm = NewPermission::from_unique_ty(
                            place.layout.ty,
                            self.kind,
                            self.ecx,
                            /* zero_size */ true,
                        );
                        self.retag_ptr_inplace(&place, new_perm)?;
                    }
                    _ => {
                        // Not a reference/pointer/box. Only recurse if configured appropriately.
                        let recurse = match self.retag_fields {
                            RetagFields::No => false,
                            RetagFields::Yes => true,
                            RetagFields::OnlyScalar => {
                                // Matching `ArgAbi::new` at the time of writing, only fields of
                                // `Scalar` and `ScalarPair` ABI are considered.
                                matches!(place.layout.abi, Abi::Scalar(..) | Abi::ScalarPair(..))
                            }
                        };
                        if recurse {
                            self.walk_value(place)?;
                        }
                    }
                }
                Ok(())
            }
        }
    }

    /// Protect a place so that it cannot be used any more for the duration of the current function
    /// call.
    ///
    /// This is used to ensure soundness of in-place function argument/return passing.
    fn tb_protect_place(
        &mut self,
        place: &MPlaceTy<'tcx, Provenance>,
    ) -> InterpResult<'tcx, MPlaceTy<'tcx, Provenance>> {
        let this = self.eval_context_mut();

        // Retag it. With protection! That is the entire point.
        let new_perm = NewPermission {
            initial_state: Permission::new_reserved(
                place.layout.ty.is_freeze(this.tcx(), this.param_env()),
            ),
            zero_size: false,
            protector: Some(ProtectorKind::StrongProtector),
        };
        this.tb_retag_place(place, new_perm)
    }

    /// Mark the given tag as exposed. It was found on a pointer with the given AllocId.
    fn tb_expose_tag(&mut self, alloc_id: AllocId, tag: BorTag) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        // Function pointers and dead objects don't have an alloc_extra so we ignore them.
        // This is okay because accessing them is UB anyway, no need for any Tree Borrows checks.
        // NOT using `get_alloc_extra_mut` since this might be a read-only allocation!
        let (_size, _align, kind) = this.get_alloc_info(alloc_id);
        match kind {
            AllocKind::LiveData => {
                // This should have alloc_extra data, but `get_alloc_extra` can still fail
                // if converting this alloc_id from a global to a local one
                // uncovers a non-supported `extern static`.
                let alloc_extra = this.get_alloc_extra(alloc_id)?;
                trace!("Tree Borrows tag {tag:?} exposed in {alloc_id:?}");
                alloc_extra.borrow_tracker_tb().borrow_mut().expose_tag(tag);
            }
            AllocKind::Function | AllocKind::VTable | AllocKind::Dead => {
                // No tree borrows on these allocations.
            }
        }
        Ok(())
    }

    /// Display the tree.
    fn print_tree(&mut self, alloc_id: AllocId, show_unnamed: bool) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        let alloc_extra = this.get_alloc_extra(alloc_id)?;
        let tree_borrows = alloc_extra.borrow_tracker_tb().borrow();
        let borrow_tracker = &this.machine.borrow_tracker.as_ref().unwrap().borrow();
        tree_borrows.print_tree(&borrow_tracker.protected_tags, show_unnamed)
    }

    /// Give a name to the pointer, usually the name it has in the source code (for debugging).
    /// The name given is `name` and the pointer that receives it is the `nth_parent`
    /// of `ptr` (with 0 representing `ptr` itself)
    fn tb_give_pointer_debug_name(
        &mut self,
        ptr: Pointer<Option<Provenance>>,
        nth_parent: u8,
        name: &str,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        let (tag, alloc_id) = match ptr.provenance {
            Some(Provenance::Concrete { tag, alloc_id }) => (tag, alloc_id),
            _ => {
                eprintln!("Can't give the name {name} to Wildcard pointer");
                return Ok(());
            }
        };
        let alloc_extra = this.get_alloc_extra(alloc_id)?;
        let mut tree_borrows = alloc_extra.borrow_tracker_tb().borrow_mut();
        tree_borrows.give_pointer_debug_name(tag, nth_parent, name)
    }
}

/// Takes a place for a `Unique` and turns it into a place with the inner raw pointer.
/// I.e. input is what you get from the visitor upon encountering an `adt` that is `Unique`,
/// and output can be used by `retag_ptr_inplace`.
fn inner_ptr_of_unique<'tcx>(
    ecx: &MiriInterpCx<'_, 'tcx>,
    place: &PlaceTy<'tcx, Provenance>,
) -> InterpResult<'tcx, PlaceTy<'tcx, Provenance>> {
    // Follows the same layout as `interpret/visitor.rs:walk_value` for `Box` in
    // `rustc_const_eval`, just with one fewer layer.
    // Here we have a `Unique(NonNull(*mut), PhantomData)`
    assert_eq!(place.layout.fields.count(), 2, "Unique must have exactly 2 fields");
    let (nonnull, phantom) = (ecx.project_field(place, 0)?, ecx.project_field(place, 1)?);
    assert!(
        phantom.layout.ty.ty_adt_def().is_some_and(|adt| adt.is_phantom_data()),
        "2nd field of `Unique` should be `PhantomData` but is `{:?}`",
        phantom.layout.ty,
    );
    // Now down to `NonNull(*mut)`
    assert_eq!(nonnull.layout.fields.count(), 1, "NonNull must have exactly 1 field");
    let ptr = ecx.project_field(&nonnull, 0)?;
    // Finally a plain `*mut`
    Ok(ptr)
}