rustc_mir_build/builder/matches/mod.rs
1//! Code related to match expressions. These are sufficiently complex to
2//! warrant their own module and submodules. :) This main module includes the
3//! high-level algorithm, the submodules contain the details.
4//!
5//! This also includes code for pattern bindings in `let` statements and
6//! function parameters.
7
8use std::assert_matches::debug_assert_matches;
9use std::borrow::Borrow;
10use std::mem;
11use std::sync::Arc;
12
13use itertools::{Itertools, Position};
14use rustc_abi::{FIRST_VARIANT, FieldIdx, VariantIdx};
15use rustc_data_structures::fx::FxIndexMap;
16use rustc_data_structures::stack::ensure_sufficient_stack;
17use rustc_hir::{BindingMode, ByRef, LangItem, LetStmt, LocalSource, Node, Pinnedness};
18use rustc_middle::middle::region;
19use rustc_middle::mir::*;
20use rustc_middle::thir::{self, *};
21use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty, ValTree, ValTreeKind};
22use rustc_middle::{bug, span_bug};
23use rustc_pattern_analysis::constructor::RangeEnd;
24use rustc_pattern_analysis::rustc::{DeconstructedPat, RustcPatCtxt};
25use rustc_span::{BytePos, Pos, Span, Symbol, sym};
26use tracing::{debug, instrument};
27
28use crate::builder::ForGuard::{self, OutsideGuard, RefWithinGuard};
29use crate::builder::expr::as_place::PlaceBuilder;
30use crate::builder::matches::user_ty::ProjectedUserTypesNode;
31use crate::builder::scope::DropKind;
32use crate::builder::{
33 BlockAnd, BlockAndExtension, Builder, GuardFrame, GuardFrameLocal, LocalsForNode,
34};
35
36// helper functions, broken out by category:
37mod match_pair;
38mod test;
39mod user_ty;
40mod util;
41
42/// Arguments to [`Builder::then_else_break_inner`] that are usually forwarded
43/// to recursive invocations.
44#[derive(Clone, Copy)]
45struct ThenElseArgs {
46 /// Used as the temp scope for lowering `expr`. If absent (for match guards),
47 /// `self.local_scope()` is used.
48 temp_scope_override: Option<region::Scope>,
49 variable_source_info: SourceInfo,
50 /// Determines how bindings should be handled when lowering `let` expressions.
51 ///
52 /// Forwarded to [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
53 declare_let_bindings: DeclareLetBindings,
54}
55
56/// Should lowering a `let` expression also declare its bindings?
57///
58/// Used by [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
59#[derive(Clone, Copy)]
60pub(crate) enum DeclareLetBindings {
61 /// Yes, declare `let` bindings as normal for `if` conditions.
62 Yes,
63 /// No, don't declare `let` bindings, because the caller declares them
64 /// separately due to special requirements.
65 ///
66 /// Used for match guards and let-else.
67 No,
68 /// Let expressions are not permitted in this context, so it is a bug to
69 /// try to lower one (e.g inside lazy-boolean-or or boolean-not).
70 LetNotPermitted,
71}
72
73/// Used by [`Builder::storage_live_binding`] and [`Builder::bind_matched_candidate_for_arm_body`]
74/// to decide whether to schedule drops.
75#[derive(Clone, Copy, Debug)]
76pub(crate) enum ScheduleDrops {
77 /// Yes, the relevant functions should also schedule drops as appropriate.
78 Yes,
79 /// No, don't schedule drops. The caller has taken responsibility for any
80 /// appropriate drops.
81 No,
82}
83
84impl<'a, 'tcx> Builder<'a, 'tcx> {
85 /// Lowers a condition in a way that ensures that variables bound in any let
86 /// expressions are definitely initialized in the if body.
87 ///
88 /// If `declare_let_bindings` is false then variables created in `let`
89 /// expressions will not be declared. This is for if let guards on arms with
90 /// an or pattern, where the guard is lowered multiple times.
91 pub(crate) fn then_else_break(
92 &mut self,
93 block: BasicBlock,
94 expr_id: ExprId,
95 temp_scope_override: Option<region::Scope>,
96 variable_source_info: SourceInfo,
97 declare_let_bindings: DeclareLetBindings,
98 ) -> BlockAnd<()> {
99 self.then_else_break_inner(
100 block,
101 expr_id,
102 ThenElseArgs { temp_scope_override, variable_source_info, declare_let_bindings },
103 )
104 }
105
106 fn then_else_break_inner(
107 &mut self,
108 block: BasicBlock, // Block that the condition and branch will be lowered into
109 expr_id: ExprId, // Condition expression to lower
110 args: ThenElseArgs,
111 ) -> BlockAnd<()> {
112 let this = self;
113 let expr = &this.thir[expr_id];
114 let expr_span = expr.span;
115
116 match expr.kind {
117 ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
118 let lhs_then_block = this.then_else_break_inner(block, lhs, args).into_block();
119 let rhs_then_block =
120 this.then_else_break_inner(lhs_then_block, rhs, args).into_block();
121 rhs_then_block.unit()
122 }
123 ExprKind::LogicalOp { op: LogicalOp::Or, lhs, rhs } => {
124 let local_scope = this.local_scope();
125 let (lhs_success_block, failure_block) =
126 this.in_if_then_scope(local_scope, expr_span, |this| {
127 this.then_else_break_inner(
128 block,
129 lhs,
130 ThenElseArgs {
131 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
132 ..args
133 },
134 )
135 });
136 let rhs_success_block = this
137 .then_else_break_inner(
138 failure_block,
139 rhs,
140 ThenElseArgs {
141 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
142 ..args
143 },
144 )
145 .into_block();
146
147 // Make the LHS and RHS success arms converge to a common block.
148 // (We can't just make LHS goto RHS, because `rhs_success_block`
149 // might contain statements that we don't want on the LHS path.)
150 let success_block = this.cfg.start_new_block();
151 this.cfg.goto(lhs_success_block, args.variable_source_info, success_block);
152 this.cfg.goto(rhs_success_block, args.variable_source_info, success_block);
153 success_block.unit()
154 }
155 ExprKind::Unary { op: UnOp::Not, arg } => {
156 // Improve branch coverage instrumentation by noting conditions
157 // nested within one or more `!` expressions.
158 // (Skipped if branch coverage is not enabled.)
159 if let Some(coverage_info) = this.coverage_info.as_mut() {
160 coverage_info.visit_unary_not(this.thir, expr_id);
161 }
162
163 let local_scope = this.local_scope();
164 let (success_block, failure_block) =
165 this.in_if_then_scope(local_scope, expr_span, |this| {
166 // Help out coverage instrumentation by injecting a dummy statement with
167 // the original condition's span (including `!`). This fixes #115468.
168 if this.tcx.sess.instrument_coverage() {
169 this.cfg.push_coverage_span_marker(block, this.source_info(expr_span));
170 }
171 this.then_else_break_inner(
172 block,
173 arg,
174 ThenElseArgs {
175 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
176 ..args
177 },
178 )
179 });
180 this.break_for_else(success_block, args.variable_source_info);
181 failure_block.unit()
182 }
183 ExprKind::Scope { region_scope, lint_level, value } => {
184 let region_scope = (region_scope, this.source_info(expr_span));
185 this.in_scope(region_scope, lint_level, |this| {
186 this.then_else_break_inner(block, value, args)
187 })
188 }
189 ExprKind::Use { source } => this.then_else_break_inner(block, source, args),
190 ExprKind::Let { expr, ref pat } => this.lower_let_expr(
191 block,
192 expr,
193 pat,
194 Some(args.variable_source_info.scope),
195 args.variable_source_info.span,
196 args.declare_let_bindings,
197 ),
198 _ => {
199 let mut block = block;
200 let temp_scope = args.temp_scope_override.unwrap_or_else(|| this.local_scope());
201 let mutability = Mutability::Mut;
202
203 let place = unpack!(
204 block = this.as_temp(
205 block,
206 TempLifetime {
207 temp_lifetime: Some(temp_scope),
208 backwards_incompatible: None
209 },
210 expr_id,
211 mutability
212 )
213 );
214
215 let operand = Operand::Move(Place::from(place));
216
217 let then_block = this.cfg.start_new_block();
218 let else_block = this.cfg.start_new_block();
219 let term = TerminatorKind::if_(operand, then_block, else_block);
220
221 // Record branch coverage info for this condition.
222 // (Does nothing if branch coverage is not enabled.)
223 this.visit_coverage_branch_condition(expr_id, then_block, else_block);
224
225 let source_info = this.source_info(expr_span);
226 this.cfg.terminate(block, source_info, term);
227 this.break_for_else(else_block, source_info);
228
229 then_block.unit()
230 }
231 }
232 }
233
234 /// Generates MIR for a `match` expression.
235 ///
236 /// The MIR that we generate for a match looks like this.
237 ///
238 /// ```text
239 /// [ 0. Pre-match ]
240 /// |
241 /// [ 1. Evaluate Scrutinee (expression being matched on) ]
242 /// [ (PlaceMention of scrutinee) ]
243 /// |
244 /// [ 2. Decision tree -- check discriminants ] <--------+
245 /// | |
246 /// | (once a specific arm is chosen) |
247 /// | |
248 /// [pre_binding_block] [otherwise_block]
249 /// | |
250 /// [ 3. Create "guard bindings" for arm ] |
251 /// [ (create fake borrows) ] |
252 /// | |
253 /// [ 4. Execute guard code ] |
254 /// [ (read fake borrows) ] --(guard is false)-----------+
255 /// |
256 /// | (guard results in true)
257 /// |
258 /// [ 5. Create real bindings and execute arm ]
259 /// |
260 /// [ Exit match ]
261 /// ```
262 ///
263 /// All of the different arms have been stacked on top of each other to
264 /// simplify the diagram. For an arm with no guard the blocks marked 3 and
265 /// 4 and the fake borrows are omitted.
266 ///
267 /// We generate MIR in the following steps:
268 ///
269 /// 1. Evaluate the scrutinee and add the PlaceMention of it ([Builder::lower_scrutinee]).
270 /// 2. Create the decision tree ([Builder::lower_match_tree]).
271 /// 3. Determine the fake borrows that are needed from the places that were
272 /// matched against and create the required temporaries for them
273 /// ([util::collect_fake_borrows]).
274 /// 4. Create everything else: the guards and the arms ([Builder::lower_match_arms]).
275 ///
276 /// ## False edges
277 ///
278 /// We don't want to have the exact structure of the decision tree be visible through borrow
279 /// checking. Specifically we want borrowck to think that:
280 /// - at any point, any or none of the patterns and guards seen so far may have been tested;
281 /// - after the match, any of the patterns may have matched.
282 ///
283 /// For example, all of these would fail to error if borrowck could see the real CFG (examples
284 /// taken from `tests/ui/nll/match-cfg-fake-edges.rs`):
285 /// ```ignore (too many errors, this is already in the test suite)
286 /// let x = String::new();
287 /// let _ = match true {
288 /// _ => {},
289 /// _ => drop(x),
290 /// };
291 /// // Borrowck must not know the second arm is never run.
292 /// drop(x); //~ ERROR use of moved value
293 ///
294 /// let x;
295 /// # let y = true;
296 /// match y {
297 /// _ if { x = 2; true } => {},
298 /// // Borrowck must not know the guard is always run.
299 /// _ => drop(x), //~ ERROR used binding `x` is possibly-uninitialized
300 /// };
301 ///
302 /// let x = String::new();
303 /// # let y = true;
304 /// match y {
305 /// false if { drop(x); true } => {},
306 /// // Borrowck must not know the guard is not run in the `true` case.
307 /// true => drop(x), //~ ERROR use of moved value: `x`
308 /// false => {},
309 /// };
310 ///
311 /// # let mut y = (true, true);
312 /// let r = &mut y.1;
313 /// match y {
314 /// //~^ ERROR cannot use `y.1` because it was mutably borrowed
315 /// (false, true) => {}
316 /// // Borrowck must not know we don't test `y.1` when `y.0` is `true`.
317 /// (true, _) => drop(r),
318 /// (false, _) => {}
319 /// };
320 /// ```
321 ///
322 /// We add false edges to act as if we were naively matching each arm in order. What we need is
323 /// a (fake) path from each candidate to the next, specifically from candidate C's pre-binding
324 /// block to next candidate D's pre-binding block. For maximum precision (needed for deref
325 /// patterns), we choose the earliest node on D's success path that doesn't also lead to C (to
326 /// avoid loops).
327 ///
328 /// This turns out to be easy to compute: that block is the `start_block` of the first call to
329 /// `match_candidates` where D is the first candidate in the list.
330 ///
331 /// For example:
332 /// ```rust
333 /// # let (x, y) = (true, true);
334 /// match (x, y) {
335 /// (true, true) => 1,
336 /// (false, true) => 2,
337 /// (true, false) => 3,
338 /// _ => 4,
339 /// }
340 /// # ;
341 /// ```
342 /// In this example, the pre-binding block of arm 1 has a false edge to the block for result
343 /// `false` of the first test on `x`. The other arms have false edges to the pre-binding blocks
344 /// of the next arm.
345 ///
346 /// On top of this, we also add a false edge from the otherwise_block of each guard to the
347 /// aforementioned start block of the next candidate, to ensure borrock doesn't rely on which
348 /// guards may have run.
349 #[instrument(level = "debug", skip(self, arms))]
350 pub(crate) fn match_expr(
351 &mut self,
352 destination: Place<'tcx>,
353 mut block: BasicBlock,
354 scrutinee_id: ExprId,
355 arms: &[ArmId],
356 span: Span,
357 scrutinee_span: Span,
358 ) -> BlockAnd<()> {
359 let scrutinee_place =
360 unpack!(block = self.lower_scrutinee(block, scrutinee_id, scrutinee_span));
361
362 let match_start_span = span.shrink_to_lo().to(scrutinee_span);
363 let patterns = arms
364 .iter()
365 .map(|&arm| {
366 let arm = &self.thir[arm];
367 let has_match_guard =
368 if arm.guard.is_some() { HasMatchGuard::Yes } else { HasMatchGuard::No };
369 (&*arm.pattern, has_match_guard)
370 })
371 .collect();
372 let built_tree = self.lower_match_tree(
373 block,
374 scrutinee_span,
375 &scrutinee_place,
376 match_start_span,
377 patterns,
378 false,
379 );
380
381 self.lower_match_arms(
382 destination,
383 scrutinee_place,
384 scrutinee_span,
385 arms,
386 built_tree,
387 self.source_info(span),
388 )
389 }
390
391 /// Evaluate the scrutinee and add the PlaceMention for it.
392 pub(crate) fn lower_scrutinee(
393 &mut self,
394 mut block: BasicBlock,
395 scrutinee_id: ExprId,
396 scrutinee_span: Span,
397 ) -> BlockAnd<PlaceBuilder<'tcx>> {
398 let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee_id));
399 if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
400 let source_info = self.source_info(scrutinee_span);
401 self.cfg.push_place_mention(block, source_info, scrutinee_place);
402 }
403
404 block.and(scrutinee_place_builder)
405 }
406
407 /// Lower the bindings, guards and arm bodies of a `match` expression.
408 ///
409 /// The decision tree should have already been created
410 /// (by [Builder::lower_match_tree]).
411 ///
412 /// `outer_source_info` is the SourceInfo for the whole match.
413 pub(crate) fn lower_match_arms(
414 &mut self,
415 destination: Place<'tcx>,
416 scrutinee_place_builder: PlaceBuilder<'tcx>,
417 scrutinee_span: Span,
418 arms: &[ArmId],
419 built_match_tree: BuiltMatchTree<'tcx>,
420 outer_source_info: SourceInfo,
421 ) -> BlockAnd<()> {
422 let arm_end_blocks: Vec<BasicBlock> = arms
423 .iter()
424 .map(|&arm| &self.thir[arm])
425 .zip(built_match_tree.branches)
426 .map(|(arm, branch)| {
427 debug!("lowering arm {:?}\ncorresponding branch = {:?}", arm, branch);
428
429 let arm_source_info = self.source_info(arm.span);
430 let arm_scope = (arm.scope, arm_source_info);
431 let match_scope = self.local_scope();
432 let guard_scope = arm
433 .guard
434 .map(|_| region::Scope { data: region::ScopeData::MatchGuard, ..arm.scope });
435 self.in_scope(arm_scope, arm.lint_level, |this| {
436 this.opt_in_scope(guard_scope.map(|scope| (scope, arm_source_info)), |this| {
437 // `if let` guard temps needing deduplicating will be in the guard scope.
438 let old_dedup_scope =
439 mem::replace(&mut this.fixed_temps_scope, guard_scope);
440
441 // `try_to_place` may fail if it is unable to resolve the given
442 // `PlaceBuilder` inside a closure. In this case, we don't want to include
443 // a scrutinee place. `scrutinee_place_builder` will fail to be resolved
444 // if the only match arm is a wildcard (`_`).
445 // Example:
446 // ```
447 // let foo = (0, 1);
448 // let c = || {
449 // match foo { _ => () };
450 // };
451 // ```
452 let scrutinee_place = scrutinee_place_builder.try_to_place(this);
453 let opt_scrutinee_place =
454 scrutinee_place.as_ref().map(|place| (Some(place), scrutinee_span));
455 let scope = this.declare_bindings(
456 None,
457 arm.span,
458 &arm.pattern,
459 arm.guard,
460 opt_scrutinee_place,
461 );
462
463 let arm_block = this.bind_pattern(
464 outer_source_info,
465 branch,
466 &built_match_tree.fake_borrow_temps,
467 scrutinee_span,
468 Some((arm, match_scope)),
469 );
470
471 this.fixed_temps_scope = old_dedup_scope;
472
473 if let Some(source_scope) = scope {
474 this.source_scope = source_scope;
475 }
476
477 this.expr_into_dest(destination, arm_block, arm.body)
478 })
479 })
480 .into_block()
481 })
482 .collect();
483
484 // all the arm blocks will rejoin here
485 let end_block = self.cfg.start_new_block();
486
487 let end_brace = self.source_info(
488 outer_source_info.span.with_lo(outer_source_info.span.hi() - BytePos::from_usize(1)),
489 );
490 for arm_block in arm_end_blocks {
491 let block = &self.cfg.basic_blocks[arm_block];
492 let last_location = block.statements.last().map(|s| s.source_info);
493
494 self.cfg.goto(arm_block, last_location.unwrap_or(end_brace), end_block);
495 }
496
497 self.source_scope = outer_source_info.scope;
498
499 end_block.unit()
500 }
501
502 /// For a top-level `match` arm or a `let` binding, binds the variables and
503 /// ascribes types, and also checks the match arm guard (if present).
504 ///
505 /// `arm_scope` should be `Some` if and only if this is called for a
506 /// `match` arm.
507 ///
508 /// In the presence of or-patterns, a match arm might have multiple
509 /// sub-branches representing different ways to match, with each sub-branch
510 /// requiring its own bindings and its own copy of the guard. This method
511 /// handles those sub-branches individually, and then has them jump together
512 /// to a common block.
513 ///
514 /// Returns a single block that the match arm can be lowered into.
515 /// (For `let` bindings, this is the code that can use the bindings.)
516 fn bind_pattern(
517 &mut self,
518 outer_source_info: SourceInfo,
519 branch: MatchTreeBranch<'tcx>,
520 fake_borrow_temps: &[(Place<'tcx>, Local, FakeBorrowKind)],
521 scrutinee_span: Span,
522 arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
523 ) -> BasicBlock {
524 if branch.sub_branches.len() == 1 {
525 let [sub_branch] = branch.sub_branches.try_into().unwrap();
526 // Avoid generating another `BasicBlock` when we only have one sub branch.
527 self.bind_and_guard_matched_candidate(
528 sub_branch,
529 fake_borrow_temps,
530 scrutinee_span,
531 arm_match_scope,
532 ScheduleDrops::Yes,
533 )
534 } else {
535 // It's helpful to avoid scheduling drops multiple times to save
536 // drop elaboration from having to clean up the extra drops.
537 //
538 // If we are in a `let` then we only schedule drops for the first
539 // candidate.
540 //
541 // If we're in a `match` arm then we could have a case like so:
542 //
543 // Ok(x) | Err(x) if return => { /* ... */ }
544 //
545 // In this case we don't want a drop of `x` scheduled when we
546 // return: it isn't bound by move until right before enter the arm.
547 // To handle this we instead unschedule it's drop after each time
548 // we lower the guard.
549 // As a result, we end up with the drop order of the last sub-branch we lower. To use
550 // the drop order for the first sub-branch, we lower sub-branches in reverse (#142163).
551 let target_block = self.cfg.start_new_block();
552 for (pos, sub_branch) in branch.sub_branches.into_iter().rev().with_position() {
553 debug_assert!(pos != Position::Only);
554 let schedule_drops =
555 if pos == Position::Last { ScheduleDrops::Yes } else { ScheduleDrops::No };
556 let binding_end = self.bind_and_guard_matched_candidate(
557 sub_branch,
558 fake_borrow_temps,
559 scrutinee_span,
560 arm_match_scope,
561 schedule_drops,
562 );
563 self.cfg.goto(binding_end, outer_source_info, target_block);
564 }
565
566 target_block
567 }
568 }
569
570 pub(super) fn expr_into_pattern(
571 &mut self,
572 mut block: BasicBlock,
573 irrefutable_pat: &Pat<'tcx>,
574 initializer_id: ExprId,
575 ) -> BlockAnd<()> {
576 match irrefutable_pat.kind {
577 // Optimize the case of `let x = ...` to write directly into `x`
578 PatKind::Binding { mode: BindingMode(ByRef::No, _), var, subpattern: None, .. } => {
579 let place = self.storage_live_binding(
580 block,
581 var,
582 irrefutable_pat.span,
583 false,
584 OutsideGuard,
585 ScheduleDrops::Yes,
586 );
587 block = self.expr_into_dest(place, block, initializer_id).into_block();
588
589 // Inject a fake read, see comments on `FakeReadCause::ForLet`.
590 let source_info = self.source_info(irrefutable_pat.span);
591 self.cfg.push_fake_read(block, source_info, FakeReadCause::ForLet(None), place);
592
593 self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
594 block.unit()
595 }
596
597 // Optimize the case of `let x: T = ...` to write directly
598 // into `x` and then require that `T == typeof(x)`.
599 PatKind::AscribeUserType {
600 ref subpattern,
601 ascription: thir::Ascription { ref annotation, variance: _ },
602 } if let PatKind::Binding {
603 mode: BindingMode(ByRef::No, _),
604 var,
605 subpattern: None,
606 ..
607 } = subpattern.kind =>
608 {
609 let place = self.storage_live_binding(
610 block,
611 var,
612 irrefutable_pat.span,
613 false,
614 OutsideGuard,
615 ScheduleDrops::Yes,
616 );
617 block = self.expr_into_dest(place, block, initializer_id).into_block();
618
619 // Inject a fake read, see comments on `FakeReadCause::ForLet`.
620 let pattern_source_info = self.source_info(irrefutable_pat.span);
621 let cause_let = FakeReadCause::ForLet(None);
622 self.cfg.push_fake_read(block, pattern_source_info, cause_let, place);
623
624 let ty_source_info = self.source_info(annotation.span);
625
626 let base = self.canonical_user_type_annotations.push(annotation.clone());
627 self.cfg.push(
628 block,
629 Statement::new(
630 ty_source_info,
631 StatementKind::AscribeUserType(
632 Box::new((place, UserTypeProjection { base, projs: Vec::new() })),
633 // We always use invariant as the variance here. This is because the
634 // variance field from the ascription refers to the variance to use
635 // when applying the type to the value being matched, but this
636 // ascription applies rather to the type of the binding. e.g., in this
637 // example:
638 //
639 // ```
640 // let x: T = <expr>
641 // ```
642 //
643 // We are creating an ascription that defines the type of `x` to be
644 // exactly `T` (i.e., with invariance). The variance field, in
645 // contrast, is intended to be used to relate `T` to the type of
646 // `<expr>`.
647 ty::Invariant,
648 ),
649 ),
650 );
651
652 self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
653 block.unit()
654 }
655
656 _ => {
657 let initializer = &self.thir[initializer_id];
658 let place_builder =
659 unpack!(block = self.lower_scrutinee(block, initializer_id, initializer.span));
660 self.place_into_pattern(block, irrefutable_pat, place_builder, true)
661 }
662 }
663 }
664
665 pub(crate) fn place_into_pattern(
666 &mut self,
667 block: BasicBlock,
668 irrefutable_pat: &Pat<'tcx>,
669 initializer: PlaceBuilder<'tcx>,
670 set_match_place: bool,
671 ) -> BlockAnd<()> {
672 let built_tree = self.lower_match_tree(
673 block,
674 irrefutable_pat.span,
675 &initializer,
676 irrefutable_pat.span,
677 vec![(irrefutable_pat, HasMatchGuard::No)],
678 false,
679 );
680 let [branch] = built_tree.branches.try_into().unwrap();
681
682 // For matches and function arguments, the place that is being matched
683 // can be set when creating the variables. But the place for
684 // let PATTERN = ... might not even exist until we do the assignment.
685 // so we set it here instead.
686 if set_match_place {
687 // `try_to_place` may fail if it is unable to resolve the given `PlaceBuilder` inside a
688 // closure. In this case, we don't want to include a scrutinee place.
689 // `scrutinee_place_builder` will fail for destructured assignments. This is because a
690 // closure only captures the precise places that it will read and as a result a closure
691 // may not capture the entire tuple/struct and rather have individual places that will
692 // be read in the final MIR.
693 // Example:
694 // ```
695 // let foo = (0, 1);
696 // let c = || {
697 // let (v1, v2) = foo;
698 // };
699 // ```
700 if let Some(place) = initializer.try_to_place(self) {
701 // Because or-alternatives bind the same variables, we only explore the first one.
702 let first_sub_branch = branch.sub_branches.first().unwrap();
703 for binding in &first_sub_branch.bindings {
704 let local = self.var_local_id(binding.var_id, OutsideGuard);
705 if let LocalInfo::User(BindingForm::Var(VarBindingForm {
706 opt_match_place: Some((ref mut match_place, _)),
707 ..
708 })) = **self.local_decls[local].local_info.as_mut().unwrap_crate_local()
709 {
710 *match_place = Some(place);
711 } else {
712 bug!("Let binding to non-user variable.")
713 };
714 }
715 }
716 }
717
718 self.bind_pattern(
719 self.source_info(irrefutable_pat.span),
720 branch,
721 &[],
722 irrefutable_pat.span,
723 None,
724 )
725 .unit()
726 }
727
728 /// Declares the bindings of the given patterns and returns the visibility
729 /// scope for the bindings in these patterns, if such a scope had to be
730 /// created. NOTE: Declaring the bindings should always be done in their
731 /// drop scope.
732 #[instrument(skip(self), level = "debug")]
733 pub(crate) fn declare_bindings(
734 &mut self,
735 mut visibility_scope: Option<SourceScope>,
736 scope_span: Span,
737 pattern: &Pat<'tcx>,
738 guard: Option<ExprId>,
739 opt_match_place: Option<(Option<&Place<'tcx>>, Span)>,
740 ) -> Option<SourceScope> {
741 self.visit_primary_bindings_special(
742 pattern,
743 &ProjectedUserTypesNode::None,
744 &mut |this, name, mode, var, span, ty, user_tys| {
745 let saved_scope = this.source_scope;
746 this.set_correct_source_scope_for_arg(var.0, saved_scope, span);
747 let vis_scope = *visibility_scope
748 .get_or_insert_with(|| this.new_source_scope(scope_span, LintLevel::Inherited));
749 let source_info = SourceInfo { span, scope: this.source_scope };
750 let user_tys = user_tys.build_user_type_projections();
751
752 this.declare_binding(
753 source_info,
754 vis_scope,
755 name,
756 mode,
757 var,
758 ty,
759 user_tys,
760 ArmHasGuard(guard.is_some()),
761 opt_match_place.map(|(x, y)| (x.cloned(), y)),
762 pattern.span,
763 );
764 this.source_scope = saved_scope;
765 },
766 );
767 if let Some(guard_expr) = guard {
768 self.declare_guard_bindings(guard_expr, scope_span, visibility_scope);
769 }
770 visibility_scope
771 }
772
773 /// Declare bindings in a guard. This has to be done when declaring bindings
774 /// for an arm to ensure that or patterns only have one version of each
775 /// variable.
776 pub(crate) fn declare_guard_bindings(
777 &mut self,
778 guard_expr: ExprId,
779 scope_span: Span,
780 visibility_scope: Option<SourceScope>,
781 ) {
782 match self.thir.exprs[guard_expr].kind {
783 ExprKind::Let { expr: _, pat: ref guard_pat } => {
784 // FIXME: pass a proper `opt_match_place`
785 self.declare_bindings(visibility_scope, scope_span, guard_pat, None, None);
786 }
787 ExprKind::Scope { value, .. } => {
788 self.declare_guard_bindings(value, scope_span, visibility_scope);
789 }
790 ExprKind::Use { source } => {
791 self.declare_guard_bindings(source, scope_span, visibility_scope);
792 }
793 ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
794 self.declare_guard_bindings(lhs, scope_span, visibility_scope);
795 self.declare_guard_bindings(rhs, scope_span, visibility_scope);
796 }
797 _ => {}
798 }
799 }
800
801 /// Emits a [`StatementKind::StorageLive`] for the given var, and also
802 /// schedules a drop if requested (and possible).
803 pub(crate) fn storage_live_binding(
804 &mut self,
805 block: BasicBlock,
806 var: LocalVarId,
807 span: Span,
808 is_shorthand: bool,
809 for_guard: ForGuard,
810 schedule_drop: ScheduleDrops,
811 ) -> Place<'tcx> {
812 let local_id = self.var_local_id(var, for_guard);
813 let source_info = self.source_info(span);
814 self.cfg.push(block, Statement::new(source_info, StatementKind::StorageLive(local_id)));
815 // Although there is almost always scope for given variable in corner cases
816 // like #92893 we might get variable with no scope.
817 if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id)
818 && matches!(schedule_drop, ScheduleDrops::Yes)
819 {
820 self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
821 }
822 let local_info = self.local_decls[local_id].local_info.as_mut().unwrap_crate_local();
823 if let LocalInfo::User(BindingForm::Var(var_info)) = &mut **local_info {
824 var_info.introductions.push(VarBindingIntroduction { span, is_shorthand });
825 }
826 Place::from(local_id)
827 }
828
829 pub(crate) fn schedule_drop_for_binding(
830 &mut self,
831 var: LocalVarId,
832 span: Span,
833 for_guard: ForGuard,
834 ) {
835 let local_id = self.var_local_id(var, for_guard);
836 if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) {
837 self.schedule_drop(span, region_scope, local_id, DropKind::Value);
838 }
839 }
840
841 /// Visits all of the "primary" bindings in a pattern, i.e. the leftmost
842 /// occurrence of each variable bound by the pattern.
843 /// See [`PatKind::Binding::is_primary`] for more context.
844 ///
845 /// This variant provides only the limited subset of binding data needed
846 /// by its callers, and should be a "pure" visit without side-effects.
847 pub(super) fn visit_primary_bindings(
848 &mut self,
849 pattern: &Pat<'tcx>,
850 f: &mut impl FnMut(&mut Self, LocalVarId, Span),
851 ) {
852 pattern.walk_always(|pat| {
853 if let PatKind::Binding { var, is_primary: true, .. } = pat.kind {
854 f(self, var, pat.span);
855 }
856 })
857 }
858
859 /// Visits all of the "primary" bindings in a pattern, while preparing
860 /// additional user-type-annotation data needed by `declare_bindings`.
861 ///
862 /// This also has the side-effect of pushing all user type annotations
863 /// onto `canonical_user_type_annotations`, so that they end up in MIR
864 /// even if they aren't associated with any bindings.
865 #[instrument(level = "debug", skip(self, f))]
866 fn visit_primary_bindings_special(
867 &mut self,
868 pattern: &Pat<'tcx>,
869 user_tys: &ProjectedUserTypesNode<'_>,
870 f: &mut impl FnMut(
871 &mut Self,
872 Symbol,
873 BindingMode,
874 LocalVarId,
875 Span,
876 Ty<'tcx>,
877 &ProjectedUserTypesNode<'_>,
878 ),
879 ) {
880 // Avoid having to write the full method name at each recursive call.
881 let visit_subpat = |this: &mut Self, subpat, user_tys: &_, f: &mut _| {
882 this.visit_primary_bindings_special(subpat, user_tys, f)
883 };
884
885 match pattern.kind {
886 PatKind::Binding { name, mode, var, ty, ref subpattern, is_primary, .. } => {
887 if is_primary {
888 f(self, name, mode, var, pattern.span, ty, user_tys);
889 }
890 if let Some(subpattern) = subpattern.as_ref() {
891 visit_subpat(self, subpattern, user_tys, f);
892 }
893 }
894
895 PatKind::Array { ref prefix, ref slice, ref suffix }
896 | PatKind::Slice { ref prefix, ref slice, ref suffix } => {
897 let from = u64::try_from(prefix.len()).unwrap();
898 let to = u64::try_from(suffix.len()).unwrap();
899 for subpattern in prefix.iter() {
900 visit_subpat(self, subpattern, &user_tys.index(), f);
901 }
902 if let Some(subpattern) = slice {
903 visit_subpat(self, subpattern, &user_tys.subslice(from, to), f);
904 }
905 for subpattern in suffix.iter() {
906 visit_subpat(self, subpattern, &user_tys.index(), f);
907 }
908 }
909
910 PatKind::Constant { .. }
911 | PatKind::Range { .. }
912 | PatKind::Missing
913 | PatKind::Wild
914 | PatKind::Never
915 | PatKind::Error(_) => {}
916
917 PatKind::Deref { ref subpattern } => {
918 visit_subpat(self, subpattern, &user_tys.deref(), f);
919 }
920
921 PatKind::DerefPattern { ref subpattern, borrow: ByRef::Yes(Pinnedness::Pinned, _) } => {
922 visit_subpat(self, subpattern, &user_tys.leaf(FieldIdx::ZERO).deref(), f);
923 }
924
925 PatKind::DerefPattern { ref subpattern, .. } => {
926 visit_subpat(self, subpattern, &ProjectedUserTypesNode::None, f);
927 }
928
929 PatKind::AscribeUserType {
930 ref subpattern,
931 ascription: thir::Ascription { ref annotation, variance: _ },
932 } => {
933 // This corresponds to something like
934 //
935 // ```
936 // let A::<'a>(_): A<'static> = ...;
937 // ```
938 //
939 // Note that the variance doesn't apply here, as we are tracking the effect
940 // of `user_ty` on any bindings contained with subpattern.
941
942 // Caution: Pushing this user type here is load-bearing even for
943 // patterns containing no bindings, to ensure that the type ends
944 // up represented in MIR _somewhere_.
945 let base_user_ty = self.canonical_user_type_annotations.push(annotation.clone());
946 let subpattern_user_tys = user_tys.push_user_type(base_user_ty);
947 visit_subpat(self, subpattern, &subpattern_user_tys, f)
948 }
949
950 PatKind::ExpandedConstant { ref subpattern, .. } => {
951 visit_subpat(self, subpattern, user_tys, f)
952 }
953
954 PatKind::Leaf { ref subpatterns } => {
955 for subpattern in subpatterns {
956 let subpattern_user_tys = user_tys.leaf(subpattern.field);
957 debug!("visit_primary_bindings: subpattern_user_tys={subpattern_user_tys:?}");
958 visit_subpat(self, &subpattern.pattern, &subpattern_user_tys, f);
959 }
960 }
961
962 PatKind::Variant { adt_def, args: _, variant_index, ref subpatterns } => {
963 for subpattern in subpatterns {
964 let subpattern_user_tys =
965 user_tys.variant(adt_def, variant_index, subpattern.field);
966 visit_subpat(self, &subpattern.pattern, &subpattern_user_tys, f);
967 }
968 }
969 PatKind::Or { ref pats } => {
970 // In cases where we recover from errors the primary bindings
971 // may not all be in the leftmost subpattern. For example in
972 // `let (x | y) = ...`, the primary binding of `y` occurs in
973 // the right subpattern
974 for subpattern in pats.iter() {
975 visit_subpat(self, subpattern, user_tys, f);
976 }
977 }
978 }
979 }
980}
981
982/// Data extracted from a pattern that doesn't affect which branch is taken. Collected during
983/// pattern simplification and not mutated later.
984#[derive(Debug, Clone)]
985struct PatternExtraData<'tcx> {
986 /// [`Span`] of the original pattern.
987 span: Span,
988
989 /// Bindings that must be established.
990 bindings: Vec<SubpatternBindings<'tcx>>,
991
992 /// Types that must be asserted.
993 ascriptions: Vec<Ascription<'tcx>>,
994
995 /// Whether this corresponds to a never pattern.
996 is_never: bool,
997}
998
999impl<'tcx> PatternExtraData<'tcx> {
1000 fn is_empty(&self) -> bool {
1001 self.bindings.is_empty() && self.ascriptions.is_empty()
1002 }
1003}
1004
1005#[derive(Debug, Clone)]
1006enum SubpatternBindings<'tcx> {
1007 /// A single binding.
1008 One(Binding<'tcx>),
1009 /// Holds the place for an or-pattern's bindings. This ensures their drops are scheduled in the
1010 /// order the primary bindings appear. See rust-lang/rust#142163 for more information.
1011 FromOrPattern,
1012}
1013
1014/// A pattern in a form suitable for lowering the match tree, with all irrefutable
1015/// patterns simplified away.
1016///
1017/// Here, "flat" indicates that irrefutable nodes in the pattern tree have been
1018/// recursively replaced with their refutable subpatterns. They are not
1019/// necessarily flat in an absolute sense.
1020///
1021/// Will typically be incorporated into a [`Candidate`].
1022#[derive(Debug, Clone)]
1023struct FlatPat<'tcx> {
1024 /// To match the pattern, all of these must be satisfied...
1025 match_pairs: Vec<MatchPairTree<'tcx>>,
1026
1027 extra_data: PatternExtraData<'tcx>,
1028}
1029
1030impl<'tcx> FlatPat<'tcx> {
1031 /// Creates a `FlatPat` containing a simplified [`MatchPairTree`] list/forest
1032 /// for the given pattern.
1033 fn new(place: PlaceBuilder<'tcx>, pattern: &Pat<'tcx>, cx: &mut Builder<'_, 'tcx>) -> Self {
1034 // Recursively build a tree of match pairs for the given pattern.
1035 let mut match_pairs = vec![];
1036 let mut extra_data = PatternExtraData {
1037 span: pattern.span,
1038 bindings: Vec::new(),
1039 ascriptions: Vec::new(),
1040 is_never: pattern.is_never_pattern(),
1041 };
1042 MatchPairTree::for_pattern(place, pattern, cx, &mut match_pairs, &mut extra_data);
1043
1044 Self { match_pairs, extra_data }
1045 }
1046}
1047
1048/// Candidates are a generalization of (a) top-level match arms, and
1049/// (b) sub-branches of or-patterns, allowing the match-lowering process to handle
1050/// them both in a mostly-uniform way. For example, the list of candidates passed
1051/// to [`Builder::match_candidates`] will often contain a mixture of top-level
1052/// candidates and or-pattern subcandidates.
1053///
1054/// At the start of match lowering, there is one candidate for each match arm.
1055/// During match lowering, arms with or-patterns will be expanded into a tree
1056/// of candidates, where each "leaf" candidate represents one of the ways for
1057/// the arm pattern to successfully match.
1058#[derive(Debug)]
1059struct Candidate<'tcx> {
1060 /// For the candidate to match, all of these must be satisfied...
1061 ///
1062 /// ---
1063 /// Initially contains a list of match pairs created by [`FlatPat`], but is
1064 /// subsequently mutated (in a queue-like way) while lowering the match tree.
1065 /// When this list becomes empty, the candidate is fully matched and becomes
1066 /// a leaf (see [`Builder::select_matched_candidate`]).
1067 ///
1068 /// Key mutations include:
1069 ///
1070 /// - When a match pair is fully satisfied by a test, it is removed from the
1071 /// list, and its subpairs are added instead (see [`Builder::sort_candidate`]).
1072 /// - During or-pattern expansion, any leading or-pattern is removed, and is
1073 /// converted into subcandidates (see [`Builder::expand_and_match_or_candidates`]).
1074 /// - After a candidate's subcandidates have been lowered, a copy of any remaining
1075 /// or-patterns is added to each leaf subcandidate
1076 /// (see [`Builder::test_remaining_match_pairs_after_or`]).
1077 ///
1078 /// Invariants:
1079 /// - All or-patterns ([`TestCase::Or`]) have been sorted to the end.
1080 match_pairs: Vec<MatchPairTree<'tcx>>,
1081
1082 /// ...and if this is non-empty, one of these subcandidates also has to match...
1083 ///
1084 /// ---
1085 /// Initially a candidate has no subcandidates; they are added (and then immediately
1086 /// lowered) during or-pattern expansion. Their main function is to serve as _output_
1087 /// of match tree lowering, allowing later steps to see the leaf candidates that
1088 /// represent a match of the entire match arm.
1089 ///
1090 /// A candidate no subcandidates is either incomplete (if it has match pairs left),
1091 /// or is a leaf in the match tree. A candidate with one or more subcandidates is
1092 /// an internal node in the match tree.
1093 ///
1094 /// Invariant: at the end of match tree lowering, this must not contain an
1095 /// `is_never` candidate, because that would break binding consistency.
1096 /// - See [`Builder::remove_never_subcandidates`].
1097 subcandidates: Vec<Candidate<'tcx>>,
1098
1099 /// ...and if there is a guard it must be evaluated; if it's `false` then branch to `otherwise_block`.
1100 ///
1101 /// ---
1102 /// For subcandidates, this is copied from the parent candidate, so it indicates
1103 /// whether the enclosing match arm has a guard.
1104 has_guard: bool,
1105
1106 /// Holds extra pattern data that was prepared by [`FlatPat`], including bindings and
1107 /// ascriptions that must be established if this candidate succeeds.
1108 extra_data: PatternExtraData<'tcx>,
1109
1110 /// When setting `self.subcandidates`, we store here the span of the or-pattern they came from.
1111 ///
1112 /// ---
1113 /// Invariant: it is `None` iff `subcandidates.is_empty()`.
1114 /// - FIXME: We sometimes don't unset this when clearing `subcandidates`.
1115 or_span: Option<Span>,
1116
1117 /// The block before the `bindings` have been established.
1118 ///
1119 /// After the match tree has been lowered, [`Builder::lower_match_arms`]
1120 /// will use this as the start point for lowering bindings and guards, and
1121 /// then jump to a shared block containing the arm body.
1122 pre_binding_block: Option<BasicBlock>,
1123
1124 /// The block to branch to if the guard or a nested candidate fails to match.
1125 otherwise_block: Option<BasicBlock>,
1126
1127 /// The earliest block that has only candidates >= this one as descendents. Used for false
1128 /// edges, see the doc for [`Builder::match_expr`].
1129 false_edge_start_block: Option<BasicBlock>,
1130}
1131
1132impl<'tcx> Candidate<'tcx> {
1133 fn new(
1134 place: PlaceBuilder<'tcx>,
1135 pattern: &Pat<'tcx>,
1136 has_guard: HasMatchGuard,
1137 cx: &mut Builder<'_, 'tcx>,
1138 ) -> Self {
1139 // Use `FlatPat` to build simplified match pairs, then immediately
1140 // incorporate them into a new candidate.
1141 Self::from_flat_pat(
1142 FlatPat::new(place, pattern, cx),
1143 matches!(has_guard, HasMatchGuard::Yes),
1144 )
1145 }
1146
1147 /// Incorporates an already-simplified [`FlatPat`] into a new candidate.
1148 fn from_flat_pat(flat_pat: FlatPat<'tcx>, has_guard: bool) -> Self {
1149 let mut this = Candidate {
1150 match_pairs: flat_pat.match_pairs,
1151 extra_data: flat_pat.extra_data,
1152 has_guard,
1153 subcandidates: Vec::new(),
1154 or_span: None,
1155 otherwise_block: None,
1156 pre_binding_block: None,
1157 false_edge_start_block: None,
1158 };
1159 this.sort_match_pairs();
1160 this
1161 }
1162
1163 /// Restores the invariant that or-patterns must be sorted to the end.
1164 fn sort_match_pairs(&mut self) {
1165 self.match_pairs.sort_by_key(|pair| matches!(pair.test_case, TestCase::Or { .. }));
1166 }
1167
1168 /// Returns whether the first match pair of this candidate is an or-pattern.
1169 fn starts_with_or_pattern(&self) -> bool {
1170 matches!(&*self.match_pairs, [MatchPairTree { test_case: TestCase::Or { .. }, .. }, ..])
1171 }
1172
1173 /// Visit the leaf candidates (those with no subcandidates) contained in
1174 /// this candidate.
1175 fn visit_leaves<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
1176 traverse_candidate(
1177 self,
1178 &mut (),
1179 &mut move |c, _| visit_leaf(c),
1180 move |c, _| c.subcandidates.iter_mut(),
1181 |_| {},
1182 );
1183 }
1184
1185 /// Visit the leaf candidates in reverse order.
1186 fn visit_leaves_rev<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
1187 traverse_candidate(
1188 self,
1189 &mut (),
1190 &mut move |c, _| visit_leaf(c),
1191 move |c, _| c.subcandidates.iter_mut().rev(),
1192 |_| {},
1193 );
1194 }
1195}
1196
1197/// A depth-first traversal of the `Candidate` and all of its recursive
1198/// subcandidates.
1199///
1200/// This signature is very generic, to support traversing candidate trees by
1201/// reference or by value, and to allow a mutable "context" to be shared by the
1202/// traversal callbacks. Most traversals can use the simpler
1203/// [`Candidate::visit_leaves`] wrapper instead.
1204fn traverse_candidate<'tcx, C, T, I>(
1205 candidate: C,
1206 context: &mut T,
1207 // Called when visiting a "leaf" candidate (with no subcandidates).
1208 visit_leaf: &mut impl FnMut(C, &mut T),
1209 // Called when visiting a "node" candidate (with one or more subcandidates).
1210 // Returns an iterator over the candidate's children (by value or reference).
1211 // Can perform setup before visiting the node's children.
1212 get_children: impl Copy + Fn(C, &mut T) -> I,
1213 // Called after visiting a "node" candidate's children.
1214 complete_children: impl Copy + Fn(&mut T),
1215) where
1216 C: Borrow<Candidate<'tcx>>, // Typically `Candidate` or `&mut Candidate`
1217 I: Iterator<Item = C>,
1218{
1219 if candidate.borrow().subcandidates.is_empty() {
1220 visit_leaf(candidate, context)
1221 } else {
1222 for child in get_children(candidate, context) {
1223 traverse_candidate(child, context, visit_leaf, get_children, complete_children);
1224 }
1225 complete_children(context)
1226 }
1227}
1228
1229#[derive(Clone, Copy, Debug)]
1230struct Binding<'tcx> {
1231 span: Span,
1232 source: Place<'tcx>,
1233 var_id: LocalVarId,
1234 binding_mode: BindingMode,
1235 is_shorthand: bool,
1236}
1237
1238/// Indicates that the type of `source` must be a subtype of the
1239/// user-given type `user_ty`; this is basically a no-op but can
1240/// influence region inference.
1241#[derive(Clone, Debug)]
1242struct Ascription<'tcx> {
1243 source: Place<'tcx>,
1244 annotation: CanonicalUserTypeAnnotation<'tcx>,
1245 variance: ty::Variance,
1246}
1247
1248/// Partial summary of a [`thir::Pat`], indicating what sort of test should be
1249/// performed to match/reject the pattern, and what the desired test outcome is.
1250/// This avoids having to perform a full match on [`thir::PatKind`] in some places,
1251/// and helps [`TestKind::Switch`] and [`TestKind::SwitchInt`] know what target
1252/// values to use.
1253///
1254/// Created by [`MatchPairTree::for_pattern`], and then inspected primarily by:
1255/// - [`Builder::pick_test_for_match_pair`] (to choose a test)
1256/// - [`Builder::sort_candidate`] (to see how the test interacts with a match pair)
1257///
1258/// Note that or-patterns are not tested directly like the other variants.
1259/// Instead they participate in or-pattern expansion, where they are transformed into
1260/// subcandidates. See [`Builder::expand_and_match_or_candidates`].
1261#[derive(Debug, Clone)]
1262enum TestCase<'tcx> {
1263 Variant { adt_def: ty::AdtDef<'tcx>, variant_index: VariantIdx },
1264 Constant { value: ty::Value<'tcx> },
1265 Range(Arc<PatRange<'tcx>>),
1266 Slice { len: usize, variable_length: bool },
1267 Deref { temp: Place<'tcx>, mutability: Mutability },
1268 Never,
1269 Or { pats: Box<[FlatPat<'tcx>]> },
1270}
1271
1272impl<'tcx> TestCase<'tcx> {
1273 fn as_range(&self) -> Option<&PatRange<'tcx>> {
1274 if let Self::Range(v) = self { Some(v.as_ref()) } else { None }
1275 }
1276}
1277
1278/// Node in a tree of "match pairs", where each pair consists of a place to be
1279/// tested, and a test to perform on that place.
1280///
1281/// Each node also has a list of subpairs (possibly empty) that must also match,
1282/// and a reference to the THIR pattern it represents.
1283#[derive(Debug, Clone)]
1284pub(crate) struct MatchPairTree<'tcx> {
1285 /// This place...
1286 ///
1287 /// ---
1288 /// This can be `None` if it referred to a non-captured place in a closure.
1289 ///
1290 /// Invariant: Can only be `None` when `test_case` is `Or`.
1291 /// Therefore this must be `Some(_)` after or-pattern expansion.
1292 place: Option<Place<'tcx>>,
1293
1294 /// ... must pass this test...
1295 test_case: TestCase<'tcx>,
1296
1297 /// ... and these subpairs must match.
1298 ///
1299 /// ---
1300 /// Subpairs typically represent tests that can only be performed after their
1301 /// parent has succeeded. For example, the pattern `Some(3)` might have an
1302 /// outer match pair that tests for the variant `Some`, and then a subpair
1303 /// that tests its field for the value `3`.
1304 subpairs: Vec<Self>,
1305
1306 /// Type field of the pattern this node was created from.
1307 pattern_ty: Ty<'tcx>,
1308 /// Span field of the pattern this node was created from.
1309 pattern_span: Span,
1310}
1311
1312/// See [`Test`] for more.
1313#[derive(Clone, Debug, PartialEq)]
1314enum TestKind<'tcx> {
1315 /// Test what enum variant a value is.
1316 ///
1317 /// The subset of expected variants is not stored here; instead they are
1318 /// extracted from the [`TestCase`]s of the candidates participating in the
1319 /// test.
1320 Switch {
1321 /// The enum type being tested.
1322 adt_def: ty::AdtDef<'tcx>,
1323 },
1324
1325 /// Test what value an integer or `char` has.
1326 ///
1327 /// The test's target values are not stored here; instead they are extracted
1328 /// from the [`TestCase`]s of the candidates participating in the test.
1329 SwitchInt,
1330
1331 /// Test whether a `bool` is `true` or `false`.
1332 If,
1333
1334 /// Test for equality with value, possibly after an unsizing coercion to
1335 /// `cast_ty`,
1336 Eq {
1337 value: ty::Value<'tcx>,
1338 // Integer types are handled by `SwitchInt`, and constants with ADT
1339 // types and `&[T]` types are converted back into patterns, so this can
1340 // only be `&str` or floats.
1341 cast_ty: Ty<'tcx>,
1342 },
1343
1344 /// Test whether the value falls within an inclusive or exclusive range.
1345 Range(Arc<PatRange<'tcx>>),
1346
1347 /// Test that the length of the slice is `== len` or `>= len`.
1348 Len { len: u64, op: BinOp },
1349
1350 /// Call `Deref::deref[_mut]` on the value.
1351 Deref {
1352 /// Temporary to store the result of `deref()`/`deref_mut()`.
1353 temp: Place<'tcx>,
1354 mutability: Mutability,
1355 },
1356
1357 /// Assert unreachability of never patterns.
1358 Never,
1359}
1360
1361/// A test to perform to determine which [`Candidate`] matches a value.
1362///
1363/// [`Test`] is just the test to perform; it does not include the value
1364/// to be tested.
1365#[derive(Debug)]
1366pub(crate) struct Test<'tcx> {
1367 span: Span,
1368 kind: TestKind<'tcx>,
1369}
1370
1371/// The branch to be taken after a test.
1372#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
1373enum TestBranch<'tcx> {
1374 /// Success branch, used for tests with two possible outcomes.
1375 Success,
1376 /// Branch corresponding to this constant. Must be a scalar.
1377 Constant(ty::Value<'tcx>),
1378 /// Branch corresponding to this variant.
1379 Variant(VariantIdx),
1380 /// Failure branch for tests with two possible outcomes, and "otherwise" branch for other tests.
1381 Failure,
1382}
1383
1384impl<'tcx> TestBranch<'tcx> {
1385 fn as_constant(&self) -> Option<ty::Value<'tcx>> {
1386 if let Self::Constant(v) = self { Some(*v) } else { None }
1387 }
1388}
1389
1390/// `ArmHasGuard` is a wrapper around a boolean flag. It indicates whether
1391/// a match arm has a guard expression attached to it.
1392#[derive(Copy, Clone, Debug)]
1393pub(crate) struct ArmHasGuard(pub(crate) bool);
1394
1395///////////////////////////////////////////////////////////////////////////
1396// Main matching algorithm
1397
1398/// A sub-branch in the output of match lowering. Match lowering has generated MIR code that will
1399/// branch to `success_block` when the matched value matches the corresponding pattern. If there is
1400/// a guard, its failure must continue to `otherwise_block`, which will resume testing patterns.
1401#[derive(Debug, Clone)]
1402struct MatchTreeSubBranch<'tcx> {
1403 span: Span,
1404 /// The block that is branched to if the corresponding subpattern matches.
1405 success_block: BasicBlock,
1406 /// The block to branch to if this arm had a guard and the guard fails.
1407 otherwise_block: BasicBlock,
1408 /// The bindings to set up in this sub-branch.
1409 bindings: Vec<Binding<'tcx>>,
1410 /// The ascriptions to set up in this sub-branch.
1411 ascriptions: Vec<Ascription<'tcx>>,
1412 /// Whether the sub-branch corresponds to a never pattern.
1413 is_never: bool,
1414}
1415
1416/// A branch in the output of match lowering.
1417#[derive(Debug, Clone)]
1418struct MatchTreeBranch<'tcx> {
1419 sub_branches: Vec<MatchTreeSubBranch<'tcx>>,
1420}
1421
1422/// The result of generating MIR for a pattern-matching expression. Each input branch/arm/pattern
1423/// gives rise to an output `MatchTreeBranch`. If one of the patterns matches, we branch to the
1424/// corresponding `success_block`. If none of the patterns matches, we branch to `otherwise_block`.
1425///
1426/// Each branch is made of one of more sub-branches, corresponding to or-patterns. E.g.
1427/// ```ignore(illustrative)
1428/// match foo {
1429/// (x, false) | (false, x) => {}
1430/// (true, true) => {}
1431/// }
1432/// ```
1433/// Here the first arm gives the first `MatchTreeBranch`, which has two sub-branches, one for each
1434/// alternative of the or-pattern. They are kept separate because each needs to bind `x` to a
1435/// different place.
1436#[derive(Debug, Clone)]
1437pub(crate) struct BuiltMatchTree<'tcx> {
1438 branches: Vec<MatchTreeBranch<'tcx>>,
1439 otherwise_block: BasicBlock,
1440 /// If any of the branches had a guard, we collect here the places and locals to fakely borrow
1441 /// to ensure match guards can't modify the values as we match them. For more details, see
1442 /// [`util::collect_fake_borrows`].
1443 fake_borrow_temps: Vec<(Place<'tcx>, Local, FakeBorrowKind)>,
1444}
1445
1446impl<'tcx> MatchTreeSubBranch<'tcx> {
1447 fn from_sub_candidate(
1448 candidate: Candidate<'tcx>,
1449 parent_data: &Vec<PatternExtraData<'tcx>>,
1450 ) -> Self {
1451 debug_assert!(candidate.match_pairs.is_empty());
1452 MatchTreeSubBranch {
1453 span: candidate.extra_data.span,
1454 success_block: candidate.pre_binding_block.unwrap(),
1455 otherwise_block: candidate.otherwise_block.unwrap(),
1456 bindings: sub_branch_bindings(parent_data, &candidate.extra_data.bindings),
1457 ascriptions: parent_data
1458 .iter()
1459 .flat_map(|d| &d.ascriptions)
1460 .cloned()
1461 .chain(candidate.extra_data.ascriptions)
1462 .collect(),
1463 is_never: candidate.extra_data.is_never,
1464 }
1465 }
1466}
1467
1468impl<'tcx> MatchTreeBranch<'tcx> {
1469 fn from_candidate(candidate: Candidate<'tcx>) -> Self {
1470 let mut sub_branches = Vec::new();
1471 traverse_candidate(
1472 candidate,
1473 &mut Vec::new(),
1474 &mut |candidate: Candidate<'_>, parent_data: &mut Vec<PatternExtraData<'_>>| {
1475 sub_branches.push(MatchTreeSubBranch::from_sub_candidate(candidate, parent_data));
1476 },
1477 |inner_candidate, parent_data| {
1478 parent_data.push(inner_candidate.extra_data);
1479 inner_candidate.subcandidates.into_iter()
1480 },
1481 |parent_data| {
1482 parent_data.pop();
1483 },
1484 );
1485 MatchTreeBranch { sub_branches }
1486 }
1487}
1488
1489/// Collects the bindings for a [`MatchTreeSubBranch`], preserving the order they appear in the
1490/// pattern, as though the or-alternatives chosen in this sub-branch were inlined.
1491fn sub_branch_bindings<'tcx>(
1492 parents: &[PatternExtraData<'tcx>],
1493 leaf_bindings: &[SubpatternBindings<'tcx>],
1494) -> Vec<Binding<'tcx>> {
1495 // In the common case, all bindings will be in leaves. Allocate to fit the leaf's bindings.
1496 let mut all_bindings = Vec::with_capacity(leaf_bindings.len());
1497 let mut remainder = parents
1498 .iter()
1499 .map(|parent| parent.bindings.as_slice())
1500 .chain([leaf_bindings])
1501 // Skip over unsimplified or-patterns without bindings.
1502 .filter(|bindings| !bindings.is_empty());
1503 if let Some(candidate_bindings) = remainder.next() {
1504 push_sub_branch_bindings(&mut all_bindings, candidate_bindings, &mut remainder);
1505 }
1506 // Make sure we've included all bindings. For ill-formed patterns like `(x, _ | y)`, we may not
1507 // have collected all bindings yet, since we only check the first alternative when determining
1508 // whether to inline subcandidates' bindings.
1509 // FIXME(@dianne): prevent ill-formed patterns from getting here
1510 while let Some(candidate_bindings) = remainder.next() {
1511 ty::tls::with(|tcx| {
1512 tcx.dcx().delayed_bug("mismatched or-pattern bindings but no error emitted")
1513 });
1514 // To recover, we collect the rest in an arbitrary order.
1515 push_sub_branch_bindings(&mut all_bindings, candidate_bindings, &mut remainder);
1516 }
1517 all_bindings
1518}
1519
1520/// Helper for [`sub_branch_bindings`]. Collects bindings from `candidate_bindings` into
1521/// `flattened`. Bindings in or-patterns are collected recursively from `remainder`.
1522fn push_sub_branch_bindings<'c, 'tcx: 'c>(
1523 flattened: &mut Vec<Binding<'tcx>>,
1524 candidate_bindings: &'c [SubpatternBindings<'tcx>],
1525 remainder: &mut impl Iterator<Item = &'c [SubpatternBindings<'tcx>]>,
1526) {
1527 for subpat_bindings in candidate_bindings {
1528 match subpat_bindings {
1529 SubpatternBindings::One(binding) => flattened.push(*binding),
1530 SubpatternBindings::FromOrPattern => {
1531 // Inline bindings from an or-pattern. By construction, this always
1532 // corresponds to a subcandidate and its closest descendants (i.e. those
1533 // from nested or-patterns, but not adjacent or-patterns). To handle
1534 // adjacent or-patterns, e.g. `(x | x, y | y)`, we update the `remainder` to
1535 // point to the first descendant candidate from outside this or-pattern.
1536 if let Some(subcandidate_bindings) = remainder.next() {
1537 push_sub_branch_bindings(flattened, subcandidate_bindings, remainder);
1538 } else {
1539 // For ill-formed patterns like `x | _`, we may not have any subcandidates left
1540 // to inline bindings from.
1541 // FIXME(@dianne): prevent ill-formed patterns from getting here
1542 ty::tls::with(|tcx| {
1543 tcx.dcx().delayed_bug("mismatched or-pattern bindings but no error emitted")
1544 });
1545 };
1546 }
1547 }
1548 }
1549}
1550
1551#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1552pub(crate) enum HasMatchGuard {
1553 Yes,
1554 No,
1555}
1556
1557impl<'a, 'tcx> Builder<'a, 'tcx> {
1558 /// The entrypoint of the matching algorithm. Create the decision tree for the match expression,
1559 /// starting from `block`.
1560 ///
1561 /// `patterns` is a list of patterns, one for each arm. The associated boolean indicates whether
1562 /// the arm has a guard.
1563 ///
1564 /// `refutable` indicates whether the candidate list is refutable (for `if let` and `let else`)
1565 /// or not (for `let` and `match`). In the refutable case we return the block to which we branch
1566 /// on failure.
1567 pub(crate) fn lower_match_tree(
1568 &mut self,
1569 block: BasicBlock,
1570 scrutinee_span: Span,
1571 scrutinee_place_builder: &PlaceBuilder<'tcx>,
1572 match_start_span: Span,
1573 patterns: Vec<(&Pat<'tcx>, HasMatchGuard)>,
1574 refutable: bool,
1575 ) -> BuiltMatchTree<'tcx> {
1576 // Assemble the initial list of candidates. These top-level candidates are 1:1 with the
1577 // input patterns, but other parts of match lowering also introduce subcandidates (for
1578 // sub-or-patterns). So inside the algorithm, the candidates list may not correspond to
1579 // match arms directly.
1580 let mut candidates: Vec<Candidate<'_>> = patterns
1581 .into_iter()
1582 .map(|(pat, has_guard)| {
1583 Candidate::new(scrutinee_place_builder.clone(), pat, has_guard, self)
1584 })
1585 .collect();
1586
1587 let fake_borrow_temps = util::collect_fake_borrows(
1588 self,
1589 &candidates,
1590 scrutinee_span,
1591 scrutinee_place_builder.base(),
1592 );
1593
1594 // This will generate code to test scrutinee_place and branch to the appropriate arm block.
1595 // If none of the arms match, we branch to `otherwise_block`. When lowering a `match`
1596 // expression, exhaustiveness checking ensures that this block is unreachable.
1597 let mut candidate_refs = candidates.iter_mut().collect::<Vec<_>>();
1598 let otherwise_block =
1599 self.match_candidates(match_start_span, scrutinee_span, block, &mut candidate_refs);
1600
1601 // Set up false edges so that the borrow-checker cannot make use of the specific CFG we
1602 // generated. We falsely branch from each candidate to the one below it to make it as if we
1603 // were testing match branches one by one in order. In the refutable case we also want a
1604 // false edge to the final failure block.
1605 let mut next_candidate_start_block = if refutable { Some(otherwise_block) } else { None };
1606 for candidate in candidates.iter_mut().rev() {
1607 let has_guard = candidate.has_guard;
1608 candidate.visit_leaves_rev(|leaf_candidate| {
1609 if let Some(next_candidate_start_block) = next_candidate_start_block {
1610 let source_info = self.source_info(leaf_candidate.extra_data.span);
1611 // Falsely branch to `next_candidate_start_block` before reaching pre_binding.
1612 let old_pre_binding = leaf_candidate.pre_binding_block.unwrap();
1613 let new_pre_binding = self.cfg.start_new_block();
1614 self.false_edges(
1615 old_pre_binding,
1616 new_pre_binding,
1617 next_candidate_start_block,
1618 source_info,
1619 );
1620 leaf_candidate.pre_binding_block = Some(new_pre_binding);
1621 if has_guard {
1622 // Falsely branch to `next_candidate_start_block` also if the guard fails.
1623 let new_otherwise = self.cfg.start_new_block();
1624 let old_otherwise = leaf_candidate.otherwise_block.unwrap();
1625 self.false_edges(
1626 new_otherwise,
1627 old_otherwise,
1628 next_candidate_start_block,
1629 source_info,
1630 );
1631 leaf_candidate.otherwise_block = Some(new_otherwise);
1632 }
1633 }
1634 assert!(leaf_candidate.false_edge_start_block.is_some());
1635 next_candidate_start_block = leaf_candidate.false_edge_start_block;
1636 });
1637 }
1638
1639 if !refutable {
1640 // Match checking ensures `otherwise_block` is actually unreachable in irrefutable
1641 // cases.
1642 let source_info = self.source_info(scrutinee_span);
1643
1644 // Matching on a scrutinee place of an uninhabited type doesn't generate any memory
1645 // reads by itself, and so if the place is uninitialized we wouldn't know. In order to
1646 // disallow the following:
1647 // ```rust
1648 // let x: !;
1649 // match x {}
1650 // ```
1651 // we add a dummy read on the place.
1652 //
1653 // NOTE: If we require never patterns for empty matches, those will check that the place
1654 // is initialized, and so this read would no longer be needed.
1655 let cause_matched_place = FakeReadCause::ForMatchedPlace(None);
1656
1657 if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
1658 self.cfg.push_fake_read(
1659 otherwise_block,
1660 source_info,
1661 cause_matched_place,
1662 scrutinee_place,
1663 );
1664 }
1665
1666 self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable);
1667 }
1668
1669 BuiltMatchTree {
1670 branches: candidates.into_iter().map(MatchTreeBranch::from_candidate).collect(),
1671 otherwise_block,
1672 fake_borrow_temps,
1673 }
1674 }
1675
1676 /// The main match algorithm. It begins with a set of candidates `candidates` and has the job of
1677 /// generating code that branches to an appropriate block if the scrutinee matches one of these
1678 /// candidates. The
1679 /// candidates are ordered such that the first item in the list
1680 /// has the highest priority. When a candidate is found to match
1681 /// the value, we will set and generate a branch to the appropriate
1682 /// pre-binding block.
1683 ///
1684 /// If none of the candidates apply, we continue to the returned `otherwise_block`.
1685 ///
1686 /// Note that while `match` expressions in the Rust language are exhaustive,
1687 /// candidate lists passed to this method are often _non-exhaustive_.
1688 /// For example, the match lowering process will frequently divide up the
1689 /// list of candidates, and recursively call this method with a non-exhaustive
1690 /// subset of candidates.
1691 /// See [`Builder::test_candidates`] for more details on this
1692 /// "backtracking automata" approach.
1693 ///
1694 /// For an example of how we use `otherwise_block`, consider:
1695 /// ```
1696 /// # fn foo((x, y): (bool, bool)) -> u32 {
1697 /// match (x, y) {
1698 /// (true, true) => 1,
1699 /// (_, false) => 2,
1700 /// (false, true) => 3,
1701 /// }
1702 /// # }
1703 /// ```
1704 /// For this match, we generate something like:
1705 /// ```
1706 /// # fn foo((x, y): (bool, bool)) -> u32 {
1707 /// if x {
1708 /// if y {
1709 /// return 1
1710 /// } else {
1711 /// // continue
1712 /// }
1713 /// } else {
1714 /// // continue
1715 /// }
1716 /// if y {
1717 /// if x {
1718 /// // This is actually unreachable because the `(true, true)` case was handled above,
1719 /// // but we don't know that from within the lowering algorithm.
1720 /// // continue
1721 /// } else {
1722 /// return 3
1723 /// }
1724 /// } else {
1725 /// return 2
1726 /// }
1727 /// // this is the final `otherwise_block`, which is unreachable because the match was exhaustive.
1728 /// unreachable!()
1729 /// # }
1730 /// ```
1731 ///
1732 /// Every `continue` is an instance of branching to some `otherwise_block` somewhere deep within
1733 /// the algorithm. For more details on why we lower like this, see [`Builder::test_candidates`].
1734 ///
1735 /// Note how we test `x` twice. This is the tradeoff of backtracking automata: we prefer smaller
1736 /// code size so we accept non-optimal code paths.
1737 #[instrument(skip(self), level = "debug")]
1738 fn match_candidates(
1739 &mut self,
1740 span: Span,
1741 scrutinee_span: Span,
1742 start_block: BasicBlock,
1743 candidates: &mut [&mut Candidate<'tcx>],
1744 ) -> BasicBlock {
1745 ensure_sufficient_stack(|| {
1746 self.match_candidates_inner(span, scrutinee_span, start_block, candidates)
1747 })
1748 }
1749
1750 /// Construct the decision tree for `candidates`. Don't call this, call `match_candidates`
1751 /// instead to reserve sufficient stack space.
1752 fn match_candidates_inner(
1753 &mut self,
1754 span: Span,
1755 scrutinee_span: Span,
1756 mut start_block: BasicBlock,
1757 candidates: &mut [&mut Candidate<'tcx>],
1758 ) -> BasicBlock {
1759 if let [first, ..] = candidates {
1760 if first.false_edge_start_block.is_none() {
1761 first.false_edge_start_block = Some(start_block);
1762 }
1763 }
1764
1765 // Process a prefix of the candidates.
1766 let rest = match candidates {
1767 [] => {
1768 // If there are no candidates that still need testing, we're done.
1769 return start_block;
1770 }
1771 [first, remaining @ ..] if first.match_pairs.is_empty() => {
1772 // The first candidate has satisfied all its match pairs.
1773 // We record the blocks that will be needed by match arm lowering,
1774 // and then continue with the remaining candidates.
1775 let remainder_start = self.select_matched_candidate(first, start_block);
1776 remainder_start.and(remaining)
1777 }
1778 candidates if candidates.iter().any(|candidate| candidate.starts_with_or_pattern()) => {
1779 // If any candidate starts with an or-pattern, we want to expand or-patterns
1780 // before we do any more tests.
1781 //
1782 // The only candidate we strictly _need_ to expand here is the first one.
1783 // But by expanding other candidates as early as possible, we unlock more
1784 // opportunities to include them in test outcomes, making the match tree
1785 // smaller and simpler.
1786 self.expand_and_match_or_candidates(span, scrutinee_span, start_block, candidates)
1787 }
1788 candidates => {
1789 // The first candidate has some unsatisfied match pairs; we proceed to do more tests.
1790 self.test_candidates(span, scrutinee_span, candidates, start_block)
1791 }
1792 };
1793
1794 // Process any candidates that remain.
1795 let remaining_candidates = unpack!(start_block = rest);
1796 self.match_candidates(span, scrutinee_span, start_block, remaining_candidates)
1797 }
1798
1799 /// Link up matched candidates.
1800 ///
1801 /// For example, if we have something like this:
1802 ///
1803 /// ```ignore (illustrative)
1804 /// ...
1805 /// Some(x) if cond1 => ...
1806 /// Some(x) => ...
1807 /// Some(x) if cond2 => ...
1808 /// ...
1809 /// ```
1810 ///
1811 /// We generate real edges from:
1812 ///
1813 /// * `start_block` to the [pre-binding block] of the first pattern,
1814 /// * the [otherwise block] of the first pattern to the second pattern,
1815 /// * the [otherwise block] of the third pattern to a block with an
1816 /// [`Unreachable` terminator](TerminatorKind::Unreachable).
1817 ///
1818 /// In addition, we later add fake edges from the otherwise blocks to the
1819 /// pre-binding block of the next candidate in the original set of
1820 /// candidates.
1821 ///
1822 /// [pre-binding block]: Candidate::pre_binding_block
1823 /// [otherwise block]: Candidate::otherwise_block
1824 fn select_matched_candidate(
1825 &mut self,
1826 candidate: &mut Candidate<'tcx>,
1827 start_block: BasicBlock,
1828 ) -> BasicBlock {
1829 assert!(candidate.otherwise_block.is_none());
1830 assert!(candidate.pre_binding_block.is_none());
1831 assert!(candidate.subcandidates.is_empty());
1832
1833 candidate.pre_binding_block = Some(start_block);
1834 let otherwise_block = self.cfg.start_new_block();
1835 // Create the otherwise block for this candidate, which is the
1836 // pre-binding block for the next candidate.
1837 candidate.otherwise_block = Some(otherwise_block);
1838 otherwise_block
1839 }
1840
1841 /// Takes a list of candidates such that some of the candidates' first match pairs are
1842 /// or-patterns. This expands as many or-patterns as possible and processes the resulting
1843 /// candidates. Returns the unprocessed candidates if any.
1844 fn expand_and_match_or_candidates<'b, 'c>(
1845 &mut self,
1846 span: Span,
1847 scrutinee_span: Span,
1848 start_block: BasicBlock,
1849 candidates: &'b mut [&'c mut Candidate<'tcx>],
1850 ) -> BlockAnd<&'b mut [&'c mut Candidate<'tcx>]> {
1851 // We can't expand or-patterns freely. The rule is:
1852 // - If a candidate doesn't start with an or-pattern, we include it in
1853 // the expansion list as-is (i.e. it "expands" to itself).
1854 // - If a candidate has an or-pattern as its only remaining match pair,
1855 // we can expand it.
1856 // - If it starts with an or-pattern but also has other match pairs,
1857 // we can expand it, but we can't process more candidates after it.
1858 //
1859 // If we didn't stop, the `otherwise` cases could get mixed up. E.g. in the
1860 // following, or-pattern simplification (in `merge_trivial_subcandidates`) makes it
1861 // so the `1` and `2` cases branch to a same block (which then tests `false`). If we
1862 // took `(2, _)` in the same set of candidates, when we reach the block that tests
1863 // `false` we don't know whether we came from `1` or `2`, hence we can't know where
1864 // to branch on failure.
1865 //
1866 // ```ignore(illustrative)
1867 // match (1, true) {
1868 // (1 | 2, false) => {},
1869 // (2, _) => {},
1870 // _ => {}
1871 // }
1872 // ```
1873 //
1874 // We therefore split the `candidates` slice in two, expand or-patterns in the first part,
1875 // and process the rest separately.
1876 let expand_until = candidates
1877 .iter()
1878 .position(|candidate| {
1879 // If a candidate starts with an or-pattern and has more match pairs,
1880 // we can expand it, but we must stop expanding _after_ it.
1881 candidate.match_pairs.len() > 1 && candidate.starts_with_or_pattern()
1882 })
1883 .map(|pos| pos + 1) // Stop _after_ the found candidate
1884 .unwrap_or(candidates.len()); // Otherwise, include all candidates
1885 let (candidates_to_expand, remaining_candidates) = candidates.split_at_mut(expand_until);
1886
1887 // Expand one level of or-patterns for each candidate in `candidates_to_expand`.
1888 // We take care to preserve the relative ordering of candidates, so that
1889 // or-patterns are expanded in their parent's relative position.
1890 let mut expanded_candidates = Vec::new();
1891 for candidate in candidates_to_expand.iter_mut() {
1892 if candidate.starts_with_or_pattern() {
1893 let or_match_pair = candidate.match_pairs.remove(0);
1894 // Expand the or-pattern into subcandidates.
1895 self.create_or_subcandidates(candidate, or_match_pair);
1896 // Collect the newly created subcandidates.
1897 for subcandidate in candidate.subcandidates.iter_mut() {
1898 expanded_candidates.push(subcandidate);
1899 }
1900 // Note that the subcandidates have been added to `expanded_candidates`,
1901 // but `candidate` itself has not. If the last candidate has more match pairs,
1902 // they are handled separately by `test_remaining_match_pairs_after_or`.
1903 } else {
1904 // A candidate that doesn't start with an or-pattern has nothing to
1905 // expand, so it is included in the post-expansion list as-is.
1906 expanded_candidates.push(candidate);
1907 }
1908 }
1909
1910 // Recursively lower the part of the match tree represented by the
1911 // expanded candidates. This is where subcandidates actually get lowered!
1912 let remainder_start = self.match_candidates(
1913 span,
1914 scrutinee_span,
1915 start_block,
1916 expanded_candidates.as_mut_slice(),
1917 );
1918
1919 // Postprocess subcandidates, and process any leftover match pairs.
1920 // (Only the last candidate can possibly have more match pairs.)
1921 debug_assert!({
1922 let mut all_except_last = candidates_to_expand.iter().rev().skip(1);
1923 all_except_last.all(|candidate| candidate.match_pairs.is_empty())
1924 });
1925 for candidate in candidates_to_expand.iter_mut() {
1926 if !candidate.subcandidates.is_empty() {
1927 self.merge_trivial_subcandidates(candidate);
1928 self.remove_never_subcandidates(candidate);
1929 }
1930 }
1931 // It's important to perform the above simplifications _before_ dealing
1932 // with remaining match pairs, to avoid exponential blowup if possible
1933 // (for trivial or-patterns), and avoid useless work (for never patterns).
1934 if let Some(last_candidate) = candidates_to_expand.last_mut() {
1935 self.test_remaining_match_pairs_after_or(span, scrutinee_span, last_candidate);
1936 }
1937
1938 remainder_start.and(remaining_candidates)
1939 }
1940
1941 /// Given a match-pair that corresponds to an or-pattern, expand each subpattern into a new
1942 /// subcandidate. Any candidate that has been expanded this way should also be postprocessed
1943 /// at the end of [`Self::expand_and_match_or_candidates`].
1944 fn create_or_subcandidates(
1945 &mut self,
1946 candidate: &mut Candidate<'tcx>,
1947 match_pair: MatchPairTree<'tcx>,
1948 ) {
1949 let TestCase::Or { pats } = match_pair.test_case else { bug!() };
1950 debug!("expanding or-pattern: candidate={:#?}\npats={:#?}", candidate, pats);
1951 candidate.or_span = Some(match_pair.pattern_span);
1952 candidate.subcandidates = pats
1953 .into_iter()
1954 .map(|flat_pat| Candidate::from_flat_pat(flat_pat, candidate.has_guard))
1955 .collect();
1956 candidate.subcandidates[0].false_edge_start_block = candidate.false_edge_start_block;
1957 }
1958
1959 /// Try to merge all of the subcandidates of the given candidate into one. This avoids
1960 /// exponentially large CFGs in cases like `(1 | 2, 3 | 4, ...)`. The candidate should have been
1961 /// expanded with `create_or_subcandidates`.
1962 ///
1963 /// Given a pattern `(P | Q, R | S)` we (in principle) generate a CFG like
1964 /// so:
1965 ///
1966 /// ```text
1967 /// [ start ]
1968 /// |
1969 /// [ match P, Q ]
1970 /// |
1971 /// +----------------------------------------+------------------------------------+
1972 /// | | |
1973 /// V V V
1974 /// [ P matches ] [ Q matches ] [ otherwise ]
1975 /// | | |
1976 /// V V |
1977 /// [ match R, S ] [ match R, S ] |
1978 /// | | |
1979 /// +--------------+------------+ +--------------+------------+ |
1980 /// | | | | | | |
1981 /// V V V V V V |
1982 /// [ R matches ] [ S matches ] [otherwise ] [ R matches ] [ S matches ] [otherwise ] |
1983 /// | | | | | | |
1984 /// +--------------+------------|------------+--------------+ | |
1985 /// | | | |
1986 /// | +----------------------------------------+--------+
1987 /// | |
1988 /// V V
1989 /// [ Success ] [ Failure ]
1990 /// ```
1991 ///
1992 /// In practice there are some complications:
1993 ///
1994 /// * If there's a guard, then the otherwise branch of the first match on
1995 /// `R | S` goes to a test for whether `Q` matches, and the control flow
1996 /// doesn't merge into a single success block until after the guard is
1997 /// tested.
1998 /// * If neither `P` or `Q` has any bindings or type ascriptions and there
1999 /// isn't a match guard, then we create a smaller CFG like:
2000 ///
2001 /// ```text
2002 /// ...
2003 /// +---------------+------------+
2004 /// | | |
2005 /// [ P matches ] [ Q matches ] [ otherwise ]
2006 /// | | |
2007 /// +---------------+ |
2008 /// | ...
2009 /// [ match R, S ]
2010 /// |
2011 /// ...
2012 /// ```
2013 ///
2014 /// Note that this takes place _after_ the subcandidates have participated
2015 /// in match tree lowering.
2016 fn merge_trivial_subcandidates(&mut self, candidate: &mut Candidate<'tcx>) {
2017 assert!(!candidate.subcandidates.is_empty());
2018 if candidate.has_guard {
2019 // FIXME(or_patterns; matthewjasper) Don't give up if we have a guard.
2020 return;
2021 }
2022
2023 // FIXME(or_patterns; matthewjasper) Try to be more aggressive here.
2024 let can_merge = candidate.subcandidates.iter().all(|subcandidate| {
2025 subcandidate.subcandidates.is_empty() && subcandidate.extra_data.is_empty()
2026 });
2027 if !can_merge {
2028 return;
2029 }
2030
2031 let mut last_otherwise = None;
2032 let shared_pre_binding_block = self.cfg.start_new_block();
2033 // This candidate is about to become a leaf, so unset `or_span`.
2034 let or_span = candidate.or_span.take().unwrap();
2035 let source_info = self.source_info(or_span);
2036
2037 if candidate.false_edge_start_block.is_none() {
2038 candidate.false_edge_start_block = candidate.subcandidates[0].false_edge_start_block;
2039 }
2040
2041 // Remove the (known-trivial) subcandidates from the candidate tree,
2042 // so that they aren't visible after match tree lowering, and wire them
2043 // all to join up at a single shared pre-binding block.
2044 // (Note that the subcandidates have already had their part of the match
2045 // tree lowered by this point, which is why we can add a goto to them.)
2046 for subcandidate in mem::take(&mut candidate.subcandidates) {
2047 let subcandidate_block = subcandidate.pre_binding_block.unwrap();
2048 self.cfg.goto(subcandidate_block, source_info, shared_pre_binding_block);
2049 last_otherwise = subcandidate.otherwise_block;
2050 }
2051 candidate.pre_binding_block = Some(shared_pre_binding_block);
2052 assert!(last_otherwise.is_some());
2053 candidate.otherwise_block = last_otherwise;
2054 }
2055
2056 /// Never subcandidates may have a set of bindings inconsistent with their siblings,
2057 /// which would break later code. So we filter them out. Note that we can't filter out
2058 /// top-level candidates this way.
2059 fn remove_never_subcandidates(&mut self, candidate: &mut Candidate<'tcx>) {
2060 if candidate.subcandidates.is_empty() {
2061 return;
2062 }
2063
2064 let false_edge_start_block = candidate.subcandidates[0].false_edge_start_block;
2065 candidate.subcandidates.retain_mut(|candidate| {
2066 if candidate.extra_data.is_never {
2067 candidate.visit_leaves(|subcandidate| {
2068 let block = subcandidate.pre_binding_block.unwrap();
2069 // That block is already unreachable but needs a terminator to make the MIR well-formed.
2070 let source_info = self.source_info(subcandidate.extra_data.span);
2071 self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
2072 });
2073 false
2074 } else {
2075 true
2076 }
2077 });
2078 if candidate.subcandidates.is_empty() {
2079 // If `candidate` has become a leaf candidate, ensure it has a `pre_binding_block` and `otherwise_block`.
2080 let next_block = self.cfg.start_new_block();
2081 candidate.pre_binding_block = Some(next_block);
2082 candidate.otherwise_block = Some(next_block);
2083 // In addition, if `candidate` doesn't have `false_edge_start_block`, it should be assigned here.
2084 if candidate.false_edge_start_block.is_none() {
2085 candidate.false_edge_start_block = false_edge_start_block;
2086 }
2087 }
2088 }
2089
2090 /// If more match pairs remain, test them after each subcandidate.
2091 /// We could have added them to the or-candidates during or-pattern expansion, but that
2092 /// would make it impossible to detect simplifiable or-patterns. That would guarantee
2093 /// exponentially large CFGs for cases like `(1 | 2, 3 | 4, ...)`.
2094 fn test_remaining_match_pairs_after_or(
2095 &mut self,
2096 span: Span,
2097 scrutinee_span: Span,
2098 candidate: &mut Candidate<'tcx>,
2099 ) {
2100 if candidate.match_pairs.is_empty() {
2101 return;
2102 }
2103
2104 let or_span = candidate.or_span.unwrap_or(candidate.extra_data.span);
2105 let source_info = self.source_info(or_span);
2106 let mut last_otherwise = None;
2107 candidate.visit_leaves(|leaf_candidate| {
2108 last_otherwise = leaf_candidate.otherwise_block;
2109 });
2110
2111 let remaining_match_pairs = mem::take(&mut candidate.match_pairs);
2112 // We're testing match pairs that remained after an `Or`, so the remaining
2113 // pairs should all be `Or` too, due to the sorting invariant.
2114 debug_assert!(
2115 remaining_match_pairs
2116 .iter()
2117 .all(|match_pair| matches!(match_pair.test_case, TestCase::Or { .. }))
2118 );
2119
2120 // Visit each leaf candidate within this subtree, add a copy of the remaining
2121 // match pairs to it, and then recursively lower the rest of the match tree
2122 // from that point.
2123 candidate.visit_leaves(|leaf_candidate| {
2124 // At this point the leaf's own match pairs have all been lowered
2125 // and removed, so `extend` and assignment are equivalent,
2126 // but extending can also recycle any existing vector capacity.
2127 assert!(leaf_candidate.match_pairs.is_empty());
2128 leaf_candidate.match_pairs.extend(remaining_match_pairs.iter().cloned());
2129
2130 let or_start = leaf_candidate.pre_binding_block.unwrap();
2131 let otherwise =
2132 self.match_candidates(span, scrutinee_span, or_start, &mut [leaf_candidate]);
2133 // In a case like `(P | Q, R | S)`, if `P` succeeds and `R | S` fails, we know `(Q,
2134 // R | S)` will fail too. If there is no guard, we skip testing of `Q` by branching
2135 // directly to `last_otherwise`. If there is a guard,
2136 // `leaf_candidate.otherwise_block` can be reached by guard failure as well, so we
2137 // can't skip `Q`.
2138 let or_otherwise = if leaf_candidate.has_guard {
2139 leaf_candidate.otherwise_block.unwrap()
2140 } else {
2141 last_otherwise.unwrap()
2142 };
2143 self.cfg.goto(otherwise, source_info, or_otherwise);
2144 });
2145 }
2146
2147 /// Pick a test to run. Which test doesn't matter as long as it is guaranteed to fully match at
2148 /// least one match pair. We currently simply pick the test corresponding to the first match
2149 /// pair of the first candidate in the list.
2150 ///
2151 /// *Note:* taking the first match pair is somewhat arbitrary, and we might do better here by
2152 /// choosing more carefully what to test.
2153 ///
2154 /// For example, consider the following possible match-pairs:
2155 ///
2156 /// 1. `x @ Some(P)` -- we will do a [`Switch`] to decide what variant `x` has
2157 /// 2. `x @ 22` -- we will do a [`SwitchInt`] to decide what value `x` has
2158 /// 3. `x @ 3..5` -- we will do a [`Range`] test to decide what range `x` falls in
2159 /// 4. etc.
2160 ///
2161 /// [`Switch`]: TestKind::Switch
2162 /// [`SwitchInt`]: TestKind::SwitchInt
2163 /// [`Range`]: TestKind::Range
2164 fn pick_test(&mut self, candidates: &[&mut Candidate<'tcx>]) -> (Place<'tcx>, Test<'tcx>) {
2165 // Extract the match-pair from the highest priority candidate
2166 let match_pair = &candidates[0].match_pairs[0];
2167 let test = self.pick_test_for_match_pair(match_pair);
2168 // Unwrap is ok after simplification.
2169 let match_place = match_pair.place.unwrap();
2170 debug!(?test, ?match_pair);
2171
2172 (match_place, test)
2173 }
2174
2175 /// Given a test, we partition the input candidates into several buckets.
2176 /// If a candidate matches in exactly one of the branches of `test`
2177 /// (and no other branches), we put it into the corresponding bucket.
2178 /// If it could match in more than one of the branches of `test`, the test
2179 /// doesn't usefully apply to it, and we stop partitioning candidates.
2180 ///
2181 /// Importantly, we also **mutate** the branched candidates to remove match pairs
2182 /// that are entailed by the outcome of the test, and add any sub-pairs of the
2183 /// removed pairs.
2184 ///
2185 /// This returns a pair of
2186 /// - the candidates that weren't sorted;
2187 /// - for each possible outcome of the test, the candidates that match in that outcome.
2188 ///
2189 /// For example:
2190 /// ```
2191 /// # let (x, y, z) = (true, true, true);
2192 /// match (x, y, z) {
2193 /// (true , _ , true ) => true, // (0)
2194 /// (false, false, _ ) => false, // (1)
2195 /// (_ , true , _ ) => true, // (2)
2196 /// (true , _ , false) => false, // (3)
2197 /// }
2198 /// # ;
2199 /// ```
2200 ///
2201 /// Assume we are testing on `x`. Conceptually, there are 2 overlapping candidate sets:
2202 /// - If the outcome is that `x` is true, candidates {0, 2, 3} are possible
2203 /// - If the outcome is that `x` is false, candidates {1, 2} are possible
2204 ///
2205 /// Following our algorithm:
2206 /// - Candidate 0 is sorted into outcome `x == true`
2207 /// - Candidate 1 is sorted into outcome `x == false`
2208 /// - Candidate 2 remains unsorted, because testing `x` has no effect on it
2209 /// - Candidate 3 remains unsorted, because a previous candidate (2) was unsorted
2210 /// - This helps preserve the illusion that candidates are tested "in order"
2211 ///
2212 /// The sorted candidates are mutated to remove entailed match pairs:
2213 /// - candidate 0 becomes `[z @ true]` since we know that `x` was `true`;
2214 /// - candidate 1 becomes `[y @ false]` since we know that `x` was `false`.
2215 fn sort_candidates<'b, 'c>(
2216 &mut self,
2217 match_place: Place<'tcx>,
2218 test: &Test<'tcx>,
2219 mut candidates: &'b mut [&'c mut Candidate<'tcx>],
2220 ) -> (
2221 &'b mut [&'c mut Candidate<'tcx>],
2222 FxIndexMap<TestBranch<'tcx>, Vec<&'b mut Candidate<'tcx>>>,
2223 ) {
2224 // For each of the possible outcomes, collect vector of candidates that apply if the test
2225 // has that particular outcome.
2226 let mut target_candidates: FxIndexMap<_, Vec<&mut Candidate<'_>>> = Default::default();
2227
2228 let total_candidate_count = candidates.len();
2229
2230 // Sort the candidates into the appropriate vector in `target_candidates`. Note that at some
2231 // point we may encounter a candidate where the test is not relevant; at that point, we stop
2232 // sorting.
2233 while let Some(candidate) = candidates.first_mut() {
2234 let Some(branch) =
2235 self.sort_candidate(match_place, test, candidate, &target_candidates)
2236 else {
2237 break;
2238 };
2239 let (candidate, rest) = candidates.split_first_mut().unwrap();
2240 target_candidates.entry(branch).or_insert_with(Vec::new).push(candidate);
2241 candidates = rest;
2242 }
2243
2244 // At least the first candidate ought to be tested
2245 assert!(
2246 total_candidate_count > candidates.len(),
2247 "{total_candidate_count}, {candidates:#?}"
2248 );
2249 debug!("tested_candidates: {}", total_candidate_count - candidates.len());
2250 debug!("untested_candidates: {}", candidates.len());
2251
2252 (candidates, target_candidates)
2253 }
2254
2255 /// This is the most subtle part of the match lowering algorithm. At this point, there are
2256 /// no fully-satisfied candidates, and no or-patterns to expand, so we actually need to
2257 /// perform some sort of test to make progress.
2258 ///
2259 /// Once we pick what sort of test we are going to perform, this test will help us winnow down
2260 /// our candidates. So we walk over the candidates (from high to low priority) and check. We
2261 /// compute, for each outcome of the test, a list of (modified) candidates. If a candidate
2262 /// matches in exactly one branch of our test, we add it to the corresponding outcome. We also
2263 /// **mutate its list of match pairs** if appropriate, to reflect the fact that we know which
2264 /// outcome occurred.
2265 ///
2266 /// For example, if we are testing `x.0`'s variant, and we have a candidate `(x.0 @ Some(v), x.1
2267 /// @ 22)`, then we would have a resulting candidate of `((x.0 as Some).0 @ v, x.1 @ 22)` in the
2268 /// branch corresponding to `Some`. To ensure we make progress, we always pick a test that
2269 /// results in simplifying the first candidate.
2270 ///
2271 /// But there may also be candidates that the test doesn't
2272 /// apply to. The classical example is wildcards:
2273 ///
2274 /// ```
2275 /// # let (x, y, z) = (true, true, true);
2276 /// match (x, y, z) {
2277 /// (true , _ , true ) => true, // (0)
2278 /// (false, false, _ ) => false, // (1)
2279 /// (_ , true , _ ) => true, // (2)
2280 /// (true , _ , false) => false, // (3)
2281 /// }
2282 /// # ;
2283 /// ```
2284 ///
2285 /// Here, the traditional "decision tree" method would generate 2 separate code-paths for the 2
2286 /// possible values of `x`. This would however duplicate some candidates, which would need to be
2287 /// lowered several times.
2288 ///
2289 /// In some cases, this duplication can create an exponential amount of
2290 /// code. This is most easily seen by noticing that this method terminates
2291 /// with precisely the reachable arms being reachable - but that problem
2292 /// is trivially NP-complete:
2293 ///
2294 /// ```ignore (illustrative)
2295 /// match (var0, var1, var2, var3, ...) {
2296 /// (true , _ , _ , false, true, ...) => false,
2297 /// (_ , true, true , false, _ , ...) => false,
2298 /// (false, _ , false, false, _ , ...) => false,
2299 /// ...
2300 /// _ => true
2301 /// }
2302 /// ```
2303 ///
2304 /// Here the last arm is reachable only if there is an assignment to
2305 /// the variables that does not match any of the literals. Therefore,
2306 /// compilation would take an exponential amount of time in some cases.
2307 ///
2308 /// In rustc, we opt instead for the "backtracking automaton" approach. This guarantees we never
2309 /// duplicate a candidate (except in the presence of or-patterns). In fact this guarantee is
2310 /// ensured by the fact that we carry around `&mut Candidate`s which can't be duplicated.
2311 ///
2312 /// To make this work, whenever we decide to perform a test, if we encounter a candidate that
2313 /// could match in more than one branch of the test, we stop. We generate code for the test and
2314 /// for the candidates in its branches; the remaining candidates will be tested if the
2315 /// candidates in the branches fail to match.
2316 ///
2317 /// For example, if we test on `x` in the following:
2318 /// ```
2319 /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
2320 /// match (x, y, z) {
2321 /// (true , _ , true ) => 0,
2322 /// (false, false, _ ) => 1,
2323 /// (_ , true , _ ) => 2,
2324 /// (true , _ , false) => 3,
2325 /// }
2326 /// # }
2327 /// ```
2328 /// this function generates code that looks more of less like:
2329 /// ```
2330 /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
2331 /// if x {
2332 /// match (y, z) {
2333 /// (_, true) => return 0,
2334 /// _ => {} // continue matching
2335 /// }
2336 /// } else {
2337 /// match (y, z) {
2338 /// (false, _) => return 1,
2339 /// _ => {} // continue matching
2340 /// }
2341 /// }
2342 /// // the block here is `remainder_start`
2343 /// match (x, y, z) {
2344 /// (_ , true , _ ) => 2,
2345 /// (true , _ , false) => 3,
2346 /// _ => unreachable!(),
2347 /// }
2348 /// # }
2349 /// ```
2350 ///
2351 /// We return the unprocessed candidates.
2352 fn test_candidates<'b, 'c>(
2353 &mut self,
2354 span: Span,
2355 scrutinee_span: Span,
2356 candidates: &'b mut [&'c mut Candidate<'tcx>],
2357 start_block: BasicBlock,
2358 ) -> BlockAnd<&'b mut [&'c mut Candidate<'tcx>]> {
2359 // Choose a match pair from the first candidate, and use it to determine a
2360 // test to perform that will confirm or refute that match pair.
2361 let (match_place, test) = self.pick_test(candidates);
2362
2363 // For each of the N possible test outcomes, build the vector of candidates that applies if
2364 // the test has that particular outcome. This also mutates the candidates to remove match
2365 // pairs that are fully satisfied by the relevant outcome.
2366 let (remaining_candidates, target_candidates) =
2367 self.sort_candidates(match_place, &test, candidates);
2368
2369 // The block that we should branch to if none of the `target_candidates` match.
2370 let remainder_start = self.cfg.start_new_block();
2371
2372 // For each outcome of the test, recursively lower the rest of the match tree
2373 // from that point. (Note that we haven't lowered the actual test yet!)
2374 let target_blocks: FxIndexMap<_, _> = target_candidates
2375 .into_iter()
2376 .map(|(branch, mut candidates)| {
2377 let branch_start = self.cfg.start_new_block();
2378 // Recursively lower the rest of the match tree after the relevant outcome.
2379 let branch_otherwise =
2380 self.match_candidates(span, scrutinee_span, branch_start, &mut *candidates);
2381
2382 // Link up the `otherwise` block of the subtree to `remainder_start`.
2383 let source_info = self.source_info(span);
2384 self.cfg.goto(branch_otherwise, source_info, remainder_start);
2385 (branch, branch_start)
2386 })
2387 .collect();
2388
2389 // Perform the chosen test, branching to one of the N subtrees prepared above
2390 // (or to `remainder_start` if no outcome was satisfied).
2391 self.perform_test(
2392 span,
2393 scrutinee_span,
2394 start_block,
2395 remainder_start,
2396 match_place,
2397 &test,
2398 target_blocks,
2399 );
2400
2401 remainder_start.and(remaining_candidates)
2402 }
2403}
2404
2405///////////////////////////////////////////////////////////////////////////
2406// Pat binding - used for `let` and function parameters as well.
2407
2408impl<'a, 'tcx> Builder<'a, 'tcx> {
2409 /// Lowers a `let` expression that appears in a suitable context
2410 /// (e.g. an `if` condition or match guard).
2411 ///
2412 /// Also used for lowering let-else statements, since they have similar
2413 /// needs despite not actually using `let` expressions.
2414 ///
2415 /// Use [`DeclareLetBindings`] to control whether the `let` bindings are
2416 /// declared or not.
2417 pub(crate) fn lower_let_expr(
2418 &mut self,
2419 mut block: BasicBlock,
2420 expr_id: ExprId,
2421 pat: &Pat<'tcx>,
2422 source_scope: Option<SourceScope>,
2423 scope_span: Span,
2424 declare_let_bindings: DeclareLetBindings,
2425 ) -> BlockAnd<()> {
2426 let expr_span = self.thir[expr_id].span;
2427 let scrutinee = unpack!(block = self.lower_scrutinee(block, expr_id, expr_span));
2428 let built_tree = self.lower_match_tree(
2429 block,
2430 expr_span,
2431 &scrutinee,
2432 pat.span,
2433 vec![(pat, HasMatchGuard::No)],
2434 true,
2435 );
2436 let [branch] = built_tree.branches.try_into().unwrap();
2437
2438 self.break_for_else(built_tree.otherwise_block, self.source_info(expr_span));
2439
2440 match declare_let_bindings {
2441 DeclareLetBindings::Yes => {
2442 let expr_place = scrutinee.try_to_place(self);
2443 let opt_expr_place = expr_place.as_ref().map(|place| (Some(place), expr_span));
2444 self.declare_bindings(
2445 source_scope,
2446 pat.span.to(scope_span),
2447 pat,
2448 None,
2449 opt_expr_place,
2450 );
2451 }
2452 DeclareLetBindings::No => {} // Caller is responsible for bindings.
2453 DeclareLetBindings::LetNotPermitted => {
2454 self.tcx.dcx().span_bug(expr_span, "let expression not expected in this context")
2455 }
2456 }
2457
2458 let success = self.bind_pattern(self.source_info(pat.span), branch, &[], expr_span, None);
2459
2460 // If branch coverage is enabled, record this branch.
2461 self.visit_coverage_conditional_let(pat, success, built_tree.otherwise_block);
2462
2463 success.unit()
2464 }
2465
2466 /// Initializes each of the bindings from the candidate by
2467 /// moving/copying/ref'ing the source as appropriate. Tests the guard, if
2468 /// any, and then branches to the arm. Returns the block for the case where
2469 /// the guard succeeds.
2470 ///
2471 /// Note: we do not check earlier that if there is a guard,
2472 /// there cannot be move bindings. We avoid a use-after-move by only
2473 /// moving the binding once the guard has evaluated to true (see below).
2474 fn bind_and_guard_matched_candidate(
2475 &mut self,
2476 sub_branch: MatchTreeSubBranch<'tcx>,
2477 fake_borrows: &[(Place<'tcx>, Local, FakeBorrowKind)],
2478 scrutinee_span: Span,
2479 arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
2480 schedule_drops: ScheduleDrops,
2481 ) -> BasicBlock {
2482 debug!("bind_and_guard_matched_candidate(subbranch={:?})", sub_branch);
2483
2484 let block = sub_branch.success_block;
2485
2486 if sub_branch.is_never {
2487 // This arm has a dummy body, we don't need to generate code for it. `block` is already
2488 // unreachable (except via false edge).
2489 let source_info = self.source_info(sub_branch.span);
2490 self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
2491 return self.cfg.start_new_block();
2492 }
2493
2494 self.ascribe_types(block, sub_branch.ascriptions);
2495
2496 // Lower an instance of the arm guard (if present) for this candidate,
2497 // and then perform bindings for the arm body.
2498 if let Some((arm, match_scope)) = arm_match_scope
2499 && let Some(guard) = arm.guard
2500 {
2501 let tcx = self.tcx;
2502
2503 // Bindings for guards require some extra handling to automatically
2504 // insert implicit references/dereferences.
2505 // This always schedules storage drops, so we may need to unschedule them below.
2506 self.bind_matched_candidate_for_guard(block, sub_branch.bindings.iter());
2507 let guard_frame = GuardFrame {
2508 locals: sub_branch
2509 .bindings
2510 .iter()
2511 .map(|b| GuardFrameLocal::new(b.var_id))
2512 .collect(),
2513 };
2514 debug!("entering guard building context: {:?}", guard_frame);
2515 self.guard_context.push(guard_frame);
2516
2517 let re_erased = tcx.lifetimes.re_erased;
2518 let scrutinee_source_info = self.source_info(scrutinee_span);
2519 for &(place, temp, kind) in fake_borrows {
2520 let borrow = Rvalue::Ref(re_erased, BorrowKind::Fake(kind), place);
2521 self.cfg.push_assign(block, scrutinee_source_info, Place::from(temp), borrow);
2522 }
2523
2524 let mut guard_span = rustc_span::DUMMY_SP;
2525
2526 let (post_guard_block, otherwise_post_guard_block) =
2527 self.in_if_then_scope(match_scope, guard_span, |this| {
2528 guard_span = this.thir[guard].span;
2529 this.then_else_break(
2530 block,
2531 guard,
2532 None, // Use `self.local_scope()` as the temp scope
2533 this.source_info(arm.span),
2534 DeclareLetBindings::No, // For guards, `let` bindings are declared separately
2535 )
2536 });
2537
2538 // If this isn't the final sub-branch being lowered, we need to unschedule drops of
2539 // bindings and temporaries created for and by the guard. As a result, the drop order
2540 // for the arm will correspond to the binding order of the final sub-branch lowered.
2541 if matches!(schedule_drops, ScheduleDrops::No) {
2542 self.clear_match_arm_and_guard_scopes(arm.scope);
2543 }
2544
2545 let source_info = self.source_info(guard_span);
2546 let guard_end = self.source_info(tcx.sess.source_map().end_point(guard_span));
2547 let guard_frame = self.guard_context.pop().unwrap();
2548 debug!("Exiting guard building context with locals: {:?}", guard_frame);
2549
2550 for &(_, temp, _) in fake_borrows {
2551 let cause = FakeReadCause::ForMatchGuard;
2552 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(temp));
2553 }
2554
2555 self.cfg.goto(otherwise_post_guard_block, source_info, sub_branch.otherwise_block);
2556
2557 // We want to ensure that the matched candidates are bound
2558 // after we have confirmed this candidate *and* any
2559 // associated guard; Binding them on `block` is too soon,
2560 // because that would be before we've checked the result
2561 // from the guard.
2562 //
2563 // But binding them on the arm is *too late*, because
2564 // then all of the candidates for a single arm would be
2565 // bound in the same place, that would cause a case like:
2566 //
2567 // ```rust
2568 // match (30, 2) {
2569 // (mut x, 1) | (2, mut x) if { true } => { ... }
2570 // ... // ^^^^^^^ (this is `arm_block`)
2571 // }
2572 // ```
2573 //
2574 // would yield an `arm_block` something like:
2575 //
2576 // ```
2577 // StorageLive(_4); // _4 is `x`
2578 // _4 = &mut (_1.0: i32); // this is handling `(mut x, 1)` case
2579 // _4 = &mut (_1.1: i32); // this is handling `(2, mut x)` case
2580 // ```
2581 //
2582 // and that is clearly not correct.
2583 let by_value_bindings = sub_branch
2584 .bindings
2585 .iter()
2586 .filter(|binding| matches!(binding.binding_mode.0, ByRef::No));
2587 // Read all of the by reference bindings to ensure that the
2588 // place they refer to can't be modified by the guard.
2589 for binding in by_value_bindings.clone() {
2590 let local_id = self.var_local_id(binding.var_id, RefWithinGuard);
2591 let cause = FakeReadCause::ForGuardBinding;
2592 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
2593 }
2594 // Only schedule drops for the last sub-branch we lower.
2595 self.bind_matched_candidate_for_arm_body(
2596 post_guard_block,
2597 schedule_drops,
2598 by_value_bindings,
2599 );
2600
2601 post_guard_block
2602 } else {
2603 // (Here, it is not too early to bind the matched
2604 // candidate on `block`, because there is no guard result
2605 // that we have to inspect before we bind them.)
2606 self.bind_matched_candidate_for_arm_body(
2607 block,
2608 schedule_drops,
2609 sub_branch.bindings.iter(),
2610 );
2611 block
2612 }
2613 }
2614
2615 /// Append `AscribeUserType` statements onto the end of `block`
2616 /// for each ascription
2617 fn ascribe_types(
2618 &mut self,
2619 block: BasicBlock,
2620 ascriptions: impl IntoIterator<Item = Ascription<'tcx>>,
2621 ) {
2622 for ascription in ascriptions {
2623 let source_info = self.source_info(ascription.annotation.span);
2624
2625 let base = self.canonical_user_type_annotations.push(ascription.annotation);
2626 self.cfg.push(
2627 block,
2628 Statement::new(
2629 source_info,
2630 StatementKind::AscribeUserType(
2631 Box::new((
2632 ascription.source,
2633 UserTypeProjection { base, projs: Vec::new() },
2634 )),
2635 ascription.variance,
2636 ),
2637 ),
2638 );
2639 }
2640 }
2641
2642 /// Binding for guards is a bit different from binding for the arm body,
2643 /// because an extra layer of implicit reference/dereference is added.
2644 ///
2645 /// The idea is that any pattern bindings of type T will map to a `&T` within
2646 /// the context of the guard expression, but will continue to map to a `T`
2647 /// in the context of the arm body. To avoid surfacing this distinction in
2648 /// the user source code (which would be a severe change to the language and
2649 /// require far more revision to the compiler), any occurrence of the
2650 /// identifier in the guard expression will automatically get a deref op
2651 /// applied to it. (See the caller of [`Self::is_bound_var_in_guard`].)
2652 ///
2653 /// So an input like:
2654 ///
2655 /// ```ignore (illustrative)
2656 /// let place = Foo::new();
2657 /// match place { foo if inspect(foo)
2658 /// => feed(foo), ... }
2659 /// ```
2660 ///
2661 /// will be treated as if it were really something like:
2662 ///
2663 /// ```ignore (illustrative)
2664 /// let place = Foo::new();
2665 /// match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
2666 /// => { let tmp2 = place; feed(tmp2) }, ... }
2667 /// ```
2668 ///
2669 /// And an input like:
2670 ///
2671 /// ```ignore (illustrative)
2672 /// let place = Foo::new();
2673 /// match place { ref mut foo if inspect(foo)
2674 /// => feed(foo), ... }
2675 /// ```
2676 ///
2677 /// will be treated as if it were really something like:
2678 ///
2679 /// ```ignore (illustrative)
2680 /// let place = Foo::new();
2681 /// match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
2682 /// => { let tmp2 = &mut place; feed(tmp2) }, ... }
2683 /// ```
2684 /// ---
2685 ///
2686 /// ## Implementation notes
2687 ///
2688 /// To encode the distinction above, we must inject the
2689 /// temporaries `tmp1` and `tmp2`.
2690 ///
2691 /// There are two cases of interest: binding by-value, and binding by-ref.
2692 ///
2693 /// 1. Binding by-value: Things are simple.
2694 ///
2695 /// * Establishing `tmp1` creates a reference into the
2696 /// matched place. This code is emitted by
2697 /// [`Self::bind_matched_candidate_for_guard`].
2698 ///
2699 /// * `tmp2` is only initialized "lazily", after we have
2700 /// checked the guard. Thus, the code that can trigger
2701 /// moves out of the candidate can only fire after the
2702 /// guard evaluated to true. This initialization code is
2703 /// emitted by [`Self::bind_matched_candidate_for_arm_body`].
2704 ///
2705 /// 2. Binding by-reference: Things are tricky.
2706 ///
2707 /// * Here, the guard expression wants a `&&` or `&&mut`
2708 /// into the original input. This means we need to borrow
2709 /// the reference that we create for the arm.
2710 /// * So we eagerly create the reference for the arm and then take a
2711 /// reference to that.
2712 ///
2713 /// ---
2714 ///
2715 /// See these PRs for some historical context:
2716 /// - <https://github.com/rust-lang/rust/pull/49870> (introduction of autoref)
2717 /// - <https://github.com/rust-lang/rust/pull/59114> (always use autoref)
2718 fn bind_matched_candidate_for_guard<'b>(
2719 &mut self,
2720 block: BasicBlock,
2721 bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2722 ) where
2723 'tcx: 'b,
2724 {
2725 debug!("bind_matched_candidate_for_guard(block={:?})", block);
2726
2727 // Assign each of the bindings. Since we are binding for a
2728 // guard expression, this will never trigger moves out of the
2729 // candidate.
2730 let re_erased = self.tcx.lifetimes.re_erased;
2731 for binding in bindings {
2732 debug!("bind_matched_candidate_for_guard(binding={:?})", binding);
2733 let source_info = self.source_info(binding.span);
2734
2735 // For each pattern ident P of type T, `ref_for_guard` is
2736 // a reference R: &T pointing to the location matched by
2737 // the pattern, and every occurrence of P within a guard
2738 // denotes *R.
2739 // Drops must be scheduled to emit `StorageDead` on the guard's failure/break branches.
2740 let ref_for_guard = self.storage_live_binding(
2741 block,
2742 binding.var_id,
2743 binding.span,
2744 binding.is_shorthand,
2745 RefWithinGuard,
2746 ScheduleDrops::Yes,
2747 );
2748 match binding.binding_mode.0 {
2749 ByRef::No => {
2750 // The arm binding will be by value, so for the guard binding
2751 // just take a shared reference to the matched place.
2752 let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, binding.source);
2753 self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2754 }
2755 ByRef::Yes(pinnedness, mutbl) => {
2756 // The arm binding will be by reference, so eagerly create it now // be scheduled to emit `StorageDead` on the guard's failure/break branches.
2757 let value_for_arm = self.storage_live_binding(
2758 block,
2759 binding.var_id,
2760 binding.span,
2761 binding.is_shorthand,
2762 OutsideGuard,
2763 ScheduleDrops::Yes,
2764 );
2765
2766 let rvalue =
2767 Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source);
2768 let rvalue = match pinnedness {
2769 ty::Pinnedness::Not => rvalue,
2770 ty::Pinnedness::Pinned => {
2771 self.pin_borrowed_local(block, value_for_arm.local, rvalue, source_info)
2772 }
2773 };
2774 self.cfg.push_assign(block, source_info, value_for_arm, rvalue);
2775 // For the guard binding, take a shared reference to that reference.
2776 let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, value_for_arm);
2777 self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2778 }
2779 }
2780 }
2781 }
2782
2783 fn bind_matched_candidate_for_arm_body<'b>(
2784 &mut self,
2785 block: BasicBlock,
2786 schedule_drops: ScheduleDrops,
2787 bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2788 ) where
2789 'tcx: 'b,
2790 {
2791 debug!("bind_matched_candidate_for_arm_body(block={:?})", block);
2792
2793 let re_erased = self.tcx.lifetimes.re_erased;
2794 // Assign each of the bindings. This may trigger moves out of the candidate.
2795 for binding in bindings {
2796 let source_info = self.source_info(binding.span);
2797 let local = self.storage_live_binding(
2798 block,
2799 binding.var_id,
2800 binding.span,
2801 binding.is_shorthand,
2802 OutsideGuard,
2803 schedule_drops,
2804 );
2805 if matches!(schedule_drops, ScheduleDrops::Yes) {
2806 self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
2807 }
2808 let rvalue = match binding.binding_mode.0 {
2809 ByRef::No => Rvalue::Use(self.consume_by_copy_or_move(binding.source)),
2810 ByRef::Yes(pinnedness, mutbl) => {
2811 let rvalue =
2812 Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source);
2813 match pinnedness {
2814 ty::Pinnedness::Not => rvalue,
2815 ty::Pinnedness::Pinned => {
2816 self.pin_borrowed_local(block, local.local, rvalue, source_info)
2817 }
2818 }
2819 }
2820 };
2821 self.cfg.push_assign(block, source_info, local, rvalue);
2822 }
2823 }
2824
2825 /// Given an rvalue `&[mut]borrow` and a local `local`, generate the pinned borrow for it:
2826 /// ```ignore (illustrative)
2827 /// pinned_temp = &borrow;
2828 /// local = Pin { __pointer: move pinned_temp };
2829 /// ```
2830 fn pin_borrowed_local(
2831 &mut self,
2832 block: BasicBlock,
2833 local: Local,
2834 borrow: Rvalue<'tcx>,
2835 source_info: SourceInfo,
2836 ) -> Rvalue<'tcx> {
2837 debug_assert_matches!(borrow, Rvalue::Ref(..));
2838
2839 let local_ty = self.local_decls[local].ty;
2840
2841 let pinned_ty = local_ty.pinned_ty().unwrap_or_else(|| {
2842 span_bug!(
2843 source_info.span,
2844 "expect type `Pin` for a pinned binding, found type {:?}",
2845 local_ty
2846 )
2847 });
2848 let pinned_temp =
2849 Place::from(self.local_decls.push(LocalDecl::new(pinned_ty, source_info.span)));
2850 self.cfg.push_assign(block, source_info, pinned_temp, borrow);
2851 Rvalue::Aggregate(
2852 Box::new(AggregateKind::Adt(
2853 self.tcx.require_lang_item(LangItem::Pin, source_info.span),
2854 FIRST_VARIANT,
2855 self.tcx.mk_args(&[pinned_ty.into()]),
2856 None,
2857 None,
2858 )),
2859 std::iter::once(Operand::Move(pinned_temp)).collect(),
2860 )
2861 }
2862
2863 /// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where the bound
2864 /// `var` has type `T` in the arm body) in a pattern maps to 2 locals. The
2865 /// first local is a binding for occurrences of `var` in the guard, which
2866 /// will have type `&T`. The second local is a binding for occurrences of
2867 /// `var` in the arm body, which will have type `T`.
2868 #[instrument(skip(self), level = "debug")]
2869 fn declare_binding(
2870 &mut self,
2871 source_info: SourceInfo,
2872 visibility_scope: SourceScope,
2873 name: Symbol,
2874 mode: BindingMode,
2875 var_id: LocalVarId,
2876 var_ty: Ty<'tcx>,
2877 user_ty: Option<Box<UserTypeProjections>>,
2878 has_guard: ArmHasGuard,
2879 opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
2880 pat_span: Span,
2881 ) {
2882 let tcx = self.tcx;
2883 let debug_source_info = SourceInfo { span: source_info.span, scope: visibility_scope };
2884 let local = LocalDecl {
2885 mutability: mode.1,
2886 ty: var_ty,
2887 user_ty,
2888 source_info,
2889 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(BindingForm::Var(
2890 VarBindingForm {
2891 binding_mode: mode,
2892 // hypothetically, `visit_primary_bindings` could try to unzip
2893 // an outermost hir::Ty as we descend, matching up
2894 // idents in pat; but complex w/ unclear UI payoff.
2895 // Instead, just abandon providing diagnostic info.
2896 opt_ty_info: None,
2897 opt_match_place,
2898 pat_span,
2899 introductions: Vec::new(),
2900 },
2901 )))),
2902 };
2903 let for_arm_body = self.local_decls.push(local);
2904 if self.should_emit_debug_info_for_binding(name, var_id) {
2905 self.var_debug_info.push(VarDebugInfo {
2906 name,
2907 source_info: debug_source_info,
2908 value: VarDebugInfoContents::Place(for_arm_body.into()),
2909 composite: None,
2910 argument_index: None,
2911 });
2912 }
2913 let locals = if has_guard.0 {
2914 let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
2915 // This variable isn't mutated but has a name, so has to be
2916 // immutable to avoid the unused mut lint.
2917 mutability: Mutability::Not,
2918 ty: Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, var_ty),
2919 user_ty: None,
2920 source_info,
2921 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(
2922 BindingForm::RefForGuard(for_arm_body),
2923 ))),
2924 });
2925 if self.should_emit_debug_info_for_binding(name, var_id) {
2926 self.var_debug_info.push(VarDebugInfo {
2927 name,
2928 source_info: debug_source_info,
2929 value: VarDebugInfoContents::Place(ref_for_guard.into()),
2930 composite: None,
2931 argument_index: None,
2932 });
2933 }
2934 LocalsForNode::ForGuard { ref_for_guard, for_arm_body }
2935 } else {
2936 LocalsForNode::One(for_arm_body)
2937 };
2938 debug!(?locals);
2939 self.var_indices.insert(var_id, locals);
2940 }
2941
2942 /// Some bindings are introduced when producing HIR from the AST and don't
2943 /// actually exist in the source. Skip producing debug info for those when
2944 /// we can recognize them.
2945 fn should_emit_debug_info_for_binding(&self, name: Symbol, var_id: LocalVarId) -> bool {
2946 // For now we only recognize the output of desugaring assigns.
2947 if name != sym::lhs {
2948 return true;
2949 }
2950
2951 let tcx = self.tcx;
2952 for (_, node) in tcx.hir_parent_iter(var_id.0) {
2953 // FIXME(khuey) at what point is it safe to bail on the iterator?
2954 // Can we stop at the first non-Pat node?
2955 if matches!(node, Node::LetStmt(&LetStmt { source: LocalSource::AssignDesugar, .. })) {
2956 return false;
2957 }
2958 }
2959
2960 true
2961 }
2962
2963 /// Attempt to statically pick the `BasicBlock` that a value would resolve to at runtime.
2964 pub(crate) fn static_pattern_match(
2965 &self,
2966 cx: &RustcPatCtxt<'_, 'tcx>,
2967 valtree: ValTree<'tcx>,
2968 arms: &[ArmId],
2969 built_match_tree: &BuiltMatchTree<'tcx>,
2970 ) -> Option<BasicBlock> {
2971 let it = arms.iter().zip(built_match_tree.branches.iter());
2972 for (&arm_id, branch) in it {
2973 let pat = cx.lower_pat(&*self.thir.arms[arm_id].pattern);
2974
2975 // Peel off or-patterns if they exist.
2976 if let rustc_pattern_analysis::rustc::Constructor::Or = pat.ctor() {
2977 for pat in pat.iter_fields() {
2978 // For top-level or-patterns (the only ones we accept right now), when the
2979 // bindings are the same (e.g. there are none), the sub_branch is stored just
2980 // once.
2981 let sub_branch = branch
2982 .sub_branches
2983 .get(pat.idx)
2984 .or_else(|| branch.sub_branches.last())
2985 .unwrap();
2986
2987 match self.static_pattern_match_inner(valtree, &pat.pat) {
2988 true => return Some(sub_branch.success_block),
2989 false => continue,
2990 }
2991 }
2992 } else if self.static_pattern_match_inner(valtree, &pat) {
2993 return Some(branch.sub_branches[0].success_block);
2994 }
2995 }
2996
2997 None
2998 }
2999
3000 /// Helper for [`Self::static_pattern_match`], checking whether the value represented by the
3001 /// `ValTree` matches the given pattern. This function does not recurse, meaning that it does
3002 /// not handle or-patterns, or patterns for types with fields.
3003 fn static_pattern_match_inner(
3004 &self,
3005 valtree: ty::ValTree<'tcx>,
3006 pat: &DeconstructedPat<'_, 'tcx>,
3007 ) -> bool {
3008 use rustc_pattern_analysis::constructor::{IntRange, MaybeInfiniteInt};
3009 use rustc_pattern_analysis::rustc::Constructor;
3010
3011 match pat.ctor() {
3012 Constructor::Variant(variant_index) => {
3013 let ValTreeKind::Branch(box [actual_variant_idx]) = *valtree else {
3014 bug!("malformed valtree for an enum")
3015 };
3016
3017 let ValTreeKind::Leaf(actual_variant_idx) = ***actual_variant_idx else {
3018 bug!("malformed valtree for an enum")
3019 };
3020
3021 *variant_index == VariantIdx::from_u32(actual_variant_idx.to_u32())
3022 }
3023 Constructor::IntRange(int_range) => {
3024 let size = pat.ty().primitive_size(self.tcx);
3025 let actual_int = valtree.unwrap_leaf().to_bits(size);
3026 let actual_int = if pat.ty().is_signed() {
3027 MaybeInfiniteInt::new_finite_int(actual_int, size.bits())
3028 } else {
3029 MaybeInfiniteInt::new_finite_uint(actual_int)
3030 };
3031 IntRange::from_singleton(actual_int).is_subrange(int_range)
3032 }
3033 Constructor::Bool(pattern_value) => match valtree.unwrap_leaf().try_to_bool() {
3034 Ok(actual_value) => *pattern_value == actual_value,
3035 Err(()) => bug!("bool value with invalid bits"),
3036 },
3037 Constructor::F16Range(l, h, end) => {
3038 let actual = valtree.unwrap_leaf().to_f16();
3039 match end {
3040 RangeEnd::Included => (*l..=*h).contains(&actual),
3041 RangeEnd::Excluded => (*l..*h).contains(&actual),
3042 }
3043 }
3044 Constructor::F32Range(l, h, end) => {
3045 let actual = valtree.unwrap_leaf().to_f32();
3046 match end {
3047 RangeEnd::Included => (*l..=*h).contains(&actual),
3048 RangeEnd::Excluded => (*l..*h).contains(&actual),
3049 }
3050 }
3051 Constructor::F64Range(l, h, end) => {
3052 let actual = valtree.unwrap_leaf().to_f64();
3053 match end {
3054 RangeEnd::Included => (*l..=*h).contains(&actual),
3055 RangeEnd::Excluded => (*l..*h).contains(&actual),
3056 }
3057 }
3058 Constructor::F128Range(l, h, end) => {
3059 let actual = valtree.unwrap_leaf().to_f128();
3060 match end {
3061 RangeEnd::Included => (*l..=*h).contains(&actual),
3062 RangeEnd::Excluded => (*l..*h).contains(&actual),
3063 }
3064 }
3065 Constructor::Wildcard => true,
3066
3067 // Opaque patterns must not be matched on structurally.
3068 Constructor::Opaque(_) => false,
3069
3070 // These we may eventually support:
3071 Constructor::Struct
3072 | Constructor::Ref
3073 | Constructor::DerefPattern(_)
3074 | Constructor::Slice(_)
3075 | Constructor::UnionField
3076 | Constructor::Or
3077 | Constructor::Str(_) => bug!("unsupported pattern constructor {:?}", pat.ctor()),
3078
3079 // These should never occur here:
3080 Constructor::Never
3081 | Constructor::NonExhaustive
3082 | Constructor::Hidden
3083 | Constructor::Missing
3084 | Constructor::PrivateUninhabited => {
3085 bug!("unsupported pattern constructor {:?}", pat.ctor())
3086 }
3087 }
3088 }
3089}