rustc_mir_build/builder/matches/mod.rs
1//! Code related to match expressions. These are sufficiently complex to
2//! warrant their own module and submodules. :) This main module includes the
3//! high-level algorithm, the submodules contain the details.
4//!
5//! This also includes code for pattern bindings in `let` statements and
6//! function parameters.
7
8use std::assert_matches::debug_assert_matches;
9use std::borrow::Borrow;
10use std::mem;
11use std::sync::Arc;
12
13use itertools::{Itertools, Position};
14use rustc_abi::{FIRST_VARIANT, VariantIdx};
15use rustc_data_structures::fx::FxIndexMap;
16use rustc_data_structures::stack::ensure_sufficient_stack;
17use rustc_hir::{BindingMode, ByRef, LangItem, LetStmt, LocalSource, Node};
18use rustc_middle::middle::region::{self, TempLifetime};
19use rustc_middle::mir::*;
20use rustc_middle::thir::{self, *};
21use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty, ValTree, ValTreeKind};
22use rustc_middle::{bug, span_bug};
23use rustc_pattern_analysis::constructor::RangeEnd;
24use rustc_pattern_analysis::rustc::{DeconstructedPat, RustcPatCtxt};
25use rustc_span::{BytePos, Pos, Span, Symbol, sym};
26use tracing::{debug, instrument};
27
28use crate::builder::ForGuard::{self, OutsideGuard, RefWithinGuard};
29use crate::builder::expr::as_place::PlaceBuilder;
30use crate::builder::matches::buckets::PartitionedCandidates;
31use crate::builder::matches::user_ty::ProjectedUserTypesNode;
32use crate::builder::scope::DropKind;
33use crate::builder::{
34 BlockAnd, BlockAndExtension, Builder, GuardFrame, GuardFrameLocal, LocalsForNode,
35};
36
37// helper functions, broken out by category:
38mod buckets;
39mod match_pair;
40mod test;
41mod user_ty;
42mod util;
43
44/// Arguments to [`Builder::then_else_break_inner`] that are usually forwarded
45/// to recursive invocations.
46#[derive(Clone, Copy)]
47struct ThenElseArgs {
48 /// Used as the temp scope for lowering `expr`. If absent (for match guards),
49 /// `self.local_scope()` is used.
50 temp_scope_override: Option<region::Scope>,
51 variable_source_info: SourceInfo,
52 /// Determines how bindings should be handled when lowering `let` expressions.
53 ///
54 /// Forwarded to [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
55 declare_let_bindings: DeclareLetBindings,
56}
57
58/// Should lowering a `let` expression also declare its bindings?
59///
60/// Used by [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
61#[derive(Clone, Copy)]
62pub(crate) enum DeclareLetBindings {
63 /// Yes, declare `let` bindings as normal for `if` conditions.
64 Yes,
65 /// No, don't declare `let` bindings, because the caller declares them
66 /// separately due to special requirements.
67 ///
68 /// Used for match guards and let-else.
69 No,
70 /// Let expressions are not permitted in this context, so it is a bug to
71 /// try to lower one (e.g inside lazy-boolean-or or boolean-not).
72 LetNotPermitted,
73}
74
75/// Used by [`Builder::storage_live_binding`] and [`Builder::bind_matched_candidate_for_arm_body`]
76/// to decide whether to schedule drops.
77#[derive(Clone, Copy, Debug)]
78pub(crate) enum ScheduleDrops {
79 /// Yes, the relevant functions should also schedule drops as appropriate.
80 Yes,
81 /// No, don't schedule drops. The caller has taken responsibility for any
82 /// appropriate drops.
83 No,
84}
85
86impl<'a, 'tcx> Builder<'a, 'tcx> {
87 /// Lowers a condition in a way that ensures that variables bound in any let
88 /// expressions are definitely initialized in the if body.
89 ///
90 /// If `declare_let_bindings` is false then variables created in `let`
91 /// expressions will not be declared. This is for if let guards on arms with
92 /// an or pattern, where the guard is lowered multiple times.
93 pub(crate) fn then_else_break(
94 &mut self,
95 block: BasicBlock,
96 expr_id: ExprId,
97 temp_scope_override: Option<region::Scope>,
98 variable_source_info: SourceInfo,
99 declare_let_bindings: DeclareLetBindings,
100 ) -> BlockAnd<()> {
101 self.then_else_break_inner(
102 block,
103 expr_id,
104 ThenElseArgs { temp_scope_override, variable_source_info, declare_let_bindings },
105 )
106 }
107
108 fn then_else_break_inner(
109 &mut self,
110 block: BasicBlock, // Block that the condition and branch will be lowered into
111 expr_id: ExprId, // Condition expression to lower
112 args: ThenElseArgs,
113 ) -> BlockAnd<()> {
114 let this = self; // See "LET_THIS_SELF".
115 let expr = &this.thir[expr_id];
116 let expr_span = expr.span;
117
118 match expr.kind {
119 ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
120 let lhs_then_block = this.then_else_break_inner(block, lhs, args).into_block();
121 let rhs_then_block =
122 this.then_else_break_inner(lhs_then_block, rhs, args).into_block();
123 rhs_then_block.unit()
124 }
125 ExprKind::LogicalOp { op: LogicalOp::Or, lhs, rhs } => {
126 let local_scope = this.local_scope();
127 let (lhs_success_block, failure_block) =
128 this.in_if_then_scope(local_scope, expr_span, |this| {
129 this.then_else_break_inner(
130 block,
131 lhs,
132 ThenElseArgs {
133 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
134 ..args
135 },
136 )
137 });
138 let rhs_success_block = this
139 .then_else_break_inner(
140 failure_block,
141 rhs,
142 ThenElseArgs {
143 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
144 ..args
145 },
146 )
147 .into_block();
148
149 // Make the LHS and RHS success arms converge to a common block.
150 // (We can't just make LHS goto RHS, because `rhs_success_block`
151 // might contain statements that we don't want on the LHS path.)
152 let success_block = this.cfg.start_new_block();
153 this.cfg.goto(lhs_success_block, args.variable_source_info, success_block);
154 this.cfg.goto(rhs_success_block, args.variable_source_info, success_block);
155 success_block.unit()
156 }
157 ExprKind::Unary { op: UnOp::Not, arg } => {
158 // Improve branch coverage instrumentation by noting conditions
159 // nested within one or more `!` expressions.
160 // (Skipped if branch coverage is not enabled.)
161 if let Some(coverage_info) = this.coverage_info.as_mut() {
162 coverage_info.visit_unary_not(this.thir, expr_id);
163 }
164
165 let local_scope = this.local_scope();
166 let (success_block, failure_block) =
167 this.in_if_then_scope(local_scope, expr_span, |this| {
168 // Help out coverage instrumentation by injecting a dummy statement with
169 // the original condition's span (including `!`). This fixes #115468.
170 if this.tcx.sess.instrument_coverage() {
171 this.cfg.push_coverage_span_marker(block, this.source_info(expr_span));
172 }
173 this.then_else_break_inner(
174 block,
175 arg,
176 ThenElseArgs {
177 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
178 ..args
179 },
180 )
181 });
182 this.break_for_else(success_block, args.variable_source_info);
183 failure_block.unit()
184 }
185 ExprKind::Scope { region_scope, lint_level, value } => {
186 let region_scope = (region_scope, this.source_info(expr_span));
187 this.in_scope(region_scope, lint_level, |this| {
188 this.then_else_break_inner(block, value, args)
189 })
190 }
191 ExprKind::Use { source } => this.then_else_break_inner(block, source, args),
192 ExprKind::Let { expr, ref pat } => this.lower_let_expr(
193 block,
194 expr,
195 pat,
196 Some(args.variable_source_info.scope),
197 args.variable_source_info.span,
198 args.declare_let_bindings,
199 ),
200 _ => {
201 let mut block = block;
202 let temp_scope = args.temp_scope_override.unwrap_or_else(|| this.local_scope());
203 let mutability = Mutability::Mut;
204
205 let place = unpack!(
206 block = this.as_temp(
207 block,
208 TempLifetime {
209 temp_lifetime: Some(temp_scope),
210 backwards_incompatible: None
211 },
212 expr_id,
213 mutability
214 )
215 );
216
217 let operand = Operand::Move(Place::from(place));
218
219 let then_block = this.cfg.start_new_block();
220 let else_block = this.cfg.start_new_block();
221 let term = TerminatorKind::if_(operand, then_block, else_block);
222
223 // Record branch coverage info for this condition.
224 // (Does nothing if branch coverage is not enabled.)
225 this.visit_coverage_branch_condition(expr_id, then_block, else_block);
226
227 let source_info = this.source_info(expr_span);
228 this.cfg.terminate(block, source_info, term);
229 this.break_for_else(else_block, source_info);
230
231 then_block.unit()
232 }
233 }
234 }
235
236 /// Generates MIR for a `match` expression.
237 ///
238 /// The MIR that we generate for a match looks like this.
239 ///
240 /// ```text
241 /// [ 0. Pre-match ]
242 /// |
243 /// [ 1. Evaluate Scrutinee (expression being matched on) ]
244 /// [ (PlaceMention of scrutinee) ]
245 /// |
246 /// [ 2. Decision tree -- check discriminants ] <--------+
247 /// | |
248 /// | (once a specific arm is chosen) |
249 /// | |
250 /// [pre_binding_block] [otherwise_block]
251 /// | |
252 /// [ 3. Create "guard bindings" for arm ] |
253 /// [ (create fake borrows) ] |
254 /// | |
255 /// [ 4. Execute guard code ] |
256 /// [ (read fake borrows) ] --(guard is false)-----------+
257 /// |
258 /// | (guard results in true)
259 /// |
260 /// [ 5. Create real bindings and execute arm ]
261 /// |
262 /// [ Exit match ]
263 /// ```
264 ///
265 /// All of the different arms have been stacked on top of each other to
266 /// simplify the diagram. For an arm with no guard the blocks marked 3 and
267 /// 4 and the fake borrows are omitted.
268 ///
269 /// We generate MIR in the following steps:
270 ///
271 /// 1. Evaluate the scrutinee and add the PlaceMention of it ([Builder::lower_scrutinee]).
272 /// 2. Create the decision tree ([Builder::lower_match_tree]).
273 /// 3. Determine the fake borrows that are needed from the places that were
274 /// matched against and create the required temporaries for them
275 /// ([util::collect_fake_borrows]).
276 /// 4. Create everything else: the guards and the arms ([Builder::lower_match_arms]).
277 ///
278 /// ## False edges
279 ///
280 /// We don't want to have the exact structure of the decision tree be visible through borrow
281 /// checking. Specifically we want borrowck to think that:
282 /// - at any point, any or none of the patterns and guards seen so far may have been tested;
283 /// - after the match, any of the patterns may have matched.
284 ///
285 /// For example, all of these would fail to error if borrowck could see the real CFG (examples
286 /// taken from `tests/ui/nll/match-cfg-fake-edges.rs`):
287 /// ```ignore (too many errors, this is already in the test suite)
288 /// let x = String::new();
289 /// let _ = match true {
290 /// _ => {},
291 /// _ => drop(x),
292 /// };
293 /// // Borrowck must not know the second arm is never run.
294 /// drop(x); //~ ERROR use of moved value
295 ///
296 /// let x;
297 /// # let y = true;
298 /// match y {
299 /// _ if { x = 2; true } => {},
300 /// // Borrowck must not know the guard is always run.
301 /// _ => drop(x), //~ ERROR used binding `x` is possibly-uninitialized
302 /// };
303 ///
304 /// let x = String::new();
305 /// # let y = true;
306 /// match y {
307 /// false if { drop(x); true } => {},
308 /// // Borrowck must not know the guard is not run in the `true` case.
309 /// true => drop(x), //~ ERROR use of moved value: `x`
310 /// false => {},
311 /// };
312 ///
313 /// # let mut y = (true, true);
314 /// let r = &mut y.1;
315 /// match y {
316 /// //~^ ERROR cannot use `y.1` because it was mutably borrowed
317 /// (false, true) => {}
318 /// // Borrowck must not know we don't test `y.1` when `y.0` is `true`.
319 /// (true, _) => drop(r),
320 /// (false, _) => {}
321 /// };
322 /// ```
323 ///
324 /// We add false edges to act as if we were naively matching each arm in order. What we need is
325 /// a (fake) path from each candidate to the next, specifically from candidate C's pre-binding
326 /// block to next candidate D's pre-binding block. For maximum precision (needed for deref
327 /// patterns), we choose the earliest node on D's success path that doesn't also lead to C (to
328 /// avoid loops).
329 ///
330 /// This turns out to be easy to compute: that block is the `start_block` of the first call to
331 /// `match_candidates` where D is the first candidate in the list.
332 ///
333 /// For example:
334 /// ```rust
335 /// # let (x, y) = (true, true);
336 /// match (x, y) {
337 /// (true, true) => 1,
338 /// (false, true) => 2,
339 /// (true, false) => 3,
340 /// _ => 4,
341 /// }
342 /// # ;
343 /// ```
344 /// In this example, the pre-binding block of arm 1 has a false edge to the block for result
345 /// `false` of the first test on `x`. The other arms have false edges to the pre-binding blocks
346 /// of the next arm.
347 ///
348 /// On top of this, we also add a false edge from the otherwise_block of each guard to the
349 /// aforementioned start block of the next candidate, to ensure borrock doesn't rely on which
350 /// guards may have run.
351 #[instrument(level = "debug", skip(self, arms))]
352 pub(crate) fn match_expr(
353 &mut self,
354 destination: Place<'tcx>,
355 mut block: BasicBlock,
356 scrutinee_id: ExprId,
357 arms: &[ArmId],
358 span: Span,
359 scrutinee_span: Span,
360 ) -> BlockAnd<()> {
361 let scrutinee_place =
362 unpack!(block = self.lower_scrutinee(block, scrutinee_id, scrutinee_span));
363
364 let match_start_span = span.shrink_to_lo().to(scrutinee_span);
365 let patterns = arms
366 .iter()
367 .map(|&arm| {
368 let arm = &self.thir[arm];
369 let has_match_guard =
370 if arm.guard.is_some() { HasMatchGuard::Yes } else { HasMatchGuard::No };
371 (&*arm.pattern, has_match_guard)
372 })
373 .collect();
374 let built_tree = self.lower_match_tree(
375 block,
376 scrutinee_span,
377 &scrutinee_place,
378 match_start_span,
379 patterns,
380 false,
381 );
382
383 self.lower_match_arms(
384 destination,
385 scrutinee_place,
386 scrutinee_span,
387 arms,
388 built_tree,
389 self.source_info(span),
390 )
391 }
392
393 /// Evaluate the scrutinee and add the PlaceMention for it.
394 pub(crate) fn lower_scrutinee(
395 &mut self,
396 mut block: BasicBlock,
397 scrutinee_id: ExprId,
398 scrutinee_span: Span,
399 ) -> BlockAnd<PlaceBuilder<'tcx>> {
400 let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee_id));
401 if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
402 let source_info = self.source_info(scrutinee_span);
403 self.cfg.push_place_mention(block, source_info, scrutinee_place);
404 }
405
406 block.and(scrutinee_place_builder)
407 }
408
409 /// Lower the bindings, guards and arm bodies of a `match` expression.
410 ///
411 /// The decision tree should have already been created
412 /// (by [Builder::lower_match_tree]).
413 ///
414 /// `outer_source_info` is the SourceInfo for the whole match.
415 pub(crate) fn lower_match_arms(
416 &mut self,
417 destination: Place<'tcx>,
418 scrutinee_place_builder: PlaceBuilder<'tcx>,
419 scrutinee_span: Span,
420 arms: &[ArmId],
421 built_match_tree: BuiltMatchTree<'tcx>,
422 outer_source_info: SourceInfo,
423 ) -> BlockAnd<()> {
424 let arm_end_blocks: Vec<BasicBlock> = arms
425 .iter()
426 .map(|&arm| &self.thir[arm])
427 .zip(built_match_tree.branches)
428 .map(|(arm, branch)| {
429 debug!("lowering arm {:?}\ncorresponding branch = {:?}", arm, branch);
430
431 let arm_source_info = self.source_info(arm.span);
432 let arm_scope = (arm.scope, arm_source_info);
433 let match_scope = self.local_scope();
434 let guard_scope = arm
435 .guard
436 .map(|_| region::Scope { data: region::ScopeData::MatchGuard, ..arm.scope });
437 self.in_scope(arm_scope, arm.lint_level, |this| {
438 this.opt_in_scope(guard_scope.map(|scope| (scope, arm_source_info)), |this| {
439 // `if let` guard temps needing deduplicating will be in the guard scope.
440 let old_dedup_scope =
441 mem::replace(&mut this.fixed_temps_scope, guard_scope);
442
443 // `try_to_place` may fail if it is unable to resolve the given
444 // `PlaceBuilder` inside a closure. In this case, we don't want to include
445 // a scrutinee place. `scrutinee_place_builder` will fail to be resolved
446 // if the only match arm is a wildcard (`_`).
447 // Example:
448 // ```
449 // let foo = (0, 1);
450 // let c = || {
451 // match foo { _ => () };
452 // };
453 // ```
454 let scrutinee_place = scrutinee_place_builder.try_to_place(this);
455 let opt_scrutinee_place =
456 scrutinee_place.as_ref().map(|place| (Some(place), scrutinee_span));
457 let scope = this.declare_bindings(
458 None,
459 arm.span,
460 &arm.pattern,
461 arm.guard,
462 opt_scrutinee_place,
463 );
464
465 let arm_block = this.bind_pattern(
466 outer_source_info,
467 branch,
468 &built_match_tree.fake_borrow_temps,
469 scrutinee_span,
470 Some((arm, match_scope)),
471 );
472
473 this.fixed_temps_scope = old_dedup_scope;
474
475 if let Some(source_scope) = scope {
476 this.source_scope = source_scope;
477 }
478
479 this.expr_into_dest(destination, arm_block, arm.body)
480 })
481 })
482 .into_block()
483 })
484 .collect();
485
486 // all the arm blocks will rejoin here
487 let end_block = self.cfg.start_new_block();
488
489 let end_brace = self.source_info(
490 outer_source_info.span.with_lo(outer_source_info.span.hi() - BytePos::from_usize(1)),
491 );
492 for arm_block in arm_end_blocks {
493 let block = &self.cfg.basic_blocks[arm_block];
494 let last_location = block.statements.last().map(|s| s.source_info);
495
496 self.cfg.goto(arm_block, last_location.unwrap_or(end_brace), end_block);
497 }
498
499 self.source_scope = outer_source_info.scope;
500
501 end_block.unit()
502 }
503
504 /// For a top-level `match` arm or a `let` binding, binds the variables and
505 /// ascribes types, and also checks the match arm guard (if present).
506 ///
507 /// `arm_scope` should be `Some` if and only if this is called for a
508 /// `match` arm.
509 ///
510 /// In the presence of or-patterns, a match arm might have multiple
511 /// sub-branches representing different ways to match, with each sub-branch
512 /// requiring its own bindings and its own copy of the guard. This method
513 /// handles those sub-branches individually, and then has them jump together
514 /// to a common block.
515 ///
516 /// Returns a single block that the match arm can be lowered into.
517 /// (For `let` bindings, this is the code that can use the bindings.)
518 fn bind_pattern(
519 &mut self,
520 outer_source_info: SourceInfo,
521 branch: MatchTreeBranch<'tcx>,
522 fake_borrow_temps: &[(Place<'tcx>, Local, FakeBorrowKind)],
523 scrutinee_span: Span,
524 arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
525 ) -> BasicBlock {
526 if branch.sub_branches.len() == 1 {
527 let [sub_branch] = branch.sub_branches.try_into().unwrap();
528 // Avoid generating another `BasicBlock` when we only have one sub branch.
529 self.bind_and_guard_matched_candidate(
530 sub_branch,
531 fake_borrow_temps,
532 scrutinee_span,
533 arm_match_scope,
534 ScheduleDrops::Yes,
535 )
536 } else {
537 // It's helpful to avoid scheduling drops multiple times to save
538 // drop elaboration from having to clean up the extra drops.
539 //
540 // If we are in a `let` then we only schedule drops for the first
541 // candidate.
542 //
543 // If we're in a `match` arm then we could have a case like so:
544 //
545 // Ok(x) | Err(x) if return => { /* ... */ }
546 //
547 // In this case we don't want a drop of `x` scheduled when we
548 // return: it isn't bound by move until right before enter the arm.
549 // To handle this we instead unschedule it's drop after each time
550 // we lower the guard.
551 // As a result, we end up with the drop order of the last sub-branch we lower. To use
552 // the drop order for the first sub-branch, we lower sub-branches in reverse (#142163).
553 let target_block = self.cfg.start_new_block();
554 for (pos, sub_branch) in branch.sub_branches.into_iter().rev().with_position() {
555 debug_assert!(pos != Position::Only);
556 let schedule_drops =
557 if pos == Position::Last { ScheduleDrops::Yes } else { ScheduleDrops::No };
558 let binding_end = self.bind_and_guard_matched_candidate(
559 sub_branch,
560 fake_borrow_temps,
561 scrutinee_span,
562 arm_match_scope,
563 schedule_drops,
564 );
565 self.cfg.goto(binding_end, outer_source_info, target_block);
566 }
567
568 target_block
569 }
570 }
571
572 pub(super) fn expr_into_pattern(
573 &mut self,
574 mut block: BasicBlock,
575 irrefutable_pat: &Pat<'tcx>,
576 initializer_id: ExprId,
577 ) -> BlockAnd<()> {
578 match irrefutable_pat.kind {
579 // Optimize `let x = ...` and `let x: T = ...` to write directly into `x`,
580 // and then require that `T == typeof(x)` if present.
581 PatKind::Binding { mode: BindingMode(ByRef::No, _), var, subpattern: None, .. } => {
582 let place = self.storage_live_binding(
583 block,
584 var,
585 irrefutable_pat.span,
586 false,
587 OutsideGuard,
588 ScheduleDrops::Yes,
589 );
590 block = self.expr_into_dest(place, block, initializer_id).into_block();
591
592 // Inject a fake read, see comments on `FakeReadCause::ForLet`.
593 let source_info = self.source_info(irrefutable_pat.span);
594 self.cfg.push_fake_read(block, source_info, FakeReadCause::ForLet(None), place);
595
596 let ascriptions: &[_] =
597 try { irrefutable_pat.extra.as_deref()?.ascriptions.as_slice() }
598 .unwrap_or_default();
599 for thir::Ascription { annotation, variance: _ } in ascriptions {
600 let ty_source_info = self.source_info(annotation.span);
601
602 let base = self.canonical_user_type_annotations.push(annotation.clone());
603 let stmt = Statement::new(
604 ty_source_info,
605 StatementKind::AscribeUserType(
606 Box::new((place, UserTypeProjection { base, projs: Vec::new() })),
607 // We always use invariant as the variance here. This is because the
608 // variance field from the ascription refers to the variance to use
609 // when applying the type to the value being matched, but this
610 // ascription applies rather to the type of the binding. e.g., in this
611 // example:
612 //
613 // ```
614 // let x: T = <expr>
615 // ```
616 //
617 // We are creating an ascription that defines the type of `x` to be
618 // exactly `T` (i.e., with invariance). The variance field, in
619 // contrast, is intended to be used to relate `T` to the type of
620 // `<expr>`.
621 ty::Invariant,
622 ),
623 );
624 self.cfg.push(block, stmt);
625 }
626
627 self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
628 block.unit()
629 }
630
631 _ => {
632 let initializer = &self.thir[initializer_id];
633 let place_builder =
634 unpack!(block = self.lower_scrutinee(block, initializer_id, initializer.span));
635 self.place_into_pattern(block, irrefutable_pat, place_builder, true)
636 }
637 }
638 }
639
640 pub(crate) fn place_into_pattern(
641 &mut self,
642 block: BasicBlock,
643 irrefutable_pat: &Pat<'tcx>,
644 initializer: PlaceBuilder<'tcx>,
645 set_match_place: bool,
646 ) -> BlockAnd<()> {
647 let built_tree = self.lower_match_tree(
648 block,
649 irrefutable_pat.span,
650 &initializer,
651 irrefutable_pat.span,
652 vec![(irrefutable_pat, HasMatchGuard::No)],
653 false,
654 );
655 let [branch] = built_tree.branches.try_into().unwrap();
656
657 // For matches and function arguments, the place that is being matched
658 // can be set when creating the variables. But the place for
659 // let PATTERN = ... might not even exist until we do the assignment.
660 // so we set it here instead.
661 if set_match_place {
662 // `try_to_place` may fail if it is unable to resolve the given `PlaceBuilder` inside a
663 // closure. In this case, we don't want to include a scrutinee place.
664 // `scrutinee_place_builder` will fail for destructured assignments. This is because a
665 // closure only captures the precise places that it will read and as a result a closure
666 // may not capture the entire tuple/struct and rather have individual places that will
667 // be read in the final MIR.
668 // Example:
669 // ```
670 // let foo = (0, 1);
671 // let c = || {
672 // let (v1, v2) = foo;
673 // };
674 // ```
675 if let Some(place) = initializer.try_to_place(self) {
676 // Because or-alternatives bind the same variables, we only explore the first one.
677 let first_sub_branch = branch.sub_branches.first().unwrap();
678 for binding in &first_sub_branch.bindings {
679 let local = self.var_local_id(binding.var_id, OutsideGuard);
680 if let LocalInfo::User(BindingForm::Var(VarBindingForm {
681 opt_match_place: Some((ref mut match_place, _)),
682 ..
683 })) = **self.local_decls[local].local_info.as_mut().unwrap_crate_local()
684 {
685 *match_place = Some(place);
686 } else {
687 bug!("Let binding to non-user variable.")
688 };
689 }
690 }
691 }
692
693 self.bind_pattern(
694 self.source_info(irrefutable_pat.span),
695 branch,
696 &[],
697 irrefutable_pat.span,
698 None,
699 )
700 .unit()
701 }
702
703 /// Declares the bindings of the given patterns and returns the visibility
704 /// scope for the bindings in these patterns, if such a scope had to be
705 /// created. NOTE: Declaring the bindings should always be done in their
706 /// drop scope.
707 #[instrument(skip(self), level = "debug")]
708 pub(crate) fn declare_bindings(
709 &mut self,
710 mut visibility_scope: Option<SourceScope>,
711 scope_span: Span,
712 pattern: &Pat<'tcx>,
713 guard: Option<ExprId>,
714 opt_match_place: Option<(Option<&Place<'tcx>>, Span)>,
715 ) -> Option<SourceScope> {
716 self.visit_primary_bindings_special(
717 pattern,
718 &ProjectedUserTypesNode::None,
719 &mut |this, name, mode, var, span, ty, user_tys| {
720 let saved_scope = this.source_scope;
721 this.set_correct_source_scope_for_arg(var.0, saved_scope, span);
722 let vis_scope = *visibility_scope
723 .get_or_insert_with(|| this.new_source_scope(scope_span, LintLevel::Inherited));
724 let source_info = SourceInfo { span, scope: this.source_scope };
725 let user_tys = user_tys.build_user_type_projections();
726
727 this.declare_binding(
728 source_info,
729 vis_scope,
730 name,
731 mode,
732 var,
733 ty,
734 user_tys,
735 ArmHasGuard(guard.is_some()),
736 opt_match_place.map(|(x, y)| (x.cloned(), y)),
737 pattern.span,
738 );
739 this.source_scope = saved_scope;
740 },
741 );
742 if let Some(guard_expr) = guard {
743 self.declare_guard_bindings(guard_expr, scope_span, visibility_scope);
744 }
745 visibility_scope
746 }
747
748 /// Declare bindings in a guard. This has to be done when declaring bindings
749 /// for an arm to ensure that or patterns only have one version of each
750 /// variable.
751 pub(crate) fn declare_guard_bindings(
752 &mut self,
753 guard_expr: ExprId,
754 scope_span: Span,
755 visibility_scope: Option<SourceScope>,
756 ) {
757 match self.thir.exprs[guard_expr].kind {
758 ExprKind::Let { expr: _, pat: ref guard_pat } => {
759 // FIXME: pass a proper `opt_match_place`
760 self.declare_bindings(visibility_scope, scope_span, guard_pat, None, None);
761 }
762 ExprKind::Scope { value, .. } => {
763 self.declare_guard_bindings(value, scope_span, visibility_scope);
764 }
765 ExprKind::Use { source } => {
766 self.declare_guard_bindings(source, scope_span, visibility_scope);
767 }
768 ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
769 self.declare_guard_bindings(lhs, scope_span, visibility_scope);
770 self.declare_guard_bindings(rhs, scope_span, visibility_scope);
771 }
772 _ => {}
773 }
774 }
775
776 /// Emits a [`StatementKind::StorageLive`] for the given var, and also
777 /// schedules a drop if requested (and possible).
778 pub(crate) fn storage_live_binding(
779 &mut self,
780 block: BasicBlock,
781 var: LocalVarId,
782 span: Span,
783 is_shorthand: bool,
784 for_guard: ForGuard,
785 schedule_drop: ScheduleDrops,
786 ) -> Place<'tcx> {
787 let local_id = self.var_local_id(var, for_guard);
788 let source_info = self.source_info(span);
789 self.cfg.push(block, Statement::new(source_info, StatementKind::StorageLive(local_id)));
790 // Although there is almost always scope for given variable in corner cases
791 // like #92893 we might get variable with no scope.
792 if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id)
793 && matches!(schedule_drop, ScheduleDrops::Yes)
794 {
795 self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
796 }
797 let local_info = self.local_decls[local_id].local_info.as_mut().unwrap_crate_local();
798 if let LocalInfo::User(BindingForm::Var(var_info)) = &mut **local_info {
799 var_info.introductions.push(VarBindingIntroduction { span, is_shorthand });
800 }
801 Place::from(local_id)
802 }
803
804 pub(crate) fn schedule_drop_for_binding(
805 &mut self,
806 var: LocalVarId,
807 span: Span,
808 for_guard: ForGuard,
809 ) {
810 let local_id = self.var_local_id(var, for_guard);
811 if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) {
812 self.schedule_drop(span, region_scope, local_id, DropKind::Value);
813 }
814 }
815
816 /// Visits all of the "primary" bindings in a pattern, i.e. the leftmost
817 /// occurrence of each variable bound by the pattern.
818 /// See [`PatKind::Binding::is_primary`] for more context.
819 ///
820 /// This variant provides only the limited subset of binding data needed
821 /// by its callers, and should be a "pure" visit without side-effects.
822 pub(super) fn visit_primary_bindings(
823 &mut self,
824 pattern: &Pat<'tcx>,
825 f: &mut impl FnMut(&mut Self, LocalVarId, Span),
826 ) {
827 pattern.walk_always(|pat| {
828 if let PatKind::Binding { var, is_primary: true, .. } = pat.kind {
829 f(self, var, pat.span);
830 }
831 })
832 }
833
834 /// Visits all of the "primary" bindings in a pattern, while preparing
835 /// additional user-type-annotation data needed by `declare_bindings`.
836 ///
837 /// This also has the side-effect of pushing all user type annotations
838 /// onto `canonical_user_type_annotations`, so that they end up in MIR
839 /// even if they aren't associated with any bindings.
840 #[instrument(level = "debug", skip(self, f))]
841 fn visit_primary_bindings_special(
842 &mut self,
843 pattern: &Pat<'tcx>,
844 user_tys: &ProjectedUserTypesNode<'_>,
845 f: &mut impl FnMut(
846 &mut Self,
847 Symbol,
848 BindingMode,
849 LocalVarId,
850 Span,
851 Ty<'tcx>,
852 &ProjectedUserTypesNode<'_>,
853 ),
854 ) {
855 // Ascriptions correspond to user-written types like `let A::<'a>(_): A<'static> = ...;`.
856 //
857 // Caution: Pushing user types here is load-bearing even for
858 // patterns containing no bindings, to ensure that the type ends
859 // up represented in MIR _somewhere_.
860 let user_tys = match pattern.extra.as_deref() {
861 Some(PatExtra { ascriptions, .. }) if !ascriptions.is_empty() => {
862 let base_user_tys = ascriptions
863 .iter()
864 .map(|thir::Ascription { annotation, variance: _ }| {
865 // Note that the variance doesn't apply here, as we are tracking the effect
866 // of user types on any bindings contained with subpattern.
867 self.canonical_user_type_annotations.push(annotation.clone())
868 })
869 .collect();
870 &user_tys.push_user_types(base_user_tys)
871 }
872 _ => user_tys,
873 };
874
875 // Avoid having to write the full method name at each recursive call.
876 let visit_subpat = |this: &mut Self, subpat, user_tys: &_, f: &mut _| {
877 this.visit_primary_bindings_special(subpat, user_tys, f)
878 };
879
880 match pattern.kind {
881 PatKind::Binding { name, mode, var, ty, ref subpattern, is_primary, .. } => {
882 if is_primary {
883 f(self, name, mode, var, pattern.span, ty, user_tys);
884 }
885 if let Some(subpattern) = subpattern.as_ref() {
886 visit_subpat(self, subpattern, user_tys, f);
887 }
888 }
889
890 PatKind::Array { ref prefix, ref slice, ref suffix }
891 | PatKind::Slice { ref prefix, ref slice, ref suffix } => {
892 let from = u64::try_from(prefix.len()).unwrap();
893 let to = u64::try_from(suffix.len()).unwrap();
894 for subpattern in prefix.iter() {
895 visit_subpat(self, subpattern, &user_tys.index(), f);
896 }
897 if let Some(subpattern) = slice {
898 visit_subpat(self, subpattern, &user_tys.subslice(from, to), f);
899 }
900 for subpattern in suffix.iter() {
901 visit_subpat(self, subpattern, &user_tys.index(), f);
902 }
903 }
904
905 PatKind::Constant { .. }
906 | PatKind::Range { .. }
907 | PatKind::Missing
908 | PatKind::Wild
909 | PatKind::Never
910 | PatKind::Error(_) => {}
911
912 PatKind::Deref { ref subpattern } => {
913 visit_subpat(self, subpattern, &user_tys.deref(), f);
914 }
915
916 PatKind::DerefPattern { ref subpattern, .. } => {
917 visit_subpat(self, subpattern, &ProjectedUserTypesNode::None, f);
918 }
919
920 PatKind::Leaf { ref subpatterns } => {
921 for subpattern in subpatterns {
922 let subpattern_user_tys = user_tys.leaf(subpattern.field);
923 debug!("visit_primary_bindings: subpattern_user_tys={subpattern_user_tys:?}");
924 visit_subpat(self, &subpattern.pattern, &subpattern_user_tys, f);
925 }
926 }
927
928 PatKind::Variant { adt_def, args: _, variant_index, ref subpatterns } => {
929 for subpattern in subpatterns {
930 let subpattern_user_tys =
931 user_tys.variant(adt_def, variant_index, subpattern.field);
932 visit_subpat(self, &subpattern.pattern, &subpattern_user_tys, f);
933 }
934 }
935 PatKind::Or { ref pats } => {
936 // In cases where we recover from errors the primary bindings
937 // may not all be in the leftmost subpattern. For example in
938 // `let (x | y) = ...`, the primary binding of `y` occurs in
939 // the right subpattern
940 for subpattern in pats.iter() {
941 visit_subpat(self, subpattern, user_tys, f);
942 }
943 }
944 }
945 }
946}
947
948/// Data extracted from a pattern that doesn't affect which branch is taken. Collected during
949/// pattern simplification and not mutated later.
950#[derive(Debug, Clone)]
951struct PatternExtraData<'tcx> {
952 /// [`Span`] of the original pattern.
953 span: Span,
954
955 /// Bindings that must be established.
956 bindings: Vec<SubpatternBindings<'tcx>>,
957
958 /// Types that must be asserted.
959 ascriptions: Vec<Ascription<'tcx>>,
960
961 /// Whether this corresponds to a never pattern.
962 is_never: bool,
963}
964
965impl<'tcx> PatternExtraData<'tcx> {
966 fn is_empty(&self) -> bool {
967 self.bindings.is_empty() && self.ascriptions.is_empty()
968 }
969}
970
971#[derive(Debug, Clone)]
972enum SubpatternBindings<'tcx> {
973 /// A single binding.
974 One(Binding<'tcx>),
975 /// Holds the place for an or-pattern's bindings. This ensures their drops are scheduled in the
976 /// order the primary bindings appear. See rust-lang/rust#142163 for more information.
977 FromOrPattern,
978}
979
980/// A pattern in a form suitable for lowering the match tree, with all irrefutable
981/// patterns simplified away.
982///
983/// Here, "flat" indicates that irrefutable nodes in the pattern tree have been
984/// recursively replaced with their refutable subpatterns. They are not
985/// necessarily flat in an absolute sense.
986///
987/// Will typically be incorporated into a [`Candidate`].
988#[derive(Debug, Clone)]
989struct FlatPat<'tcx> {
990 /// To match the pattern, all of these must be satisfied...
991 match_pairs: Vec<MatchPairTree<'tcx>>,
992
993 extra_data: PatternExtraData<'tcx>,
994}
995
996impl<'tcx> FlatPat<'tcx> {
997 /// Creates a `FlatPat` containing a simplified [`MatchPairTree`] list/forest
998 /// for the given pattern.
999 fn new(place: PlaceBuilder<'tcx>, pattern: &Pat<'tcx>, cx: &mut Builder<'_, 'tcx>) -> Self {
1000 // Recursively build a tree of match pairs for the given pattern.
1001 let mut match_pairs = vec![];
1002 let mut extra_data = PatternExtraData {
1003 span: pattern.span,
1004 bindings: Vec::new(),
1005 ascriptions: Vec::new(),
1006 is_never: pattern.is_never_pattern(),
1007 };
1008 MatchPairTree::for_pattern(place, pattern, cx, &mut match_pairs, &mut extra_data);
1009
1010 Self { match_pairs, extra_data }
1011 }
1012}
1013
1014/// Candidates are a generalization of (a) top-level match arms, and
1015/// (b) sub-branches of or-patterns, allowing the match-lowering process to handle
1016/// them both in a mostly-uniform way. For example, the list of candidates passed
1017/// to [`Builder::match_candidates`] will often contain a mixture of top-level
1018/// candidates and or-pattern subcandidates.
1019///
1020/// At the start of match lowering, there is one candidate for each match arm.
1021/// During match lowering, arms with or-patterns will be expanded into a tree
1022/// of candidates, where each "leaf" candidate represents one of the ways for
1023/// the arm pattern to successfully match.
1024#[derive(Debug)]
1025struct Candidate<'tcx> {
1026 /// For the candidate to match, all of these must be satisfied...
1027 ///
1028 /// ---
1029 /// Initially contains a list of match pairs created by [`FlatPat`], but is
1030 /// subsequently mutated (in a queue-like way) while lowering the match tree.
1031 /// When this list becomes empty, the candidate is fully matched and becomes
1032 /// a leaf (see [`Builder::select_matched_candidate`]).
1033 ///
1034 /// Key mutations include:
1035 ///
1036 /// - When a match pair is fully satisfied by a test, it is removed from the
1037 /// list, and its subpairs are added instead (see [`Builder::choose_bucket_for_candidate`]).
1038 /// - During or-pattern expansion, any leading or-pattern is removed, and is
1039 /// converted into subcandidates (see [`Builder::expand_and_match_or_candidates`]).
1040 /// - After a candidate's subcandidates have been lowered, a copy of any remaining
1041 /// or-patterns is added to each leaf subcandidate
1042 /// (see [`Builder::test_remaining_match_pairs_after_or`]).
1043 ///
1044 /// Invariants:
1045 /// - All or-patterns ([`TestableCase::Or`]) have been sorted to the end.
1046 match_pairs: Vec<MatchPairTree<'tcx>>,
1047
1048 /// ...and if this is non-empty, one of these subcandidates also has to match...
1049 ///
1050 /// ---
1051 /// Initially a candidate has no subcandidates; they are added (and then immediately
1052 /// lowered) during or-pattern expansion. Their main function is to serve as _output_
1053 /// of match tree lowering, allowing later steps to see the leaf candidates that
1054 /// represent a match of the entire match arm.
1055 ///
1056 /// A candidate no subcandidates is either incomplete (if it has match pairs left),
1057 /// or is a leaf in the match tree. A candidate with one or more subcandidates is
1058 /// an internal node in the match tree.
1059 ///
1060 /// Invariant: at the end of match tree lowering, this must not contain an
1061 /// `is_never` candidate, because that would break binding consistency.
1062 /// - See [`Builder::remove_never_subcandidates`].
1063 subcandidates: Vec<Candidate<'tcx>>,
1064
1065 /// ...and if there is a guard it must be evaluated; if it's `false` then branch to `otherwise_block`.
1066 ///
1067 /// ---
1068 /// For subcandidates, this is copied from the parent candidate, so it indicates
1069 /// whether the enclosing match arm has a guard.
1070 has_guard: bool,
1071
1072 /// Holds extra pattern data that was prepared by [`FlatPat`], including bindings and
1073 /// ascriptions that must be established if this candidate succeeds.
1074 extra_data: PatternExtraData<'tcx>,
1075
1076 /// When setting `self.subcandidates`, we store here the span of the or-pattern they came from.
1077 ///
1078 /// ---
1079 /// Invariant: it is `None` iff `subcandidates.is_empty()`.
1080 /// - FIXME: We sometimes don't unset this when clearing `subcandidates`.
1081 or_span: Option<Span>,
1082
1083 /// The block before the `bindings` have been established.
1084 ///
1085 /// After the match tree has been lowered, [`Builder::lower_match_arms`]
1086 /// will use this as the start point for lowering bindings and guards, and
1087 /// then jump to a shared block containing the arm body.
1088 pre_binding_block: Option<BasicBlock>,
1089
1090 /// The block to branch to if the guard or a nested candidate fails to match.
1091 otherwise_block: Option<BasicBlock>,
1092
1093 /// The earliest block that has only candidates >= this one as descendents. Used for false
1094 /// edges, see the doc for [`Builder::match_expr`].
1095 false_edge_start_block: Option<BasicBlock>,
1096}
1097
1098impl<'tcx> Candidate<'tcx> {
1099 fn new(
1100 place: PlaceBuilder<'tcx>,
1101 pattern: &Pat<'tcx>,
1102 has_guard: HasMatchGuard,
1103 cx: &mut Builder<'_, 'tcx>,
1104 ) -> Self {
1105 // Use `FlatPat` to build simplified match pairs, then immediately
1106 // incorporate them into a new candidate.
1107 Self::from_flat_pat(
1108 FlatPat::new(place, pattern, cx),
1109 matches!(has_guard, HasMatchGuard::Yes),
1110 )
1111 }
1112
1113 /// Incorporates an already-simplified [`FlatPat`] into a new candidate.
1114 fn from_flat_pat(flat_pat: FlatPat<'tcx>, has_guard: bool) -> Self {
1115 let mut this = Candidate {
1116 match_pairs: flat_pat.match_pairs,
1117 extra_data: flat_pat.extra_data,
1118 has_guard,
1119 subcandidates: Vec::new(),
1120 or_span: None,
1121 otherwise_block: None,
1122 pre_binding_block: None,
1123 false_edge_start_block: None,
1124 };
1125 this.sort_match_pairs();
1126 this
1127 }
1128
1129 /// Restores the invariant that or-patterns must be sorted to the end.
1130 fn sort_match_pairs(&mut self) {
1131 self.match_pairs.sort_by_key(|pair| matches!(pair.testable_case, TestableCase::Or { .. }));
1132 }
1133
1134 /// Returns whether the first match pair of this candidate is an or-pattern.
1135 fn starts_with_or_pattern(&self) -> bool {
1136 matches!(
1137 &*self.match_pairs,
1138 [MatchPairTree { testable_case: TestableCase::Or { .. }, .. }, ..]
1139 )
1140 }
1141
1142 /// Visit the leaf candidates (those with no subcandidates) contained in
1143 /// this candidate.
1144 fn visit_leaves<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
1145 traverse_candidate(
1146 self,
1147 &mut (),
1148 &mut move |c, _| visit_leaf(c),
1149 move |c, _| c.subcandidates.iter_mut(),
1150 |_| {},
1151 );
1152 }
1153
1154 /// Visit the leaf candidates in reverse order.
1155 fn visit_leaves_rev<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
1156 traverse_candidate(
1157 self,
1158 &mut (),
1159 &mut move |c, _| visit_leaf(c),
1160 move |c, _| c.subcandidates.iter_mut().rev(),
1161 |_| {},
1162 );
1163 }
1164}
1165
1166/// A depth-first traversal of the `Candidate` and all of its recursive
1167/// subcandidates.
1168///
1169/// This signature is very generic, to support traversing candidate trees by
1170/// reference or by value, and to allow a mutable "context" to be shared by the
1171/// traversal callbacks. Most traversals can use the simpler
1172/// [`Candidate::visit_leaves`] wrapper instead.
1173fn traverse_candidate<'tcx, C, T, I>(
1174 candidate: C,
1175 context: &mut T,
1176 // Called when visiting a "leaf" candidate (with no subcandidates).
1177 visit_leaf: &mut impl FnMut(C, &mut T),
1178 // Called when visiting a "node" candidate (with one or more subcandidates).
1179 // Returns an iterator over the candidate's children (by value or reference).
1180 // Can perform setup before visiting the node's children.
1181 get_children: impl Copy + Fn(C, &mut T) -> I,
1182 // Called after visiting a "node" candidate's children.
1183 complete_children: impl Copy + Fn(&mut T),
1184) where
1185 C: Borrow<Candidate<'tcx>>, // Typically `Candidate` or `&mut Candidate`
1186 I: Iterator<Item = C>,
1187{
1188 if candidate.borrow().subcandidates.is_empty() {
1189 visit_leaf(candidate, context)
1190 } else {
1191 for child in get_children(candidate, context) {
1192 traverse_candidate(child, context, visit_leaf, get_children, complete_children);
1193 }
1194 complete_children(context)
1195 }
1196}
1197
1198#[derive(Clone, Copy, Debug)]
1199struct Binding<'tcx> {
1200 span: Span,
1201 source: Place<'tcx>,
1202 var_id: LocalVarId,
1203 binding_mode: BindingMode,
1204 is_shorthand: bool,
1205}
1206
1207/// Indicates that the type of `source` must be a subtype of the
1208/// user-given type `user_ty`; this is basically a no-op but can
1209/// influence region inference.
1210#[derive(Clone, Debug)]
1211struct Ascription<'tcx> {
1212 source: Place<'tcx>,
1213 annotation: CanonicalUserTypeAnnotation<'tcx>,
1214 variance: ty::Variance,
1215}
1216
1217/// Partial summary of a [`thir::Pat`], indicating what sort of test should be
1218/// performed to match/reject the pattern, and what the desired test outcome is.
1219/// This avoids having to perform a full match on [`thir::PatKind`] in some places,
1220/// and helps [`TestKind::Switch`] and [`TestKind::SwitchInt`] know what target
1221/// values to use.
1222///
1223/// Created by [`MatchPairTree::for_pattern`], and then inspected primarily by:
1224/// - [`Builder::pick_test_for_match_pair`] (to choose a test)
1225/// - [`Builder::choose_bucket_for_candidate`] (to see how the test interacts with a match pair)
1226///
1227/// Note that or-patterns are not tested directly like the other variants.
1228/// Instead they participate in or-pattern expansion, where they are transformed into
1229/// subcandidates. See [`Builder::expand_and_match_or_candidates`].
1230#[derive(Debug, Clone)]
1231enum TestableCase<'tcx> {
1232 Variant { adt_def: ty::AdtDef<'tcx>, variant_index: VariantIdx },
1233 Constant { value: ty::Value<'tcx>, kind: PatConstKind },
1234 Range(Arc<PatRange<'tcx>>),
1235 Slice { len: u64, op: SliceLenOp },
1236 Deref { temp: Place<'tcx>, mutability: Mutability },
1237 Never,
1238 Or { pats: Box<[FlatPat<'tcx>]> },
1239}
1240
1241impl<'tcx> TestableCase<'tcx> {
1242 fn as_range(&self) -> Option<&PatRange<'tcx>> {
1243 if let Self::Range(v) = self { Some(v.as_ref()) } else { None }
1244 }
1245}
1246
1247/// Sub-classification of [`TestableCase::Constant`], which helps to avoid
1248/// some redundant ad-hoc checks when preparing and lowering tests.
1249#[derive(Debug, Clone)]
1250enum PatConstKind {
1251 /// The primitive `bool` type, which is like an integer but simpler,
1252 /// having only two values.
1253 Bool,
1254 /// Primitive unsigned/signed integer types, plus `char`.
1255 /// These types interact nicely with `SwitchInt`.
1256 IntOrChar,
1257 /// Floating-point primitives, e.g. `f32`, `f64`.
1258 /// These types don't support `SwitchInt` and require an equality test,
1259 /// but can also interact with range pattern tests.
1260 Float,
1261 /// Constant string values, tested via string equality.
1262 String,
1263 /// Any other constant-pattern is usually tested via some kind of equality
1264 /// check. Types that might be encountered here include:
1265 /// - raw pointers derived from integer values
1266 /// - pattern types, e.g. `pattern_type!(u32 is 1..)`
1267 Other,
1268}
1269
1270/// Node in a tree of "match pairs", where each pair consists of a place to be
1271/// tested, and a test to perform on that place.
1272///
1273/// Each node also has a list of subpairs (possibly empty) that must also match,
1274/// and a reference to the THIR pattern it represents.
1275#[derive(Debug, Clone)]
1276pub(crate) struct MatchPairTree<'tcx> {
1277 /// This place...
1278 ///
1279 /// ---
1280 /// This can be `None` if it referred to a non-captured place in a closure.
1281 ///
1282 /// Invariant: Can only be `None` when `testable_case` is `Or`.
1283 /// Therefore this must be `Some(_)` after or-pattern expansion.
1284 place: Option<Place<'tcx>>,
1285
1286 /// ... must pass this test...
1287 testable_case: TestableCase<'tcx>,
1288
1289 /// ... and these subpairs must match.
1290 ///
1291 /// ---
1292 /// Subpairs typically represent tests that can only be performed after their
1293 /// parent has succeeded. For example, the pattern `Some(3)` might have an
1294 /// outer match pair that tests for the variant `Some`, and then a subpair
1295 /// that tests its field for the value `3`.
1296 subpairs: Vec<Self>,
1297
1298 /// Type field of the pattern this node was created from.
1299 pattern_ty: Ty<'tcx>,
1300 /// Span field of the pattern this node was created from.
1301 pattern_span: Span,
1302}
1303
1304/// A runtime test to perform to determine which candidates match a scrutinee place.
1305///
1306/// The kind of test to perform is indicated by [`TestKind`].
1307#[derive(Debug)]
1308pub(crate) struct Test<'tcx> {
1309 span: Span,
1310 kind: TestKind<'tcx>,
1311}
1312
1313/// The kind of runtime test to perform to determine which candidates match a
1314/// scrutinee place. This is the main component of [`Test`].
1315///
1316/// Some of these variants don't contain the constant value(s) being tested
1317/// against, because those values are stored in the corresponding bucketed
1318/// candidates instead.
1319#[derive(Clone, Debug, PartialEq)]
1320enum TestKind<'tcx> {
1321 /// Test what enum variant a value is.
1322 ///
1323 /// The subset of expected variants is not stored here; instead they are
1324 /// extracted from the [`TestableCase`]s of the candidates participating in the
1325 /// test.
1326 Switch {
1327 /// The enum type being tested.
1328 adt_def: ty::AdtDef<'tcx>,
1329 },
1330
1331 /// Test what value an integer or `char` has.
1332 ///
1333 /// The test's target values are not stored here; instead they are extracted
1334 /// from the [`TestableCase`]s of the candidates participating in the test.
1335 SwitchInt,
1336
1337 /// Test whether a `bool` is `true` or `false`.
1338 If,
1339
1340 /// Tests the place against a string constant using string equality.
1341 StringEq {
1342 /// Constant `&str` value to test against.
1343 value: ty::Value<'tcx>,
1344 /// Type of the corresponding pattern node. Usually `&str`, but could
1345 /// be `str` for patterns like `deref!("..."): String`.
1346 pat_ty: Ty<'tcx>,
1347 },
1348
1349 /// Tests the place against a constant using scalar equality.
1350 ScalarEq {
1351 value: ty::Value<'tcx>,
1352 /// Type of the corresponding pattern node.
1353 pat_ty: Ty<'tcx>,
1354 },
1355
1356 /// Test whether the value falls within an inclusive or exclusive range.
1357 Range(Arc<PatRange<'tcx>>),
1358
1359 /// Test that the length of the slice is `== len` or `>= len`.
1360 SliceLen { len: u64, op: SliceLenOp },
1361
1362 /// Call `Deref::deref[_mut]` on the value.
1363 Deref {
1364 /// Temporary to store the result of `deref()`/`deref_mut()`.
1365 temp: Place<'tcx>,
1366 mutability: Mutability,
1367 },
1368
1369 /// Assert unreachability of never patterns.
1370 Never,
1371}
1372
1373/// Indicates the kind of slice-length constraint imposed by a slice pattern,
1374/// or its corresponding test.
1375#[derive(Debug, Clone, Copy, PartialEq)]
1376enum SliceLenOp {
1377 /// The slice pattern can only match a slice with exactly `len` elements.
1378 Equal,
1379 /// The slice pattern can match a slice with `len` or more elements
1380 /// (i.e. it contains a `..` subpattern in the middle).
1381 GreaterOrEqual,
1382}
1383
1384/// The branch to be taken after a test.
1385#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
1386enum TestBranch<'tcx> {
1387 /// Success branch, used for tests with two possible outcomes.
1388 Success,
1389 /// Branch corresponding to this constant. Must be a scalar.
1390 Constant(ty::Value<'tcx>),
1391 /// Branch corresponding to this variant.
1392 Variant(VariantIdx),
1393 /// Failure branch for tests with two possible outcomes, and "otherwise" branch for other tests.
1394 Failure,
1395}
1396
1397impl<'tcx> TestBranch<'tcx> {
1398 fn as_constant(&self) -> Option<ty::Value<'tcx>> {
1399 if let Self::Constant(v) = self { Some(*v) } else { None }
1400 }
1401}
1402
1403/// `ArmHasGuard` is a wrapper around a boolean flag. It indicates whether
1404/// a match arm has a guard expression attached to it.
1405#[derive(Copy, Clone, Debug)]
1406pub(crate) struct ArmHasGuard(pub(crate) bool);
1407
1408///////////////////////////////////////////////////////////////////////////
1409// Main matching algorithm
1410
1411/// A sub-branch in the output of match lowering. Match lowering has generated MIR code that will
1412/// branch to `success_block` when the matched value matches the corresponding pattern. If there is
1413/// a guard, its failure must continue to `otherwise_block`, which will resume testing patterns.
1414#[derive(Debug, Clone)]
1415struct MatchTreeSubBranch<'tcx> {
1416 span: Span,
1417 /// The block that is branched to if the corresponding subpattern matches.
1418 success_block: BasicBlock,
1419 /// The block to branch to if this arm had a guard and the guard fails.
1420 otherwise_block: BasicBlock,
1421 /// The bindings to set up in this sub-branch.
1422 bindings: Vec<Binding<'tcx>>,
1423 /// The ascriptions to set up in this sub-branch.
1424 ascriptions: Vec<Ascription<'tcx>>,
1425 /// Whether the sub-branch corresponds to a never pattern.
1426 is_never: bool,
1427}
1428
1429/// A branch in the output of match lowering.
1430#[derive(Debug, Clone)]
1431struct MatchTreeBranch<'tcx> {
1432 sub_branches: Vec<MatchTreeSubBranch<'tcx>>,
1433}
1434
1435/// The result of generating MIR for a pattern-matching expression. Each input branch/arm/pattern
1436/// gives rise to an output `MatchTreeBranch`. If one of the patterns matches, we branch to the
1437/// corresponding `success_block`. If none of the patterns matches, we branch to `otherwise_block`.
1438///
1439/// Each branch is made of one of more sub-branches, corresponding to or-patterns. E.g.
1440/// ```ignore(illustrative)
1441/// match foo {
1442/// (x, false) | (false, x) => {}
1443/// (true, true) => {}
1444/// }
1445/// ```
1446/// Here the first arm gives the first `MatchTreeBranch`, which has two sub-branches, one for each
1447/// alternative of the or-pattern. They are kept separate because each needs to bind `x` to a
1448/// different place.
1449#[derive(Debug, Clone)]
1450pub(crate) struct BuiltMatchTree<'tcx> {
1451 branches: Vec<MatchTreeBranch<'tcx>>,
1452 otherwise_block: BasicBlock,
1453 /// If any of the branches had a guard, we collect here the places and locals to fakely borrow
1454 /// to ensure match guards can't modify the values as we match them. For more details, see
1455 /// [`util::collect_fake_borrows`].
1456 fake_borrow_temps: Vec<(Place<'tcx>, Local, FakeBorrowKind)>,
1457}
1458
1459impl<'tcx> MatchTreeSubBranch<'tcx> {
1460 fn from_sub_candidate(
1461 candidate: Candidate<'tcx>,
1462 parent_data: &Vec<PatternExtraData<'tcx>>,
1463 ) -> Self {
1464 debug_assert!(candidate.match_pairs.is_empty());
1465 MatchTreeSubBranch {
1466 span: candidate.extra_data.span,
1467 success_block: candidate.pre_binding_block.unwrap(),
1468 otherwise_block: candidate.otherwise_block.unwrap(),
1469 bindings: sub_branch_bindings(parent_data, &candidate.extra_data.bindings),
1470 ascriptions: parent_data
1471 .iter()
1472 .flat_map(|d| &d.ascriptions)
1473 .cloned()
1474 .chain(candidate.extra_data.ascriptions)
1475 .collect(),
1476 is_never: candidate.extra_data.is_never,
1477 }
1478 }
1479}
1480
1481impl<'tcx> MatchTreeBranch<'tcx> {
1482 fn from_candidate(candidate: Candidate<'tcx>) -> Self {
1483 let mut sub_branches = Vec::new();
1484 traverse_candidate(
1485 candidate,
1486 &mut Vec::new(),
1487 &mut |candidate: Candidate<'_>, parent_data: &mut Vec<PatternExtraData<'_>>| {
1488 sub_branches.push(MatchTreeSubBranch::from_sub_candidate(candidate, parent_data));
1489 },
1490 |inner_candidate, parent_data| {
1491 parent_data.push(inner_candidate.extra_data);
1492 inner_candidate.subcandidates.into_iter()
1493 },
1494 |parent_data| {
1495 parent_data.pop();
1496 },
1497 );
1498 MatchTreeBranch { sub_branches }
1499 }
1500}
1501
1502/// Collects the bindings for a [`MatchTreeSubBranch`], preserving the order they appear in the
1503/// pattern, as though the or-alternatives chosen in this sub-branch were inlined.
1504fn sub_branch_bindings<'tcx>(
1505 parents: &[PatternExtraData<'tcx>],
1506 leaf_bindings: &[SubpatternBindings<'tcx>],
1507) -> Vec<Binding<'tcx>> {
1508 // In the common case, all bindings will be in leaves. Allocate to fit the leaf's bindings.
1509 let mut all_bindings = Vec::with_capacity(leaf_bindings.len());
1510 let mut remainder = parents
1511 .iter()
1512 .map(|parent| parent.bindings.as_slice())
1513 .chain([leaf_bindings])
1514 // Skip over unsimplified or-patterns without bindings.
1515 .filter(|bindings| !bindings.is_empty());
1516 if let Some(candidate_bindings) = remainder.next() {
1517 push_sub_branch_bindings(&mut all_bindings, candidate_bindings, &mut remainder);
1518 }
1519 // Make sure we've included all bindings. For ill-formed patterns like `(x, _ | y)`, we may not
1520 // have collected all bindings yet, since we only check the first alternative when determining
1521 // whether to inline subcandidates' bindings.
1522 // FIXME(@dianne): prevent ill-formed patterns from getting here
1523 while let Some(candidate_bindings) = remainder.next() {
1524 ty::tls::with(|tcx| {
1525 tcx.dcx().delayed_bug("mismatched or-pattern bindings but no error emitted")
1526 });
1527 // To recover, we collect the rest in an arbitrary order.
1528 push_sub_branch_bindings(&mut all_bindings, candidate_bindings, &mut remainder);
1529 }
1530 all_bindings
1531}
1532
1533/// Helper for [`sub_branch_bindings`]. Collects bindings from `candidate_bindings` into
1534/// `flattened`. Bindings in or-patterns are collected recursively from `remainder`.
1535fn push_sub_branch_bindings<'c, 'tcx: 'c>(
1536 flattened: &mut Vec<Binding<'tcx>>,
1537 candidate_bindings: &'c [SubpatternBindings<'tcx>],
1538 remainder: &mut impl Iterator<Item = &'c [SubpatternBindings<'tcx>]>,
1539) {
1540 for subpat_bindings in candidate_bindings {
1541 match subpat_bindings {
1542 SubpatternBindings::One(binding) => flattened.push(*binding),
1543 SubpatternBindings::FromOrPattern => {
1544 // Inline bindings from an or-pattern. By construction, this always
1545 // corresponds to a subcandidate and its closest descendants (i.e. those
1546 // from nested or-patterns, but not adjacent or-patterns). To handle
1547 // adjacent or-patterns, e.g. `(x | x, y | y)`, we update the `remainder` to
1548 // point to the first descendant candidate from outside this or-pattern.
1549 if let Some(subcandidate_bindings) = remainder.next() {
1550 push_sub_branch_bindings(flattened, subcandidate_bindings, remainder);
1551 } else {
1552 // For ill-formed patterns like `x | _`, we may not have any subcandidates left
1553 // to inline bindings from.
1554 // FIXME(@dianne): prevent ill-formed patterns from getting here
1555 ty::tls::with(|tcx| {
1556 tcx.dcx().delayed_bug("mismatched or-pattern bindings but no error emitted")
1557 });
1558 };
1559 }
1560 }
1561 }
1562}
1563
1564#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1565pub(crate) enum HasMatchGuard {
1566 Yes,
1567 No,
1568}
1569
1570impl<'a, 'tcx> Builder<'a, 'tcx> {
1571 /// The entrypoint of the matching algorithm. Create the decision tree for the match expression,
1572 /// starting from `block`.
1573 ///
1574 /// `patterns` is a list of patterns, one for each arm. The associated boolean indicates whether
1575 /// the arm has a guard.
1576 ///
1577 /// `refutable` indicates whether the candidate list is refutable (for `if let` and `let else`)
1578 /// or not (for `let` and `match`). In the refutable case we return the block to which we branch
1579 /// on failure.
1580 pub(crate) fn lower_match_tree(
1581 &mut self,
1582 block: BasicBlock,
1583 scrutinee_span: Span,
1584 scrutinee_place_builder: &PlaceBuilder<'tcx>,
1585 match_start_span: Span,
1586 patterns: Vec<(&Pat<'tcx>, HasMatchGuard)>,
1587 refutable: bool,
1588 ) -> BuiltMatchTree<'tcx> {
1589 // Assemble the initial list of candidates. These top-level candidates are 1:1 with the
1590 // input patterns, but other parts of match lowering also introduce subcandidates (for
1591 // sub-or-patterns). So inside the algorithm, the candidates list may not correspond to
1592 // match arms directly.
1593 let mut candidates: Vec<Candidate<'_>> = patterns
1594 .into_iter()
1595 .map(|(pat, has_guard)| {
1596 Candidate::new(scrutinee_place_builder.clone(), pat, has_guard, self)
1597 })
1598 .collect();
1599
1600 let fake_borrow_temps = util::collect_fake_borrows(
1601 self,
1602 &candidates,
1603 scrutinee_span,
1604 scrutinee_place_builder.base(),
1605 );
1606
1607 // This will generate code to test scrutinee_place and branch to the appropriate arm block.
1608 // If none of the arms match, we branch to `otherwise_block`. When lowering a `match`
1609 // expression, exhaustiveness checking ensures that this block is unreachable.
1610 let mut candidate_refs = candidates.iter_mut().collect::<Vec<_>>();
1611 let otherwise_block =
1612 self.match_candidates(match_start_span, scrutinee_span, block, &mut candidate_refs);
1613
1614 // Set up false edges so that the borrow-checker cannot make use of the specific CFG we
1615 // generated. We falsely branch from each candidate to the one below it to make it as if we
1616 // were testing match branches one by one in order. In the refutable case we also want a
1617 // false edge to the final failure block.
1618 let mut next_candidate_start_block = if refutable { Some(otherwise_block) } else { None };
1619 for candidate in candidates.iter_mut().rev() {
1620 let has_guard = candidate.has_guard;
1621 candidate.visit_leaves_rev(|leaf_candidate| {
1622 if let Some(next_candidate_start_block) = next_candidate_start_block {
1623 let source_info = self.source_info(leaf_candidate.extra_data.span);
1624 // Falsely branch to `next_candidate_start_block` before reaching pre_binding.
1625 let old_pre_binding = leaf_candidate.pre_binding_block.unwrap();
1626 let new_pre_binding = self.cfg.start_new_block();
1627 self.false_edges(
1628 old_pre_binding,
1629 new_pre_binding,
1630 next_candidate_start_block,
1631 source_info,
1632 );
1633 leaf_candidate.pre_binding_block = Some(new_pre_binding);
1634 if has_guard {
1635 // Falsely branch to `next_candidate_start_block` also if the guard fails.
1636 let new_otherwise = self.cfg.start_new_block();
1637 let old_otherwise = leaf_candidate.otherwise_block.unwrap();
1638 self.false_edges(
1639 new_otherwise,
1640 old_otherwise,
1641 next_candidate_start_block,
1642 source_info,
1643 );
1644 leaf_candidate.otherwise_block = Some(new_otherwise);
1645 }
1646 }
1647 assert!(leaf_candidate.false_edge_start_block.is_some());
1648 next_candidate_start_block = leaf_candidate.false_edge_start_block;
1649 });
1650 }
1651
1652 if !refutable {
1653 // Match checking ensures `otherwise_block` is actually unreachable in irrefutable
1654 // cases.
1655 let source_info = self.source_info(scrutinee_span);
1656
1657 // Matching on a scrutinee place of an uninhabited type doesn't generate any memory
1658 // reads by itself, and so if the place is uninitialized we wouldn't know. In order to
1659 // disallow the following:
1660 // ```rust
1661 // let x: !;
1662 // match x {}
1663 // ```
1664 // we add a dummy read on the place.
1665 //
1666 // NOTE: If we require never patterns for empty matches, those will check that the place
1667 // is initialized, and so this read would no longer be needed.
1668 let cause_matched_place = FakeReadCause::ForMatchedPlace(None);
1669
1670 if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
1671 self.cfg.push_fake_read(
1672 otherwise_block,
1673 source_info,
1674 cause_matched_place,
1675 scrutinee_place,
1676 );
1677 }
1678
1679 self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable);
1680 }
1681
1682 BuiltMatchTree {
1683 branches: candidates.into_iter().map(MatchTreeBranch::from_candidate).collect(),
1684 otherwise_block,
1685 fake_borrow_temps,
1686 }
1687 }
1688
1689 /// The main match algorithm. It begins with a set of candidates `candidates` and has the job of
1690 /// generating code that branches to an appropriate block if the scrutinee matches one of these
1691 /// candidates. The
1692 /// candidates are ordered such that the first item in the list
1693 /// has the highest priority. When a candidate is found to match
1694 /// the value, we will set and generate a branch to the appropriate
1695 /// pre-binding block.
1696 ///
1697 /// If none of the candidates apply, we continue to the returned `otherwise_block`.
1698 ///
1699 /// Note that while `match` expressions in the Rust language are exhaustive,
1700 /// candidate lists passed to this method are often _non-exhaustive_.
1701 /// For example, the match lowering process will frequently divide up the
1702 /// list of candidates, and recursively call this method with a non-exhaustive
1703 /// subset of candidates.
1704 /// See [`Builder::test_candidates`] for more details on this
1705 /// "backtracking automata" approach.
1706 ///
1707 /// For an example of how we use `otherwise_block`, consider:
1708 /// ```
1709 /// # fn foo((x, y): (bool, bool)) -> u32 {
1710 /// match (x, y) {
1711 /// (true, true) => 1,
1712 /// (_, false) => 2,
1713 /// (false, true) => 3,
1714 /// }
1715 /// # }
1716 /// ```
1717 /// For this match, we generate something like:
1718 /// ```
1719 /// # fn foo((x, y): (bool, bool)) -> u32 {
1720 /// if x {
1721 /// if y {
1722 /// return 1
1723 /// } else {
1724 /// // continue
1725 /// }
1726 /// } else {
1727 /// // continue
1728 /// }
1729 /// if y {
1730 /// if x {
1731 /// // This is actually unreachable because the `(true, true)` case was handled above,
1732 /// // but we don't know that from within the lowering algorithm.
1733 /// // continue
1734 /// } else {
1735 /// return 3
1736 /// }
1737 /// } else {
1738 /// return 2
1739 /// }
1740 /// // this is the final `otherwise_block`, which is unreachable because the match was exhaustive.
1741 /// unreachable!()
1742 /// # }
1743 /// ```
1744 ///
1745 /// Every `continue` is an instance of branching to some `otherwise_block` somewhere deep within
1746 /// the algorithm. For more details on why we lower like this, see [`Builder::test_candidates`].
1747 ///
1748 /// Note how we test `x` twice. This is the tradeoff of backtracking automata: we prefer smaller
1749 /// code size so we accept non-optimal code paths.
1750 #[instrument(skip(self), level = "debug")]
1751 fn match_candidates(
1752 &mut self,
1753 span: Span,
1754 scrutinee_span: Span,
1755 start_block: BasicBlock,
1756 candidates: &mut [&mut Candidate<'tcx>],
1757 ) -> BasicBlock {
1758 ensure_sufficient_stack(|| {
1759 self.match_candidates_inner(span, scrutinee_span, start_block, candidates)
1760 })
1761 }
1762
1763 /// Construct the decision tree for `candidates`. Don't call this, call `match_candidates`
1764 /// instead to reserve sufficient stack space.
1765 fn match_candidates_inner(
1766 &mut self,
1767 span: Span,
1768 scrutinee_span: Span,
1769 mut start_block: BasicBlock,
1770 candidates: &mut [&mut Candidate<'tcx>],
1771 ) -> BasicBlock {
1772 if let [first, ..] = candidates {
1773 if first.false_edge_start_block.is_none() {
1774 first.false_edge_start_block = Some(start_block);
1775 }
1776 }
1777
1778 // Process a prefix of the candidates.
1779 let rest = match candidates {
1780 [] => {
1781 // If there are no candidates that still need testing, we're done.
1782 return start_block;
1783 }
1784 [first, remaining @ ..] if first.match_pairs.is_empty() => {
1785 // The first candidate has satisfied all its match pairs.
1786 // We record the blocks that will be needed by match arm lowering,
1787 // and then continue with the remaining candidates.
1788 let remainder_start = self.select_matched_candidate(first, start_block);
1789 remainder_start.and(remaining)
1790 }
1791 candidates if candidates.iter().any(|candidate| candidate.starts_with_or_pattern()) => {
1792 // If any candidate starts with an or-pattern, we want to expand or-patterns
1793 // before we do any more tests.
1794 //
1795 // The only candidate we strictly _need_ to expand here is the first one.
1796 // But by expanding other candidates as early as possible, we unlock more
1797 // opportunities to include them in test outcomes, making the match tree
1798 // smaller and simpler.
1799 self.expand_and_match_or_candidates(span, scrutinee_span, start_block, candidates)
1800 }
1801 candidates => {
1802 // The first candidate has some unsatisfied match pairs; we proceed to do more tests.
1803 self.test_candidates(span, scrutinee_span, candidates, start_block)
1804 }
1805 };
1806
1807 // Process any candidates that remain.
1808 let remaining_candidates = unpack!(start_block = rest);
1809 self.match_candidates(span, scrutinee_span, start_block, remaining_candidates)
1810 }
1811
1812 /// Link up matched candidates.
1813 ///
1814 /// For example, if we have something like this:
1815 ///
1816 /// ```ignore (illustrative)
1817 /// ...
1818 /// Some(x) if cond1 => ...
1819 /// Some(x) => ...
1820 /// Some(x) if cond2 => ...
1821 /// ...
1822 /// ```
1823 ///
1824 /// We generate real edges from:
1825 ///
1826 /// * `start_block` to the [pre-binding block] of the first pattern,
1827 /// * the [otherwise block] of the first pattern to the second pattern,
1828 /// * the [otherwise block] of the third pattern to a block with an
1829 /// [`Unreachable` terminator](TerminatorKind::Unreachable).
1830 ///
1831 /// In addition, we later add fake edges from the otherwise blocks to the
1832 /// pre-binding block of the next candidate in the original set of
1833 /// candidates.
1834 ///
1835 /// [pre-binding block]: Candidate::pre_binding_block
1836 /// [otherwise block]: Candidate::otherwise_block
1837 fn select_matched_candidate(
1838 &mut self,
1839 candidate: &mut Candidate<'tcx>,
1840 start_block: BasicBlock,
1841 ) -> BasicBlock {
1842 assert!(candidate.otherwise_block.is_none());
1843 assert!(candidate.pre_binding_block.is_none());
1844 assert!(candidate.subcandidates.is_empty());
1845
1846 candidate.pre_binding_block = Some(start_block);
1847 let otherwise_block = self.cfg.start_new_block();
1848 // Create the otherwise block for this candidate, which is the
1849 // pre-binding block for the next candidate.
1850 candidate.otherwise_block = Some(otherwise_block);
1851 otherwise_block
1852 }
1853
1854 /// Takes a list of candidates such that some of the candidates' first match pairs are
1855 /// or-patterns. This expands as many or-patterns as possible and processes the resulting
1856 /// candidates. Returns the unprocessed candidates if any.
1857 fn expand_and_match_or_candidates<'b, 'c>(
1858 &mut self,
1859 span: Span,
1860 scrutinee_span: Span,
1861 start_block: BasicBlock,
1862 candidates: &'b mut [&'c mut Candidate<'tcx>],
1863 ) -> BlockAnd<&'b mut [&'c mut Candidate<'tcx>]> {
1864 // We can't expand or-patterns freely. The rule is:
1865 // - If a candidate doesn't start with an or-pattern, we include it in
1866 // the expansion list as-is (i.e. it "expands" to itself).
1867 // - If a candidate has an or-pattern as its only remaining match pair,
1868 // we can expand it.
1869 // - If it starts with an or-pattern but also has other match pairs,
1870 // we can expand it, but we can't process more candidates after it.
1871 //
1872 // If we didn't stop, the `otherwise` cases could get mixed up. E.g. in the
1873 // following, or-pattern simplification (in `merge_trivial_subcandidates`) makes it
1874 // so the `1` and `2` cases branch to a same block (which then tests `false`). If we
1875 // took `(2, _)` in the same set of candidates, when we reach the block that tests
1876 // `false` we don't know whether we came from `1` or `2`, hence we can't know where
1877 // to branch on failure.
1878 //
1879 // ```ignore(illustrative)
1880 // match (1, true) {
1881 // (1 | 2, false) => {},
1882 // (2, _) => {},
1883 // _ => {}
1884 // }
1885 // ```
1886 //
1887 // We therefore split the `candidates` slice in two, expand or-patterns in the first part,
1888 // and process the rest separately.
1889 let expand_until = candidates
1890 .iter()
1891 .position(|candidate| {
1892 // If a candidate starts with an or-pattern and has more match pairs,
1893 // we can expand it, but we must stop expanding _after_ it.
1894 candidate.match_pairs.len() > 1 && candidate.starts_with_or_pattern()
1895 })
1896 .map(|pos| pos + 1) // Stop _after_ the found candidate
1897 .unwrap_or(candidates.len()); // Otherwise, include all candidates
1898 let (candidates_to_expand, remaining_candidates) = candidates.split_at_mut(expand_until);
1899
1900 // Expand one level of or-patterns for each candidate in `candidates_to_expand`.
1901 // We take care to preserve the relative ordering of candidates, so that
1902 // or-patterns are expanded in their parent's relative position.
1903 let mut expanded_candidates = Vec::new();
1904 for candidate in candidates_to_expand.iter_mut() {
1905 if candidate.starts_with_or_pattern() {
1906 let or_match_pair = candidate.match_pairs.remove(0);
1907 // Expand the or-pattern into subcandidates.
1908 self.create_or_subcandidates(candidate, or_match_pair);
1909 // Collect the newly created subcandidates.
1910 for subcandidate in candidate.subcandidates.iter_mut() {
1911 expanded_candidates.push(subcandidate);
1912 }
1913 // Note that the subcandidates have been added to `expanded_candidates`,
1914 // but `candidate` itself has not. If the last candidate has more match pairs,
1915 // they are handled separately by `test_remaining_match_pairs_after_or`.
1916 } else {
1917 // A candidate that doesn't start with an or-pattern has nothing to
1918 // expand, so it is included in the post-expansion list as-is.
1919 expanded_candidates.push(candidate);
1920 }
1921 }
1922
1923 // Recursively lower the part of the match tree represented by the
1924 // expanded candidates. This is where subcandidates actually get lowered!
1925 let remainder_start = self.match_candidates(
1926 span,
1927 scrutinee_span,
1928 start_block,
1929 expanded_candidates.as_mut_slice(),
1930 );
1931
1932 // Postprocess subcandidates, and process any leftover match pairs.
1933 // (Only the last candidate can possibly have more match pairs.)
1934 debug_assert!({
1935 let mut all_except_last = candidates_to_expand.iter().rev().skip(1);
1936 all_except_last.all(|candidate| candidate.match_pairs.is_empty())
1937 });
1938 for candidate in candidates_to_expand.iter_mut() {
1939 if !candidate.subcandidates.is_empty() {
1940 self.merge_trivial_subcandidates(candidate);
1941 self.remove_never_subcandidates(candidate);
1942 }
1943 }
1944 // It's important to perform the above simplifications _before_ dealing
1945 // with remaining match pairs, to avoid exponential blowup if possible
1946 // (for trivial or-patterns), and avoid useless work (for never patterns).
1947 if let Some(last_candidate) = candidates_to_expand.last_mut() {
1948 self.test_remaining_match_pairs_after_or(span, scrutinee_span, last_candidate);
1949 }
1950
1951 remainder_start.and(remaining_candidates)
1952 }
1953
1954 /// Given a match-pair that corresponds to an or-pattern, expand each subpattern into a new
1955 /// subcandidate. Any candidate that has been expanded this way should also be postprocessed
1956 /// at the end of [`Self::expand_and_match_or_candidates`].
1957 fn create_or_subcandidates(
1958 &mut self,
1959 candidate: &mut Candidate<'tcx>,
1960 match_pair: MatchPairTree<'tcx>,
1961 ) {
1962 let TestableCase::Or { pats } = match_pair.testable_case else { bug!() };
1963 debug!("expanding or-pattern: candidate={:#?}\npats={:#?}", candidate, pats);
1964 candidate.or_span = Some(match_pair.pattern_span);
1965 candidate.subcandidates = pats
1966 .into_iter()
1967 .map(|flat_pat| Candidate::from_flat_pat(flat_pat, candidate.has_guard))
1968 .collect();
1969 candidate.subcandidates[0].false_edge_start_block = candidate.false_edge_start_block;
1970 }
1971
1972 /// Try to merge all of the subcandidates of the given candidate into one. This avoids
1973 /// exponentially large CFGs in cases like `(1 | 2, 3 | 4, ...)`. The candidate should have been
1974 /// expanded with `create_or_subcandidates`.
1975 ///
1976 /// Given a pattern `(P | Q, R | S)` we (in principle) generate a CFG like
1977 /// so:
1978 ///
1979 /// ```text
1980 /// [ start ]
1981 /// |
1982 /// [ match P, Q ]
1983 /// |
1984 /// +----------------------------------------+------------------------------------+
1985 /// | | |
1986 /// V V V
1987 /// [ P matches ] [ Q matches ] [ otherwise ]
1988 /// | | |
1989 /// V V |
1990 /// [ match R, S ] [ match R, S ] |
1991 /// | | |
1992 /// +--------------+------------+ +--------------+------------+ |
1993 /// | | | | | | |
1994 /// V V V V V V |
1995 /// [ R matches ] [ S matches ] [otherwise ] [ R matches ] [ S matches ] [otherwise ] |
1996 /// | | | | | | |
1997 /// +--------------+------------|------------+--------------+ | |
1998 /// | | | |
1999 /// | +----------------------------------------+--------+
2000 /// | |
2001 /// V V
2002 /// [ Success ] [ Failure ]
2003 /// ```
2004 ///
2005 /// In practice there are some complications:
2006 ///
2007 /// * If there's a guard, then the otherwise branch of the first match on
2008 /// `R | S` goes to a test for whether `Q` matches, and the control flow
2009 /// doesn't merge into a single success block until after the guard is
2010 /// tested.
2011 /// * If neither `P` or `Q` has any bindings or type ascriptions and there
2012 /// isn't a match guard, then we create a smaller CFG like:
2013 ///
2014 /// ```text
2015 /// ...
2016 /// +---------------+------------+
2017 /// | | |
2018 /// [ P matches ] [ Q matches ] [ otherwise ]
2019 /// | | |
2020 /// +---------------+ |
2021 /// | ...
2022 /// [ match R, S ]
2023 /// |
2024 /// ...
2025 /// ```
2026 ///
2027 /// Note that this takes place _after_ the subcandidates have participated
2028 /// in match tree lowering.
2029 fn merge_trivial_subcandidates(&mut self, candidate: &mut Candidate<'tcx>) {
2030 assert!(!candidate.subcandidates.is_empty());
2031 if candidate.has_guard {
2032 // FIXME(or_patterns; matthewjasper) Don't give up if we have a guard.
2033 return;
2034 }
2035
2036 // FIXME(or_patterns; matthewjasper) Try to be more aggressive here.
2037 let can_merge = candidate.subcandidates.iter().all(|subcandidate| {
2038 subcandidate.subcandidates.is_empty() && subcandidate.extra_data.is_empty()
2039 });
2040 if !can_merge {
2041 return;
2042 }
2043
2044 let mut last_otherwise = None;
2045 let shared_pre_binding_block = self.cfg.start_new_block();
2046 // This candidate is about to become a leaf, so unset `or_span`.
2047 let or_span = candidate.or_span.take().unwrap();
2048 let source_info = self.source_info(or_span);
2049
2050 if candidate.false_edge_start_block.is_none() {
2051 candidate.false_edge_start_block = candidate.subcandidates[0].false_edge_start_block;
2052 }
2053
2054 // Remove the (known-trivial) subcandidates from the candidate tree,
2055 // so that they aren't visible after match tree lowering, and wire them
2056 // all to join up at a single shared pre-binding block.
2057 // (Note that the subcandidates have already had their part of the match
2058 // tree lowered by this point, which is why we can add a goto to them.)
2059 for subcandidate in mem::take(&mut candidate.subcandidates) {
2060 let subcandidate_block = subcandidate.pre_binding_block.unwrap();
2061 self.cfg.goto(subcandidate_block, source_info, shared_pre_binding_block);
2062 last_otherwise = subcandidate.otherwise_block;
2063 }
2064 candidate.pre_binding_block = Some(shared_pre_binding_block);
2065 assert!(last_otherwise.is_some());
2066 candidate.otherwise_block = last_otherwise;
2067 }
2068
2069 /// Never subcandidates may have a set of bindings inconsistent with their siblings,
2070 /// which would break later code. So we filter them out. Note that we can't filter out
2071 /// top-level candidates this way.
2072 fn remove_never_subcandidates(&mut self, candidate: &mut Candidate<'tcx>) {
2073 if candidate.subcandidates.is_empty() {
2074 return;
2075 }
2076
2077 let false_edge_start_block = candidate.subcandidates[0].false_edge_start_block;
2078 candidate.subcandidates.retain_mut(|candidate| {
2079 if candidate.extra_data.is_never {
2080 candidate.visit_leaves(|subcandidate| {
2081 let block = subcandidate.pre_binding_block.unwrap();
2082 // That block is already unreachable but needs a terminator to make the MIR well-formed.
2083 let source_info = self.source_info(subcandidate.extra_data.span);
2084 self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
2085 });
2086 false
2087 } else {
2088 true
2089 }
2090 });
2091 if candidate.subcandidates.is_empty() {
2092 // If `candidate` has become a leaf candidate, ensure it has a `pre_binding_block` and `otherwise_block`.
2093 let next_block = self.cfg.start_new_block();
2094 candidate.pre_binding_block = Some(next_block);
2095 candidate.otherwise_block = Some(next_block);
2096 // In addition, if `candidate` doesn't have `false_edge_start_block`, it should be assigned here.
2097 if candidate.false_edge_start_block.is_none() {
2098 candidate.false_edge_start_block = false_edge_start_block;
2099 }
2100 }
2101 }
2102
2103 /// If more match pairs remain, test them after each subcandidate.
2104 /// We could have added them to the or-candidates during or-pattern expansion, but that
2105 /// would make it impossible to detect simplifiable or-patterns. That would guarantee
2106 /// exponentially large CFGs for cases like `(1 | 2, 3 | 4, ...)`.
2107 fn test_remaining_match_pairs_after_or(
2108 &mut self,
2109 span: Span,
2110 scrutinee_span: Span,
2111 candidate: &mut Candidate<'tcx>,
2112 ) {
2113 if candidate.match_pairs.is_empty() {
2114 return;
2115 }
2116
2117 let or_span = candidate.or_span.unwrap_or(candidate.extra_data.span);
2118 let source_info = self.source_info(or_span);
2119 let mut last_otherwise = None;
2120 candidate.visit_leaves(|leaf_candidate| {
2121 last_otherwise = leaf_candidate.otherwise_block;
2122 });
2123
2124 let remaining_match_pairs = mem::take(&mut candidate.match_pairs);
2125 // We're testing match pairs that remained after an `Or`, so the remaining
2126 // pairs should all be `Or` too, due to the sorting invariant.
2127 debug_assert!(
2128 remaining_match_pairs
2129 .iter()
2130 .all(|match_pair| matches!(match_pair.testable_case, TestableCase::Or { .. }))
2131 );
2132
2133 // Visit each leaf candidate within this subtree, add a copy of the remaining
2134 // match pairs to it, and then recursively lower the rest of the match tree
2135 // from that point.
2136 candidate.visit_leaves(|leaf_candidate| {
2137 // At this point the leaf's own match pairs have all been lowered
2138 // and removed, so `extend` and assignment are equivalent,
2139 // but extending can also recycle any existing vector capacity.
2140 assert!(leaf_candidate.match_pairs.is_empty());
2141 leaf_candidate.match_pairs.extend(remaining_match_pairs.iter().cloned());
2142
2143 let or_start = leaf_candidate.pre_binding_block.unwrap();
2144 let otherwise =
2145 self.match_candidates(span, scrutinee_span, or_start, &mut [leaf_candidate]);
2146 // In a case like `(P | Q, R | S)`, if `P` succeeds and `R | S` fails, we know `(Q,
2147 // R | S)` will fail too. If there is no guard, we skip testing of `Q` by branching
2148 // directly to `last_otherwise`. If there is a guard,
2149 // `leaf_candidate.otherwise_block` can be reached by guard failure as well, so we
2150 // can't skip `Q`.
2151 let or_otherwise = if leaf_candidate.has_guard {
2152 leaf_candidate.otherwise_block.unwrap()
2153 } else {
2154 last_otherwise.unwrap()
2155 };
2156 self.cfg.goto(otherwise, source_info, or_otherwise);
2157 });
2158 }
2159
2160 /// Pick a test to run. Which test doesn't matter as long as it is guaranteed to fully match at
2161 /// least one match pair. We currently simply pick the test corresponding to the first match
2162 /// pair of the first candidate in the list.
2163 ///
2164 /// *Note:* taking the first match pair is somewhat arbitrary, and we might do better here by
2165 /// choosing more carefully what to test.
2166 ///
2167 /// For example, consider the following possible match-pairs:
2168 ///
2169 /// 1. `x @ Some(P)` -- we will do a [`Switch`] to decide what variant `x` has
2170 /// 2. `x @ 22` -- we will do a [`SwitchInt`] to decide what value `x` has
2171 /// 3. `x @ 3..5` -- we will do a [`Range`] test to decide what range `x` falls in
2172 /// 4. etc.
2173 ///
2174 /// [`Switch`]: TestKind::Switch
2175 /// [`SwitchInt`]: TestKind::SwitchInt
2176 /// [`Range`]: TestKind::Range
2177 fn pick_test(&mut self, candidates: &[&mut Candidate<'tcx>]) -> (Place<'tcx>, Test<'tcx>) {
2178 // Extract the match-pair from the highest priority candidate
2179 let match_pair = &candidates[0].match_pairs[0];
2180 let test = self.pick_test_for_match_pair(match_pair);
2181 // Unwrap is ok after simplification.
2182 let match_place = match_pair.place.unwrap();
2183 debug!(?test, ?match_pair);
2184
2185 (match_place, test)
2186 }
2187
2188 /// This is the most subtle part of the match lowering algorithm. At this point, there are
2189 /// no fully-satisfied candidates, and no or-patterns to expand, so we actually need to
2190 /// perform some sort of test to make progress.
2191 ///
2192 /// Once we pick what sort of test we are going to perform, this test will help us winnow down
2193 /// our candidates. So we walk over the candidates (from high to low priority) and check. We
2194 /// compute, for each outcome of the test, a list of (modified) candidates. If a candidate
2195 /// matches in exactly one branch of our test, we add it to the corresponding outcome. We also
2196 /// **mutate its list of match pairs** if appropriate, to reflect the fact that we know which
2197 /// outcome occurred.
2198 ///
2199 /// For example, if we are testing `x.0`'s variant, and we have a candidate `(x.0 @ Some(v), x.1
2200 /// @ 22)`, then we would have a resulting candidate of `((x.0 as Some).0 @ v, x.1 @ 22)` in the
2201 /// branch corresponding to `Some`. To ensure we make progress, we always pick a test that
2202 /// results in simplifying the first candidate.
2203 ///
2204 /// But there may also be candidates that the test doesn't
2205 /// apply to. The classical example is wildcards:
2206 ///
2207 /// ```
2208 /// # let (x, y, z) = (true, true, true);
2209 /// match (x, y, z) {
2210 /// (true , _ , true ) => true, // (0)
2211 /// (false, false, _ ) => false, // (1)
2212 /// (_ , true , _ ) => true, // (2)
2213 /// (true , _ , false) => false, // (3)
2214 /// }
2215 /// # ;
2216 /// ```
2217 ///
2218 /// Here, the traditional "decision tree" method would generate 2 separate code-paths for the 2
2219 /// possible values of `x`. This would however duplicate some candidates, which would need to be
2220 /// lowered several times.
2221 ///
2222 /// In some cases, this duplication can create an exponential amount of
2223 /// code. This is most easily seen by noticing that this method terminates
2224 /// with precisely the reachable arms being reachable - but that problem
2225 /// is trivially NP-complete:
2226 ///
2227 /// ```ignore (illustrative)
2228 /// match (var0, var1, var2, var3, ...) {
2229 /// (true , _ , _ , false, true, ...) => false,
2230 /// (_ , true, true , false, _ , ...) => false,
2231 /// (false, _ , false, false, _ , ...) => false,
2232 /// ...
2233 /// _ => true
2234 /// }
2235 /// ```
2236 ///
2237 /// Here the last arm is reachable only if there is an assignment to
2238 /// the variables that does not match any of the literals. Therefore,
2239 /// compilation would take an exponential amount of time in some cases.
2240 ///
2241 /// In rustc, we opt instead for the "backtracking automaton" approach. This guarantees we never
2242 /// duplicate a candidate (except in the presence of or-patterns). In fact this guarantee is
2243 /// ensured by the fact that we carry around `&mut Candidate`s which can't be duplicated.
2244 ///
2245 /// To make this work, whenever we decide to perform a test, if we encounter a candidate that
2246 /// could match in more than one branch of the test, we stop. We generate code for the test and
2247 /// for the candidates in its branches; the remaining candidates will be tested if the
2248 /// candidates in the branches fail to match.
2249 ///
2250 /// For example, if we test on `x` in the following:
2251 /// ```
2252 /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
2253 /// match (x, y, z) {
2254 /// (true , _ , true ) => 0,
2255 /// (false, false, _ ) => 1,
2256 /// (_ , true , _ ) => 2,
2257 /// (true , _ , false) => 3,
2258 /// }
2259 /// # }
2260 /// ```
2261 /// this function generates code that looks more of less like:
2262 /// ```
2263 /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
2264 /// if x {
2265 /// match (y, z) {
2266 /// (_, true) => return 0,
2267 /// _ => {} // continue matching
2268 /// }
2269 /// } else {
2270 /// match (y, z) {
2271 /// (false, _) => return 1,
2272 /// _ => {} // continue matching
2273 /// }
2274 /// }
2275 /// // the block here is `remainder_start`
2276 /// match (x, y, z) {
2277 /// (_ , true , _ ) => 2,
2278 /// (true , _ , false) => 3,
2279 /// _ => unreachable!(),
2280 /// }
2281 /// # }
2282 /// ```
2283 ///
2284 /// We return the unprocessed candidates.
2285 fn test_candidates<'b, 'c>(
2286 &mut self,
2287 span: Span,
2288 scrutinee_span: Span,
2289 candidates: &'b mut [&'c mut Candidate<'tcx>],
2290 start_block: BasicBlock,
2291 ) -> BlockAnd<&'b mut [&'c mut Candidate<'tcx>]> {
2292 // Choose a match pair from the first candidate, and use it to determine a
2293 // test to perform that will confirm or refute that match pair.
2294 let (match_place, test) = self.pick_test(candidates);
2295
2296 // For each of the N possible test outcomes, build the vector of candidates that applies if
2297 // the test has that particular outcome. This also mutates the candidates to remove match
2298 // pairs that are fully satisfied by the relevant outcome.
2299 let PartitionedCandidates { target_candidates, remaining_candidates } =
2300 self.partition_candidates_into_buckets(match_place, &test, candidates);
2301
2302 // The block that we should branch to if none of the `target_candidates` match.
2303 let remainder_start = self.cfg.start_new_block();
2304
2305 // For each outcome of the test, recursively lower the rest of the match tree
2306 // from that point. (Note that we haven't lowered the actual test yet!)
2307 let target_blocks: FxIndexMap<_, _> = target_candidates
2308 .into_iter()
2309 .map(|(branch, mut candidates)| {
2310 let branch_start = self.cfg.start_new_block();
2311 // Recursively lower the rest of the match tree after the relevant outcome.
2312 let branch_otherwise =
2313 self.match_candidates(span, scrutinee_span, branch_start, &mut *candidates);
2314
2315 // Link up the `otherwise` block of the subtree to `remainder_start`.
2316 let source_info = self.source_info(span);
2317 self.cfg.goto(branch_otherwise, source_info, remainder_start);
2318 (branch, branch_start)
2319 })
2320 .collect();
2321
2322 // Perform the chosen test, branching to one of the N subtrees prepared above
2323 // (or to `remainder_start` if no outcome was satisfied).
2324 self.perform_test(
2325 span,
2326 scrutinee_span,
2327 start_block,
2328 remainder_start,
2329 match_place,
2330 &test,
2331 target_blocks,
2332 );
2333
2334 remainder_start.and(remaining_candidates)
2335 }
2336}
2337
2338///////////////////////////////////////////////////////////////////////////
2339// Pat binding - used for `let` and function parameters as well.
2340
2341impl<'a, 'tcx> Builder<'a, 'tcx> {
2342 /// Lowers a `let` expression that appears in a suitable context
2343 /// (e.g. an `if` condition or match guard).
2344 ///
2345 /// Also used for lowering let-else statements, since they have similar
2346 /// needs despite not actually using `let` expressions.
2347 ///
2348 /// Use [`DeclareLetBindings`] to control whether the `let` bindings are
2349 /// declared or not.
2350 pub(crate) fn lower_let_expr(
2351 &mut self,
2352 mut block: BasicBlock,
2353 expr_id: ExprId,
2354 pat: &Pat<'tcx>,
2355 source_scope: Option<SourceScope>,
2356 scope_span: Span,
2357 declare_let_bindings: DeclareLetBindings,
2358 ) -> BlockAnd<()> {
2359 let expr_span = self.thir[expr_id].span;
2360 let scrutinee = unpack!(block = self.lower_scrutinee(block, expr_id, expr_span));
2361 let built_tree = self.lower_match_tree(
2362 block,
2363 expr_span,
2364 &scrutinee,
2365 pat.span,
2366 vec![(pat, HasMatchGuard::No)],
2367 true,
2368 );
2369 let [branch] = built_tree.branches.try_into().unwrap();
2370
2371 self.break_for_else(built_tree.otherwise_block, self.source_info(expr_span));
2372
2373 match declare_let_bindings {
2374 DeclareLetBindings::Yes => {
2375 let expr_place = scrutinee.try_to_place(self);
2376 let opt_expr_place = expr_place.as_ref().map(|place| (Some(place), expr_span));
2377 self.declare_bindings(
2378 source_scope,
2379 pat.span.to(scope_span),
2380 pat,
2381 None,
2382 opt_expr_place,
2383 );
2384 }
2385 DeclareLetBindings::No => {} // Caller is responsible for bindings.
2386 DeclareLetBindings::LetNotPermitted => {
2387 self.tcx.dcx().span_bug(expr_span, "let expression not expected in this context")
2388 }
2389 }
2390
2391 let success = self.bind_pattern(self.source_info(pat.span), branch, &[], expr_span, None);
2392
2393 // If branch coverage is enabled, record this branch.
2394 self.visit_coverage_conditional_let(pat, success, built_tree.otherwise_block);
2395
2396 success.unit()
2397 }
2398
2399 /// Initializes each of the bindings from the candidate by
2400 /// moving/copying/ref'ing the source as appropriate. Tests the guard, if
2401 /// any, and then branches to the arm. Returns the block for the case where
2402 /// the guard succeeds.
2403 ///
2404 /// Note: we do not check earlier that if there is a guard,
2405 /// there cannot be move bindings. We avoid a use-after-move by only
2406 /// moving the binding once the guard has evaluated to true (see below).
2407 fn bind_and_guard_matched_candidate(
2408 &mut self,
2409 sub_branch: MatchTreeSubBranch<'tcx>,
2410 fake_borrows: &[(Place<'tcx>, Local, FakeBorrowKind)],
2411 scrutinee_span: Span,
2412 arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
2413 schedule_drops: ScheduleDrops,
2414 ) -> BasicBlock {
2415 debug!("bind_and_guard_matched_candidate(subbranch={:?})", sub_branch);
2416
2417 let block = sub_branch.success_block;
2418
2419 if sub_branch.is_never {
2420 // This arm has a dummy body, we don't need to generate code for it. `block` is already
2421 // unreachable (except via false edge).
2422 let source_info = self.source_info(sub_branch.span);
2423 self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
2424 return self.cfg.start_new_block();
2425 }
2426
2427 self.ascribe_types(block, sub_branch.ascriptions);
2428
2429 // Lower an instance of the arm guard (if present) for this candidate,
2430 // and then perform bindings for the arm body.
2431 if let Some((arm, match_scope)) = arm_match_scope
2432 && let Some(guard) = arm.guard
2433 {
2434 let tcx = self.tcx;
2435
2436 // Bindings for guards require some extra handling to automatically
2437 // insert implicit references/dereferences.
2438 // This always schedules storage drops, so we may need to unschedule them below.
2439 self.bind_matched_candidate_for_guard(block, sub_branch.bindings.iter());
2440 let guard_frame = GuardFrame {
2441 locals: sub_branch
2442 .bindings
2443 .iter()
2444 .map(|b| GuardFrameLocal::new(b.var_id))
2445 .collect(),
2446 };
2447 debug!("entering guard building context: {:?}", guard_frame);
2448 self.guard_context.push(guard_frame);
2449
2450 let re_erased = tcx.lifetimes.re_erased;
2451 let scrutinee_source_info = self.source_info(scrutinee_span);
2452 for &(place, temp, kind) in fake_borrows {
2453 let borrow = Rvalue::Ref(re_erased, BorrowKind::Fake(kind), place);
2454 self.cfg.push_assign(block, scrutinee_source_info, Place::from(temp), borrow);
2455 }
2456
2457 let mut guard_span = rustc_span::DUMMY_SP;
2458
2459 let (post_guard_block, otherwise_post_guard_block) =
2460 self.in_if_then_scope(match_scope, guard_span, |this| {
2461 guard_span = this.thir[guard].span;
2462 this.then_else_break(
2463 block,
2464 guard,
2465 None, // Use `self.local_scope()` as the temp scope
2466 this.source_info(arm.span),
2467 DeclareLetBindings::No, // For guards, `let` bindings are declared separately
2468 )
2469 });
2470
2471 // If this isn't the final sub-branch being lowered, we need to unschedule drops of
2472 // bindings and temporaries created for and by the guard. As a result, the drop order
2473 // for the arm will correspond to the binding order of the final sub-branch lowered.
2474 if matches!(schedule_drops, ScheduleDrops::No) {
2475 self.clear_match_arm_and_guard_scopes(arm.scope);
2476 }
2477
2478 let source_info = self.source_info(guard_span);
2479 let guard_end = self.source_info(tcx.sess.source_map().end_point(guard_span));
2480 let guard_frame = self.guard_context.pop().unwrap();
2481 debug!("Exiting guard building context with locals: {:?}", guard_frame);
2482
2483 for &(_, temp, _) in fake_borrows {
2484 let cause = FakeReadCause::ForMatchGuard;
2485 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(temp));
2486 }
2487
2488 self.cfg.goto(otherwise_post_guard_block, source_info, sub_branch.otherwise_block);
2489
2490 // We want to ensure that the matched candidates are bound
2491 // after we have confirmed this candidate *and* any
2492 // associated guard; Binding them on `block` is too soon,
2493 // because that would be before we've checked the result
2494 // from the guard.
2495 //
2496 // But binding them on the arm is *too late*, because
2497 // then all of the candidates for a single arm would be
2498 // bound in the same place, that would cause a case like:
2499 //
2500 // ```rust
2501 // match (30, 2) {
2502 // (mut x, 1) | (2, mut x) if { true } => { ... }
2503 // ... // ^^^^^^^ (this is `arm_block`)
2504 // }
2505 // ```
2506 //
2507 // would yield an `arm_block` something like:
2508 //
2509 // ```
2510 // StorageLive(_4); // _4 is `x`
2511 // _4 = &mut (_1.0: i32); // this is handling `(mut x, 1)` case
2512 // _4 = &mut (_1.1: i32); // this is handling `(2, mut x)` case
2513 // ```
2514 //
2515 // and that is clearly not correct.
2516 let by_value_bindings = sub_branch
2517 .bindings
2518 .iter()
2519 .filter(|binding| matches!(binding.binding_mode.0, ByRef::No));
2520 // Read all of the by reference bindings to ensure that the
2521 // place they refer to can't be modified by the guard.
2522 for binding in by_value_bindings.clone() {
2523 let local_id = self.var_local_id(binding.var_id, RefWithinGuard);
2524 let cause = FakeReadCause::ForGuardBinding;
2525 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
2526 }
2527 // Only schedule drops for the last sub-branch we lower.
2528 self.bind_matched_candidate_for_arm_body(
2529 post_guard_block,
2530 schedule_drops,
2531 by_value_bindings,
2532 );
2533
2534 post_guard_block
2535 } else {
2536 // (Here, it is not too early to bind the matched
2537 // candidate on `block`, because there is no guard result
2538 // that we have to inspect before we bind them.)
2539 self.bind_matched_candidate_for_arm_body(
2540 block,
2541 schedule_drops,
2542 sub_branch.bindings.iter(),
2543 );
2544 block
2545 }
2546 }
2547
2548 /// Append `AscribeUserType` statements onto the end of `block`
2549 /// for each ascription
2550 fn ascribe_types(
2551 &mut self,
2552 block: BasicBlock,
2553 ascriptions: impl IntoIterator<Item = Ascription<'tcx>>,
2554 ) {
2555 for ascription in ascriptions {
2556 let source_info = self.source_info(ascription.annotation.span);
2557
2558 let base = self.canonical_user_type_annotations.push(ascription.annotation);
2559 self.cfg.push(
2560 block,
2561 Statement::new(
2562 source_info,
2563 StatementKind::AscribeUserType(
2564 Box::new((
2565 ascription.source,
2566 UserTypeProjection { base, projs: Vec::new() },
2567 )),
2568 ascription.variance,
2569 ),
2570 ),
2571 );
2572 }
2573 }
2574
2575 /// Binding for guards is a bit different from binding for the arm body,
2576 /// because an extra layer of implicit reference/dereference is added.
2577 ///
2578 /// The idea is that any pattern bindings of type T will map to a `&T` within
2579 /// the context of the guard expression, but will continue to map to a `T`
2580 /// in the context of the arm body. To avoid surfacing this distinction in
2581 /// the user source code (which would be a severe change to the language and
2582 /// require far more revision to the compiler), any occurrence of the
2583 /// identifier in the guard expression will automatically get a deref op
2584 /// applied to it. (See the caller of [`Self::is_bound_var_in_guard`].)
2585 ///
2586 /// So an input like:
2587 ///
2588 /// ```ignore (illustrative)
2589 /// let place = Foo::new();
2590 /// match place { foo if inspect(foo)
2591 /// => feed(foo), ... }
2592 /// ```
2593 ///
2594 /// will be treated as if it were really something like:
2595 ///
2596 /// ```ignore (illustrative)
2597 /// let place = Foo::new();
2598 /// match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
2599 /// => { let tmp2 = place; feed(tmp2) }, ... }
2600 /// ```
2601 ///
2602 /// And an input like:
2603 ///
2604 /// ```ignore (illustrative)
2605 /// let place = Foo::new();
2606 /// match place { ref mut foo if inspect(foo)
2607 /// => feed(foo), ... }
2608 /// ```
2609 ///
2610 /// will be treated as if it were really something like:
2611 ///
2612 /// ```ignore (illustrative)
2613 /// let place = Foo::new();
2614 /// match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
2615 /// => { let tmp2 = &mut place; feed(tmp2) }, ... }
2616 /// ```
2617 /// ---
2618 ///
2619 /// ## Implementation notes
2620 ///
2621 /// To encode the distinction above, we must inject the
2622 /// temporaries `tmp1` and `tmp2`.
2623 ///
2624 /// There are two cases of interest: binding by-value, and binding by-ref.
2625 ///
2626 /// 1. Binding by-value: Things are simple.
2627 ///
2628 /// * Establishing `tmp1` creates a reference into the
2629 /// matched place. This code is emitted by
2630 /// [`Self::bind_matched_candidate_for_guard`].
2631 ///
2632 /// * `tmp2` is only initialized "lazily", after we have
2633 /// checked the guard. Thus, the code that can trigger
2634 /// moves out of the candidate can only fire after the
2635 /// guard evaluated to true. This initialization code is
2636 /// emitted by [`Self::bind_matched_candidate_for_arm_body`].
2637 ///
2638 /// 2. Binding by-reference: Things are tricky.
2639 ///
2640 /// * Here, the guard expression wants a `&&` or `&&mut`
2641 /// into the original input. This means we need to borrow
2642 /// the reference that we create for the arm.
2643 /// * So we eagerly create the reference for the arm and then take a
2644 /// reference to that.
2645 ///
2646 /// ---
2647 ///
2648 /// See these PRs for some historical context:
2649 /// - <https://github.com/rust-lang/rust/pull/49870> (introduction of autoref)
2650 /// - <https://github.com/rust-lang/rust/pull/59114> (always use autoref)
2651 fn bind_matched_candidate_for_guard<'b>(
2652 &mut self,
2653 block: BasicBlock,
2654 bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2655 ) where
2656 'tcx: 'b,
2657 {
2658 debug!("bind_matched_candidate_for_guard(block={:?})", block);
2659
2660 // Assign each of the bindings. Since we are binding for a
2661 // guard expression, this will never trigger moves out of the
2662 // candidate.
2663 let re_erased = self.tcx.lifetimes.re_erased;
2664 for binding in bindings {
2665 debug!("bind_matched_candidate_for_guard(binding={:?})", binding);
2666 let source_info = self.source_info(binding.span);
2667
2668 // For each pattern ident P of type T, `ref_for_guard` is
2669 // a reference R: &T pointing to the location matched by
2670 // the pattern, and every occurrence of P within a guard
2671 // denotes *R.
2672 // Drops must be scheduled to emit `StorageDead` on the guard's failure/break branches.
2673 let ref_for_guard = self.storage_live_binding(
2674 block,
2675 binding.var_id,
2676 binding.span,
2677 binding.is_shorthand,
2678 RefWithinGuard,
2679 ScheduleDrops::Yes,
2680 );
2681 match binding.binding_mode.0 {
2682 ByRef::No => {
2683 // The arm binding will be by value, so for the guard binding
2684 // just take a shared reference to the matched place.
2685 let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, binding.source);
2686 self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2687 }
2688 ByRef::Yes(pinnedness, mutbl) => {
2689 // The arm binding will be by reference, so eagerly create it now // be scheduled to emit `StorageDead` on the guard's failure/break branches.
2690 let value_for_arm = self.storage_live_binding(
2691 block,
2692 binding.var_id,
2693 binding.span,
2694 binding.is_shorthand,
2695 OutsideGuard,
2696 ScheduleDrops::Yes,
2697 );
2698
2699 let rvalue =
2700 Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source);
2701 let rvalue = match pinnedness {
2702 ty::Pinnedness::Not => rvalue,
2703 ty::Pinnedness::Pinned => {
2704 self.pin_borrowed_local(block, value_for_arm.local, rvalue, source_info)
2705 }
2706 };
2707 self.cfg.push_assign(block, source_info, value_for_arm, rvalue);
2708 // For the guard binding, take a shared reference to that reference.
2709 let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, value_for_arm);
2710 self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2711 }
2712 }
2713 }
2714 }
2715
2716 fn bind_matched_candidate_for_arm_body<'b>(
2717 &mut self,
2718 block: BasicBlock,
2719 schedule_drops: ScheduleDrops,
2720 bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2721 ) where
2722 'tcx: 'b,
2723 {
2724 debug!("bind_matched_candidate_for_arm_body(block={:?})", block);
2725
2726 let re_erased = self.tcx.lifetimes.re_erased;
2727 // Assign each of the bindings. This may trigger moves out of the candidate.
2728 for binding in bindings {
2729 let source_info = self.source_info(binding.span);
2730 let local = self.storage_live_binding(
2731 block,
2732 binding.var_id,
2733 binding.span,
2734 binding.is_shorthand,
2735 OutsideGuard,
2736 schedule_drops,
2737 );
2738 if matches!(schedule_drops, ScheduleDrops::Yes) {
2739 self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
2740 }
2741 let rvalue = match binding.binding_mode.0 {
2742 ByRef::No => Rvalue::Use(self.consume_by_copy_or_move(binding.source)),
2743 ByRef::Yes(pinnedness, mutbl) => {
2744 let rvalue =
2745 Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source);
2746 match pinnedness {
2747 ty::Pinnedness::Not => rvalue,
2748 ty::Pinnedness::Pinned => {
2749 self.pin_borrowed_local(block, local.local, rvalue, source_info)
2750 }
2751 }
2752 }
2753 };
2754 self.cfg.push_assign(block, source_info, local, rvalue);
2755 }
2756 }
2757
2758 /// Given an rvalue `&[mut]borrow` and a local `local`, generate the pinned borrow for it:
2759 /// ```ignore (illustrative)
2760 /// pinned_temp = &borrow;
2761 /// local = Pin { __pointer: move pinned_temp };
2762 /// ```
2763 fn pin_borrowed_local(
2764 &mut self,
2765 block: BasicBlock,
2766 local: Local,
2767 borrow: Rvalue<'tcx>,
2768 source_info: SourceInfo,
2769 ) -> Rvalue<'tcx> {
2770 debug_assert_matches!(borrow, Rvalue::Ref(..));
2771
2772 let local_ty = self.local_decls[local].ty;
2773
2774 let pinned_ty = local_ty.pinned_ty().unwrap_or_else(|| {
2775 span_bug!(
2776 source_info.span,
2777 "expect type `Pin` for a pinned binding, found type {:?}",
2778 local_ty
2779 )
2780 });
2781 let pinned_temp =
2782 Place::from(self.local_decls.push(LocalDecl::new(pinned_ty, source_info.span)));
2783 self.cfg.push_assign(block, source_info, pinned_temp, borrow);
2784 Rvalue::Aggregate(
2785 Box::new(AggregateKind::Adt(
2786 self.tcx.require_lang_item(LangItem::Pin, source_info.span),
2787 FIRST_VARIANT,
2788 self.tcx.mk_args(&[pinned_ty.into()]),
2789 None,
2790 None,
2791 )),
2792 std::iter::once(Operand::Move(pinned_temp)).collect(),
2793 )
2794 }
2795
2796 /// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where the bound
2797 /// `var` has type `T` in the arm body) in a pattern maps to 2 locals. The
2798 /// first local is a binding for occurrences of `var` in the guard, which
2799 /// will have type `&T`. The second local is a binding for occurrences of
2800 /// `var` in the arm body, which will have type `T`.
2801 #[instrument(skip(self), level = "debug")]
2802 fn declare_binding(
2803 &mut self,
2804 source_info: SourceInfo,
2805 visibility_scope: SourceScope,
2806 name: Symbol,
2807 mode: BindingMode,
2808 var_id: LocalVarId,
2809 var_ty: Ty<'tcx>,
2810 user_ty: Option<Box<UserTypeProjections>>,
2811 has_guard: ArmHasGuard,
2812 opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
2813 pat_span: Span,
2814 ) {
2815 let tcx = self.tcx;
2816 let debug_source_info = SourceInfo { span: source_info.span, scope: visibility_scope };
2817 let local = LocalDecl {
2818 mutability: mode.1,
2819 ty: var_ty,
2820 user_ty,
2821 source_info,
2822 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(BindingForm::Var(
2823 VarBindingForm {
2824 binding_mode: mode,
2825 // hypothetically, `visit_primary_bindings` could try to unzip
2826 // an outermost hir::Ty as we descend, matching up
2827 // idents in pat; but complex w/ unclear UI payoff.
2828 // Instead, just abandon providing diagnostic info.
2829 opt_ty_info: None,
2830 opt_match_place,
2831 pat_span,
2832 introductions: Vec::new(),
2833 },
2834 )))),
2835 };
2836 let for_arm_body = self.local_decls.push(local);
2837 if self.should_emit_debug_info_for_binding(name, var_id) {
2838 self.var_debug_info.push(VarDebugInfo {
2839 name,
2840 source_info: debug_source_info,
2841 value: VarDebugInfoContents::Place(for_arm_body.into()),
2842 composite: None,
2843 argument_index: None,
2844 });
2845 }
2846 let locals = if has_guard.0 {
2847 let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
2848 // This variable isn't mutated but has a name, so has to be
2849 // immutable to avoid the unused mut lint.
2850 mutability: Mutability::Not,
2851 ty: Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, var_ty),
2852 user_ty: None,
2853 source_info,
2854 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(
2855 BindingForm::RefForGuard(for_arm_body),
2856 ))),
2857 });
2858 if self.should_emit_debug_info_for_binding(name, var_id) {
2859 self.var_debug_info.push(VarDebugInfo {
2860 name,
2861 source_info: debug_source_info,
2862 value: VarDebugInfoContents::Place(ref_for_guard.into()),
2863 composite: None,
2864 argument_index: None,
2865 });
2866 }
2867 LocalsForNode::ForGuard { ref_for_guard, for_arm_body }
2868 } else {
2869 LocalsForNode::One(for_arm_body)
2870 };
2871 debug!(?locals);
2872 self.var_indices.insert(var_id, locals);
2873 }
2874
2875 /// Some bindings are introduced when producing HIR from the AST and don't
2876 /// actually exist in the source. Skip producing debug info for those when
2877 /// we can recognize them.
2878 fn should_emit_debug_info_for_binding(&self, name: Symbol, var_id: LocalVarId) -> bool {
2879 // For now we only recognize the output of desugaring assigns.
2880 if name != sym::lhs {
2881 return true;
2882 }
2883
2884 let tcx = self.tcx;
2885 for (_, node) in tcx.hir_parent_iter(var_id.0) {
2886 // FIXME(khuey) at what point is it safe to bail on the iterator?
2887 // Can we stop at the first non-Pat node?
2888 if matches!(node, Node::LetStmt(&LetStmt { source: LocalSource::AssignDesugar, .. })) {
2889 return false;
2890 }
2891 }
2892
2893 true
2894 }
2895
2896 /// Attempt to statically pick the `BasicBlock` that a value would resolve to at runtime.
2897 pub(crate) fn static_pattern_match(
2898 &self,
2899 cx: &RustcPatCtxt<'_, 'tcx>,
2900 valtree: ValTree<'tcx>,
2901 arms: &[ArmId],
2902 built_match_tree: &BuiltMatchTree<'tcx>,
2903 ) -> Option<BasicBlock> {
2904 let it = arms.iter().zip(built_match_tree.branches.iter());
2905 for (&arm_id, branch) in it {
2906 let pat = cx.lower_pat(&*self.thir.arms[arm_id].pattern);
2907
2908 // Peel off or-patterns if they exist.
2909 if let rustc_pattern_analysis::rustc::Constructor::Or = pat.ctor() {
2910 for pat in pat.iter_fields() {
2911 // For top-level or-patterns (the only ones we accept right now), when the
2912 // bindings are the same (e.g. there are none), the sub_branch is stored just
2913 // once.
2914 let sub_branch = branch
2915 .sub_branches
2916 .get(pat.idx)
2917 .or_else(|| branch.sub_branches.last())
2918 .unwrap();
2919
2920 match self.static_pattern_match_inner(valtree, &pat.pat) {
2921 true => return Some(sub_branch.success_block),
2922 false => continue,
2923 }
2924 }
2925 } else if self.static_pattern_match_inner(valtree, &pat) {
2926 return Some(branch.sub_branches[0].success_block);
2927 }
2928 }
2929
2930 None
2931 }
2932
2933 /// Helper for [`Self::static_pattern_match`], checking whether the value represented by the
2934 /// `ValTree` matches the given pattern. This function does not recurse, meaning that it does
2935 /// not handle or-patterns, or patterns for types with fields.
2936 fn static_pattern_match_inner(
2937 &self,
2938 valtree: ty::ValTree<'tcx>,
2939 pat: &DeconstructedPat<'_, 'tcx>,
2940 ) -> bool {
2941 use rustc_pattern_analysis::constructor::{IntRange, MaybeInfiniteInt};
2942 use rustc_pattern_analysis::rustc::Constructor;
2943
2944 match pat.ctor() {
2945 Constructor::Variant(variant_index) => {
2946 let ValTreeKind::Branch(box [actual_variant_idx]) = *valtree else {
2947 bug!("malformed valtree for an enum")
2948 };
2949
2950 let ValTreeKind::Leaf(actual_variant_idx) = *actual_variant_idx.to_value().valtree
2951 else {
2952 bug!("malformed valtree for an enum")
2953 };
2954
2955 *variant_index == VariantIdx::from_u32(actual_variant_idx.to_u32())
2956 }
2957 Constructor::IntRange(int_range) => {
2958 let size = pat.ty().primitive_size(self.tcx);
2959 let actual_int = valtree.to_leaf().to_bits(size);
2960 let actual_int = if pat.ty().is_signed() {
2961 MaybeInfiniteInt::new_finite_int(actual_int, size.bits())
2962 } else {
2963 MaybeInfiniteInt::new_finite_uint(actual_int)
2964 };
2965 IntRange::from_singleton(actual_int).is_subrange(int_range)
2966 }
2967 Constructor::Bool(pattern_value) => match valtree.to_leaf().try_to_bool() {
2968 Ok(actual_value) => *pattern_value == actual_value,
2969 Err(()) => bug!("bool value with invalid bits"),
2970 },
2971 Constructor::F16Range(l, h, end) => {
2972 let actual = valtree.to_leaf().to_f16();
2973 match end {
2974 RangeEnd::Included => (*l..=*h).contains(&actual),
2975 RangeEnd::Excluded => (*l..*h).contains(&actual),
2976 }
2977 }
2978 Constructor::F32Range(l, h, end) => {
2979 let actual = valtree.to_leaf().to_f32();
2980 match end {
2981 RangeEnd::Included => (*l..=*h).contains(&actual),
2982 RangeEnd::Excluded => (*l..*h).contains(&actual),
2983 }
2984 }
2985 Constructor::F64Range(l, h, end) => {
2986 let actual = valtree.to_leaf().to_f64();
2987 match end {
2988 RangeEnd::Included => (*l..=*h).contains(&actual),
2989 RangeEnd::Excluded => (*l..*h).contains(&actual),
2990 }
2991 }
2992 Constructor::F128Range(l, h, end) => {
2993 let actual = valtree.to_leaf().to_f128();
2994 match end {
2995 RangeEnd::Included => (*l..=*h).contains(&actual),
2996 RangeEnd::Excluded => (*l..*h).contains(&actual),
2997 }
2998 }
2999 Constructor::Wildcard => true,
3000
3001 // Opaque patterns must not be matched on structurally.
3002 Constructor::Opaque(_) => false,
3003
3004 // These we may eventually support:
3005 Constructor::Struct
3006 | Constructor::Ref
3007 | Constructor::DerefPattern(_)
3008 | Constructor::Slice(_)
3009 | Constructor::UnionField
3010 | Constructor::Or
3011 | Constructor::Str(_) => bug!("unsupported pattern constructor {:?}", pat.ctor()),
3012
3013 // These should never occur here:
3014 Constructor::Never
3015 | Constructor::NonExhaustive
3016 | Constructor::Hidden
3017 | Constructor::Missing
3018 | Constructor::PrivateUninhabited => {
3019 bug!("unsupported pattern constructor {:?}", pat.ctor())
3020 }
3021 }
3022 }
3023}