rustc_codegen_llvm/
builder.rs

1use std::borrow::{Borrow, Cow};
2use std::iter;
3use std::ops::Deref;
4
5use rustc_ast::expand::typetree::FncTree;
6pub(crate) mod autodiff;
7pub(crate) mod gpu_offload;
8
9use libc::{c_char, c_uint};
10use rustc_abi as abi;
11use rustc_abi::{Align, Size, WrappingRange};
12use rustc_codegen_ssa::MemFlags;
13use rustc_codegen_ssa::common::{IntPredicate, RealPredicate, SynchronizationScope, TypeKind};
14use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
15use rustc_codegen_ssa::mir::place::PlaceRef;
16use rustc_codegen_ssa::traits::*;
17use rustc_data_structures::small_c_str::SmallCStr;
18use rustc_hir::def_id::DefId;
19use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
20use rustc_middle::ty::layout::{
21    FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasTypingEnv, LayoutError, LayoutOfHelpers,
22    TyAndLayout,
23};
24use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
25use rustc_sanitizers::{cfi, kcfi};
26use rustc_session::config::OptLevel;
27use rustc_span::Span;
28use rustc_target::callconv::{FnAbi, PassMode};
29use rustc_target::spec::{Arch, HasTargetSpec, SanitizerSet, Target};
30use smallvec::SmallVec;
31use tracing::{debug, instrument};
32
33use crate::abi::FnAbiLlvmExt;
34use crate::attributes;
35use crate::common::Funclet;
36use crate::context::{CodegenCx, FullCx, GenericCx, SCx};
37use crate::llvm::{
38    self, AtomicOrdering, AtomicRmwBinOp, BasicBlock, FromGeneric, GEPNoWrapFlags, Metadata, TRUE,
39    ToLlvmBool, Type, Value,
40};
41use crate::type_of::LayoutLlvmExt;
42
43#[must_use]
44pub(crate) struct GenericBuilder<'a, 'll, CX: Borrow<SCx<'ll>>> {
45    pub llbuilder: &'ll mut llvm::Builder<'ll>,
46    pub cx: &'a GenericCx<'ll, CX>,
47}
48
49pub(crate) type SBuilder<'a, 'll> = GenericBuilder<'a, 'll, SCx<'ll>>;
50pub(crate) type Builder<'a, 'll, 'tcx> = GenericBuilder<'a, 'll, FullCx<'ll, 'tcx>>;
51
52impl<'a, 'll, CX: Borrow<SCx<'ll>>> Drop for GenericBuilder<'a, 'll, CX> {
53    fn drop(&mut self) {
54        unsafe {
55            llvm::LLVMDisposeBuilder(&mut *(self.llbuilder as *mut _));
56        }
57    }
58}
59
60impl<'a, 'll> SBuilder<'a, 'll> {
61    pub(crate) fn call(
62        &mut self,
63        llty: &'ll Type,
64        llfn: &'ll Value,
65        args: &[&'ll Value],
66        funclet: Option<&Funclet<'ll>>,
67    ) -> &'ll Value {
68        debug!("call {:?} with args ({:?})", llfn, args);
69
70        let args = self.check_call("call", llty, llfn, args);
71        let funclet_bundle = funclet.map(|funclet| funclet.bundle());
72        let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
73        if let Some(funclet_bundle) = funclet_bundle {
74            bundles.push(funclet_bundle);
75        }
76
77        let call = unsafe {
78            llvm::LLVMBuildCallWithOperandBundles(
79                self.llbuilder,
80                llty,
81                llfn,
82                args.as_ptr() as *const &llvm::Value,
83                args.len() as c_uint,
84                bundles.as_ptr(),
85                bundles.len() as c_uint,
86                c"".as_ptr(),
87            )
88        };
89        call
90    }
91}
92
93impl<'a, 'll, CX: Borrow<SCx<'ll>>> GenericBuilder<'a, 'll, CX> {
94    fn with_cx(scx: &'a GenericCx<'ll, CX>) -> Self {
95        // Create a fresh builder from the simple context.
96        let llbuilder = unsafe { llvm::LLVMCreateBuilderInContext(scx.deref().borrow().llcx) };
97        GenericBuilder { llbuilder, cx: scx }
98    }
99
100    pub(crate) fn bitcast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
101        unsafe { llvm::LLVMBuildBitCast(self.llbuilder, val, dest_ty, UNNAMED) }
102    }
103
104    pub(crate) fn ret_void(&mut self) {
105        llvm::LLVMBuildRetVoid(self.llbuilder);
106    }
107
108    pub(crate) fn ret(&mut self, v: &'ll Value) {
109        unsafe {
110            llvm::LLVMBuildRet(self.llbuilder, v);
111        }
112    }
113
114    pub(crate) fn build(cx: &'a GenericCx<'ll, CX>, llbb: &'ll BasicBlock) -> Self {
115        let bx = Self::with_cx(cx);
116        unsafe {
117            llvm::LLVMPositionBuilderAtEnd(bx.llbuilder, llbb);
118        }
119        bx
120    }
121
122    // The generic builder has less functionality and thus (unlike the other alloca) we can not
123    // easily jump to the beginning of the function to place our allocas there. We trust the user
124    // to manually do that. FIXME(offload): improve the genericCx and add more llvm wrappers to
125    // handle this.
126    pub(crate) fn direct_alloca(&mut self, ty: &'ll Type, align: Align, name: &str) -> &'ll Value {
127        let val = unsafe {
128            let alloca = llvm::LLVMBuildAlloca(self.llbuilder, ty, UNNAMED);
129            llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint);
130            // Cast to default addrspace if necessary
131            llvm::LLVMBuildPointerCast(self.llbuilder, alloca, self.cx.type_ptr(), UNNAMED)
132        };
133        if name != "" {
134            let name = std::ffi::CString::new(name).unwrap();
135            llvm::set_value_name(val, &name.as_bytes());
136        }
137        val
138    }
139
140    pub(crate) fn inbounds_gep(
141        &mut self,
142        ty: &'ll Type,
143        ptr: &'ll Value,
144        indices: &[&'ll Value],
145    ) -> &'ll Value {
146        unsafe {
147            llvm::LLVMBuildGEPWithNoWrapFlags(
148                self.llbuilder,
149                ty,
150                ptr,
151                indices.as_ptr(),
152                indices.len() as c_uint,
153                UNNAMED,
154                GEPNoWrapFlags::InBounds,
155            )
156        }
157    }
158
159    pub(crate) fn store(&mut self, val: &'ll Value, ptr: &'ll Value, align: Align) -> &'ll Value {
160        debug!("Store {:?} -> {:?}", val, ptr);
161        assert_eq!(self.cx.type_kind(self.cx.val_ty(ptr)), TypeKind::Pointer);
162        unsafe {
163            let store = llvm::LLVMBuildStore(self.llbuilder, val, ptr);
164            llvm::LLVMSetAlignment(store, align.bytes() as c_uint);
165            store
166        }
167    }
168
169    pub(crate) fn load(&mut self, ty: &'ll Type, ptr: &'ll Value, align: Align) -> &'ll Value {
170        unsafe {
171            let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED);
172            llvm::LLVMSetAlignment(load, align.bytes() as c_uint);
173            load
174        }
175    }
176
177    fn memset(&mut self, ptr: &'ll Value, fill_byte: &'ll Value, size: &'ll Value, align: Align) {
178        unsafe {
179            llvm::LLVMRustBuildMemSet(
180                self.llbuilder,
181                ptr,
182                align.bytes() as c_uint,
183                fill_byte,
184                size,
185                false,
186            );
187        }
188    }
189}
190
191/// Empty string, to be used where LLVM expects an instruction name, indicating
192/// that the instruction is to be left unnamed (i.e. numbered, in textual IR).
193// FIXME(eddyb) pass `&CStr` directly to FFI once it's a thin pointer.
194pub(crate) const UNNAMED: *const c_char = c"".as_ptr();
195
196impl<'ll, CX: Borrow<SCx<'ll>>> BackendTypes for GenericBuilder<'_, 'll, CX> {
197    type Value = <GenericCx<'ll, CX> as BackendTypes>::Value;
198    type Metadata = <GenericCx<'ll, CX> as BackendTypes>::Metadata;
199    type Function = <GenericCx<'ll, CX> as BackendTypes>::Function;
200    type BasicBlock = <GenericCx<'ll, CX> as BackendTypes>::BasicBlock;
201    type Type = <GenericCx<'ll, CX> as BackendTypes>::Type;
202    type Funclet = <GenericCx<'ll, CX> as BackendTypes>::Funclet;
203
204    type DIScope = <GenericCx<'ll, CX> as BackendTypes>::DIScope;
205    type DILocation = <GenericCx<'ll, CX> as BackendTypes>::DILocation;
206    type DIVariable = <GenericCx<'ll, CX> as BackendTypes>::DIVariable;
207}
208
209impl abi::HasDataLayout for Builder<'_, '_, '_> {
210    fn data_layout(&self) -> &abi::TargetDataLayout {
211        self.cx.data_layout()
212    }
213}
214
215impl<'tcx> ty::layout::HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> {
216    #[inline]
217    fn tcx(&self) -> TyCtxt<'tcx> {
218        self.cx.tcx
219    }
220}
221
222impl<'tcx> ty::layout::HasTypingEnv<'tcx> for Builder<'_, '_, 'tcx> {
223    fn typing_env(&self) -> ty::TypingEnv<'tcx> {
224        self.cx.typing_env()
225    }
226}
227
228impl HasTargetSpec for Builder<'_, '_, '_> {
229    #[inline]
230    fn target_spec(&self) -> &Target {
231        self.cx.target_spec()
232    }
233}
234
235impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
236    #[inline]
237    fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! {
238        self.cx.handle_layout_err(err, span, ty)
239    }
240}
241
242impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
243    #[inline]
244    fn handle_fn_abi_err(
245        &self,
246        err: FnAbiError<'tcx>,
247        span: Span,
248        fn_abi_request: FnAbiRequest<'tcx>,
249    ) -> ! {
250        self.cx.handle_fn_abi_err(err, span, fn_abi_request)
251    }
252}
253
254impl<'ll, 'tcx> Deref for Builder<'_, 'll, 'tcx> {
255    type Target = CodegenCx<'ll, 'tcx>;
256
257    #[inline]
258    fn deref(&self) -> &Self::Target {
259        self.cx
260    }
261}
262
263macro_rules! math_builder_methods {
264    ($($name:ident($($arg:ident),*) => $llvm_capi:ident),+ $(,)?) => {
265        $(fn $name(&mut self, $($arg: &'ll Value),*) -> &'ll Value {
266            unsafe {
267                llvm::$llvm_capi(self.llbuilder, $($arg,)* UNNAMED)
268            }
269        })+
270    }
271}
272
273macro_rules! set_math_builder_methods {
274    ($($name:ident($($arg:ident),*) => ($llvm_capi:ident, $llvm_set_math:ident)),+ $(,)?) => {
275        $(fn $name(&mut self, $($arg: &'ll Value),*) -> &'ll Value {
276            unsafe {
277                let instr = llvm::$llvm_capi(self.llbuilder, $($arg,)* UNNAMED);
278                llvm::$llvm_set_math(instr);
279                instr
280            }
281        })+
282    }
283}
284
285impl<'a, 'll, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'll, 'tcx> {
286    type CodegenCx = CodegenCx<'ll, 'tcx>;
287
288    fn build(cx: &'a CodegenCx<'ll, 'tcx>, llbb: &'ll BasicBlock) -> Self {
289        let bx = Builder::with_cx(cx);
290        unsafe {
291            llvm::LLVMPositionBuilderAtEnd(bx.llbuilder, llbb);
292        }
293        bx
294    }
295
296    fn cx(&self) -> &CodegenCx<'ll, 'tcx> {
297        self.cx
298    }
299
300    fn llbb(&self) -> &'ll BasicBlock {
301        unsafe { llvm::LLVMGetInsertBlock(self.llbuilder) }
302    }
303
304    fn set_span(&mut self, _span: Span) {}
305
306    fn append_block(cx: &'a CodegenCx<'ll, 'tcx>, llfn: &'ll Value, name: &str) -> &'ll BasicBlock {
307        unsafe {
308            let name = SmallCStr::new(name);
309            llvm::LLVMAppendBasicBlockInContext(cx.llcx, llfn, name.as_ptr())
310        }
311    }
312
313    fn append_sibling_block(&mut self, name: &str) -> &'ll BasicBlock {
314        Self::append_block(self.cx, self.llfn(), name)
315    }
316
317    fn switch_to_block(&mut self, llbb: Self::BasicBlock) {
318        *self = Self::build(self.cx, llbb)
319    }
320
321    fn ret_void(&mut self) {
322        llvm::LLVMBuildRetVoid(self.llbuilder);
323    }
324
325    fn ret(&mut self, v: &'ll Value) {
326        unsafe {
327            llvm::LLVMBuildRet(self.llbuilder, v);
328        }
329    }
330
331    fn br(&mut self, dest: &'ll BasicBlock) {
332        unsafe {
333            llvm::LLVMBuildBr(self.llbuilder, dest);
334        }
335    }
336
337    fn cond_br(
338        &mut self,
339        cond: &'ll Value,
340        then_llbb: &'ll BasicBlock,
341        else_llbb: &'ll BasicBlock,
342    ) {
343        unsafe {
344            llvm::LLVMBuildCondBr(self.llbuilder, cond, then_llbb, else_llbb);
345        }
346    }
347
348    fn switch(
349        &mut self,
350        v: &'ll Value,
351        else_llbb: &'ll BasicBlock,
352        cases: impl ExactSizeIterator<Item = (u128, &'ll BasicBlock)>,
353    ) {
354        let switch =
355            unsafe { llvm::LLVMBuildSwitch(self.llbuilder, v, else_llbb, cases.len() as c_uint) };
356        for (on_val, dest) in cases {
357            let on_val = self.const_uint_big(self.val_ty(v), on_val);
358            unsafe { llvm::LLVMAddCase(switch, on_val, dest) }
359        }
360    }
361
362    fn switch_with_weights(
363        &mut self,
364        v: Self::Value,
365        else_llbb: Self::BasicBlock,
366        else_is_cold: bool,
367        cases: impl ExactSizeIterator<Item = (u128, Self::BasicBlock, bool)>,
368    ) {
369        if self.cx.sess().opts.optimize == rustc_session::config::OptLevel::No {
370            self.switch(v, else_llbb, cases.map(|(val, dest, _)| (val, dest)));
371            return;
372        }
373
374        let id = self.cx.create_metadata(b"branch_weights");
375
376        // For switch instructions with 2 targets, the `llvm.expect` intrinsic is used.
377        // This function handles switch instructions with more than 2 targets and it needs to
378        // emit branch weights metadata instead of using the intrinsic.
379        // The values 1 and 2000 are the same as the values used by the `llvm.expect` intrinsic.
380        let cold_weight = llvm::LLVMValueAsMetadata(self.cx.const_u32(1));
381        let hot_weight = llvm::LLVMValueAsMetadata(self.cx.const_u32(2000));
382        let weight =
383            |is_cold: bool| -> &Metadata { if is_cold { cold_weight } else { hot_weight } };
384
385        let mut md: SmallVec<[&Metadata; 16]> = SmallVec::with_capacity(cases.len() + 2);
386        md.push(id);
387        md.push(weight(else_is_cold));
388
389        let switch =
390            unsafe { llvm::LLVMBuildSwitch(self.llbuilder, v, else_llbb, cases.len() as c_uint) };
391        for (on_val, dest, is_cold) in cases {
392            let on_val = self.const_uint_big(self.val_ty(v), on_val);
393            unsafe { llvm::LLVMAddCase(switch, on_val, dest) }
394            md.push(weight(is_cold));
395        }
396
397        self.cx.set_metadata_node(switch, llvm::MD_prof, &md);
398    }
399
400    fn invoke(
401        &mut self,
402        llty: &'ll Type,
403        fn_attrs: Option<&CodegenFnAttrs>,
404        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
405        llfn: &'ll Value,
406        args: &[&'ll Value],
407        then: &'ll BasicBlock,
408        catch: &'ll BasicBlock,
409        funclet: Option<&Funclet<'ll>>,
410        instance: Option<Instance<'tcx>>,
411    ) -> &'ll Value {
412        debug!("invoke {:?} with args ({:?})", llfn, args);
413
414        let args = self.check_call("invoke", llty, llfn, args);
415        let funclet_bundle = funclet.map(|funclet| funclet.bundle());
416        let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
417        if let Some(funclet_bundle) = funclet_bundle {
418            bundles.push(funclet_bundle);
419        }
420
421        // Emit CFI pointer type membership test
422        self.cfi_type_test(fn_attrs, fn_abi, instance, llfn);
423
424        // Emit KCFI operand bundle
425        let kcfi_bundle = self.kcfi_operand_bundle(fn_attrs, fn_abi, instance, llfn);
426        if let Some(kcfi_bundle) = kcfi_bundle.as_ref().map(|b| b.as_ref()) {
427            bundles.push(kcfi_bundle);
428        }
429
430        let invoke = unsafe {
431            llvm::LLVMBuildInvokeWithOperandBundles(
432                self.llbuilder,
433                llty,
434                llfn,
435                args.as_ptr(),
436                args.len() as c_uint,
437                then,
438                catch,
439                bundles.as_ptr(),
440                bundles.len() as c_uint,
441                UNNAMED,
442            )
443        };
444        if let Some(fn_abi) = fn_abi {
445            fn_abi.apply_attrs_callsite(self, invoke);
446        }
447        invoke
448    }
449
450    fn unreachable(&mut self) {
451        unsafe {
452            llvm::LLVMBuildUnreachable(self.llbuilder);
453        }
454    }
455
456    math_builder_methods! {
457        add(a, b) => LLVMBuildAdd,
458        fadd(a, b) => LLVMBuildFAdd,
459        sub(a, b) => LLVMBuildSub,
460        fsub(a, b) => LLVMBuildFSub,
461        mul(a, b) => LLVMBuildMul,
462        fmul(a, b) => LLVMBuildFMul,
463        udiv(a, b) => LLVMBuildUDiv,
464        exactudiv(a, b) => LLVMBuildExactUDiv,
465        sdiv(a, b) => LLVMBuildSDiv,
466        exactsdiv(a, b) => LLVMBuildExactSDiv,
467        fdiv(a, b) => LLVMBuildFDiv,
468        urem(a, b) => LLVMBuildURem,
469        srem(a, b) => LLVMBuildSRem,
470        frem(a, b) => LLVMBuildFRem,
471        shl(a, b) => LLVMBuildShl,
472        lshr(a, b) => LLVMBuildLShr,
473        ashr(a, b) => LLVMBuildAShr,
474        and(a, b) => LLVMBuildAnd,
475        or(a, b) => LLVMBuildOr,
476        xor(a, b) => LLVMBuildXor,
477        neg(x) => LLVMBuildNeg,
478        fneg(x) => LLVMBuildFNeg,
479        not(x) => LLVMBuildNot,
480        unchecked_sadd(x, y) => LLVMBuildNSWAdd,
481        unchecked_uadd(x, y) => LLVMBuildNUWAdd,
482        unchecked_ssub(x, y) => LLVMBuildNSWSub,
483        unchecked_usub(x, y) => LLVMBuildNUWSub,
484        unchecked_smul(x, y) => LLVMBuildNSWMul,
485        unchecked_umul(x, y) => LLVMBuildNUWMul,
486    }
487
488    fn unchecked_suadd(&mut self, a: &'ll Value, b: &'ll Value) -> &'ll Value {
489        unsafe {
490            let add = llvm::LLVMBuildAdd(self.llbuilder, a, b, UNNAMED);
491            if llvm::LLVMIsAInstruction(add).is_some() {
492                llvm::LLVMSetNUW(add, TRUE);
493                llvm::LLVMSetNSW(add, TRUE);
494            }
495            add
496        }
497    }
498    fn unchecked_susub(&mut self, a: &'ll Value, b: &'ll Value) -> &'ll Value {
499        unsafe {
500            let sub = llvm::LLVMBuildSub(self.llbuilder, a, b, UNNAMED);
501            if llvm::LLVMIsAInstruction(sub).is_some() {
502                llvm::LLVMSetNUW(sub, TRUE);
503                llvm::LLVMSetNSW(sub, TRUE);
504            }
505            sub
506        }
507    }
508    fn unchecked_sumul(&mut self, a: &'ll Value, b: &'ll Value) -> &'ll Value {
509        unsafe {
510            let mul = llvm::LLVMBuildMul(self.llbuilder, a, b, UNNAMED);
511            if llvm::LLVMIsAInstruction(mul).is_some() {
512                llvm::LLVMSetNUW(mul, TRUE);
513                llvm::LLVMSetNSW(mul, TRUE);
514            }
515            mul
516        }
517    }
518
519    fn or_disjoint(&mut self, a: &'ll Value, b: &'ll Value) -> &'ll Value {
520        unsafe {
521            let or = llvm::LLVMBuildOr(self.llbuilder, a, b, UNNAMED);
522
523            // If a and b are both values, then `or` is a value, rather than
524            // an instruction, so we need to check before setting the flag.
525            // (See also `LLVMBuildNUWNeg` which also needs a check.)
526            if llvm::LLVMIsAInstruction(or).is_some() {
527                llvm::LLVMSetIsDisjoint(or, TRUE);
528            }
529            or
530        }
531    }
532
533    set_math_builder_methods! {
534        fadd_fast(x, y) => (LLVMBuildFAdd, LLVMRustSetFastMath),
535        fsub_fast(x, y) => (LLVMBuildFSub, LLVMRustSetFastMath),
536        fmul_fast(x, y) => (LLVMBuildFMul, LLVMRustSetFastMath),
537        fdiv_fast(x, y) => (LLVMBuildFDiv, LLVMRustSetFastMath),
538        frem_fast(x, y) => (LLVMBuildFRem, LLVMRustSetFastMath),
539        fadd_algebraic(x, y) => (LLVMBuildFAdd, LLVMRustSetAlgebraicMath),
540        fsub_algebraic(x, y) => (LLVMBuildFSub, LLVMRustSetAlgebraicMath),
541        fmul_algebraic(x, y) => (LLVMBuildFMul, LLVMRustSetAlgebraicMath),
542        fdiv_algebraic(x, y) => (LLVMBuildFDiv, LLVMRustSetAlgebraicMath),
543        frem_algebraic(x, y) => (LLVMBuildFRem, LLVMRustSetAlgebraicMath),
544    }
545
546    fn checked_binop(
547        &mut self,
548        oop: OverflowOp,
549        ty: Ty<'tcx>,
550        lhs: Self::Value,
551        rhs: Self::Value,
552    ) -> (Self::Value, Self::Value) {
553        let (size, signed) = ty.int_size_and_signed(self.tcx);
554        let width = size.bits();
555
556        if !signed {
557            match oop {
558                OverflowOp::Sub => {
559                    // Emit sub and icmp instead of llvm.usub.with.overflow. LLVM considers these
560                    // to be the canonical form. It will attempt to reform llvm.usub.with.overflow
561                    // in the backend if profitable.
562                    let sub = self.sub(lhs, rhs);
563                    let cmp = self.icmp(IntPredicate::IntULT, lhs, rhs);
564                    return (sub, cmp);
565                }
566                OverflowOp::Add => {
567                    // Like with sub above, using icmp is the preferred form. See
568                    // <https://rust-lang.zulipchat.com/#narrow/channel/187780-t-compiler.2Fllvm/topic/.60uadd.2Ewith.2Eoverflow.60.20.28again.29/near/533041085>
569                    let add = self.add(lhs, rhs);
570                    let cmp = self.icmp(IntPredicate::IntULT, add, lhs);
571                    return (add, cmp);
572                }
573                OverflowOp::Mul => {}
574            }
575        }
576
577        let oop_str = match oop {
578            OverflowOp::Add => "add",
579            OverflowOp::Sub => "sub",
580            OverflowOp::Mul => "mul",
581        };
582
583        let name = format!("llvm.{}{oop_str}.with.overflow", if signed { 's' } else { 'u' });
584
585        let res = self.call_intrinsic(name, &[self.type_ix(width)], &[lhs, rhs]);
586        (self.extract_value(res, 0), self.extract_value(res, 1))
587    }
588
589    fn from_immediate(&mut self, val: Self::Value) -> Self::Value {
590        if self.cx().val_ty(val) == self.cx().type_i1() {
591            self.zext(val, self.cx().type_i8())
592        } else {
593            val
594        }
595    }
596
597    fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value {
598        if scalar.is_bool() {
599            return self.unchecked_utrunc(val, self.cx().type_i1());
600        }
601        val
602    }
603
604    fn alloca(&mut self, size: Size, align: Align) -> &'ll Value {
605        let mut bx = Builder::with_cx(self.cx);
606        bx.position_at_start(unsafe { llvm::LLVMGetFirstBasicBlock(self.llfn()) });
607        let ty = self.cx().type_array(self.cx().type_i8(), size.bytes());
608        unsafe {
609            let alloca = llvm::LLVMBuildAlloca(bx.llbuilder, ty, UNNAMED);
610            llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint);
611            // Cast to default addrspace if necessary
612            llvm::LLVMBuildPointerCast(bx.llbuilder, alloca, self.cx().type_ptr(), UNNAMED)
613        }
614    }
615
616    fn load(&mut self, ty: &'ll Type, ptr: &'ll Value, align: Align) -> &'ll Value {
617        unsafe {
618            let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED);
619            let align = align.min(self.cx().tcx.sess.target.max_reliable_alignment());
620            llvm::LLVMSetAlignment(load, align.bytes() as c_uint);
621            load
622        }
623    }
624
625    fn volatile_load(&mut self, ty: &'ll Type, ptr: &'ll Value) -> &'ll Value {
626        unsafe {
627            let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED);
628            llvm::LLVMSetVolatile(load, llvm::TRUE);
629            load
630        }
631    }
632
633    fn atomic_load(
634        &mut self,
635        ty: &'ll Type,
636        ptr: &'ll Value,
637        order: rustc_middle::ty::AtomicOrdering,
638        size: Size,
639    ) -> &'ll Value {
640        unsafe {
641            let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED);
642            // Set atomic ordering
643            llvm::LLVMSetOrdering(load, AtomicOrdering::from_generic(order));
644            // LLVM requires the alignment of atomic loads to be at least the size of the type.
645            llvm::LLVMSetAlignment(load, size.bytes() as c_uint);
646            load
647        }
648    }
649
650    #[instrument(level = "trace", skip(self))]
651    fn load_operand(&mut self, place: PlaceRef<'tcx, &'ll Value>) -> OperandRef<'tcx, &'ll Value> {
652        if place.layout.is_unsized() {
653            let tail = self.tcx.struct_tail_for_codegen(place.layout.ty, self.typing_env());
654            if matches!(tail.kind(), ty::Foreign(..)) {
655                // Unsized locals and, at least conceptually, even unsized arguments must be copied
656                // around, which requires dynamically determining their size. Therefore, we cannot
657                // allow `extern` types here. Consult t-opsem before removing this check.
658                panic!("unsized locals must not be `extern` types");
659            }
660        }
661        assert_eq!(place.val.llextra.is_some(), place.layout.is_unsized());
662
663        if place.layout.is_zst() {
664            return OperandRef::zero_sized(place.layout);
665        }
666
667        #[instrument(level = "trace", skip(bx))]
668        fn scalar_load_metadata<'a, 'll, 'tcx>(
669            bx: &mut Builder<'a, 'll, 'tcx>,
670            load: &'ll Value,
671            scalar: abi::Scalar,
672            layout: TyAndLayout<'tcx>,
673            offset: Size,
674        ) {
675            if bx.cx.sess().opts.optimize == OptLevel::No {
676                // Don't emit metadata we're not going to use
677                return;
678            }
679
680            if !scalar.is_uninit_valid() {
681                bx.noundef_metadata(load);
682            }
683
684            match scalar.primitive() {
685                abi::Primitive::Int(..) => {
686                    if !scalar.is_always_valid(bx) {
687                        bx.range_metadata(load, scalar.valid_range(bx));
688                    }
689                }
690                abi::Primitive::Pointer(_) => {
691                    if !scalar.valid_range(bx).contains(0) {
692                        bx.nonnull_metadata(load);
693                    }
694
695                    if let Some(pointee) = layout.pointee_info_at(bx, offset)
696                        && let Some(_) = pointee.safe
697                    {
698                        bx.align_metadata(load, pointee.align);
699                    }
700                }
701                abi::Primitive::Float(_) => {}
702            }
703        }
704
705        let val = if let Some(_) = place.val.llextra {
706            // FIXME: Merge with the `else` below?
707            OperandValue::Ref(place.val)
708        } else if place.layout.is_llvm_immediate() {
709            let mut const_llval = None;
710            let llty = place.layout.llvm_type(self);
711            if let Some(global) = llvm::LLVMIsAGlobalVariable(place.val.llval) {
712                if llvm::LLVMIsGlobalConstant(global).is_true() {
713                    if let Some(init) = llvm::LLVMGetInitializer(global) {
714                        if self.val_ty(init) == llty {
715                            const_llval = Some(init);
716                        }
717                    }
718                }
719            }
720
721            let llval = const_llval.unwrap_or_else(|| {
722                let load = self.load(llty, place.val.llval, place.val.align);
723                if let abi::BackendRepr::Scalar(scalar) = place.layout.backend_repr {
724                    scalar_load_metadata(self, load, scalar, place.layout, Size::ZERO);
725                    self.to_immediate_scalar(load, scalar)
726                } else {
727                    load
728                }
729            });
730            OperandValue::Immediate(llval)
731        } else if let abi::BackendRepr::ScalarPair(a, b) = place.layout.backend_repr {
732            let b_offset = a.size(self).align_to(b.align(self).abi);
733
734            let mut load = |i, scalar: abi::Scalar, layout, align, offset| {
735                let llptr = if i == 0 {
736                    place.val.llval
737                } else {
738                    self.inbounds_ptradd(place.val.llval, self.const_usize(b_offset.bytes()))
739                };
740                let llty = place.layout.scalar_pair_element_llvm_type(self, i, false);
741                let load = self.load(llty, llptr, align);
742                scalar_load_metadata(self, load, scalar, layout, offset);
743                self.to_immediate_scalar(load, scalar)
744            };
745
746            OperandValue::Pair(
747                load(0, a, place.layout, place.val.align, Size::ZERO),
748                load(1, b, place.layout, place.val.align.restrict_for_offset(b_offset), b_offset),
749            )
750        } else {
751            OperandValue::Ref(place.val)
752        };
753
754        OperandRef { val, layout: place.layout, move_annotation: None }
755    }
756
757    fn write_operand_repeatedly(
758        &mut self,
759        cg_elem: OperandRef<'tcx, &'ll Value>,
760        count: u64,
761        dest: PlaceRef<'tcx, &'ll Value>,
762    ) {
763        let zero = self.const_usize(0);
764        let count = self.const_usize(count);
765
766        let header_bb = self.append_sibling_block("repeat_loop_header");
767        let body_bb = self.append_sibling_block("repeat_loop_body");
768        let next_bb = self.append_sibling_block("repeat_loop_next");
769
770        self.br(header_bb);
771
772        let mut header_bx = Self::build(self.cx, header_bb);
773        let i = header_bx.phi(self.val_ty(zero), &[zero], &[self.llbb()]);
774
775        let keep_going = header_bx.icmp(IntPredicate::IntULT, i, count);
776        header_bx.cond_br(keep_going, body_bb, next_bb);
777
778        let mut body_bx = Self::build(self.cx, body_bb);
779        let dest_elem = dest.project_index(&mut body_bx, i);
780        cg_elem.val.store(&mut body_bx, dest_elem);
781
782        let next = body_bx.unchecked_uadd(i, self.const_usize(1));
783        body_bx.br(header_bb);
784        header_bx.add_incoming_to_phi(i, next, body_bb);
785
786        *self = Self::build(self.cx, next_bb);
787    }
788
789    fn range_metadata(&mut self, load: &'ll Value, range: WrappingRange) {
790        if self.cx.sess().opts.optimize == OptLevel::No {
791            // Don't emit metadata we're not going to use
792            return;
793        }
794
795        let llty = self.cx.val_ty(load);
796        let md = [
797            llvm::LLVMValueAsMetadata(self.cx.const_uint_big(llty, range.start)),
798            llvm::LLVMValueAsMetadata(self.cx.const_uint_big(llty, range.end.wrapping_add(1))),
799        ];
800        self.set_metadata_node(load, llvm::MD_range, &md);
801    }
802
803    fn nonnull_metadata(&mut self, load: &'ll Value) {
804        self.set_metadata_node(load, llvm::MD_nonnull, &[]);
805    }
806
807    fn store(&mut self, val: &'ll Value, ptr: &'ll Value, align: Align) -> &'ll Value {
808        self.store_with_flags(val, ptr, align, MemFlags::empty())
809    }
810
811    fn store_with_flags(
812        &mut self,
813        val: &'ll Value,
814        ptr: &'ll Value,
815        align: Align,
816        flags: MemFlags,
817    ) -> &'ll Value {
818        debug!("Store {:?} -> {:?} ({:?})", val, ptr, flags);
819        assert_eq!(self.cx.type_kind(self.cx.val_ty(ptr)), TypeKind::Pointer);
820        unsafe {
821            let store = llvm::LLVMBuildStore(self.llbuilder, val, ptr);
822            let align = align.min(self.cx().tcx.sess.target.max_reliable_alignment());
823            let align =
824                if flags.contains(MemFlags::UNALIGNED) { 1 } else { align.bytes() as c_uint };
825            llvm::LLVMSetAlignment(store, align);
826            if flags.contains(MemFlags::VOLATILE) {
827                llvm::LLVMSetVolatile(store, llvm::TRUE);
828            }
829            if flags.contains(MemFlags::NONTEMPORAL) {
830                // Make sure that the current target architectures supports "sane" non-temporal
831                // stores, i.e., non-temporal stores that are equivalent to regular stores except
832                // for performance. LLVM doesn't seem to care about this, and will happily treat
833                // `!nontemporal` stores as-if they were normal stores (for reordering optimizations
834                // etc) even on x86, despite later lowering them to MOVNT which do *not* behave like
835                // regular stores but require special fences. So we keep a list of architectures
836                // where `!nontemporal` is known to be truly just a hint, and use regular stores
837                // everywhere else. (In the future, we could alternatively ensure that an sfence
838                // gets emitted after a sequence of movnt before any kind of synchronizing
839                // operation. But it's not clear how to do that with LLVM.)
840                // For more context, see <https://github.com/rust-lang/rust/issues/114582> and
841                // <https://github.com/llvm/llvm-project/issues/64521>.
842                let use_nontemporal = matches!(
843                    self.cx.tcx.sess.target.arch,
844                    Arch::AArch64 | Arch::Arm | Arch::RiscV32 | Arch::RiscV64
845                );
846                if use_nontemporal {
847                    // According to LLVM [1] building a nontemporal store must
848                    // *always* point to a metadata value of the integer 1.
849                    //
850                    // [1]: https://llvm.org/docs/LangRef.html#store-instruction
851                    let one = llvm::LLVMValueAsMetadata(self.cx.const_i32(1));
852                    self.set_metadata_node(store, llvm::MD_nontemporal, &[one]);
853                }
854            }
855            store
856        }
857    }
858
859    fn atomic_store(
860        &mut self,
861        val: &'ll Value,
862        ptr: &'ll Value,
863        order: rustc_middle::ty::AtomicOrdering,
864        size: Size,
865    ) {
866        debug!("Store {:?} -> {:?}", val, ptr);
867        assert_eq!(self.cx.type_kind(self.cx.val_ty(ptr)), TypeKind::Pointer);
868        unsafe {
869            let store = llvm::LLVMBuildStore(self.llbuilder, val, ptr);
870            // Set atomic ordering
871            llvm::LLVMSetOrdering(store, AtomicOrdering::from_generic(order));
872            // LLVM requires the alignment of atomic stores to be at least the size of the type.
873            llvm::LLVMSetAlignment(store, size.bytes() as c_uint);
874        }
875    }
876
877    fn gep(&mut self, ty: &'ll Type, ptr: &'ll Value, indices: &[&'ll Value]) -> &'ll Value {
878        unsafe {
879            llvm::LLVMBuildGEPWithNoWrapFlags(
880                self.llbuilder,
881                ty,
882                ptr,
883                indices.as_ptr(),
884                indices.len() as c_uint,
885                UNNAMED,
886                GEPNoWrapFlags::default(),
887            )
888        }
889    }
890
891    fn inbounds_gep(
892        &mut self,
893        ty: &'ll Type,
894        ptr: &'ll Value,
895        indices: &[&'ll Value],
896    ) -> &'ll Value {
897        unsafe {
898            llvm::LLVMBuildGEPWithNoWrapFlags(
899                self.llbuilder,
900                ty,
901                ptr,
902                indices.as_ptr(),
903                indices.len() as c_uint,
904                UNNAMED,
905                GEPNoWrapFlags::InBounds,
906            )
907        }
908    }
909
910    fn inbounds_nuw_gep(
911        &mut self,
912        ty: &'ll Type,
913        ptr: &'ll Value,
914        indices: &[&'ll Value],
915    ) -> &'ll Value {
916        unsafe {
917            llvm::LLVMBuildGEPWithNoWrapFlags(
918                self.llbuilder,
919                ty,
920                ptr,
921                indices.as_ptr(),
922                indices.len() as c_uint,
923                UNNAMED,
924                GEPNoWrapFlags::InBounds | GEPNoWrapFlags::NUW,
925            )
926        }
927    }
928
929    /* Casts */
930    fn trunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
931        unsafe { llvm::LLVMBuildTrunc(self.llbuilder, val, dest_ty, UNNAMED) }
932    }
933
934    fn unchecked_utrunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
935        debug_assert_ne!(self.val_ty(val), dest_ty);
936
937        let trunc = self.trunc(val, dest_ty);
938        unsafe {
939            if llvm::LLVMIsAInstruction(trunc).is_some() {
940                llvm::LLVMSetNUW(trunc, TRUE);
941            }
942        }
943        trunc
944    }
945
946    fn unchecked_strunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
947        debug_assert_ne!(self.val_ty(val), dest_ty);
948
949        let trunc = self.trunc(val, dest_ty);
950        unsafe {
951            if llvm::LLVMIsAInstruction(trunc).is_some() {
952                llvm::LLVMSetNSW(trunc, TRUE);
953            }
954        }
955        trunc
956    }
957
958    fn sext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
959        unsafe { llvm::LLVMBuildSExt(self.llbuilder, val, dest_ty, UNNAMED) }
960    }
961
962    fn fptoui_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
963        self.call_intrinsic("llvm.fptoui.sat", &[dest_ty, self.val_ty(val)], &[val])
964    }
965
966    fn fptosi_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
967        self.call_intrinsic("llvm.fptosi.sat", &[dest_ty, self.val_ty(val)], &[val])
968    }
969
970    fn fptoui(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
971        // On WebAssembly the `fptoui` and `fptosi` instructions currently have
972        // poor codegen. The reason for this is that the corresponding wasm
973        // instructions, `i32.trunc_f32_s` for example, will trap when the float
974        // is out-of-bounds, infinity, or nan. This means that LLVM
975        // automatically inserts control flow around `fptoui` and `fptosi`
976        // because the LLVM instruction `fptoui` is defined as producing a
977        // poison value, not having UB on out-of-bounds values.
978        //
979        // This method, however, is only used with non-saturating casts that
980        // have UB on out-of-bounds values. This means that it's ok if we use
981        // the raw wasm instruction since out-of-bounds values can do whatever
982        // we like. To ensure that LLVM picks the right instruction we choose
983        // the raw wasm intrinsic functions which avoid LLVM inserting all the
984        // other control flow automatically.
985        if self.sess().target.is_like_wasm {
986            let src_ty = self.cx.val_ty(val);
987            if self.cx.type_kind(src_ty) != TypeKind::Vector {
988                let float_width = self.cx.float_width(src_ty);
989                let int_width = self.cx.int_width(dest_ty);
990                if matches!((int_width, float_width), (32 | 64, 32 | 64)) {
991                    return self.call_intrinsic(
992                        "llvm.wasm.trunc.unsigned",
993                        &[dest_ty, src_ty],
994                        &[val],
995                    );
996                }
997            }
998        }
999        unsafe { llvm::LLVMBuildFPToUI(self.llbuilder, val, dest_ty, UNNAMED) }
1000    }
1001
1002    fn fptosi(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1003        // see `fptoui` above for why wasm is different here
1004        if self.sess().target.is_like_wasm {
1005            let src_ty = self.cx.val_ty(val);
1006            if self.cx.type_kind(src_ty) != TypeKind::Vector {
1007                let float_width = self.cx.float_width(src_ty);
1008                let int_width = self.cx.int_width(dest_ty);
1009                if matches!((int_width, float_width), (32 | 64, 32 | 64)) {
1010                    return self.call_intrinsic(
1011                        "llvm.wasm.trunc.signed",
1012                        &[dest_ty, src_ty],
1013                        &[val],
1014                    );
1015                }
1016            }
1017        }
1018        unsafe { llvm::LLVMBuildFPToSI(self.llbuilder, val, dest_ty, UNNAMED) }
1019    }
1020
1021    fn uitofp(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1022        unsafe { llvm::LLVMBuildUIToFP(self.llbuilder, val, dest_ty, UNNAMED) }
1023    }
1024
1025    fn sitofp(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1026        unsafe { llvm::LLVMBuildSIToFP(self.llbuilder, val, dest_ty, UNNAMED) }
1027    }
1028
1029    fn fptrunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1030        unsafe { llvm::LLVMBuildFPTrunc(self.llbuilder, val, dest_ty, UNNAMED) }
1031    }
1032
1033    fn fpext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1034        unsafe { llvm::LLVMBuildFPExt(self.llbuilder, val, dest_ty, UNNAMED) }
1035    }
1036
1037    fn ptrtoint(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1038        unsafe { llvm::LLVMBuildPtrToInt(self.llbuilder, val, dest_ty, UNNAMED) }
1039    }
1040
1041    fn inttoptr(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1042        unsafe { llvm::LLVMBuildIntToPtr(self.llbuilder, val, dest_ty, UNNAMED) }
1043    }
1044
1045    fn bitcast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1046        unsafe { llvm::LLVMBuildBitCast(self.llbuilder, val, dest_ty, UNNAMED) }
1047    }
1048
1049    fn intcast(&mut self, val: &'ll Value, dest_ty: &'ll Type, is_signed: bool) -> &'ll Value {
1050        unsafe {
1051            llvm::LLVMBuildIntCast2(self.llbuilder, val, dest_ty, is_signed.to_llvm_bool(), UNNAMED)
1052        }
1053    }
1054
1055    fn pointercast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1056        unsafe { llvm::LLVMBuildPointerCast(self.llbuilder, val, dest_ty, UNNAMED) }
1057    }
1058
1059    /* Comparisons */
1060    fn icmp(&mut self, op: IntPredicate, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
1061        let op = llvm::IntPredicate::from_generic(op);
1062        unsafe { llvm::LLVMBuildICmp(self.llbuilder, op as c_uint, lhs, rhs, UNNAMED) }
1063    }
1064
1065    fn fcmp(&mut self, op: RealPredicate, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
1066        let op = llvm::RealPredicate::from_generic(op);
1067        unsafe { llvm::LLVMBuildFCmp(self.llbuilder, op as c_uint, lhs, rhs, UNNAMED) }
1068    }
1069
1070    fn three_way_compare(
1071        &mut self,
1072        ty: Ty<'tcx>,
1073        lhs: Self::Value,
1074        rhs: Self::Value,
1075    ) -> Self::Value {
1076        let size = ty.primitive_size(self.tcx);
1077        let name = if ty.is_signed() { "llvm.scmp" } else { "llvm.ucmp" };
1078
1079        self.call_intrinsic(name, &[self.type_i8(), self.type_ix(size.bits())], &[lhs, rhs])
1080    }
1081
1082    /* Miscellaneous instructions */
1083    fn memcpy(
1084        &mut self,
1085        dst: &'ll Value,
1086        dst_align: Align,
1087        src: &'ll Value,
1088        src_align: Align,
1089        size: &'ll Value,
1090        flags: MemFlags,
1091        tt: Option<FncTree>,
1092    ) {
1093        assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported");
1094        let size = self.intcast(size, self.type_isize(), false);
1095        let is_volatile = flags.contains(MemFlags::VOLATILE);
1096        let memcpy = unsafe {
1097            llvm::LLVMRustBuildMemCpy(
1098                self.llbuilder,
1099                dst,
1100                dst_align.bytes() as c_uint,
1101                src,
1102                src_align.bytes() as c_uint,
1103                size,
1104                is_volatile,
1105            )
1106        };
1107
1108        // TypeTree metadata for memcpy is especially important: when Enzyme encounters
1109        // a memcpy during autodiff, it needs to know the structure of the data being
1110        // copied to properly track derivatives. For example, copying an array of floats
1111        // vs. copying a struct with mixed types requires different derivative handling.
1112        // The TypeTree tells Enzyme exactly what memory layout to expect.
1113        if let Some(tt) = tt {
1114            crate::typetree::add_tt(self.cx().llmod, self.cx().llcx, memcpy, tt);
1115        }
1116    }
1117
1118    fn memmove(
1119        &mut self,
1120        dst: &'ll Value,
1121        dst_align: Align,
1122        src: &'ll Value,
1123        src_align: Align,
1124        size: &'ll Value,
1125        flags: MemFlags,
1126    ) {
1127        assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memmove not supported");
1128        let size = self.intcast(size, self.type_isize(), false);
1129        let is_volatile = flags.contains(MemFlags::VOLATILE);
1130        unsafe {
1131            llvm::LLVMRustBuildMemMove(
1132                self.llbuilder,
1133                dst,
1134                dst_align.bytes() as c_uint,
1135                src,
1136                src_align.bytes() as c_uint,
1137                size,
1138                is_volatile,
1139            );
1140        }
1141    }
1142
1143    fn memset(
1144        &mut self,
1145        ptr: &'ll Value,
1146        fill_byte: &'ll Value,
1147        size: &'ll Value,
1148        align: Align,
1149        flags: MemFlags,
1150    ) {
1151        assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memset not supported");
1152        let is_volatile = flags.contains(MemFlags::VOLATILE);
1153        unsafe {
1154            llvm::LLVMRustBuildMemSet(
1155                self.llbuilder,
1156                ptr,
1157                align.bytes() as c_uint,
1158                fill_byte,
1159                size,
1160                is_volatile,
1161            );
1162        }
1163    }
1164
1165    fn select(
1166        &mut self,
1167        cond: &'ll Value,
1168        then_val: &'ll Value,
1169        else_val: &'ll Value,
1170    ) -> &'ll Value {
1171        unsafe { llvm::LLVMBuildSelect(self.llbuilder, cond, then_val, else_val, UNNAMED) }
1172    }
1173
1174    fn va_arg(&mut self, list: &'ll Value, ty: &'ll Type) -> &'ll Value {
1175        unsafe { llvm::LLVMBuildVAArg(self.llbuilder, list, ty, UNNAMED) }
1176    }
1177
1178    fn extract_element(&mut self, vec: &'ll Value, idx: &'ll Value) -> &'ll Value {
1179        unsafe { llvm::LLVMBuildExtractElement(self.llbuilder, vec, idx, UNNAMED) }
1180    }
1181
1182    fn vector_splat(&mut self, num_elts: usize, elt: &'ll Value) -> &'ll Value {
1183        unsafe {
1184            let elt_ty = self.cx.val_ty(elt);
1185            let undef = llvm::LLVMGetUndef(self.type_vector(elt_ty, num_elts as u64));
1186            let vec = self.insert_element(undef, elt, self.cx.const_i32(0));
1187            let vec_i32_ty = self.type_vector(self.type_i32(), num_elts as u64);
1188            self.shuffle_vector(vec, undef, self.const_null(vec_i32_ty))
1189        }
1190    }
1191
1192    fn extract_value(&mut self, agg_val: &'ll Value, idx: u64) -> &'ll Value {
1193        assert_eq!(idx as c_uint as u64, idx);
1194        unsafe { llvm::LLVMBuildExtractValue(self.llbuilder, agg_val, idx as c_uint, UNNAMED) }
1195    }
1196
1197    fn insert_value(&mut self, agg_val: &'ll Value, elt: &'ll Value, idx: u64) -> &'ll Value {
1198        assert_eq!(idx as c_uint as u64, idx);
1199        unsafe { llvm::LLVMBuildInsertValue(self.llbuilder, agg_val, elt, idx as c_uint, UNNAMED) }
1200    }
1201
1202    fn set_personality_fn(&mut self, personality: &'ll Value) {
1203        unsafe {
1204            llvm::LLVMSetPersonalityFn(self.llfn(), personality);
1205        }
1206    }
1207
1208    fn cleanup_landing_pad(&mut self, pers_fn: &'ll Value) -> (&'ll Value, &'ll Value) {
1209        let ty = self.type_struct(&[self.type_ptr(), self.type_i32()], false);
1210        let landing_pad = self.landing_pad(ty, pers_fn, 0);
1211        unsafe {
1212            llvm::LLVMSetCleanup(landing_pad, llvm::TRUE);
1213        }
1214        (self.extract_value(landing_pad, 0), self.extract_value(landing_pad, 1))
1215    }
1216
1217    fn filter_landing_pad(&mut self, pers_fn: &'ll Value) {
1218        let ty = self.type_struct(&[self.type_ptr(), self.type_i32()], false);
1219        let landing_pad = self.landing_pad(ty, pers_fn, 1);
1220        self.add_clause(landing_pad, self.const_array(self.type_ptr(), &[]));
1221    }
1222
1223    fn resume(&mut self, exn0: &'ll Value, exn1: &'ll Value) {
1224        let ty = self.type_struct(&[self.type_ptr(), self.type_i32()], false);
1225        let mut exn = self.const_poison(ty);
1226        exn = self.insert_value(exn, exn0, 0);
1227        exn = self.insert_value(exn, exn1, 1);
1228        unsafe {
1229            llvm::LLVMBuildResume(self.llbuilder, exn);
1230        }
1231    }
1232
1233    fn cleanup_pad(&mut self, parent: Option<&'ll Value>, args: &[&'ll Value]) -> Funclet<'ll> {
1234        let ret = unsafe {
1235            llvm::LLVMBuildCleanupPad(
1236                self.llbuilder,
1237                parent,
1238                args.as_ptr(),
1239                args.len() as c_uint,
1240                c"cleanuppad".as_ptr(),
1241            )
1242        };
1243        Funclet::new(ret.expect("LLVM does not have support for cleanuppad"))
1244    }
1245
1246    fn cleanup_ret(&mut self, funclet: &Funclet<'ll>, unwind: Option<&'ll BasicBlock>) {
1247        unsafe {
1248            llvm::LLVMBuildCleanupRet(self.llbuilder, funclet.cleanuppad(), unwind)
1249                .expect("LLVM does not have support for cleanupret");
1250        }
1251    }
1252
1253    fn catch_pad(&mut self, parent: &'ll Value, args: &[&'ll Value]) -> Funclet<'ll> {
1254        let ret = unsafe {
1255            llvm::LLVMBuildCatchPad(
1256                self.llbuilder,
1257                parent,
1258                args.as_ptr(),
1259                args.len() as c_uint,
1260                c"catchpad".as_ptr(),
1261            )
1262        };
1263        Funclet::new(ret.expect("LLVM does not have support for catchpad"))
1264    }
1265
1266    fn catch_switch(
1267        &mut self,
1268        parent: Option<&'ll Value>,
1269        unwind: Option<&'ll BasicBlock>,
1270        handlers: &[&'ll BasicBlock],
1271    ) -> &'ll Value {
1272        let ret = unsafe {
1273            llvm::LLVMBuildCatchSwitch(
1274                self.llbuilder,
1275                parent,
1276                unwind,
1277                handlers.len() as c_uint,
1278                c"catchswitch".as_ptr(),
1279            )
1280        };
1281        let ret = ret.expect("LLVM does not have support for catchswitch");
1282        for handler in handlers {
1283            unsafe {
1284                llvm::LLVMAddHandler(ret, handler);
1285            }
1286        }
1287        ret
1288    }
1289
1290    // Atomic Operations
1291    fn atomic_cmpxchg(
1292        &mut self,
1293        dst: &'ll Value,
1294        cmp: &'ll Value,
1295        src: &'ll Value,
1296        order: rustc_middle::ty::AtomicOrdering,
1297        failure_order: rustc_middle::ty::AtomicOrdering,
1298        weak: bool,
1299    ) -> (&'ll Value, &'ll Value) {
1300        unsafe {
1301            let value = llvm::LLVMBuildAtomicCmpXchg(
1302                self.llbuilder,
1303                dst,
1304                cmp,
1305                src,
1306                AtomicOrdering::from_generic(order),
1307                AtomicOrdering::from_generic(failure_order),
1308                llvm::FALSE, // SingleThreaded
1309            );
1310            llvm::LLVMSetWeak(value, weak.to_llvm_bool());
1311            let val = self.extract_value(value, 0);
1312            let success = self.extract_value(value, 1);
1313            (val, success)
1314        }
1315    }
1316
1317    fn atomic_rmw(
1318        &mut self,
1319        op: rustc_codegen_ssa::common::AtomicRmwBinOp,
1320        dst: &'ll Value,
1321        src: &'ll Value,
1322        order: rustc_middle::ty::AtomicOrdering,
1323        ret_ptr: bool,
1324    ) -> &'ll Value {
1325        // FIXME: If `ret_ptr` is true and `src` is not a pointer, we *should* tell LLVM that the
1326        // LHS is a pointer and the operation should be provenance-preserving, but LLVM does not
1327        // currently support that (https://github.com/llvm/llvm-project/issues/120837).
1328        let mut res = unsafe {
1329            llvm::LLVMBuildAtomicRMW(
1330                self.llbuilder,
1331                AtomicRmwBinOp::from_generic(op),
1332                dst,
1333                src,
1334                AtomicOrdering::from_generic(order),
1335                llvm::FALSE, // SingleThreaded
1336            )
1337        };
1338        if ret_ptr && self.val_ty(res) != self.type_ptr() {
1339            res = self.inttoptr(res, self.type_ptr());
1340        }
1341        res
1342    }
1343
1344    fn atomic_fence(
1345        &mut self,
1346        order: rustc_middle::ty::AtomicOrdering,
1347        scope: SynchronizationScope,
1348    ) {
1349        let single_threaded = match scope {
1350            SynchronizationScope::SingleThread => true,
1351            SynchronizationScope::CrossThread => false,
1352        };
1353        unsafe {
1354            llvm::LLVMBuildFence(
1355                self.llbuilder,
1356                AtomicOrdering::from_generic(order),
1357                single_threaded.to_llvm_bool(),
1358                UNNAMED,
1359            );
1360        }
1361    }
1362
1363    fn set_invariant_load(&mut self, load: &'ll Value) {
1364        self.set_metadata_node(load, llvm::MD_invariant_load, &[]);
1365    }
1366
1367    fn lifetime_start(&mut self, ptr: &'ll Value, size: Size) {
1368        self.call_lifetime_intrinsic("llvm.lifetime.start", ptr, size);
1369    }
1370
1371    fn lifetime_end(&mut self, ptr: &'ll Value, size: Size) {
1372        self.call_lifetime_intrinsic("llvm.lifetime.end", ptr, size);
1373    }
1374
1375    fn call(
1376        &mut self,
1377        llty: &'ll Type,
1378        fn_call_attrs: Option<&CodegenFnAttrs>,
1379        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
1380        llfn: &'ll Value,
1381        args: &[&'ll Value],
1382        funclet: Option<&Funclet<'ll>>,
1383        instance: Option<Instance<'tcx>>,
1384    ) -> &'ll Value {
1385        debug!("call {:?} with args ({:?})", llfn, args);
1386
1387        let args = self.check_call("call", llty, llfn, args);
1388        let funclet_bundle = funclet.map(|funclet| funclet.bundle());
1389        let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
1390        if let Some(funclet_bundle) = funclet_bundle {
1391            bundles.push(funclet_bundle);
1392        }
1393
1394        // Emit CFI pointer type membership test
1395        self.cfi_type_test(fn_call_attrs, fn_abi, instance, llfn);
1396
1397        // Emit KCFI operand bundle
1398        let kcfi_bundle = self.kcfi_operand_bundle(fn_call_attrs, fn_abi, instance, llfn);
1399        if let Some(kcfi_bundle) = kcfi_bundle.as_ref().map(|b| b.as_ref()) {
1400            bundles.push(kcfi_bundle);
1401        }
1402
1403        let call = unsafe {
1404            llvm::LLVMBuildCallWithOperandBundles(
1405                self.llbuilder,
1406                llty,
1407                llfn,
1408                args.as_ptr() as *const &llvm::Value,
1409                args.len() as c_uint,
1410                bundles.as_ptr(),
1411                bundles.len() as c_uint,
1412                c"".as_ptr(),
1413            )
1414        };
1415
1416        if let Some(instance) = instance {
1417            // Attributes on the function definition being called
1418            let fn_defn_attrs = self.cx.tcx.codegen_fn_attrs(instance.def_id());
1419            if let Some(fn_call_attrs) = fn_call_attrs
1420                && !fn_call_attrs.target_features.is_empty()
1421                // If there is an inline attribute and a target feature that matches
1422                // we will add the attribute to the callsite otherwise we'll omit
1423                // this and not add the attribute to prevent soundness issues.
1424                && let Some(inlining_rule) = attributes::inline_attr(&self.cx, self.cx.tcx, instance)
1425                && self.cx.tcx.is_target_feature_call_safe(
1426                    &fn_call_attrs.target_features,
1427                    &fn_defn_attrs.target_features,
1428                )
1429            {
1430                attributes::apply_to_callsite(
1431                    call,
1432                    llvm::AttributePlace::Function,
1433                    &[inlining_rule],
1434                );
1435            }
1436        }
1437
1438        if let Some(fn_abi) = fn_abi {
1439            fn_abi.apply_attrs_callsite(self, call);
1440        }
1441        call
1442    }
1443
1444    fn tail_call(
1445        &mut self,
1446        llty: Self::Type,
1447        fn_attrs: Option<&CodegenFnAttrs>,
1448        fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
1449        llfn: Self::Value,
1450        args: &[Self::Value],
1451        funclet: Option<&Self::Funclet>,
1452        instance: Option<Instance<'tcx>>,
1453    ) {
1454        let call = self.call(llty, fn_attrs, Some(fn_abi), llfn, args, funclet, instance);
1455        llvm::LLVMSetTailCallKind(call, llvm::TailCallKind::MustTail);
1456
1457        match &fn_abi.ret.mode {
1458            PassMode::Ignore | PassMode::Indirect { .. } => self.ret_void(),
1459            PassMode::Direct(_) | PassMode::Pair { .. } | PassMode::Cast { .. } => self.ret(call),
1460        }
1461    }
1462
1463    fn zext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1464        unsafe { llvm::LLVMBuildZExt(self.llbuilder, val, dest_ty, UNNAMED) }
1465    }
1466
1467    fn apply_attrs_to_cleanup_callsite(&mut self, llret: &'ll Value) {
1468        // Cleanup is always the cold path.
1469        let cold_inline = llvm::AttributeKind::Cold.create_attr(self.llcx);
1470        attributes::apply_to_callsite(llret, llvm::AttributePlace::Function, &[cold_inline]);
1471    }
1472}
1473
1474impl<'ll> StaticBuilderMethods for Builder<'_, 'll, '_> {
1475    fn get_static(&mut self, def_id: DefId) -> &'ll Value {
1476        // Forward to the `get_static` method of `CodegenCx`
1477        let global = self.cx().get_static(def_id);
1478        if self.cx().tcx.is_thread_local_static(def_id) {
1479            let pointer =
1480                self.call_intrinsic("llvm.threadlocal.address", &[self.val_ty(global)], &[global]);
1481            // Cast to default address space if globals are in a different addrspace
1482            self.pointercast(pointer, self.type_ptr())
1483        } else {
1484            // Cast to default address space if globals are in a different addrspace
1485            self.cx().const_pointercast(global, self.type_ptr())
1486        }
1487    }
1488}
1489
1490impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
1491    pub(crate) fn llfn(&self) -> &'ll Value {
1492        unsafe { llvm::LLVMGetBasicBlockParent(self.llbb()) }
1493    }
1494}
1495
1496impl<'a, 'll, CX: Borrow<SCx<'ll>>> GenericBuilder<'a, 'll, CX> {
1497    fn position_at_start(&mut self, llbb: &'ll BasicBlock) {
1498        unsafe {
1499            llvm::LLVMRustPositionBuilderAtStart(self.llbuilder, llbb);
1500        }
1501    }
1502}
1503impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
1504    fn align_metadata(&mut self, load: &'ll Value, align: Align) {
1505        let md = [llvm::LLVMValueAsMetadata(self.cx.const_u64(align.bytes()))];
1506        self.set_metadata_node(load, llvm::MD_align, &md);
1507    }
1508
1509    fn noundef_metadata(&mut self, load: &'ll Value) {
1510        self.set_metadata_node(load, llvm::MD_noundef, &[]);
1511    }
1512
1513    pub(crate) fn set_unpredictable(&mut self, inst: &'ll Value) {
1514        self.set_metadata_node(inst, llvm::MD_unpredictable, &[]);
1515    }
1516
1517    pub(crate) fn minnum(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
1518        self.call_intrinsic("llvm.minnum", &[self.val_ty(lhs)], &[lhs, rhs])
1519    }
1520
1521    pub(crate) fn maxnum(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
1522        self.call_intrinsic("llvm.maxnum", &[self.val_ty(lhs)], &[lhs, rhs])
1523    }
1524
1525    pub(crate) fn insert_element(
1526        &mut self,
1527        vec: &'ll Value,
1528        elt: &'ll Value,
1529        idx: &'ll Value,
1530    ) -> &'ll Value {
1531        unsafe { llvm::LLVMBuildInsertElement(self.llbuilder, vec, elt, idx, UNNAMED) }
1532    }
1533
1534    pub(crate) fn shuffle_vector(
1535        &mut self,
1536        v1: &'ll Value,
1537        v2: &'ll Value,
1538        mask: &'ll Value,
1539    ) -> &'ll Value {
1540        unsafe { llvm::LLVMBuildShuffleVector(self.llbuilder, v1, v2, mask, UNNAMED) }
1541    }
1542
1543    pub(crate) fn vector_reduce_fadd(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value {
1544        self.call_intrinsic("llvm.vector.reduce.fadd", &[self.val_ty(src)], &[acc, src])
1545    }
1546    pub(crate) fn vector_reduce_fmul(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value {
1547        self.call_intrinsic("llvm.vector.reduce.fmul", &[self.val_ty(src)], &[acc, src])
1548    }
1549    pub(crate) fn vector_reduce_fadd_reassoc(
1550        &mut self,
1551        acc: &'ll Value,
1552        src: &'ll Value,
1553    ) -> &'ll Value {
1554        unsafe {
1555            let instr =
1556                self.call_intrinsic("llvm.vector.reduce.fadd", &[self.val_ty(src)], &[acc, src]);
1557            llvm::LLVMRustSetAllowReassoc(instr);
1558            instr
1559        }
1560    }
1561    pub(crate) fn vector_reduce_fmul_reassoc(
1562        &mut self,
1563        acc: &'ll Value,
1564        src: &'ll Value,
1565    ) -> &'ll Value {
1566        unsafe {
1567            let instr =
1568                self.call_intrinsic("llvm.vector.reduce.fmul", &[self.val_ty(src)], &[acc, src]);
1569            llvm::LLVMRustSetAllowReassoc(instr);
1570            instr
1571        }
1572    }
1573    pub(crate) fn vector_reduce_add(&mut self, src: &'ll Value) -> &'ll Value {
1574        self.call_intrinsic("llvm.vector.reduce.add", &[self.val_ty(src)], &[src])
1575    }
1576    pub(crate) fn vector_reduce_mul(&mut self, src: &'ll Value) -> &'ll Value {
1577        self.call_intrinsic("llvm.vector.reduce.mul", &[self.val_ty(src)], &[src])
1578    }
1579    pub(crate) fn vector_reduce_and(&mut self, src: &'ll Value) -> &'ll Value {
1580        self.call_intrinsic("llvm.vector.reduce.and", &[self.val_ty(src)], &[src])
1581    }
1582    pub(crate) fn vector_reduce_or(&mut self, src: &'ll Value) -> &'ll Value {
1583        self.call_intrinsic("llvm.vector.reduce.or", &[self.val_ty(src)], &[src])
1584    }
1585    pub(crate) fn vector_reduce_xor(&mut self, src: &'ll Value) -> &'ll Value {
1586        self.call_intrinsic("llvm.vector.reduce.xor", &[self.val_ty(src)], &[src])
1587    }
1588    pub(crate) fn vector_reduce_fmin(&mut self, src: &'ll Value) -> &'ll Value {
1589        self.call_intrinsic("llvm.vector.reduce.fmin", &[self.val_ty(src)], &[src])
1590    }
1591    pub(crate) fn vector_reduce_fmax(&mut self, src: &'ll Value) -> &'ll Value {
1592        self.call_intrinsic("llvm.vector.reduce.fmax", &[self.val_ty(src)], &[src])
1593    }
1594    pub(crate) fn vector_reduce_min(&mut self, src: &'ll Value, is_signed: bool) -> &'ll Value {
1595        self.call_intrinsic(
1596            if is_signed { "llvm.vector.reduce.smin" } else { "llvm.vector.reduce.umin" },
1597            &[self.val_ty(src)],
1598            &[src],
1599        )
1600    }
1601    pub(crate) fn vector_reduce_max(&mut self, src: &'ll Value, is_signed: bool) -> &'ll Value {
1602        self.call_intrinsic(
1603            if is_signed { "llvm.vector.reduce.smax" } else { "llvm.vector.reduce.umax" },
1604            &[self.val_ty(src)],
1605            &[src],
1606        )
1607    }
1608}
1609impl<'a, 'll, CX: Borrow<SCx<'ll>>> GenericBuilder<'a, 'll, CX> {
1610    pub(crate) fn add_clause(&mut self, landing_pad: &'ll Value, clause: &'ll Value) {
1611        unsafe {
1612            llvm::LLVMAddClause(landing_pad, clause);
1613        }
1614    }
1615
1616    pub(crate) fn catch_ret(
1617        &mut self,
1618        funclet: &Funclet<'ll>,
1619        unwind: &'ll BasicBlock,
1620    ) -> &'ll Value {
1621        let ret = unsafe { llvm::LLVMBuildCatchRet(self.llbuilder, funclet.cleanuppad(), unwind) };
1622        ret.expect("LLVM does not have support for catchret")
1623    }
1624
1625    fn check_call<'b>(
1626        &mut self,
1627        typ: &str,
1628        fn_ty: &'ll Type,
1629        llfn: &'ll Value,
1630        args: &'b [&'ll Value],
1631    ) -> Cow<'b, [&'ll Value]> {
1632        assert!(
1633            self.cx.type_kind(fn_ty) == TypeKind::Function,
1634            "builder::{typ} not passed a function, but {fn_ty:?}"
1635        );
1636
1637        let param_tys = self.cx.func_params_types(fn_ty);
1638
1639        let all_args_match = iter::zip(&param_tys, args.iter().map(|&v| self.cx.val_ty(v)))
1640            .all(|(expected_ty, actual_ty)| *expected_ty == actual_ty);
1641
1642        if all_args_match {
1643            return Cow::Borrowed(args);
1644        }
1645
1646        let casted_args: Vec<_> = iter::zip(param_tys, args)
1647            .enumerate()
1648            .map(|(i, (expected_ty, &actual_val))| {
1649                let actual_ty = self.cx.val_ty(actual_val);
1650                if expected_ty != actual_ty {
1651                    debug!(
1652                        "type mismatch in function call of {:?}. \
1653                            Expected {:?} for param {}, got {:?}; injecting bitcast",
1654                        llfn, expected_ty, i, actual_ty
1655                    );
1656                    self.bitcast(actual_val, expected_ty)
1657                } else {
1658                    actual_val
1659                }
1660            })
1661            .collect();
1662
1663        Cow::Owned(casted_args)
1664    }
1665
1666    pub(crate) fn va_arg(&mut self, list: &'ll Value, ty: &'ll Type) -> &'ll Value {
1667        unsafe { llvm::LLVMBuildVAArg(self.llbuilder, list, ty, UNNAMED) }
1668    }
1669}
1670
1671impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
1672    pub(crate) fn call_intrinsic(
1673        &mut self,
1674        base_name: impl Into<Cow<'static, str>>,
1675        type_params: &[&'ll Type],
1676        args: &[&'ll Value],
1677    ) -> &'ll Value {
1678        let (ty, f) = self.cx.get_intrinsic(base_name.into(), type_params);
1679        self.call(ty, None, None, f, args, None, None)
1680    }
1681
1682    fn call_lifetime_intrinsic(&mut self, intrinsic: &'static str, ptr: &'ll Value, size: Size) {
1683        let size = size.bytes();
1684        if size == 0 {
1685            return;
1686        }
1687
1688        if !self.cx().sess().emit_lifetime_markers() {
1689            return;
1690        }
1691
1692        if crate::llvm_util::get_version() >= (22, 0, 0) {
1693            self.call_intrinsic(intrinsic, &[self.val_ty(ptr)], &[ptr]);
1694        } else {
1695            self.call_intrinsic(intrinsic, &[self.val_ty(ptr)], &[self.cx.const_u64(size), ptr]);
1696        }
1697    }
1698}
1699impl<'a, 'll, CX: Borrow<SCx<'ll>>> GenericBuilder<'a, 'll, CX> {
1700    pub(crate) fn phi(
1701        &mut self,
1702        ty: &'ll Type,
1703        vals: &[&'ll Value],
1704        bbs: &[&'ll BasicBlock],
1705    ) -> &'ll Value {
1706        assert_eq!(vals.len(), bbs.len());
1707        let phi = unsafe { llvm::LLVMBuildPhi(self.llbuilder, ty, UNNAMED) };
1708        unsafe {
1709            llvm::LLVMAddIncoming(phi, vals.as_ptr(), bbs.as_ptr(), vals.len() as c_uint);
1710            phi
1711        }
1712    }
1713
1714    fn add_incoming_to_phi(&mut self, phi: &'ll Value, val: &'ll Value, bb: &'ll BasicBlock) {
1715        unsafe {
1716            llvm::LLVMAddIncoming(phi, &val, &bb, 1 as c_uint);
1717        }
1718    }
1719}
1720impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
1721    pub(crate) fn landing_pad(
1722        &mut self,
1723        ty: &'ll Type,
1724        pers_fn: &'ll Value,
1725        num_clauses: usize,
1726    ) -> &'ll Value {
1727        // Use LLVMSetPersonalityFn to set the personality. It supports arbitrary Consts while,
1728        // LLVMBuildLandingPad requires the argument to be a Function (as of LLVM 12). The
1729        // personality lives on the parent function anyway.
1730        self.set_personality_fn(pers_fn);
1731        unsafe {
1732            llvm::LLVMBuildLandingPad(self.llbuilder, ty, None, num_clauses as c_uint, UNNAMED)
1733        }
1734    }
1735
1736    pub(crate) fn callbr(
1737        &mut self,
1738        llty: &'ll Type,
1739        fn_attrs: Option<&CodegenFnAttrs>,
1740        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
1741        llfn: &'ll Value,
1742        args: &[&'ll Value],
1743        default_dest: &'ll BasicBlock,
1744        indirect_dest: &[&'ll BasicBlock],
1745        funclet: Option<&Funclet<'ll>>,
1746        instance: Option<Instance<'tcx>>,
1747    ) -> &'ll Value {
1748        debug!("invoke {:?} with args ({:?})", llfn, args);
1749
1750        let args = self.check_call("callbr", llty, llfn, args);
1751        let funclet_bundle = funclet.map(|funclet| funclet.bundle());
1752        let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
1753        if let Some(funclet_bundle) = funclet_bundle {
1754            bundles.push(funclet_bundle);
1755        }
1756
1757        // Emit CFI pointer type membership test
1758        self.cfi_type_test(fn_attrs, fn_abi, instance, llfn);
1759
1760        // Emit KCFI operand bundle
1761        let kcfi_bundle = self.kcfi_operand_bundle(fn_attrs, fn_abi, instance, llfn);
1762        if let Some(kcfi_bundle) = kcfi_bundle.as_ref().map(|b| b.as_ref()) {
1763            bundles.push(kcfi_bundle);
1764        }
1765
1766        let callbr = unsafe {
1767            llvm::LLVMBuildCallBr(
1768                self.llbuilder,
1769                llty,
1770                llfn,
1771                default_dest,
1772                indirect_dest.as_ptr(),
1773                indirect_dest.len() as c_uint,
1774                args.as_ptr(),
1775                args.len() as c_uint,
1776                bundles.as_ptr(),
1777                bundles.len() as c_uint,
1778                UNNAMED,
1779            )
1780        };
1781        if let Some(fn_abi) = fn_abi {
1782            fn_abi.apply_attrs_callsite(self, callbr);
1783        }
1784        callbr
1785    }
1786
1787    // Emits CFI pointer type membership tests.
1788    fn cfi_type_test(
1789        &mut self,
1790        fn_attrs: Option<&CodegenFnAttrs>,
1791        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
1792        instance: Option<Instance<'tcx>>,
1793        llfn: &'ll Value,
1794    ) {
1795        let is_indirect_call = unsafe { llvm::LLVMRustIsNonGVFunctionPointerTy(llfn) };
1796        if self.tcx.sess.is_sanitizer_cfi_enabled()
1797            && let Some(fn_abi) = fn_abi
1798            && is_indirect_call
1799        {
1800            if let Some(fn_attrs) = fn_attrs
1801                && fn_attrs.sanitizers.disabled.contains(SanitizerSet::CFI)
1802            {
1803                return;
1804            }
1805
1806            let mut options = cfi::TypeIdOptions::empty();
1807            if self.tcx.sess.is_sanitizer_cfi_generalize_pointers_enabled() {
1808                options.insert(cfi::TypeIdOptions::GENERALIZE_POINTERS);
1809            }
1810            if self.tcx.sess.is_sanitizer_cfi_normalize_integers_enabled() {
1811                options.insert(cfi::TypeIdOptions::NORMALIZE_INTEGERS);
1812            }
1813
1814            let typeid = if let Some(instance) = instance {
1815                cfi::typeid_for_instance(self.tcx, instance, options)
1816            } else {
1817                cfi::typeid_for_fnabi(self.tcx, fn_abi, options)
1818            };
1819            let typeid_metadata = self.cx.create_metadata(typeid.as_bytes());
1820            let dbg_loc = self.get_dbg_loc();
1821
1822            // Test whether the function pointer is associated with the type identifier using the
1823            // llvm.type.test intrinsic. The LowerTypeTests link-time optimization pass replaces
1824            // calls to this intrinsic with code to test type membership.
1825            let typeid = self.get_metadata_value(typeid_metadata);
1826            let cond = self.call_intrinsic("llvm.type.test", &[], &[llfn, typeid]);
1827            let bb_pass = self.append_sibling_block("type_test.pass");
1828            let bb_fail = self.append_sibling_block("type_test.fail");
1829            self.cond_br(cond, bb_pass, bb_fail);
1830
1831            self.switch_to_block(bb_fail);
1832            if let Some(dbg_loc) = dbg_loc {
1833                self.set_dbg_loc(dbg_loc);
1834            }
1835            self.abort();
1836            self.unreachable();
1837
1838            self.switch_to_block(bb_pass);
1839            if let Some(dbg_loc) = dbg_loc {
1840                self.set_dbg_loc(dbg_loc);
1841            }
1842        }
1843    }
1844
1845    // Emits KCFI operand bundles.
1846    fn kcfi_operand_bundle(
1847        &mut self,
1848        fn_attrs: Option<&CodegenFnAttrs>,
1849        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
1850        instance: Option<Instance<'tcx>>,
1851        llfn: &'ll Value,
1852    ) -> Option<llvm::OperandBundleBox<'ll>> {
1853        let is_indirect_call = unsafe { llvm::LLVMRustIsNonGVFunctionPointerTy(llfn) };
1854        let kcfi_bundle = if self.tcx.sess.is_sanitizer_kcfi_enabled()
1855            && let Some(fn_abi) = fn_abi
1856            && is_indirect_call
1857        {
1858            if let Some(fn_attrs) = fn_attrs
1859                && fn_attrs.sanitizers.disabled.contains(SanitizerSet::KCFI)
1860            {
1861                return None;
1862            }
1863
1864            let mut options = kcfi::TypeIdOptions::empty();
1865            if self.tcx.sess.is_sanitizer_cfi_generalize_pointers_enabled() {
1866                options.insert(kcfi::TypeIdOptions::GENERALIZE_POINTERS);
1867            }
1868            if self.tcx.sess.is_sanitizer_cfi_normalize_integers_enabled() {
1869                options.insert(kcfi::TypeIdOptions::NORMALIZE_INTEGERS);
1870            }
1871
1872            let kcfi_typeid = if let Some(instance) = instance {
1873                kcfi::typeid_for_instance(self.tcx, instance, options)
1874            } else {
1875                kcfi::typeid_for_fnabi(self.tcx, fn_abi, options)
1876            };
1877
1878            Some(llvm::OperandBundleBox::new("kcfi", &[self.const_u32(kcfi_typeid)]))
1879        } else {
1880            None
1881        };
1882        kcfi_bundle
1883    }
1884
1885    /// Emits a call to `llvm.instrprof.increment`. Used by coverage instrumentation.
1886    #[instrument(level = "debug", skip(self))]
1887    pub(crate) fn instrprof_increment(
1888        &mut self,
1889        fn_name: &'ll Value,
1890        hash: &'ll Value,
1891        num_counters: &'ll Value,
1892        index: &'ll Value,
1893    ) {
1894        self.call_intrinsic("llvm.instrprof.increment", &[], &[fn_name, hash, num_counters, index]);
1895    }
1896}