rustc_mir_build/builder/matches/mod.rs
1//! Code related to match expressions. These are sufficiently complex to
2//! warrant their own module and submodules. :) This main module includes the
3//! high-level algorithm, the submodules contain the details.
4//!
5//! This also includes code for pattern bindings in `let` statements and
6//! function parameters.
7
8use std::borrow::Borrow;
9use std::mem;
10use std::sync::Arc;
11
12use itertools::{Itertools, Position};
13use rustc_abi::VariantIdx;
14use rustc_data_structures::fx::FxIndexMap;
15use rustc_data_structures::stack::ensure_sufficient_stack;
16use rustc_hir::{BindingMode, ByRef, LetStmt, LocalSource, Node};
17use rustc_middle::bug;
18use rustc_middle::middle::region;
19use rustc_middle::mir::*;
20use rustc_middle::thir::{self, *};
21use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty, ValTree, ValTreeKind};
22use rustc_pattern_analysis::constructor::RangeEnd;
23use rustc_pattern_analysis::rustc::{DeconstructedPat, RustcPatCtxt};
24use rustc_span::{BytePos, Pos, Span, Symbol, sym};
25use tracing::{debug, instrument};
26
27use crate::builder::ForGuard::{self, OutsideGuard, RefWithinGuard};
28use crate::builder::expr::as_place::PlaceBuilder;
29use crate::builder::matches::user_ty::ProjectedUserTypesNode;
30use crate::builder::scope::DropKind;
31use crate::builder::{
32 BlockAnd, BlockAndExtension, Builder, GuardFrame, GuardFrameLocal, LocalsForNode,
33};
34
35// helper functions, broken out by category:
36mod match_pair;
37mod test;
38mod user_ty;
39mod util;
40
41/// Arguments to [`Builder::then_else_break_inner`] that are usually forwarded
42/// to recursive invocations.
43#[derive(Clone, Copy)]
44struct ThenElseArgs {
45 /// Used as the temp scope for lowering `expr`. If absent (for match guards),
46 /// `self.local_scope()` is used.
47 temp_scope_override: Option<region::Scope>,
48 variable_source_info: SourceInfo,
49 /// Determines how bindings should be handled when lowering `let` expressions.
50 ///
51 /// Forwarded to [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
52 declare_let_bindings: DeclareLetBindings,
53}
54
55/// Should lowering a `let` expression also declare its bindings?
56///
57/// Used by [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
58#[derive(Clone, Copy)]
59pub(crate) enum DeclareLetBindings {
60 /// Yes, declare `let` bindings as normal for `if` conditions.
61 Yes,
62 /// No, don't declare `let` bindings, because the caller declares them
63 /// separately due to special requirements.
64 ///
65 /// Used for match guards and let-else.
66 No,
67 /// Let expressions are not permitted in this context, so it is a bug to
68 /// try to lower one (e.g inside lazy-boolean-or or boolean-not).
69 LetNotPermitted,
70}
71
72/// Used by [`Builder::storage_live_binding`] and [`Builder::bind_matched_candidate_for_arm_body`]
73/// to decide whether to schedule drops.
74#[derive(Clone, Copy, Debug)]
75pub(crate) enum ScheduleDrops {
76 /// Yes, the relevant functions should also schedule drops as appropriate.
77 Yes,
78 /// No, don't schedule drops. The caller has taken responsibility for any
79 /// appropriate drops.
80 No,
81}
82
83impl<'a, 'tcx> Builder<'a, 'tcx> {
84 /// Lowers a condition in a way that ensures that variables bound in any let
85 /// expressions are definitely initialized in the if body.
86 ///
87 /// If `declare_let_bindings` is false then variables created in `let`
88 /// expressions will not be declared. This is for if let guards on arms with
89 /// an or pattern, where the guard is lowered multiple times.
90 pub(crate) fn then_else_break(
91 &mut self,
92 block: BasicBlock,
93 expr_id: ExprId,
94 temp_scope_override: Option<region::Scope>,
95 variable_source_info: SourceInfo,
96 declare_let_bindings: DeclareLetBindings,
97 ) -> BlockAnd<()> {
98 self.then_else_break_inner(
99 block,
100 expr_id,
101 ThenElseArgs { temp_scope_override, variable_source_info, declare_let_bindings },
102 )
103 }
104
105 fn then_else_break_inner(
106 &mut self,
107 block: BasicBlock, // Block that the condition and branch will be lowered into
108 expr_id: ExprId, // Condition expression to lower
109 args: ThenElseArgs,
110 ) -> BlockAnd<()> {
111 let this = self;
112 let expr = &this.thir[expr_id];
113 let expr_span = expr.span;
114
115 match expr.kind {
116 ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
117 let lhs_then_block = this.then_else_break_inner(block, lhs, args).into_block();
118 let rhs_then_block =
119 this.then_else_break_inner(lhs_then_block, rhs, args).into_block();
120 rhs_then_block.unit()
121 }
122 ExprKind::LogicalOp { op: LogicalOp::Or, lhs, rhs } => {
123 let local_scope = this.local_scope();
124 let (lhs_success_block, failure_block) =
125 this.in_if_then_scope(local_scope, expr_span, |this| {
126 this.then_else_break_inner(
127 block,
128 lhs,
129 ThenElseArgs {
130 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
131 ..args
132 },
133 )
134 });
135 let rhs_success_block = this
136 .then_else_break_inner(
137 failure_block,
138 rhs,
139 ThenElseArgs {
140 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
141 ..args
142 },
143 )
144 .into_block();
145
146 // Make the LHS and RHS success arms converge to a common block.
147 // (We can't just make LHS goto RHS, because `rhs_success_block`
148 // might contain statements that we don't want on the LHS path.)
149 let success_block = this.cfg.start_new_block();
150 this.cfg.goto(lhs_success_block, args.variable_source_info, success_block);
151 this.cfg.goto(rhs_success_block, args.variable_source_info, success_block);
152 success_block.unit()
153 }
154 ExprKind::Unary { op: UnOp::Not, arg } => {
155 // Improve branch coverage instrumentation by noting conditions
156 // nested within one or more `!` expressions.
157 // (Skipped if branch coverage is not enabled.)
158 if let Some(coverage_info) = this.coverage_info.as_mut() {
159 coverage_info.visit_unary_not(this.thir, expr_id);
160 }
161
162 let local_scope = this.local_scope();
163 let (success_block, failure_block) =
164 this.in_if_then_scope(local_scope, expr_span, |this| {
165 // Help out coverage instrumentation by injecting a dummy statement with
166 // the original condition's span (including `!`). This fixes #115468.
167 if this.tcx.sess.instrument_coverage() {
168 this.cfg.push_coverage_span_marker(block, this.source_info(expr_span));
169 }
170 this.then_else_break_inner(
171 block,
172 arg,
173 ThenElseArgs {
174 declare_let_bindings: DeclareLetBindings::LetNotPermitted,
175 ..args
176 },
177 )
178 });
179 this.break_for_else(success_block, args.variable_source_info);
180 failure_block.unit()
181 }
182 ExprKind::Scope { region_scope, lint_level, value } => {
183 let region_scope = (region_scope, this.source_info(expr_span));
184 this.in_scope(region_scope, lint_level, |this| {
185 this.then_else_break_inner(block, value, args)
186 })
187 }
188 ExprKind::Use { source } => this.then_else_break_inner(block, source, args),
189 ExprKind::Let { expr, ref pat } => this.lower_let_expr(
190 block,
191 expr,
192 pat,
193 Some(args.variable_source_info.scope),
194 args.variable_source_info.span,
195 args.declare_let_bindings,
196 ),
197 _ => {
198 let mut block = block;
199 let temp_scope = args.temp_scope_override.unwrap_or_else(|| this.local_scope());
200 let mutability = Mutability::Mut;
201
202 let place = unpack!(
203 block = this.as_temp(
204 block,
205 TempLifetime {
206 temp_lifetime: Some(temp_scope),
207 backwards_incompatible: None
208 },
209 expr_id,
210 mutability
211 )
212 );
213
214 let operand = Operand::Move(Place::from(place));
215
216 let then_block = this.cfg.start_new_block();
217 let else_block = this.cfg.start_new_block();
218 let term = TerminatorKind::if_(operand, then_block, else_block);
219
220 // Record branch coverage info for this condition.
221 // (Does nothing if branch coverage is not enabled.)
222 this.visit_coverage_branch_condition(expr_id, then_block, else_block);
223
224 let source_info = this.source_info(expr_span);
225 this.cfg.terminate(block, source_info, term);
226 this.break_for_else(else_block, source_info);
227
228 then_block.unit()
229 }
230 }
231 }
232
233 /// Generates MIR for a `match` expression.
234 ///
235 /// The MIR that we generate for a match looks like this.
236 ///
237 /// ```text
238 /// [ 0. Pre-match ]
239 /// |
240 /// [ 1. Evaluate Scrutinee (expression being matched on) ]
241 /// [ (PlaceMention of scrutinee) ]
242 /// |
243 /// [ 2. Decision tree -- check discriminants ] <--------+
244 /// | |
245 /// | (once a specific arm is chosen) |
246 /// | |
247 /// [pre_binding_block] [otherwise_block]
248 /// | |
249 /// [ 3. Create "guard bindings" for arm ] |
250 /// [ (create fake borrows) ] |
251 /// | |
252 /// [ 4. Execute guard code ] |
253 /// [ (read fake borrows) ] --(guard is false)-----------+
254 /// |
255 /// | (guard results in true)
256 /// |
257 /// [ 5. Create real bindings and execute arm ]
258 /// |
259 /// [ Exit match ]
260 /// ```
261 ///
262 /// All of the different arms have been stacked on top of each other to
263 /// simplify the diagram. For an arm with no guard the blocks marked 3 and
264 /// 4 and the fake borrows are omitted.
265 ///
266 /// We generate MIR in the following steps:
267 ///
268 /// 1. Evaluate the scrutinee and add the PlaceMention of it ([Builder::lower_scrutinee]).
269 /// 2. Create the decision tree ([Builder::lower_match_tree]).
270 /// 3. Determine the fake borrows that are needed from the places that were
271 /// matched against and create the required temporaries for them
272 /// ([util::collect_fake_borrows]).
273 /// 4. Create everything else: the guards and the arms ([Builder::lower_match_arms]).
274 ///
275 /// ## False edges
276 ///
277 /// We don't want to have the exact structure of the decision tree be visible through borrow
278 /// checking. Specifically we want borrowck to think that:
279 /// - at any point, any or none of the patterns and guards seen so far may have been tested;
280 /// - after the match, any of the patterns may have matched.
281 ///
282 /// For example, all of these would fail to error if borrowck could see the real CFG (examples
283 /// taken from `tests/ui/nll/match-cfg-fake-edges.rs`):
284 /// ```ignore (too many errors, this is already in the test suite)
285 /// let x = String::new();
286 /// let _ = match true {
287 /// _ => {},
288 /// _ => drop(x),
289 /// };
290 /// // Borrowck must not know the second arm is never run.
291 /// drop(x); //~ ERROR use of moved value
292 ///
293 /// let x;
294 /// # let y = true;
295 /// match y {
296 /// _ if { x = 2; true } => {},
297 /// // Borrowck must not know the guard is always run.
298 /// _ => drop(x), //~ ERROR used binding `x` is possibly-uninitialized
299 /// };
300 ///
301 /// let x = String::new();
302 /// # let y = true;
303 /// match y {
304 /// false if { drop(x); true } => {},
305 /// // Borrowck must not know the guard is not run in the `true` case.
306 /// true => drop(x), //~ ERROR use of moved value: `x`
307 /// false => {},
308 /// };
309 ///
310 /// # let mut y = (true, true);
311 /// let r = &mut y.1;
312 /// match y {
313 /// //~^ ERROR cannot use `y.1` because it was mutably borrowed
314 /// (false, true) => {}
315 /// // Borrowck must not know we don't test `y.1` when `y.0` is `true`.
316 /// (true, _) => drop(r),
317 /// (false, _) => {}
318 /// };
319 /// ```
320 ///
321 /// We add false edges to act as if we were naively matching each arm in order. What we need is
322 /// a (fake) path from each candidate to the next, specifically from candidate C's pre-binding
323 /// block to next candidate D's pre-binding block. For maximum precision (needed for deref
324 /// patterns), we choose the earliest node on D's success path that doesn't also lead to C (to
325 /// avoid loops).
326 ///
327 /// This turns out to be easy to compute: that block is the `start_block` of the first call to
328 /// `match_candidates` where D is the first candidate in the list.
329 ///
330 /// For example:
331 /// ```rust
332 /// # let (x, y) = (true, true);
333 /// match (x, y) {
334 /// (true, true) => 1,
335 /// (false, true) => 2,
336 /// (true, false) => 3,
337 /// _ => 4,
338 /// }
339 /// # ;
340 /// ```
341 /// In this example, the pre-binding block of arm 1 has a false edge to the block for result
342 /// `false` of the first test on `x`. The other arms have false edges to the pre-binding blocks
343 /// of the next arm.
344 ///
345 /// On top of this, we also add a false edge from the otherwise_block of each guard to the
346 /// aforementioned start block of the next candidate, to ensure borrock doesn't rely on which
347 /// guards may have run.
348 #[instrument(level = "debug", skip(self, arms))]
349 pub(crate) fn match_expr(
350 &mut self,
351 destination: Place<'tcx>,
352 mut block: BasicBlock,
353 scrutinee_id: ExprId,
354 arms: &[ArmId],
355 span: Span,
356 scrutinee_span: Span,
357 ) -> BlockAnd<()> {
358 let scrutinee_place =
359 unpack!(block = self.lower_scrutinee(block, scrutinee_id, scrutinee_span));
360
361 let match_start_span = span.shrink_to_lo().to(scrutinee_span);
362 let patterns = arms
363 .iter()
364 .map(|&arm| {
365 let arm = &self.thir[arm];
366 let has_match_guard =
367 if arm.guard.is_some() { HasMatchGuard::Yes } else { HasMatchGuard::No };
368 (&*arm.pattern, has_match_guard)
369 })
370 .collect();
371 let built_tree = self.lower_match_tree(
372 block,
373 scrutinee_span,
374 &scrutinee_place,
375 match_start_span,
376 patterns,
377 false,
378 );
379
380 self.lower_match_arms(
381 destination,
382 scrutinee_place,
383 scrutinee_span,
384 arms,
385 built_tree,
386 self.source_info(span),
387 )
388 }
389
390 /// Evaluate the scrutinee and add the PlaceMention for it.
391 pub(crate) fn lower_scrutinee(
392 &mut self,
393 mut block: BasicBlock,
394 scrutinee_id: ExprId,
395 scrutinee_span: Span,
396 ) -> BlockAnd<PlaceBuilder<'tcx>> {
397 let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee_id));
398 if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
399 let source_info = self.source_info(scrutinee_span);
400 self.cfg.push_place_mention(block, source_info, scrutinee_place);
401 }
402
403 block.and(scrutinee_place_builder)
404 }
405
406 /// Lower the bindings, guards and arm bodies of a `match` expression.
407 ///
408 /// The decision tree should have already been created
409 /// (by [Builder::lower_match_tree]).
410 ///
411 /// `outer_source_info` is the SourceInfo for the whole match.
412 pub(crate) fn lower_match_arms(
413 &mut self,
414 destination: Place<'tcx>,
415 scrutinee_place_builder: PlaceBuilder<'tcx>,
416 scrutinee_span: Span,
417 arms: &[ArmId],
418 built_match_tree: BuiltMatchTree<'tcx>,
419 outer_source_info: SourceInfo,
420 ) -> BlockAnd<()> {
421 let arm_end_blocks: Vec<BasicBlock> = arms
422 .iter()
423 .map(|&arm| &self.thir[arm])
424 .zip(built_match_tree.branches)
425 .map(|(arm, branch)| {
426 debug!("lowering arm {:?}\ncorresponding branch = {:?}", arm, branch);
427
428 let arm_source_info = self.source_info(arm.span);
429 let arm_scope = (arm.scope, arm_source_info);
430 let match_scope = self.local_scope();
431 let guard_scope = arm
432 .guard
433 .map(|_| region::Scope { data: region::ScopeData::MatchGuard, ..arm.scope });
434 self.in_scope(arm_scope, arm.lint_level, |this| {
435 this.opt_in_scope(guard_scope.map(|scope| (scope, arm_source_info)), |this| {
436 // `if let` guard temps needing deduplicating will be in the guard scope.
437 let old_dedup_scope =
438 mem::replace(&mut this.fixed_temps_scope, guard_scope);
439
440 // `try_to_place` may fail if it is unable to resolve the given
441 // `PlaceBuilder` inside a closure. In this case, we don't want to include
442 // a scrutinee place. `scrutinee_place_builder` will fail to be resolved
443 // if the only match arm is a wildcard (`_`).
444 // Example:
445 // ```
446 // let foo = (0, 1);
447 // let c = || {
448 // match foo { _ => () };
449 // };
450 // ```
451 let scrutinee_place = scrutinee_place_builder.try_to_place(this);
452 let opt_scrutinee_place =
453 scrutinee_place.as_ref().map(|place| (Some(place), scrutinee_span));
454 let scope = this.declare_bindings(
455 None,
456 arm.span,
457 &arm.pattern,
458 arm.guard,
459 opt_scrutinee_place,
460 );
461
462 let arm_block = this.bind_pattern(
463 outer_source_info,
464 branch,
465 &built_match_tree.fake_borrow_temps,
466 scrutinee_span,
467 Some((arm, match_scope)),
468 );
469
470 this.fixed_temps_scope = old_dedup_scope;
471
472 if let Some(source_scope) = scope {
473 this.source_scope = source_scope;
474 }
475
476 this.expr_into_dest(destination, arm_block, arm.body)
477 })
478 })
479 .into_block()
480 })
481 .collect();
482
483 // all the arm blocks will rejoin here
484 let end_block = self.cfg.start_new_block();
485
486 let end_brace = self.source_info(
487 outer_source_info.span.with_lo(outer_source_info.span.hi() - BytePos::from_usize(1)),
488 );
489 for arm_block in arm_end_blocks {
490 let block = &self.cfg.basic_blocks[arm_block];
491 let last_location = block.statements.last().map(|s| s.source_info);
492
493 self.cfg.goto(arm_block, last_location.unwrap_or(end_brace), end_block);
494 }
495
496 self.source_scope = outer_source_info.scope;
497
498 end_block.unit()
499 }
500
501 /// For a top-level `match` arm or a `let` binding, binds the variables and
502 /// ascribes types, and also checks the match arm guard (if present).
503 ///
504 /// `arm_scope` should be `Some` if and only if this is called for a
505 /// `match` arm.
506 ///
507 /// In the presence of or-patterns, a match arm might have multiple
508 /// sub-branches representing different ways to match, with each sub-branch
509 /// requiring its own bindings and its own copy of the guard. This method
510 /// handles those sub-branches individually, and then has them jump together
511 /// to a common block.
512 ///
513 /// Returns a single block that the match arm can be lowered into.
514 /// (For `let` bindings, this is the code that can use the bindings.)
515 fn bind_pattern(
516 &mut self,
517 outer_source_info: SourceInfo,
518 branch: MatchTreeBranch<'tcx>,
519 fake_borrow_temps: &[(Place<'tcx>, Local, FakeBorrowKind)],
520 scrutinee_span: Span,
521 arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
522 ) -> BasicBlock {
523 if branch.sub_branches.len() == 1 {
524 let [sub_branch] = branch.sub_branches.try_into().unwrap();
525 // Avoid generating another `BasicBlock` when we only have one sub branch.
526 self.bind_and_guard_matched_candidate(
527 sub_branch,
528 fake_borrow_temps,
529 scrutinee_span,
530 arm_match_scope,
531 ScheduleDrops::Yes,
532 )
533 } else {
534 // It's helpful to avoid scheduling drops multiple times to save
535 // drop elaboration from having to clean up the extra drops.
536 //
537 // If we are in a `let` then we only schedule drops for the first
538 // candidate.
539 //
540 // If we're in a `match` arm then we could have a case like so:
541 //
542 // Ok(x) | Err(x) if return => { /* ... */ }
543 //
544 // In this case we don't want a drop of `x` scheduled when we
545 // return: it isn't bound by move until right before enter the arm.
546 // To handle this we instead unschedule it's drop after each time
547 // we lower the guard.
548 // As a result, we end up with the drop order of the last sub-branch we lower. To use
549 // the drop order for the first sub-branch, we lower sub-branches in reverse (#142163).
550 let target_block = self.cfg.start_new_block();
551 for (pos, sub_branch) in branch.sub_branches.into_iter().rev().with_position() {
552 debug_assert!(pos != Position::Only);
553 let schedule_drops =
554 if pos == Position::Last { ScheduleDrops::Yes } else { ScheduleDrops::No };
555 let binding_end = self.bind_and_guard_matched_candidate(
556 sub_branch,
557 fake_borrow_temps,
558 scrutinee_span,
559 arm_match_scope,
560 schedule_drops,
561 );
562 self.cfg.goto(binding_end, outer_source_info, target_block);
563 }
564
565 target_block
566 }
567 }
568
569 pub(super) fn expr_into_pattern(
570 &mut self,
571 mut block: BasicBlock,
572 irrefutable_pat: &Pat<'tcx>,
573 initializer_id: ExprId,
574 ) -> BlockAnd<()> {
575 match irrefutable_pat.kind {
576 // Optimize the case of `let x = ...` to write directly into `x`
577 PatKind::Binding { mode: BindingMode(ByRef::No, _), var, subpattern: None, .. } => {
578 let place = self.storage_live_binding(
579 block,
580 var,
581 irrefutable_pat.span,
582 OutsideGuard,
583 ScheduleDrops::Yes,
584 );
585 block = self.expr_into_dest(place, block, initializer_id).into_block();
586
587 // Inject a fake read, see comments on `FakeReadCause::ForLet`.
588 let source_info = self.source_info(irrefutable_pat.span);
589 self.cfg.push_fake_read(block, source_info, FakeReadCause::ForLet(None), place);
590
591 self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
592 block.unit()
593 }
594
595 // Optimize the case of `let x: T = ...` to write directly
596 // into `x` and then require that `T == typeof(x)`.
597 PatKind::AscribeUserType {
598 ref subpattern,
599 ascription: thir::Ascription { ref annotation, variance: _ },
600 } if let PatKind::Binding {
601 mode: BindingMode(ByRef::No, _),
602 var,
603 subpattern: None,
604 ..
605 } = subpattern.kind =>
606 {
607 let place = self.storage_live_binding(
608 block,
609 var,
610 irrefutable_pat.span,
611 OutsideGuard,
612 ScheduleDrops::Yes,
613 );
614 block = self.expr_into_dest(place, block, initializer_id).into_block();
615
616 // Inject a fake read, see comments on `FakeReadCause::ForLet`.
617 let pattern_source_info = self.source_info(irrefutable_pat.span);
618 let cause_let = FakeReadCause::ForLet(None);
619 self.cfg.push_fake_read(block, pattern_source_info, cause_let, place);
620
621 let ty_source_info = self.source_info(annotation.span);
622
623 let base = self.canonical_user_type_annotations.push(annotation.clone());
624 self.cfg.push(
625 block,
626 Statement::new(
627 ty_source_info,
628 StatementKind::AscribeUserType(
629 Box::new((place, UserTypeProjection { base, projs: Vec::new() })),
630 // We always use invariant as the variance here. This is because the
631 // variance field from the ascription refers to the variance to use
632 // when applying the type to the value being matched, but this
633 // ascription applies rather to the type of the binding. e.g., in this
634 // example:
635 //
636 // ```
637 // let x: T = <expr>
638 // ```
639 //
640 // We are creating an ascription that defines the type of `x` to be
641 // exactly `T` (i.e., with invariance). The variance field, in
642 // contrast, is intended to be used to relate `T` to the type of
643 // `<expr>`.
644 ty::Invariant,
645 ),
646 ),
647 );
648
649 self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
650 block.unit()
651 }
652
653 _ => {
654 let initializer = &self.thir[initializer_id];
655 let place_builder =
656 unpack!(block = self.lower_scrutinee(block, initializer_id, initializer.span));
657 self.place_into_pattern(block, irrefutable_pat, place_builder, true)
658 }
659 }
660 }
661
662 pub(crate) fn place_into_pattern(
663 &mut self,
664 block: BasicBlock,
665 irrefutable_pat: &Pat<'tcx>,
666 initializer: PlaceBuilder<'tcx>,
667 set_match_place: bool,
668 ) -> BlockAnd<()> {
669 let built_tree = self.lower_match_tree(
670 block,
671 irrefutable_pat.span,
672 &initializer,
673 irrefutable_pat.span,
674 vec![(irrefutable_pat, HasMatchGuard::No)],
675 false,
676 );
677 let [branch] = built_tree.branches.try_into().unwrap();
678
679 // For matches and function arguments, the place that is being matched
680 // can be set when creating the variables. But the place for
681 // let PATTERN = ... might not even exist until we do the assignment.
682 // so we set it here instead.
683 if set_match_place {
684 // `try_to_place` may fail if it is unable to resolve the given `PlaceBuilder` inside a
685 // closure. In this case, we don't want to include a scrutinee place.
686 // `scrutinee_place_builder` will fail for destructured assignments. This is because a
687 // closure only captures the precise places that it will read and as a result a closure
688 // may not capture the entire tuple/struct and rather have individual places that will
689 // be read in the final MIR.
690 // Example:
691 // ```
692 // let foo = (0, 1);
693 // let c = || {
694 // let (v1, v2) = foo;
695 // };
696 // ```
697 if let Some(place) = initializer.try_to_place(self) {
698 // Because or-alternatives bind the same variables, we only explore the first one.
699 let first_sub_branch = branch.sub_branches.first().unwrap();
700 for binding in &first_sub_branch.bindings {
701 let local = self.var_local_id(binding.var_id, OutsideGuard);
702 if let LocalInfo::User(BindingForm::Var(VarBindingForm {
703 opt_match_place: Some((ref mut match_place, _)),
704 ..
705 })) = **self.local_decls[local].local_info.as_mut().unwrap_crate_local()
706 {
707 *match_place = Some(place);
708 } else {
709 bug!("Let binding to non-user variable.")
710 };
711 }
712 }
713 }
714
715 self.bind_pattern(
716 self.source_info(irrefutable_pat.span),
717 branch,
718 &[],
719 irrefutable_pat.span,
720 None,
721 )
722 .unit()
723 }
724
725 /// Declares the bindings of the given patterns and returns the visibility
726 /// scope for the bindings in these patterns, if such a scope had to be
727 /// created. NOTE: Declaring the bindings should always be done in their
728 /// drop scope.
729 #[instrument(skip(self), level = "debug")]
730 pub(crate) fn declare_bindings(
731 &mut self,
732 mut visibility_scope: Option<SourceScope>,
733 scope_span: Span,
734 pattern: &Pat<'tcx>,
735 guard: Option<ExprId>,
736 opt_match_place: Option<(Option<&Place<'tcx>>, Span)>,
737 ) -> Option<SourceScope> {
738 self.visit_primary_bindings_special(
739 pattern,
740 &ProjectedUserTypesNode::None,
741 &mut |this, name, mode, var, span, ty, user_tys| {
742 let vis_scope = *visibility_scope
743 .get_or_insert_with(|| this.new_source_scope(scope_span, LintLevel::Inherited));
744 let source_info = SourceInfo { span, scope: this.source_scope };
745 let user_tys = user_tys.build_user_type_projections();
746
747 this.declare_binding(
748 source_info,
749 vis_scope,
750 name,
751 mode,
752 var,
753 ty,
754 user_tys,
755 ArmHasGuard(guard.is_some()),
756 opt_match_place.map(|(x, y)| (x.cloned(), y)),
757 pattern.span,
758 );
759 },
760 );
761 if let Some(guard_expr) = guard {
762 self.declare_guard_bindings(guard_expr, scope_span, visibility_scope);
763 }
764 visibility_scope
765 }
766
767 /// Declare bindings in a guard. This has to be done when declaring bindings
768 /// for an arm to ensure that or patterns only have one version of each
769 /// variable.
770 pub(crate) fn declare_guard_bindings(
771 &mut self,
772 guard_expr: ExprId,
773 scope_span: Span,
774 visibility_scope: Option<SourceScope>,
775 ) {
776 match self.thir.exprs[guard_expr].kind {
777 ExprKind::Let { expr: _, pat: ref guard_pat } => {
778 // FIXME: pass a proper `opt_match_place`
779 self.declare_bindings(visibility_scope, scope_span, guard_pat, None, None);
780 }
781 ExprKind::Scope { value, .. } => {
782 self.declare_guard_bindings(value, scope_span, visibility_scope);
783 }
784 ExprKind::Use { source } => {
785 self.declare_guard_bindings(source, scope_span, visibility_scope);
786 }
787 ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
788 self.declare_guard_bindings(lhs, scope_span, visibility_scope);
789 self.declare_guard_bindings(rhs, scope_span, visibility_scope);
790 }
791 _ => {}
792 }
793 }
794
795 /// Emits a [`StatementKind::StorageLive`] for the given var, and also
796 /// schedules a drop if requested (and possible).
797 pub(crate) fn storage_live_binding(
798 &mut self,
799 block: BasicBlock,
800 var: LocalVarId,
801 span: Span,
802 for_guard: ForGuard,
803 schedule_drop: ScheduleDrops,
804 ) -> Place<'tcx> {
805 let local_id = self.var_local_id(var, for_guard);
806 let source_info = self.source_info(span);
807 self.cfg.push(block, Statement::new(source_info, StatementKind::StorageLive(local_id)));
808 // Although there is almost always scope for given variable in corner cases
809 // like #92893 we might get variable with no scope.
810 if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id)
811 && matches!(schedule_drop, ScheduleDrops::Yes)
812 {
813 self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
814 }
815 Place::from(local_id)
816 }
817
818 pub(crate) fn schedule_drop_for_binding(
819 &mut self,
820 var: LocalVarId,
821 span: Span,
822 for_guard: ForGuard,
823 ) {
824 let local_id = self.var_local_id(var, for_guard);
825 if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) {
826 self.schedule_drop(span, region_scope, local_id, DropKind::Value);
827 }
828 }
829
830 /// Visits all of the "primary" bindings in a pattern, i.e. the leftmost
831 /// occurrence of each variable bound by the pattern.
832 /// See [`PatKind::Binding::is_primary`] for more context.
833 ///
834 /// This variant provides only the limited subset of binding data needed
835 /// by its callers, and should be a "pure" visit without side-effects.
836 pub(super) fn visit_primary_bindings(
837 &mut self,
838 pattern: &Pat<'tcx>,
839 f: &mut impl FnMut(&mut Self, LocalVarId, Span),
840 ) {
841 pattern.walk_always(|pat| {
842 if let PatKind::Binding { var, is_primary: true, .. } = pat.kind {
843 f(self, var, pat.span);
844 }
845 })
846 }
847
848 /// Visits all of the "primary" bindings in a pattern, while preparing
849 /// additional user-type-annotation data needed by `declare_bindings`.
850 ///
851 /// This also has the side-effect of pushing all user type annotations
852 /// onto `canonical_user_type_annotations`, so that they end up in MIR
853 /// even if they aren't associated with any bindings.
854 #[instrument(level = "debug", skip(self, f))]
855 fn visit_primary_bindings_special(
856 &mut self,
857 pattern: &Pat<'tcx>,
858 user_tys: &ProjectedUserTypesNode<'_>,
859 f: &mut impl FnMut(
860 &mut Self,
861 Symbol,
862 BindingMode,
863 LocalVarId,
864 Span,
865 Ty<'tcx>,
866 &ProjectedUserTypesNode<'_>,
867 ),
868 ) {
869 // Avoid having to write the full method name at each recursive call.
870 let visit_subpat = |this: &mut Self, subpat, user_tys: &_, f: &mut _| {
871 this.visit_primary_bindings_special(subpat, user_tys, f)
872 };
873
874 match pattern.kind {
875 PatKind::Binding { name, mode, var, ty, ref subpattern, is_primary, .. } => {
876 if is_primary {
877 f(self, name, mode, var, pattern.span, ty, user_tys);
878 }
879 if let Some(subpattern) = subpattern.as_ref() {
880 visit_subpat(self, subpattern, user_tys, f);
881 }
882 }
883
884 PatKind::Array { ref prefix, ref slice, ref suffix }
885 | PatKind::Slice { ref prefix, ref slice, ref suffix } => {
886 let from = u64::try_from(prefix.len()).unwrap();
887 let to = u64::try_from(suffix.len()).unwrap();
888 for subpattern in prefix.iter() {
889 visit_subpat(self, subpattern, &user_tys.index(), f);
890 }
891 if let Some(subpattern) = slice {
892 visit_subpat(self, subpattern, &user_tys.subslice(from, to), f);
893 }
894 for subpattern in suffix.iter() {
895 visit_subpat(self, subpattern, &user_tys.index(), f);
896 }
897 }
898
899 PatKind::Constant { .. }
900 | PatKind::Range { .. }
901 | PatKind::Missing
902 | PatKind::Wild
903 | PatKind::Never
904 | PatKind::Error(_) => {}
905
906 PatKind::Deref { ref subpattern } => {
907 visit_subpat(self, subpattern, &user_tys.deref(), f);
908 }
909
910 PatKind::DerefPattern { ref subpattern, .. } => {
911 visit_subpat(self, subpattern, &ProjectedUserTypesNode::None, f);
912 }
913
914 PatKind::AscribeUserType {
915 ref subpattern,
916 ascription: thir::Ascription { ref annotation, variance: _ },
917 } => {
918 // This corresponds to something like
919 //
920 // ```
921 // let A::<'a>(_): A<'static> = ...;
922 // ```
923 //
924 // Note that the variance doesn't apply here, as we are tracking the effect
925 // of `user_ty` on any bindings contained with subpattern.
926
927 // Caution: Pushing this user type here is load-bearing even for
928 // patterns containing no bindings, to ensure that the type ends
929 // up represented in MIR _somewhere_.
930 let base_user_ty = self.canonical_user_type_annotations.push(annotation.clone());
931 let subpattern_user_tys = user_tys.push_user_type(base_user_ty);
932 visit_subpat(self, subpattern, &subpattern_user_tys, f)
933 }
934
935 PatKind::ExpandedConstant { ref subpattern, .. } => {
936 visit_subpat(self, subpattern, user_tys, f)
937 }
938
939 PatKind::Leaf { ref subpatterns } => {
940 for subpattern in subpatterns {
941 let subpattern_user_tys = user_tys.leaf(subpattern.field);
942 debug!("visit_primary_bindings: subpattern_user_tys={subpattern_user_tys:?}");
943 visit_subpat(self, &subpattern.pattern, &subpattern_user_tys, f);
944 }
945 }
946
947 PatKind::Variant { adt_def, args: _, variant_index, ref subpatterns } => {
948 for subpattern in subpatterns {
949 let subpattern_user_tys =
950 user_tys.variant(adt_def, variant_index, subpattern.field);
951 visit_subpat(self, &subpattern.pattern, &subpattern_user_tys, f);
952 }
953 }
954 PatKind::Or { ref pats } => {
955 // In cases where we recover from errors the primary bindings
956 // may not all be in the leftmost subpattern. For example in
957 // `let (x | y) = ...`, the primary binding of `y` occurs in
958 // the right subpattern
959 for subpattern in pats.iter() {
960 visit_subpat(self, subpattern, user_tys, f);
961 }
962 }
963 }
964 }
965}
966
967/// Data extracted from a pattern that doesn't affect which branch is taken. Collected during
968/// pattern simplification and not mutated later.
969#[derive(Debug, Clone)]
970struct PatternExtraData<'tcx> {
971 /// [`Span`] of the original pattern.
972 span: Span,
973
974 /// Bindings that must be established.
975 bindings: Vec<SubpatternBindings<'tcx>>,
976
977 /// Types that must be asserted.
978 ascriptions: Vec<Ascription<'tcx>>,
979
980 /// Whether this corresponds to a never pattern.
981 is_never: bool,
982}
983
984impl<'tcx> PatternExtraData<'tcx> {
985 fn is_empty(&self) -> bool {
986 self.bindings.is_empty() && self.ascriptions.is_empty()
987 }
988}
989
990#[derive(Debug, Clone)]
991enum SubpatternBindings<'tcx> {
992 /// A single binding.
993 One(Binding<'tcx>),
994 /// Holds the place for an or-pattern's bindings. This ensures their drops are scheduled in the
995 /// order the primary bindings appear. See rust-lang/rust#142163 for more information.
996 FromOrPattern,
997}
998
999/// A pattern in a form suitable for lowering the match tree, with all irrefutable
1000/// patterns simplified away.
1001///
1002/// Here, "flat" indicates that irrefutable nodes in the pattern tree have been
1003/// recursively replaced with their refutable subpatterns. They are not
1004/// necessarily flat in an absolute sense.
1005///
1006/// Will typically be incorporated into a [`Candidate`].
1007#[derive(Debug, Clone)]
1008struct FlatPat<'tcx> {
1009 /// To match the pattern, all of these must be satisfied...
1010 match_pairs: Vec<MatchPairTree<'tcx>>,
1011
1012 extra_data: PatternExtraData<'tcx>,
1013}
1014
1015impl<'tcx> FlatPat<'tcx> {
1016 /// Creates a `FlatPat` containing a simplified [`MatchPairTree`] list/forest
1017 /// for the given pattern.
1018 fn new(place: PlaceBuilder<'tcx>, pattern: &Pat<'tcx>, cx: &mut Builder<'_, 'tcx>) -> Self {
1019 // Recursively build a tree of match pairs for the given pattern.
1020 let mut match_pairs = vec![];
1021 let mut extra_data = PatternExtraData {
1022 span: pattern.span,
1023 bindings: Vec::new(),
1024 ascriptions: Vec::new(),
1025 is_never: pattern.is_never_pattern(),
1026 };
1027 MatchPairTree::for_pattern(place, pattern, cx, &mut match_pairs, &mut extra_data);
1028
1029 Self { match_pairs, extra_data }
1030 }
1031}
1032
1033/// Candidates are a generalization of (a) top-level match arms, and
1034/// (b) sub-branches of or-patterns, allowing the match-lowering process to handle
1035/// them both in a mostly-uniform way. For example, the list of candidates passed
1036/// to [`Builder::match_candidates`] will often contain a mixture of top-level
1037/// candidates and or-pattern subcandidates.
1038///
1039/// At the start of match lowering, there is one candidate for each match arm.
1040/// During match lowering, arms with or-patterns will be expanded into a tree
1041/// of candidates, where each "leaf" candidate represents one of the ways for
1042/// the arm pattern to successfully match.
1043#[derive(Debug)]
1044struct Candidate<'tcx> {
1045 /// For the candidate to match, all of these must be satisfied...
1046 ///
1047 /// ---
1048 /// Initially contains a list of match pairs created by [`FlatPat`], but is
1049 /// subsequently mutated (in a queue-like way) while lowering the match tree.
1050 /// When this list becomes empty, the candidate is fully matched and becomes
1051 /// a leaf (see [`Builder::select_matched_candidate`]).
1052 ///
1053 /// Key mutations include:
1054 ///
1055 /// - When a match pair is fully satisfied by a test, it is removed from the
1056 /// list, and its subpairs are added instead (see [`Builder::sort_candidate`]).
1057 /// - During or-pattern expansion, any leading or-pattern is removed, and is
1058 /// converted into subcandidates (see [`Builder::expand_and_match_or_candidates`]).
1059 /// - After a candidate's subcandidates have been lowered, a copy of any remaining
1060 /// or-patterns is added to each leaf subcandidate
1061 /// (see [`Builder::test_remaining_match_pairs_after_or`]).
1062 ///
1063 /// Invariants:
1064 /// - All or-patterns ([`TestCase::Or`]) have been sorted to the end.
1065 match_pairs: Vec<MatchPairTree<'tcx>>,
1066
1067 /// ...and if this is non-empty, one of these subcandidates also has to match...
1068 ///
1069 /// ---
1070 /// Initially a candidate has no subcandidates; they are added (and then immediately
1071 /// lowered) during or-pattern expansion. Their main function is to serve as _output_
1072 /// of match tree lowering, allowing later steps to see the leaf candidates that
1073 /// represent a match of the entire match arm.
1074 ///
1075 /// A candidate no subcandidates is either incomplete (if it has match pairs left),
1076 /// or is a leaf in the match tree. A candidate with one or more subcandidates is
1077 /// an internal node in the match tree.
1078 ///
1079 /// Invariant: at the end of match tree lowering, this must not contain an
1080 /// `is_never` candidate, because that would break binding consistency.
1081 /// - See [`Builder::remove_never_subcandidates`].
1082 subcandidates: Vec<Candidate<'tcx>>,
1083
1084 /// ...and if there is a guard it must be evaluated; if it's `false` then branch to `otherwise_block`.
1085 ///
1086 /// ---
1087 /// For subcandidates, this is copied from the parent candidate, so it indicates
1088 /// whether the enclosing match arm has a guard.
1089 has_guard: bool,
1090
1091 /// Holds extra pattern data that was prepared by [`FlatPat`], including bindings and
1092 /// ascriptions that must be established if this candidate succeeds.
1093 extra_data: PatternExtraData<'tcx>,
1094
1095 /// When setting `self.subcandidates`, we store here the span of the or-pattern they came from.
1096 ///
1097 /// ---
1098 /// Invariant: it is `None` iff `subcandidates.is_empty()`.
1099 /// - FIXME: We sometimes don't unset this when clearing `subcandidates`.
1100 or_span: Option<Span>,
1101
1102 /// The block before the `bindings` have been established.
1103 ///
1104 /// After the match tree has been lowered, [`Builder::lower_match_arms`]
1105 /// will use this as the start point for lowering bindings and guards, and
1106 /// then jump to a shared block containing the arm body.
1107 pre_binding_block: Option<BasicBlock>,
1108
1109 /// The block to branch to if the guard or a nested candidate fails to match.
1110 otherwise_block: Option<BasicBlock>,
1111
1112 /// The earliest block that has only candidates >= this one as descendents. Used for false
1113 /// edges, see the doc for [`Builder::match_expr`].
1114 false_edge_start_block: Option<BasicBlock>,
1115}
1116
1117impl<'tcx> Candidate<'tcx> {
1118 fn new(
1119 place: PlaceBuilder<'tcx>,
1120 pattern: &Pat<'tcx>,
1121 has_guard: HasMatchGuard,
1122 cx: &mut Builder<'_, 'tcx>,
1123 ) -> Self {
1124 // Use `FlatPat` to build simplified match pairs, then immediately
1125 // incorporate them into a new candidate.
1126 Self::from_flat_pat(
1127 FlatPat::new(place, pattern, cx),
1128 matches!(has_guard, HasMatchGuard::Yes),
1129 )
1130 }
1131
1132 /// Incorporates an already-simplified [`FlatPat`] into a new candidate.
1133 fn from_flat_pat(flat_pat: FlatPat<'tcx>, has_guard: bool) -> Self {
1134 let mut this = Candidate {
1135 match_pairs: flat_pat.match_pairs,
1136 extra_data: flat_pat.extra_data,
1137 has_guard,
1138 subcandidates: Vec::new(),
1139 or_span: None,
1140 otherwise_block: None,
1141 pre_binding_block: None,
1142 false_edge_start_block: None,
1143 };
1144 this.sort_match_pairs();
1145 this
1146 }
1147
1148 /// Restores the invariant that or-patterns must be sorted to the end.
1149 fn sort_match_pairs(&mut self) {
1150 self.match_pairs.sort_by_key(|pair| matches!(pair.test_case, TestCase::Or { .. }));
1151 }
1152
1153 /// Returns whether the first match pair of this candidate is an or-pattern.
1154 fn starts_with_or_pattern(&self) -> bool {
1155 matches!(&*self.match_pairs, [MatchPairTree { test_case: TestCase::Or { .. }, .. }, ..])
1156 }
1157
1158 /// Visit the leaf candidates (those with no subcandidates) contained in
1159 /// this candidate.
1160 fn visit_leaves<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
1161 traverse_candidate(
1162 self,
1163 &mut (),
1164 &mut move |c, _| visit_leaf(c),
1165 move |c, _| c.subcandidates.iter_mut(),
1166 |_| {},
1167 );
1168 }
1169
1170 /// Visit the leaf candidates in reverse order.
1171 fn visit_leaves_rev<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
1172 traverse_candidate(
1173 self,
1174 &mut (),
1175 &mut move |c, _| visit_leaf(c),
1176 move |c, _| c.subcandidates.iter_mut().rev(),
1177 |_| {},
1178 );
1179 }
1180}
1181
1182/// A depth-first traversal of the `Candidate` and all of its recursive
1183/// subcandidates.
1184///
1185/// This signature is very generic, to support traversing candidate trees by
1186/// reference or by value, and to allow a mutable "context" to be shared by the
1187/// traversal callbacks. Most traversals can use the simpler
1188/// [`Candidate::visit_leaves`] wrapper instead.
1189fn traverse_candidate<'tcx, C, T, I>(
1190 candidate: C,
1191 context: &mut T,
1192 // Called when visiting a "leaf" candidate (with no subcandidates).
1193 visit_leaf: &mut impl FnMut(C, &mut T),
1194 // Called when visiting a "node" candidate (with one or more subcandidates).
1195 // Returns an iterator over the candidate's children (by value or reference).
1196 // Can perform setup before visiting the node's children.
1197 get_children: impl Copy + Fn(C, &mut T) -> I,
1198 // Called after visiting a "node" candidate's children.
1199 complete_children: impl Copy + Fn(&mut T),
1200) where
1201 C: Borrow<Candidate<'tcx>>, // Typically `Candidate` or `&mut Candidate`
1202 I: Iterator<Item = C>,
1203{
1204 if candidate.borrow().subcandidates.is_empty() {
1205 visit_leaf(candidate, context)
1206 } else {
1207 for child in get_children(candidate, context) {
1208 traverse_candidate(child, context, visit_leaf, get_children, complete_children);
1209 }
1210 complete_children(context)
1211 }
1212}
1213
1214#[derive(Clone, Copy, Debug)]
1215struct Binding<'tcx> {
1216 span: Span,
1217 source: Place<'tcx>,
1218 var_id: LocalVarId,
1219 binding_mode: BindingMode,
1220}
1221
1222/// Indicates that the type of `source` must be a subtype of the
1223/// user-given type `user_ty`; this is basically a no-op but can
1224/// influence region inference.
1225#[derive(Clone, Debug)]
1226struct Ascription<'tcx> {
1227 source: Place<'tcx>,
1228 annotation: CanonicalUserTypeAnnotation<'tcx>,
1229 variance: ty::Variance,
1230}
1231
1232/// Partial summary of a [`thir::Pat`], indicating what sort of test should be
1233/// performed to match/reject the pattern, and what the desired test outcome is.
1234/// This avoids having to perform a full match on [`thir::PatKind`] in some places,
1235/// and helps [`TestKind::Switch`] and [`TestKind::SwitchInt`] know what target
1236/// values to use.
1237///
1238/// Created by [`MatchPairTree::for_pattern`], and then inspected primarily by:
1239/// - [`Builder::pick_test_for_match_pair`] (to choose a test)
1240/// - [`Builder::sort_candidate`] (to see how the test interacts with a match pair)
1241///
1242/// Note that or-patterns are not tested directly like the other variants.
1243/// Instead they participate in or-pattern expansion, where they are transformed into
1244/// subcandidates. See [`Builder::expand_and_match_or_candidates`].
1245#[derive(Debug, Clone)]
1246enum TestCase<'tcx> {
1247 Variant { adt_def: ty::AdtDef<'tcx>, variant_index: VariantIdx },
1248 Constant { value: ty::Value<'tcx> },
1249 Range(Arc<PatRange<'tcx>>),
1250 Slice { len: usize, variable_length: bool },
1251 Deref { temp: Place<'tcx>, mutability: Mutability },
1252 Never,
1253 Or { pats: Box<[FlatPat<'tcx>]> },
1254}
1255
1256impl<'tcx> TestCase<'tcx> {
1257 fn as_range(&self) -> Option<&PatRange<'tcx>> {
1258 if let Self::Range(v) = self { Some(v.as_ref()) } else { None }
1259 }
1260}
1261
1262/// Node in a tree of "match pairs", where each pair consists of a place to be
1263/// tested, and a test to perform on that place.
1264///
1265/// Each node also has a list of subpairs (possibly empty) that must also match,
1266/// and a reference to the THIR pattern it represents.
1267#[derive(Debug, Clone)]
1268pub(crate) struct MatchPairTree<'tcx> {
1269 /// This place...
1270 ///
1271 /// ---
1272 /// This can be `None` if it referred to a non-captured place in a closure.
1273 ///
1274 /// Invariant: Can only be `None` when `test_case` is `Or`.
1275 /// Therefore this must be `Some(_)` after or-pattern expansion.
1276 place: Option<Place<'tcx>>,
1277
1278 /// ... must pass this test...
1279 test_case: TestCase<'tcx>,
1280
1281 /// ... and these subpairs must match.
1282 ///
1283 /// ---
1284 /// Subpairs typically represent tests that can only be performed after their
1285 /// parent has succeeded. For example, the pattern `Some(3)` might have an
1286 /// outer match pair that tests for the variant `Some`, and then a subpair
1287 /// that tests its field for the value `3`.
1288 subpairs: Vec<Self>,
1289
1290 /// Type field of the pattern this node was created from.
1291 pattern_ty: Ty<'tcx>,
1292 /// Span field of the pattern this node was created from.
1293 pattern_span: Span,
1294}
1295
1296/// See [`Test`] for more.
1297#[derive(Clone, Debug, PartialEq)]
1298enum TestKind<'tcx> {
1299 /// Test what enum variant a value is.
1300 ///
1301 /// The subset of expected variants is not stored here; instead they are
1302 /// extracted from the [`TestCase`]s of the candidates participating in the
1303 /// test.
1304 Switch {
1305 /// The enum type being tested.
1306 adt_def: ty::AdtDef<'tcx>,
1307 },
1308
1309 /// Test what value an integer or `char` has.
1310 ///
1311 /// The test's target values are not stored here; instead they are extracted
1312 /// from the [`TestCase`]s of the candidates participating in the test.
1313 SwitchInt,
1314
1315 /// Test whether a `bool` is `true` or `false`.
1316 If,
1317
1318 /// Test for equality with value, possibly after an unsizing coercion to
1319 /// `cast_ty`,
1320 Eq {
1321 value: ty::Value<'tcx>,
1322 // Integer types are handled by `SwitchInt`, and constants with ADT
1323 // types and `&[T]` types are converted back into patterns, so this can
1324 // only be `&str` or floats.
1325 cast_ty: Ty<'tcx>,
1326 },
1327
1328 /// Test whether the value falls within an inclusive or exclusive range.
1329 Range(Arc<PatRange<'tcx>>),
1330
1331 /// Test that the length of the slice is `== len` or `>= len`.
1332 Len { len: u64, op: BinOp },
1333
1334 /// Call `Deref::deref[_mut]` on the value.
1335 Deref {
1336 /// Temporary to store the result of `deref()`/`deref_mut()`.
1337 temp: Place<'tcx>,
1338 mutability: Mutability,
1339 },
1340
1341 /// Assert unreachability of never patterns.
1342 Never,
1343}
1344
1345/// A test to perform to determine which [`Candidate`] matches a value.
1346///
1347/// [`Test`] is just the test to perform; it does not include the value
1348/// to be tested.
1349#[derive(Debug)]
1350pub(crate) struct Test<'tcx> {
1351 span: Span,
1352 kind: TestKind<'tcx>,
1353}
1354
1355/// The branch to be taken after a test.
1356#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
1357enum TestBranch<'tcx> {
1358 /// Success branch, used for tests with two possible outcomes.
1359 Success,
1360 /// Branch corresponding to this constant. Must be a scalar.
1361 Constant(ty::Value<'tcx>),
1362 /// Branch corresponding to this variant.
1363 Variant(VariantIdx),
1364 /// Failure branch for tests with two possible outcomes, and "otherwise" branch for other tests.
1365 Failure,
1366}
1367
1368impl<'tcx> TestBranch<'tcx> {
1369 fn as_constant(&self) -> Option<ty::Value<'tcx>> {
1370 if let Self::Constant(v) = self { Some(*v) } else { None }
1371 }
1372}
1373
1374/// `ArmHasGuard` is a wrapper around a boolean flag. It indicates whether
1375/// a match arm has a guard expression attached to it.
1376#[derive(Copy, Clone, Debug)]
1377pub(crate) struct ArmHasGuard(pub(crate) bool);
1378
1379///////////////////////////////////////////////////////////////////////////
1380// Main matching algorithm
1381
1382/// A sub-branch in the output of match lowering. Match lowering has generated MIR code that will
1383/// branch to `success_block` when the matched value matches the corresponding pattern. If there is
1384/// a guard, its failure must continue to `otherwise_block`, which will resume testing patterns.
1385#[derive(Debug, Clone)]
1386struct MatchTreeSubBranch<'tcx> {
1387 span: Span,
1388 /// The block that is branched to if the corresponding subpattern matches.
1389 success_block: BasicBlock,
1390 /// The block to branch to if this arm had a guard and the guard fails.
1391 otherwise_block: BasicBlock,
1392 /// The bindings to set up in this sub-branch.
1393 bindings: Vec<Binding<'tcx>>,
1394 /// The ascriptions to set up in this sub-branch.
1395 ascriptions: Vec<Ascription<'tcx>>,
1396 /// Whether the sub-branch corresponds to a never pattern.
1397 is_never: bool,
1398}
1399
1400/// A branch in the output of match lowering.
1401#[derive(Debug, Clone)]
1402struct MatchTreeBranch<'tcx> {
1403 sub_branches: Vec<MatchTreeSubBranch<'tcx>>,
1404}
1405
1406/// The result of generating MIR for a pattern-matching expression. Each input branch/arm/pattern
1407/// gives rise to an output `MatchTreeBranch`. If one of the patterns matches, we branch to the
1408/// corresponding `success_block`. If none of the patterns matches, we branch to `otherwise_block`.
1409///
1410/// Each branch is made of one of more sub-branches, corresponding to or-patterns. E.g.
1411/// ```ignore(illustrative)
1412/// match foo {
1413/// (x, false) | (false, x) => {}
1414/// (true, true) => {}
1415/// }
1416/// ```
1417/// Here the first arm gives the first `MatchTreeBranch`, which has two sub-branches, one for each
1418/// alternative of the or-pattern. They are kept separate because each needs to bind `x` to a
1419/// different place.
1420#[derive(Debug, Clone)]
1421pub(crate) struct BuiltMatchTree<'tcx> {
1422 branches: Vec<MatchTreeBranch<'tcx>>,
1423 otherwise_block: BasicBlock,
1424 /// If any of the branches had a guard, we collect here the places and locals to fakely borrow
1425 /// to ensure match guards can't modify the values as we match them. For more details, see
1426 /// [`util::collect_fake_borrows`].
1427 fake_borrow_temps: Vec<(Place<'tcx>, Local, FakeBorrowKind)>,
1428}
1429
1430impl<'tcx> MatchTreeSubBranch<'tcx> {
1431 fn from_sub_candidate(
1432 candidate: Candidate<'tcx>,
1433 parent_data: &Vec<PatternExtraData<'tcx>>,
1434 ) -> Self {
1435 debug_assert!(candidate.match_pairs.is_empty());
1436 MatchTreeSubBranch {
1437 span: candidate.extra_data.span,
1438 success_block: candidate.pre_binding_block.unwrap(),
1439 otherwise_block: candidate.otherwise_block.unwrap(),
1440 bindings: sub_branch_bindings(parent_data, &candidate.extra_data.bindings),
1441 ascriptions: parent_data
1442 .iter()
1443 .flat_map(|d| &d.ascriptions)
1444 .cloned()
1445 .chain(candidate.extra_data.ascriptions)
1446 .collect(),
1447 is_never: candidate.extra_data.is_never,
1448 }
1449 }
1450}
1451
1452impl<'tcx> MatchTreeBranch<'tcx> {
1453 fn from_candidate(candidate: Candidate<'tcx>) -> Self {
1454 let mut sub_branches = Vec::new();
1455 traverse_candidate(
1456 candidate,
1457 &mut Vec::new(),
1458 &mut |candidate: Candidate<'_>, parent_data: &mut Vec<PatternExtraData<'_>>| {
1459 sub_branches.push(MatchTreeSubBranch::from_sub_candidate(candidate, parent_data));
1460 },
1461 |inner_candidate, parent_data| {
1462 parent_data.push(inner_candidate.extra_data);
1463 inner_candidate.subcandidates.into_iter()
1464 },
1465 |parent_data| {
1466 parent_data.pop();
1467 },
1468 );
1469 MatchTreeBranch { sub_branches }
1470 }
1471}
1472
1473/// Collects the bindings for a [`MatchTreeSubBranch`], preserving the order they appear in the
1474/// pattern, as though the or-alternatives chosen in this sub-branch were inlined.
1475fn sub_branch_bindings<'tcx>(
1476 parents: &[PatternExtraData<'tcx>],
1477 leaf_bindings: &[SubpatternBindings<'tcx>],
1478) -> Vec<Binding<'tcx>> {
1479 // In the common case, all bindings will be in leaves. Allocate to fit the leaf's bindings.
1480 let mut all_bindings = Vec::with_capacity(leaf_bindings.len());
1481 let mut remainder = parents
1482 .iter()
1483 .map(|parent| parent.bindings.as_slice())
1484 .chain([leaf_bindings])
1485 // Skip over unsimplified or-patterns without bindings.
1486 .filter(|bindings| !bindings.is_empty());
1487 if let Some(candidate_bindings) = remainder.next() {
1488 push_sub_branch_bindings(&mut all_bindings, candidate_bindings, &mut remainder);
1489 }
1490 // Make sure we've included all bindings. For ill-formed patterns like `(x, _ | y)`, we may not
1491 // have collected all bindings yet, since we only check the first alternative when determining
1492 // whether to inline subcandidates' bindings.
1493 // FIXME(@dianne): prevent ill-formed patterns from getting here
1494 while let Some(candidate_bindings) = remainder.next() {
1495 ty::tls::with(|tcx| {
1496 tcx.dcx().delayed_bug("mismatched or-pattern bindings but no error emitted")
1497 });
1498 // To recover, we collect the rest in an arbitrary order.
1499 push_sub_branch_bindings(&mut all_bindings, candidate_bindings, &mut remainder);
1500 }
1501 all_bindings
1502}
1503
1504/// Helper for [`sub_branch_bindings`]. Collects bindings from `candidate_bindings` into
1505/// `flattened`. Bindings in or-patterns are collected recursively from `remainder`.
1506fn push_sub_branch_bindings<'c, 'tcx: 'c>(
1507 flattened: &mut Vec<Binding<'tcx>>,
1508 candidate_bindings: &'c [SubpatternBindings<'tcx>],
1509 remainder: &mut impl Iterator<Item = &'c [SubpatternBindings<'tcx>]>,
1510) {
1511 for subpat_bindings in candidate_bindings {
1512 match subpat_bindings {
1513 SubpatternBindings::One(binding) => flattened.push(*binding),
1514 SubpatternBindings::FromOrPattern => {
1515 // Inline bindings from an or-pattern. By construction, this always
1516 // corresponds to a subcandidate and its closest descendants (i.e. those
1517 // from nested or-patterns, but not adjacent or-patterns). To handle
1518 // adjacent or-patterns, e.g. `(x | x, y | y)`, we update the `remainder` to
1519 // point to the first descendant candidate from outside this or-pattern.
1520 if let Some(subcandidate_bindings) = remainder.next() {
1521 push_sub_branch_bindings(flattened, subcandidate_bindings, remainder);
1522 } else {
1523 // For ill-formed patterns like `x | _`, we may not have any subcandidates left
1524 // to inline bindings from.
1525 // FIXME(@dianne): prevent ill-formed patterns from getting here
1526 ty::tls::with(|tcx| {
1527 tcx.dcx().delayed_bug("mismatched or-pattern bindings but no error emitted")
1528 });
1529 };
1530 }
1531 }
1532 }
1533}
1534
1535#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1536pub(crate) enum HasMatchGuard {
1537 Yes,
1538 No,
1539}
1540
1541impl<'a, 'tcx> Builder<'a, 'tcx> {
1542 /// The entrypoint of the matching algorithm. Create the decision tree for the match expression,
1543 /// starting from `block`.
1544 ///
1545 /// `patterns` is a list of patterns, one for each arm. The associated boolean indicates whether
1546 /// the arm has a guard.
1547 ///
1548 /// `refutable` indicates whether the candidate list is refutable (for `if let` and `let else`)
1549 /// or not (for `let` and `match`). In the refutable case we return the block to which we branch
1550 /// on failure.
1551 pub(crate) fn lower_match_tree(
1552 &mut self,
1553 block: BasicBlock,
1554 scrutinee_span: Span,
1555 scrutinee_place_builder: &PlaceBuilder<'tcx>,
1556 match_start_span: Span,
1557 patterns: Vec<(&Pat<'tcx>, HasMatchGuard)>,
1558 refutable: bool,
1559 ) -> BuiltMatchTree<'tcx> {
1560 // Assemble the initial list of candidates. These top-level candidates are 1:1 with the
1561 // input patterns, but other parts of match lowering also introduce subcandidates (for
1562 // sub-or-patterns). So inside the algorithm, the candidates list may not correspond to
1563 // match arms directly.
1564 let mut candidates: Vec<Candidate<'_>> = patterns
1565 .into_iter()
1566 .map(|(pat, has_guard)| {
1567 Candidate::new(scrutinee_place_builder.clone(), pat, has_guard, self)
1568 })
1569 .collect();
1570
1571 let fake_borrow_temps = util::collect_fake_borrows(
1572 self,
1573 &candidates,
1574 scrutinee_span,
1575 scrutinee_place_builder.base(),
1576 );
1577
1578 // This will generate code to test scrutinee_place and branch to the appropriate arm block.
1579 // If none of the arms match, we branch to `otherwise_block`. When lowering a `match`
1580 // expression, exhaustiveness checking ensures that this block is unreachable.
1581 let mut candidate_refs = candidates.iter_mut().collect::<Vec<_>>();
1582 let otherwise_block =
1583 self.match_candidates(match_start_span, scrutinee_span, block, &mut candidate_refs);
1584
1585 // Set up false edges so that the borrow-checker cannot make use of the specific CFG we
1586 // generated. We falsely branch from each candidate to the one below it to make it as if we
1587 // were testing match branches one by one in order. In the refutable case we also want a
1588 // false edge to the final failure block.
1589 let mut next_candidate_start_block = if refutable { Some(otherwise_block) } else { None };
1590 for candidate in candidates.iter_mut().rev() {
1591 let has_guard = candidate.has_guard;
1592 candidate.visit_leaves_rev(|leaf_candidate| {
1593 if let Some(next_candidate_start_block) = next_candidate_start_block {
1594 let source_info = self.source_info(leaf_candidate.extra_data.span);
1595 // Falsely branch to `next_candidate_start_block` before reaching pre_binding.
1596 let old_pre_binding = leaf_candidate.pre_binding_block.unwrap();
1597 let new_pre_binding = self.cfg.start_new_block();
1598 self.false_edges(
1599 old_pre_binding,
1600 new_pre_binding,
1601 next_candidate_start_block,
1602 source_info,
1603 );
1604 leaf_candidate.pre_binding_block = Some(new_pre_binding);
1605 if has_guard {
1606 // Falsely branch to `next_candidate_start_block` also if the guard fails.
1607 let new_otherwise = self.cfg.start_new_block();
1608 let old_otherwise = leaf_candidate.otherwise_block.unwrap();
1609 self.false_edges(
1610 new_otherwise,
1611 old_otherwise,
1612 next_candidate_start_block,
1613 source_info,
1614 );
1615 leaf_candidate.otherwise_block = Some(new_otherwise);
1616 }
1617 }
1618 assert!(leaf_candidate.false_edge_start_block.is_some());
1619 next_candidate_start_block = leaf_candidate.false_edge_start_block;
1620 });
1621 }
1622
1623 if !refutable {
1624 // Match checking ensures `otherwise_block` is actually unreachable in irrefutable
1625 // cases.
1626 let source_info = self.source_info(scrutinee_span);
1627
1628 // Matching on a scrutinee place of an uninhabited type doesn't generate any memory
1629 // reads by itself, and so if the place is uninitialized we wouldn't know. In order to
1630 // disallow the following:
1631 // ```rust
1632 // let x: !;
1633 // match x {}
1634 // ```
1635 // we add a dummy read on the place.
1636 //
1637 // NOTE: If we require never patterns for empty matches, those will check that the place
1638 // is initialized, and so this read would no longer be needed.
1639 let cause_matched_place = FakeReadCause::ForMatchedPlace(None);
1640
1641 if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
1642 self.cfg.push_fake_read(
1643 otherwise_block,
1644 source_info,
1645 cause_matched_place,
1646 scrutinee_place,
1647 );
1648 }
1649
1650 self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable);
1651 }
1652
1653 BuiltMatchTree {
1654 branches: candidates.into_iter().map(MatchTreeBranch::from_candidate).collect(),
1655 otherwise_block,
1656 fake_borrow_temps,
1657 }
1658 }
1659
1660 /// The main match algorithm. It begins with a set of candidates `candidates` and has the job of
1661 /// generating code that branches to an appropriate block if the scrutinee matches one of these
1662 /// candidates. The
1663 /// candidates are ordered such that the first item in the list
1664 /// has the highest priority. When a candidate is found to match
1665 /// the value, we will set and generate a branch to the appropriate
1666 /// pre-binding block.
1667 ///
1668 /// If none of the candidates apply, we continue to the returned `otherwise_block`.
1669 ///
1670 /// Note that while `match` expressions in the Rust language are exhaustive,
1671 /// candidate lists passed to this method are often _non-exhaustive_.
1672 /// For example, the match lowering process will frequently divide up the
1673 /// list of candidates, and recursively call this method with a non-exhaustive
1674 /// subset of candidates.
1675 /// See [`Builder::test_candidates`] for more details on this
1676 /// "backtracking automata" approach.
1677 ///
1678 /// For an example of how we use `otherwise_block`, consider:
1679 /// ```
1680 /// # fn foo((x, y): (bool, bool)) -> u32 {
1681 /// match (x, y) {
1682 /// (true, true) => 1,
1683 /// (_, false) => 2,
1684 /// (false, true) => 3,
1685 /// }
1686 /// # }
1687 /// ```
1688 /// For this match, we generate something like:
1689 /// ```
1690 /// # fn foo((x, y): (bool, bool)) -> u32 {
1691 /// if x {
1692 /// if y {
1693 /// return 1
1694 /// } else {
1695 /// // continue
1696 /// }
1697 /// } else {
1698 /// // continue
1699 /// }
1700 /// if y {
1701 /// if x {
1702 /// // This is actually unreachable because the `(true, true)` case was handled above,
1703 /// // but we don't know that from within the lowering algorithm.
1704 /// // continue
1705 /// } else {
1706 /// return 3
1707 /// }
1708 /// } else {
1709 /// return 2
1710 /// }
1711 /// // this is the final `otherwise_block`, which is unreachable because the match was exhaustive.
1712 /// unreachable!()
1713 /// # }
1714 /// ```
1715 ///
1716 /// Every `continue` is an instance of branching to some `otherwise_block` somewhere deep within
1717 /// the algorithm. For more details on why we lower like this, see [`Builder::test_candidates`].
1718 ///
1719 /// Note how we test `x` twice. This is the tradeoff of backtracking automata: we prefer smaller
1720 /// code size so we accept non-optimal code paths.
1721 #[instrument(skip(self), level = "debug")]
1722 fn match_candidates(
1723 &mut self,
1724 span: Span,
1725 scrutinee_span: Span,
1726 start_block: BasicBlock,
1727 candidates: &mut [&mut Candidate<'tcx>],
1728 ) -> BasicBlock {
1729 ensure_sufficient_stack(|| {
1730 self.match_candidates_inner(span, scrutinee_span, start_block, candidates)
1731 })
1732 }
1733
1734 /// Construct the decision tree for `candidates`. Don't call this, call `match_candidates`
1735 /// instead to reserve sufficient stack space.
1736 fn match_candidates_inner(
1737 &mut self,
1738 span: Span,
1739 scrutinee_span: Span,
1740 mut start_block: BasicBlock,
1741 candidates: &mut [&mut Candidate<'tcx>],
1742 ) -> BasicBlock {
1743 if let [first, ..] = candidates {
1744 if first.false_edge_start_block.is_none() {
1745 first.false_edge_start_block = Some(start_block);
1746 }
1747 }
1748
1749 // Process a prefix of the candidates.
1750 let rest = match candidates {
1751 [] => {
1752 // If there are no candidates that still need testing, we're done.
1753 return start_block;
1754 }
1755 [first, remaining @ ..] if first.match_pairs.is_empty() => {
1756 // The first candidate has satisfied all its match pairs.
1757 // We record the blocks that will be needed by match arm lowering,
1758 // and then continue with the remaining candidates.
1759 let remainder_start = self.select_matched_candidate(first, start_block);
1760 remainder_start.and(remaining)
1761 }
1762 candidates if candidates.iter().any(|candidate| candidate.starts_with_or_pattern()) => {
1763 // If any candidate starts with an or-pattern, we want to expand or-patterns
1764 // before we do any more tests.
1765 //
1766 // The only candidate we strictly _need_ to expand here is the first one.
1767 // But by expanding other candidates as early as possible, we unlock more
1768 // opportunities to include them in test outcomes, making the match tree
1769 // smaller and simpler.
1770 self.expand_and_match_or_candidates(span, scrutinee_span, start_block, candidates)
1771 }
1772 candidates => {
1773 // The first candidate has some unsatisfied match pairs; we proceed to do more tests.
1774 self.test_candidates(span, scrutinee_span, candidates, start_block)
1775 }
1776 };
1777
1778 // Process any candidates that remain.
1779 let remaining_candidates = unpack!(start_block = rest);
1780 self.match_candidates(span, scrutinee_span, start_block, remaining_candidates)
1781 }
1782
1783 /// Link up matched candidates.
1784 ///
1785 /// For example, if we have something like this:
1786 ///
1787 /// ```ignore (illustrative)
1788 /// ...
1789 /// Some(x) if cond1 => ...
1790 /// Some(x) => ...
1791 /// Some(x) if cond2 => ...
1792 /// ...
1793 /// ```
1794 ///
1795 /// We generate real edges from:
1796 ///
1797 /// * `start_block` to the [pre-binding block] of the first pattern,
1798 /// * the [otherwise block] of the first pattern to the second pattern,
1799 /// * the [otherwise block] of the third pattern to a block with an
1800 /// [`Unreachable` terminator](TerminatorKind::Unreachable).
1801 ///
1802 /// In addition, we later add fake edges from the otherwise blocks to the
1803 /// pre-binding block of the next candidate in the original set of
1804 /// candidates.
1805 ///
1806 /// [pre-binding block]: Candidate::pre_binding_block
1807 /// [otherwise block]: Candidate::otherwise_block
1808 fn select_matched_candidate(
1809 &mut self,
1810 candidate: &mut Candidate<'tcx>,
1811 start_block: BasicBlock,
1812 ) -> BasicBlock {
1813 assert!(candidate.otherwise_block.is_none());
1814 assert!(candidate.pre_binding_block.is_none());
1815 assert!(candidate.subcandidates.is_empty());
1816
1817 candidate.pre_binding_block = Some(start_block);
1818 let otherwise_block = self.cfg.start_new_block();
1819 // Create the otherwise block for this candidate, which is the
1820 // pre-binding block for the next candidate.
1821 candidate.otherwise_block = Some(otherwise_block);
1822 otherwise_block
1823 }
1824
1825 /// Takes a list of candidates such that some of the candidates' first match pairs are
1826 /// or-patterns. This expands as many or-patterns as possible and processes the resulting
1827 /// candidates. Returns the unprocessed candidates if any.
1828 fn expand_and_match_or_candidates<'b, 'c>(
1829 &mut self,
1830 span: Span,
1831 scrutinee_span: Span,
1832 start_block: BasicBlock,
1833 candidates: &'b mut [&'c mut Candidate<'tcx>],
1834 ) -> BlockAnd<&'b mut [&'c mut Candidate<'tcx>]> {
1835 // We can't expand or-patterns freely. The rule is:
1836 // - If a candidate doesn't start with an or-pattern, we include it in
1837 // the expansion list as-is (i.e. it "expands" to itself).
1838 // - If a candidate has an or-pattern as its only remaining match pair,
1839 // we can expand it.
1840 // - If it starts with an or-pattern but also has other match pairs,
1841 // we can expand it, but we can't process more candidates after it.
1842 //
1843 // If we didn't stop, the `otherwise` cases could get mixed up. E.g. in the
1844 // following, or-pattern simplification (in `merge_trivial_subcandidates`) makes it
1845 // so the `1` and `2` cases branch to a same block (which then tests `false`). If we
1846 // took `(2, _)` in the same set of candidates, when we reach the block that tests
1847 // `false` we don't know whether we came from `1` or `2`, hence we can't know where
1848 // to branch on failure.
1849 //
1850 // ```ignore(illustrative)
1851 // match (1, true) {
1852 // (1 | 2, false) => {},
1853 // (2, _) => {},
1854 // _ => {}
1855 // }
1856 // ```
1857 //
1858 // We therefore split the `candidates` slice in two, expand or-patterns in the first part,
1859 // and process the rest separately.
1860 let expand_until = candidates
1861 .iter()
1862 .position(|candidate| {
1863 // If a candidate starts with an or-pattern and has more match pairs,
1864 // we can expand it, but we must stop expanding _after_ it.
1865 candidate.match_pairs.len() > 1 && candidate.starts_with_or_pattern()
1866 })
1867 .map(|pos| pos + 1) // Stop _after_ the found candidate
1868 .unwrap_or(candidates.len()); // Otherwise, include all candidates
1869 let (candidates_to_expand, remaining_candidates) = candidates.split_at_mut(expand_until);
1870
1871 // Expand one level of or-patterns for each candidate in `candidates_to_expand`.
1872 // We take care to preserve the relative ordering of candidates, so that
1873 // or-patterns are expanded in their parent's relative position.
1874 let mut expanded_candidates = Vec::new();
1875 for candidate in candidates_to_expand.iter_mut() {
1876 if candidate.starts_with_or_pattern() {
1877 let or_match_pair = candidate.match_pairs.remove(0);
1878 // Expand the or-pattern into subcandidates.
1879 self.create_or_subcandidates(candidate, or_match_pair);
1880 // Collect the newly created subcandidates.
1881 for subcandidate in candidate.subcandidates.iter_mut() {
1882 expanded_candidates.push(subcandidate);
1883 }
1884 // Note that the subcandidates have been added to `expanded_candidates`,
1885 // but `candidate` itself has not. If the last candidate has more match pairs,
1886 // they are handled separately by `test_remaining_match_pairs_after_or`.
1887 } else {
1888 // A candidate that doesn't start with an or-pattern has nothing to
1889 // expand, so it is included in the post-expansion list as-is.
1890 expanded_candidates.push(candidate);
1891 }
1892 }
1893
1894 // Recursively lower the part of the match tree represented by the
1895 // expanded candidates. This is where subcandidates actually get lowered!
1896 let remainder_start = self.match_candidates(
1897 span,
1898 scrutinee_span,
1899 start_block,
1900 expanded_candidates.as_mut_slice(),
1901 );
1902
1903 // Postprocess subcandidates, and process any leftover match pairs.
1904 // (Only the last candidate can possibly have more match pairs.)
1905 debug_assert!({
1906 let mut all_except_last = candidates_to_expand.iter().rev().skip(1);
1907 all_except_last.all(|candidate| candidate.match_pairs.is_empty())
1908 });
1909 for candidate in candidates_to_expand.iter_mut() {
1910 if !candidate.subcandidates.is_empty() {
1911 self.merge_trivial_subcandidates(candidate);
1912 self.remove_never_subcandidates(candidate);
1913 }
1914 }
1915 // It's important to perform the above simplifications _before_ dealing
1916 // with remaining match pairs, to avoid exponential blowup if possible
1917 // (for trivial or-patterns), and avoid useless work (for never patterns).
1918 if let Some(last_candidate) = candidates_to_expand.last_mut() {
1919 self.test_remaining_match_pairs_after_or(span, scrutinee_span, last_candidate);
1920 }
1921
1922 remainder_start.and(remaining_candidates)
1923 }
1924
1925 /// Given a match-pair that corresponds to an or-pattern, expand each subpattern into a new
1926 /// subcandidate. Any candidate that has been expanded this way should also be postprocessed
1927 /// at the end of [`Self::expand_and_match_or_candidates`].
1928 fn create_or_subcandidates(
1929 &mut self,
1930 candidate: &mut Candidate<'tcx>,
1931 match_pair: MatchPairTree<'tcx>,
1932 ) {
1933 let TestCase::Or { pats } = match_pair.test_case else { bug!() };
1934 debug!("expanding or-pattern: candidate={:#?}\npats={:#?}", candidate, pats);
1935 candidate.or_span = Some(match_pair.pattern_span);
1936 candidate.subcandidates = pats
1937 .into_iter()
1938 .map(|flat_pat| Candidate::from_flat_pat(flat_pat, candidate.has_guard))
1939 .collect();
1940 candidate.subcandidates[0].false_edge_start_block = candidate.false_edge_start_block;
1941 }
1942
1943 /// Try to merge all of the subcandidates of the given candidate into one. This avoids
1944 /// exponentially large CFGs in cases like `(1 | 2, 3 | 4, ...)`. The candidate should have been
1945 /// expanded with `create_or_subcandidates`.
1946 ///
1947 /// Given a pattern `(P | Q, R | S)` we (in principle) generate a CFG like
1948 /// so:
1949 ///
1950 /// ```text
1951 /// [ start ]
1952 /// |
1953 /// [ match P, Q ]
1954 /// |
1955 /// +----------------------------------------+------------------------------------+
1956 /// | | |
1957 /// V V V
1958 /// [ P matches ] [ Q matches ] [ otherwise ]
1959 /// | | |
1960 /// V V |
1961 /// [ match R, S ] [ match R, S ] |
1962 /// | | |
1963 /// +--------------+------------+ +--------------+------------+ |
1964 /// | | | | | | |
1965 /// V V V V V V |
1966 /// [ R matches ] [ S matches ] [otherwise ] [ R matches ] [ S matches ] [otherwise ] |
1967 /// | | | | | | |
1968 /// +--------------+------------|------------+--------------+ | |
1969 /// | | | |
1970 /// | +----------------------------------------+--------+
1971 /// | |
1972 /// V V
1973 /// [ Success ] [ Failure ]
1974 /// ```
1975 ///
1976 /// In practice there are some complications:
1977 ///
1978 /// * If there's a guard, then the otherwise branch of the first match on
1979 /// `R | S` goes to a test for whether `Q` matches, and the control flow
1980 /// doesn't merge into a single success block until after the guard is
1981 /// tested.
1982 /// * If neither `P` or `Q` has any bindings or type ascriptions and there
1983 /// isn't a match guard, then we create a smaller CFG like:
1984 ///
1985 /// ```text
1986 /// ...
1987 /// +---------------+------------+
1988 /// | | |
1989 /// [ P matches ] [ Q matches ] [ otherwise ]
1990 /// | | |
1991 /// +---------------+ |
1992 /// | ...
1993 /// [ match R, S ]
1994 /// |
1995 /// ...
1996 /// ```
1997 ///
1998 /// Note that this takes place _after_ the subcandidates have participated
1999 /// in match tree lowering.
2000 fn merge_trivial_subcandidates(&mut self, candidate: &mut Candidate<'tcx>) {
2001 assert!(!candidate.subcandidates.is_empty());
2002 if candidate.has_guard {
2003 // FIXME(or_patterns; matthewjasper) Don't give up if we have a guard.
2004 return;
2005 }
2006
2007 // FIXME(or_patterns; matthewjasper) Try to be more aggressive here.
2008 let can_merge = candidate.subcandidates.iter().all(|subcandidate| {
2009 subcandidate.subcandidates.is_empty() && subcandidate.extra_data.is_empty()
2010 });
2011 if !can_merge {
2012 return;
2013 }
2014
2015 let mut last_otherwise = None;
2016 let shared_pre_binding_block = self.cfg.start_new_block();
2017 // This candidate is about to become a leaf, so unset `or_span`.
2018 let or_span = candidate.or_span.take().unwrap();
2019 let source_info = self.source_info(or_span);
2020
2021 if candidate.false_edge_start_block.is_none() {
2022 candidate.false_edge_start_block = candidate.subcandidates[0].false_edge_start_block;
2023 }
2024
2025 // Remove the (known-trivial) subcandidates from the candidate tree,
2026 // so that they aren't visible after match tree lowering, and wire them
2027 // all to join up at a single shared pre-binding block.
2028 // (Note that the subcandidates have already had their part of the match
2029 // tree lowered by this point, which is why we can add a goto to them.)
2030 for subcandidate in mem::take(&mut candidate.subcandidates) {
2031 let subcandidate_block = subcandidate.pre_binding_block.unwrap();
2032 self.cfg.goto(subcandidate_block, source_info, shared_pre_binding_block);
2033 last_otherwise = subcandidate.otherwise_block;
2034 }
2035 candidate.pre_binding_block = Some(shared_pre_binding_block);
2036 assert!(last_otherwise.is_some());
2037 candidate.otherwise_block = last_otherwise;
2038 }
2039
2040 /// Never subcandidates may have a set of bindings inconsistent with their siblings,
2041 /// which would break later code. So we filter them out. Note that we can't filter out
2042 /// top-level candidates this way.
2043 fn remove_never_subcandidates(&mut self, candidate: &mut Candidate<'tcx>) {
2044 if candidate.subcandidates.is_empty() {
2045 return;
2046 }
2047
2048 let false_edge_start_block = candidate.subcandidates[0].false_edge_start_block;
2049 candidate.subcandidates.retain_mut(|candidate| {
2050 if candidate.extra_data.is_never {
2051 candidate.visit_leaves(|subcandidate| {
2052 let block = subcandidate.pre_binding_block.unwrap();
2053 // That block is already unreachable but needs a terminator to make the MIR well-formed.
2054 let source_info = self.source_info(subcandidate.extra_data.span);
2055 self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
2056 });
2057 false
2058 } else {
2059 true
2060 }
2061 });
2062 if candidate.subcandidates.is_empty() {
2063 // If `candidate` has become a leaf candidate, ensure it has a `pre_binding_block` and `otherwise_block`.
2064 let next_block = self.cfg.start_new_block();
2065 candidate.pre_binding_block = Some(next_block);
2066 candidate.otherwise_block = Some(next_block);
2067 // In addition, if `candidate` doesn't have `false_edge_start_block`, it should be assigned here.
2068 if candidate.false_edge_start_block.is_none() {
2069 candidate.false_edge_start_block = false_edge_start_block;
2070 }
2071 }
2072 }
2073
2074 /// If more match pairs remain, test them after each subcandidate.
2075 /// We could have added them to the or-candidates during or-pattern expansion, but that
2076 /// would make it impossible to detect simplifiable or-patterns. That would guarantee
2077 /// exponentially large CFGs for cases like `(1 | 2, 3 | 4, ...)`.
2078 fn test_remaining_match_pairs_after_or(
2079 &mut self,
2080 span: Span,
2081 scrutinee_span: Span,
2082 candidate: &mut Candidate<'tcx>,
2083 ) {
2084 if candidate.match_pairs.is_empty() {
2085 return;
2086 }
2087
2088 let or_span = candidate.or_span.unwrap_or(candidate.extra_data.span);
2089 let source_info = self.source_info(or_span);
2090 let mut last_otherwise = None;
2091 candidate.visit_leaves(|leaf_candidate| {
2092 last_otherwise = leaf_candidate.otherwise_block;
2093 });
2094
2095 let remaining_match_pairs = mem::take(&mut candidate.match_pairs);
2096 // We're testing match pairs that remained after an `Or`, so the remaining
2097 // pairs should all be `Or` too, due to the sorting invariant.
2098 debug_assert!(
2099 remaining_match_pairs
2100 .iter()
2101 .all(|match_pair| matches!(match_pair.test_case, TestCase::Or { .. }))
2102 );
2103
2104 // Visit each leaf candidate within this subtree, add a copy of the remaining
2105 // match pairs to it, and then recursively lower the rest of the match tree
2106 // from that point.
2107 candidate.visit_leaves(|leaf_candidate| {
2108 // At this point the leaf's own match pairs have all been lowered
2109 // and removed, so `extend` and assignment are equivalent,
2110 // but extending can also recycle any existing vector capacity.
2111 assert!(leaf_candidate.match_pairs.is_empty());
2112 leaf_candidate.match_pairs.extend(remaining_match_pairs.iter().cloned());
2113
2114 let or_start = leaf_candidate.pre_binding_block.unwrap();
2115 let otherwise =
2116 self.match_candidates(span, scrutinee_span, or_start, &mut [leaf_candidate]);
2117 // In a case like `(P | Q, R | S)`, if `P` succeeds and `R | S` fails, we know `(Q,
2118 // R | S)` will fail too. If there is no guard, we skip testing of `Q` by branching
2119 // directly to `last_otherwise`. If there is a guard,
2120 // `leaf_candidate.otherwise_block` can be reached by guard failure as well, so we
2121 // can't skip `Q`.
2122 let or_otherwise = if leaf_candidate.has_guard {
2123 leaf_candidate.otherwise_block.unwrap()
2124 } else {
2125 last_otherwise.unwrap()
2126 };
2127 self.cfg.goto(otherwise, source_info, or_otherwise);
2128 });
2129 }
2130
2131 /// Pick a test to run. Which test doesn't matter as long as it is guaranteed to fully match at
2132 /// least one match pair. We currently simply pick the test corresponding to the first match
2133 /// pair of the first candidate in the list.
2134 ///
2135 /// *Note:* taking the first match pair is somewhat arbitrary, and we might do better here by
2136 /// choosing more carefully what to test.
2137 ///
2138 /// For example, consider the following possible match-pairs:
2139 ///
2140 /// 1. `x @ Some(P)` -- we will do a [`Switch`] to decide what variant `x` has
2141 /// 2. `x @ 22` -- we will do a [`SwitchInt`] to decide what value `x` has
2142 /// 3. `x @ 3..5` -- we will do a [`Range`] test to decide what range `x` falls in
2143 /// 4. etc.
2144 ///
2145 /// [`Switch`]: TestKind::Switch
2146 /// [`SwitchInt`]: TestKind::SwitchInt
2147 /// [`Range`]: TestKind::Range
2148 fn pick_test(&mut self, candidates: &[&mut Candidate<'tcx>]) -> (Place<'tcx>, Test<'tcx>) {
2149 // Extract the match-pair from the highest priority candidate
2150 let match_pair = &candidates[0].match_pairs[0];
2151 let test = self.pick_test_for_match_pair(match_pair);
2152 // Unwrap is ok after simplification.
2153 let match_place = match_pair.place.unwrap();
2154 debug!(?test, ?match_pair);
2155
2156 (match_place, test)
2157 }
2158
2159 /// Given a test, we partition the input candidates into several buckets.
2160 /// If a candidate matches in exactly one of the branches of `test`
2161 /// (and no other branches), we put it into the corresponding bucket.
2162 /// If it could match in more than one of the branches of `test`, the test
2163 /// doesn't usefully apply to it, and we stop partitioning candidates.
2164 ///
2165 /// Importantly, we also **mutate** the branched candidates to remove match pairs
2166 /// that are entailed by the outcome of the test, and add any sub-pairs of the
2167 /// removed pairs.
2168 ///
2169 /// This returns a pair of
2170 /// - the candidates that weren't sorted;
2171 /// - for each possible outcome of the test, the candidates that match in that outcome.
2172 ///
2173 /// For example:
2174 /// ```
2175 /// # let (x, y, z) = (true, true, true);
2176 /// match (x, y, z) {
2177 /// (true , _ , true ) => true, // (0)
2178 /// (false, false, _ ) => false, // (1)
2179 /// (_ , true , _ ) => true, // (2)
2180 /// (true , _ , false) => false, // (3)
2181 /// }
2182 /// # ;
2183 /// ```
2184 ///
2185 /// Assume we are testing on `x`. Conceptually, there are 2 overlapping candidate sets:
2186 /// - If the outcome is that `x` is true, candidates {0, 2, 3} are possible
2187 /// - If the outcome is that `x` is false, candidates {1, 2} are possible
2188 ///
2189 /// Following our algorithm:
2190 /// - Candidate 0 is sorted into outcome `x == true`
2191 /// - Candidate 1 is sorted into outcome `x == false`
2192 /// - Candidate 2 remains unsorted, because testing `x` has no effect on it
2193 /// - Candidate 3 remains unsorted, because a previous candidate (2) was unsorted
2194 /// - This helps preserve the illusion that candidates are tested "in order"
2195 ///
2196 /// The sorted candidates are mutated to remove entailed match pairs:
2197 /// - candidate 0 becomes `[z @ true]` since we know that `x` was `true`;
2198 /// - candidate 1 becomes `[y @ false]` since we know that `x` was `false`.
2199 fn sort_candidates<'b, 'c>(
2200 &mut self,
2201 match_place: Place<'tcx>,
2202 test: &Test<'tcx>,
2203 mut candidates: &'b mut [&'c mut Candidate<'tcx>],
2204 ) -> (
2205 &'b mut [&'c mut Candidate<'tcx>],
2206 FxIndexMap<TestBranch<'tcx>, Vec<&'b mut Candidate<'tcx>>>,
2207 ) {
2208 // For each of the possible outcomes, collect vector of candidates that apply if the test
2209 // has that particular outcome.
2210 let mut target_candidates: FxIndexMap<_, Vec<&mut Candidate<'_>>> = Default::default();
2211
2212 let total_candidate_count = candidates.len();
2213
2214 // Sort the candidates into the appropriate vector in `target_candidates`. Note that at some
2215 // point we may encounter a candidate where the test is not relevant; at that point, we stop
2216 // sorting.
2217 while let Some(candidate) = candidates.first_mut() {
2218 let Some(branch) =
2219 self.sort_candidate(match_place, test, candidate, &target_candidates)
2220 else {
2221 break;
2222 };
2223 let (candidate, rest) = candidates.split_first_mut().unwrap();
2224 target_candidates.entry(branch).or_insert_with(Vec::new).push(candidate);
2225 candidates = rest;
2226 }
2227
2228 // At least the first candidate ought to be tested
2229 assert!(
2230 total_candidate_count > candidates.len(),
2231 "{total_candidate_count}, {candidates:#?}"
2232 );
2233 debug!("tested_candidates: {}", total_candidate_count - candidates.len());
2234 debug!("untested_candidates: {}", candidates.len());
2235
2236 (candidates, target_candidates)
2237 }
2238
2239 /// This is the most subtle part of the match lowering algorithm. At this point, there are
2240 /// no fully-satisfied candidates, and no or-patterns to expand, so we actually need to
2241 /// perform some sort of test to make progress.
2242 ///
2243 /// Once we pick what sort of test we are going to perform, this test will help us winnow down
2244 /// our candidates. So we walk over the candidates (from high to low priority) and check. We
2245 /// compute, for each outcome of the test, a list of (modified) candidates. If a candidate
2246 /// matches in exactly one branch of our test, we add it to the corresponding outcome. We also
2247 /// **mutate its list of match pairs** if appropriate, to reflect the fact that we know which
2248 /// outcome occurred.
2249 ///
2250 /// For example, if we are testing `x.0`'s variant, and we have a candidate `(x.0 @ Some(v), x.1
2251 /// @ 22)`, then we would have a resulting candidate of `((x.0 as Some).0 @ v, x.1 @ 22)` in the
2252 /// branch corresponding to `Some`. To ensure we make progress, we always pick a test that
2253 /// results in simplifying the first candidate.
2254 ///
2255 /// But there may also be candidates that the test doesn't
2256 /// apply to. The classical example is wildcards:
2257 ///
2258 /// ```
2259 /// # let (x, y, z) = (true, true, true);
2260 /// match (x, y, z) {
2261 /// (true , _ , true ) => true, // (0)
2262 /// (false, false, _ ) => false, // (1)
2263 /// (_ , true , _ ) => true, // (2)
2264 /// (true , _ , false) => false, // (3)
2265 /// }
2266 /// # ;
2267 /// ```
2268 ///
2269 /// Here, the traditional "decision tree" method would generate 2 separate code-paths for the 2
2270 /// possible values of `x`. This would however duplicate some candidates, which would need to be
2271 /// lowered several times.
2272 ///
2273 /// In some cases, this duplication can create an exponential amount of
2274 /// code. This is most easily seen by noticing that this method terminates
2275 /// with precisely the reachable arms being reachable - but that problem
2276 /// is trivially NP-complete:
2277 ///
2278 /// ```ignore (illustrative)
2279 /// match (var0, var1, var2, var3, ...) {
2280 /// (true , _ , _ , false, true, ...) => false,
2281 /// (_ , true, true , false, _ , ...) => false,
2282 /// (false, _ , false, false, _ , ...) => false,
2283 /// ...
2284 /// _ => true
2285 /// }
2286 /// ```
2287 ///
2288 /// Here the last arm is reachable only if there is an assignment to
2289 /// the variables that does not match any of the literals. Therefore,
2290 /// compilation would take an exponential amount of time in some cases.
2291 ///
2292 /// In rustc, we opt instead for the "backtracking automaton" approach. This guarantees we never
2293 /// duplicate a candidate (except in the presence of or-patterns). In fact this guarantee is
2294 /// ensured by the fact that we carry around `&mut Candidate`s which can't be duplicated.
2295 ///
2296 /// To make this work, whenever we decide to perform a test, if we encounter a candidate that
2297 /// could match in more than one branch of the test, we stop. We generate code for the test and
2298 /// for the candidates in its branches; the remaining candidates will be tested if the
2299 /// candidates in the branches fail to match.
2300 ///
2301 /// For example, if we test on `x` in the following:
2302 /// ```
2303 /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
2304 /// match (x, y, z) {
2305 /// (true , _ , true ) => 0,
2306 /// (false, false, _ ) => 1,
2307 /// (_ , true , _ ) => 2,
2308 /// (true , _ , false) => 3,
2309 /// }
2310 /// # }
2311 /// ```
2312 /// this function generates code that looks more of less like:
2313 /// ```
2314 /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
2315 /// if x {
2316 /// match (y, z) {
2317 /// (_, true) => return 0,
2318 /// _ => {} // continue matching
2319 /// }
2320 /// } else {
2321 /// match (y, z) {
2322 /// (false, _) => return 1,
2323 /// _ => {} // continue matching
2324 /// }
2325 /// }
2326 /// // the block here is `remainder_start`
2327 /// match (x, y, z) {
2328 /// (_ , true , _ ) => 2,
2329 /// (true , _ , false) => 3,
2330 /// _ => unreachable!(),
2331 /// }
2332 /// # }
2333 /// ```
2334 ///
2335 /// We return the unprocessed candidates.
2336 fn test_candidates<'b, 'c>(
2337 &mut self,
2338 span: Span,
2339 scrutinee_span: Span,
2340 candidates: &'b mut [&'c mut Candidate<'tcx>],
2341 start_block: BasicBlock,
2342 ) -> BlockAnd<&'b mut [&'c mut Candidate<'tcx>]> {
2343 // Choose a match pair from the first candidate, and use it to determine a
2344 // test to perform that will confirm or refute that match pair.
2345 let (match_place, test) = self.pick_test(candidates);
2346
2347 // For each of the N possible test outcomes, build the vector of candidates that applies if
2348 // the test has that particular outcome. This also mutates the candidates to remove match
2349 // pairs that are fully satisfied by the relevant outcome.
2350 let (remaining_candidates, target_candidates) =
2351 self.sort_candidates(match_place, &test, candidates);
2352
2353 // The block that we should branch to if none of the `target_candidates` match.
2354 let remainder_start = self.cfg.start_new_block();
2355
2356 // For each outcome of the test, recursively lower the rest of the match tree
2357 // from that point. (Note that we haven't lowered the actual test yet!)
2358 let target_blocks: FxIndexMap<_, _> = target_candidates
2359 .into_iter()
2360 .map(|(branch, mut candidates)| {
2361 let branch_start = self.cfg.start_new_block();
2362 // Recursively lower the rest of the match tree after the relevant outcome.
2363 let branch_otherwise =
2364 self.match_candidates(span, scrutinee_span, branch_start, &mut *candidates);
2365
2366 // Link up the `otherwise` block of the subtree to `remainder_start`.
2367 let source_info = self.source_info(span);
2368 self.cfg.goto(branch_otherwise, source_info, remainder_start);
2369 (branch, branch_start)
2370 })
2371 .collect();
2372
2373 // Perform the chosen test, branching to one of the N subtrees prepared above
2374 // (or to `remainder_start` if no outcome was satisfied).
2375 self.perform_test(
2376 span,
2377 scrutinee_span,
2378 start_block,
2379 remainder_start,
2380 match_place,
2381 &test,
2382 target_blocks,
2383 );
2384
2385 remainder_start.and(remaining_candidates)
2386 }
2387}
2388
2389///////////////////////////////////////////////////////////////////////////
2390// Pat binding - used for `let` and function parameters as well.
2391
2392impl<'a, 'tcx> Builder<'a, 'tcx> {
2393 /// Lowers a `let` expression that appears in a suitable context
2394 /// (e.g. an `if` condition or match guard).
2395 ///
2396 /// Also used for lowering let-else statements, since they have similar
2397 /// needs despite not actually using `let` expressions.
2398 ///
2399 /// Use [`DeclareLetBindings`] to control whether the `let` bindings are
2400 /// declared or not.
2401 pub(crate) fn lower_let_expr(
2402 &mut self,
2403 mut block: BasicBlock,
2404 expr_id: ExprId,
2405 pat: &Pat<'tcx>,
2406 source_scope: Option<SourceScope>,
2407 scope_span: Span,
2408 declare_let_bindings: DeclareLetBindings,
2409 ) -> BlockAnd<()> {
2410 let expr_span = self.thir[expr_id].span;
2411 let scrutinee = unpack!(block = self.lower_scrutinee(block, expr_id, expr_span));
2412 let built_tree = self.lower_match_tree(
2413 block,
2414 expr_span,
2415 &scrutinee,
2416 pat.span,
2417 vec![(pat, HasMatchGuard::No)],
2418 true,
2419 );
2420 let [branch] = built_tree.branches.try_into().unwrap();
2421
2422 self.break_for_else(built_tree.otherwise_block, self.source_info(expr_span));
2423
2424 match declare_let_bindings {
2425 DeclareLetBindings::Yes => {
2426 let expr_place = scrutinee.try_to_place(self);
2427 let opt_expr_place = expr_place.as_ref().map(|place| (Some(place), expr_span));
2428 self.declare_bindings(
2429 source_scope,
2430 pat.span.to(scope_span),
2431 pat,
2432 None,
2433 opt_expr_place,
2434 );
2435 }
2436 DeclareLetBindings::No => {} // Caller is responsible for bindings.
2437 DeclareLetBindings::LetNotPermitted => {
2438 self.tcx.dcx().span_bug(expr_span, "let expression not expected in this context")
2439 }
2440 }
2441
2442 let success = self.bind_pattern(self.source_info(pat.span), branch, &[], expr_span, None);
2443
2444 // If branch coverage is enabled, record this branch.
2445 self.visit_coverage_conditional_let(pat, success, built_tree.otherwise_block);
2446
2447 success.unit()
2448 }
2449
2450 /// Initializes each of the bindings from the candidate by
2451 /// moving/copying/ref'ing the source as appropriate. Tests the guard, if
2452 /// any, and then branches to the arm. Returns the block for the case where
2453 /// the guard succeeds.
2454 ///
2455 /// Note: we do not check earlier that if there is a guard,
2456 /// there cannot be move bindings. We avoid a use-after-move by only
2457 /// moving the binding once the guard has evaluated to true (see below).
2458 fn bind_and_guard_matched_candidate(
2459 &mut self,
2460 sub_branch: MatchTreeSubBranch<'tcx>,
2461 fake_borrows: &[(Place<'tcx>, Local, FakeBorrowKind)],
2462 scrutinee_span: Span,
2463 arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
2464 schedule_drops: ScheduleDrops,
2465 ) -> BasicBlock {
2466 debug!("bind_and_guard_matched_candidate(subbranch={:?})", sub_branch);
2467
2468 let block = sub_branch.success_block;
2469
2470 if sub_branch.is_never {
2471 // This arm has a dummy body, we don't need to generate code for it. `block` is already
2472 // unreachable (except via false edge).
2473 let source_info = self.source_info(sub_branch.span);
2474 self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
2475 return self.cfg.start_new_block();
2476 }
2477
2478 self.ascribe_types(block, sub_branch.ascriptions);
2479
2480 // Lower an instance of the arm guard (if present) for this candidate,
2481 // and then perform bindings for the arm body.
2482 if let Some((arm, match_scope)) = arm_match_scope
2483 && let Some(guard) = arm.guard
2484 {
2485 let tcx = self.tcx;
2486
2487 // Bindings for guards require some extra handling to automatically
2488 // insert implicit references/dereferences.
2489 // This always schedules storage drops, so we may need to unschedule them below.
2490 self.bind_matched_candidate_for_guard(block, sub_branch.bindings.iter());
2491 let guard_frame = GuardFrame {
2492 locals: sub_branch
2493 .bindings
2494 .iter()
2495 .map(|b| GuardFrameLocal::new(b.var_id))
2496 .collect(),
2497 };
2498 debug!("entering guard building context: {:?}", guard_frame);
2499 self.guard_context.push(guard_frame);
2500
2501 let re_erased = tcx.lifetimes.re_erased;
2502 let scrutinee_source_info = self.source_info(scrutinee_span);
2503 for &(place, temp, kind) in fake_borrows {
2504 let borrow = Rvalue::Ref(re_erased, BorrowKind::Fake(kind), place);
2505 self.cfg.push_assign(block, scrutinee_source_info, Place::from(temp), borrow);
2506 }
2507
2508 let mut guard_span = rustc_span::DUMMY_SP;
2509
2510 let (post_guard_block, otherwise_post_guard_block) =
2511 self.in_if_then_scope(match_scope, guard_span, |this| {
2512 guard_span = this.thir[guard].span;
2513 this.then_else_break(
2514 block,
2515 guard,
2516 None, // Use `self.local_scope()` as the temp scope
2517 this.source_info(arm.span),
2518 DeclareLetBindings::No, // For guards, `let` bindings are declared separately
2519 )
2520 });
2521
2522 // If this isn't the final sub-branch being lowered, we need to unschedule drops of
2523 // bindings and temporaries created for and by the guard. As a result, the drop order
2524 // for the arm will correspond to the binding order of the final sub-branch lowered.
2525 if matches!(schedule_drops, ScheduleDrops::No) {
2526 self.clear_match_arm_and_guard_scopes(arm.scope);
2527 }
2528
2529 let source_info = self.source_info(guard_span);
2530 let guard_end = self.source_info(tcx.sess.source_map().end_point(guard_span));
2531 let guard_frame = self.guard_context.pop().unwrap();
2532 debug!("Exiting guard building context with locals: {:?}", guard_frame);
2533
2534 for &(_, temp, _) in fake_borrows {
2535 let cause = FakeReadCause::ForMatchGuard;
2536 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(temp));
2537 }
2538
2539 self.cfg.goto(otherwise_post_guard_block, source_info, sub_branch.otherwise_block);
2540
2541 // We want to ensure that the matched candidates are bound
2542 // after we have confirmed this candidate *and* any
2543 // associated guard; Binding them on `block` is too soon,
2544 // because that would be before we've checked the result
2545 // from the guard.
2546 //
2547 // But binding them on the arm is *too late*, because
2548 // then all of the candidates for a single arm would be
2549 // bound in the same place, that would cause a case like:
2550 //
2551 // ```rust
2552 // match (30, 2) {
2553 // (mut x, 1) | (2, mut x) if { true } => { ... }
2554 // ... // ^^^^^^^ (this is `arm_block`)
2555 // }
2556 // ```
2557 //
2558 // would yield an `arm_block` something like:
2559 //
2560 // ```
2561 // StorageLive(_4); // _4 is `x`
2562 // _4 = &mut (_1.0: i32); // this is handling `(mut x, 1)` case
2563 // _4 = &mut (_1.1: i32); // this is handling `(2, mut x)` case
2564 // ```
2565 //
2566 // and that is clearly not correct.
2567 let by_value_bindings = sub_branch
2568 .bindings
2569 .iter()
2570 .filter(|binding| matches!(binding.binding_mode.0, ByRef::No));
2571 // Read all of the by reference bindings to ensure that the
2572 // place they refer to can't be modified by the guard.
2573 for binding in by_value_bindings.clone() {
2574 let local_id = self.var_local_id(binding.var_id, RefWithinGuard);
2575 let cause = FakeReadCause::ForGuardBinding;
2576 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
2577 }
2578 // Only schedule drops for the last sub-branch we lower.
2579 self.bind_matched_candidate_for_arm_body(
2580 post_guard_block,
2581 schedule_drops,
2582 by_value_bindings,
2583 );
2584
2585 post_guard_block
2586 } else {
2587 // (Here, it is not too early to bind the matched
2588 // candidate on `block`, because there is no guard result
2589 // that we have to inspect before we bind them.)
2590 self.bind_matched_candidate_for_arm_body(
2591 block,
2592 schedule_drops,
2593 sub_branch.bindings.iter(),
2594 );
2595 block
2596 }
2597 }
2598
2599 /// Append `AscribeUserType` statements onto the end of `block`
2600 /// for each ascription
2601 fn ascribe_types(
2602 &mut self,
2603 block: BasicBlock,
2604 ascriptions: impl IntoIterator<Item = Ascription<'tcx>>,
2605 ) {
2606 for ascription in ascriptions {
2607 let source_info = self.source_info(ascription.annotation.span);
2608
2609 let base = self.canonical_user_type_annotations.push(ascription.annotation);
2610 self.cfg.push(
2611 block,
2612 Statement::new(
2613 source_info,
2614 StatementKind::AscribeUserType(
2615 Box::new((
2616 ascription.source,
2617 UserTypeProjection { base, projs: Vec::new() },
2618 )),
2619 ascription.variance,
2620 ),
2621 ),
2622 );
2623 }
2624 }
2625
2626 /// Binding for guards is a bit different from binding for the arm body,
2627 /// because an extra layer of implicit reference/dereference is added.
2628 ///
2629 /// The idea is that any pattern bindings of type T will map to a `&T` within
2630 /// the context of the guard expression, but will continue to map to a `T`
2631 /// in the context of the arm body. To avoid surfacing this distinction in
2632 /// the user source code (which would be a severe change to the language and
2633 /// require far more revision to the compiler), any occurrence of the
2634 /// identifier in the guard expression will automatically get a deref op
2635 /// applied to it. (See the caller of [`Self::is_bound_var_in_guard`].)
2636 ///
2637 /// So an input like:
2638 ///
2639 /// ```ignore (illustrative)
2640 /// let place = Foo::new();
2641 /// match place { foo if inspect(foo)
2642 /// => feed(foo), ... }
2643 /// ```
2644 ///
2645 /// will be treated as if it were really something like:
2646 ///
2647 /// ```ignore (illustrative)
2648 /// let place = Foo::new();
2649 /// match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
2650 /// => { let tmp2 = place; feed(tmp2) }, ... }
2651 /// ```
2652 ///
2653 /// And an input like:
2654 ///
2655 /// ```ignore (illustrative)
2656 /// let place = Foo::new();
2657 /// match place { ref mut foo if inspect(foo)
2658 /// => feed(foo), ... }
2659 /// ```
2660 ///
2661 /// will be treated as if it were really something like:
2662 ///
2663 /// ```ignore (illustrative)
2664 /// let place = Foo::new();
2665 /// match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
2666 /// => { let tmp2 = &mut place; feed(tmp2) }, ... }
2667 /// ```
2668 /// ---
2669 ///
2670 /// ## Implementation notes
2671 ///
2672 /// To encode the distinction above, we must inject the
2673 /// temporaries `tmp1` and `tmp2`.
2674 ///
2675 /// There are two cases of interest: binding by-value, and binding by-ref.
2676 ///
2677 /// 1. Binding by-value: Things are simple.
2678 ///
2679 /// * Establishing `tmp1` creates a reference into the
2680 /// matched place. This code is emitted by
2681 /// [`Self::bind_matched_candidate_for_guard`].
2682 ///
2683 /// * `tmp2` is only initialized "lazily", after we have
2684 /// checked the guard. Thus, the code that can trigger
2685 /// moves out of the candidate can only fire after the
2686 /// guard evaluated to true. This initialization code is
2687 /// emitted by [`Self::bind_matched_candidate_for_arm_body`].
2688 ///
2689 /// 2. Binding by-reference: Things are tricky.
2690 ///
2691 /// * Here, the guard expression wants a `&&` or `&&mut`
2692 /// into the original input. This means we need to borrow
2693 /// the reference that we create for the arm.
2694 /// * So we eagerly create the reference for the arm and then take a
2695 /// reference to that.
2696 ///
2697 /// ---
2698 ///
2699 /// See these PRs for some historical context:
2700 /// - <https://github.com/rust-lang/rust/pull/49870> (introduction of autoref)
2701 /// - <https://github.com/rust-lang/rust/pull/59114> (always use autoref)
2702 fn bind_matched_candidate_for_guard<'b>(
2703 &mut self,
2704 block: BasicBlock,
2705 bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2706 ) where
2707 'tcx: 'b,
2708 {
2709 debug!("bind_matched_candidate_for_guard(block={:?})", block);
2710
2711 // Assign each of the bindings. Since we are binding for a
2712 // guard expression, this will never trigger moves out of the
2713 // candidate.
2714 let re_erased = self.tcx.lifetimes.re_erased;
2715 for binding in bindings {
2716 debug!("bind_matched_candidate_for_guard(binding={:?})", binding);
2717 let source_info = self.source_info(binding.span);
2718
2719 // For each pattern ident P of type T, `ref_for_guard` is
2720 // a reference R: &T pointing to the location matched by
2721 // the pattern, and every occurrence of P within a guard
2722 // denotes *R.
2723 // Drops must be scheduled to emit `StorageDead` on the guard's failure/break branches.
2724 let ref_for_guard = self.storage_live_binding(
2725 block,
2726 binding.var_id,
2727 binding.span,
2728 RefWithinGuard,
2729 ScheduleDrops::Yes,
2730 );
2731 match binding.binding_mode.0 {
2732 ByRef::No => {
2733 // The arm binding will be by value, so for the guard binding
2734 // just take a shared reference to the matched place.
2735 let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, binding.source);
2736 self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2737 }
2738 ByRef::Yes(mutbl) => {
2739 // The arm binding will be by reference, so eagerly create it now. Drops must
2740 // be scheduled to emit `StorageDead` on the guard's failure/break branches.
2741 let value_for_arm = self.storage_live_binding(
2742 block,
2743 binding.var_id,
2744 binding.span,
2745 OutsideGuard,
2746 ScheduleDrops::Yes,
2747 );
2748
2749 let rvalue =
2750 Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source);
2751 self.cfg.push_assign(block, source_info, value_for_arm, rvalue);
2752 // For the guard binding, take a shared reference to that reference.
2753 let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, value_for_arm);
2754 self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2755 }
2756 }
2757 }
2758 }
2759
2760 fn bind_matched_candidate_for_arm_body<'b>(
2761 &mut self,
2762 block: BasicBlock,
2763 schedule_drops: ScheduleDrops,
2764 bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2765 ) where
2766 'tcx: 'b,
2767 {
2768 debug!("bind_matched_candidate_for_arm_body(block={:?})", block);
2769
2770 let re_erased = self.tcx.lifetimes.re_erased;
2771 // Assign each of the bindings. This may trigger moves out of the candidate.
2772 for binding in bindings {
2773 let source_info = self.source_info(binding.span);
2774 let local = self.storage_live_binding(
2775 block,
2776 binding.var_id,
2777 binding.span,
2778 OutsideGuard,
2779 schedule_drops,
2780 );
2781 if matches!(schedule_drops, ScheduleDrops::Yes) {
2782 self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
2783 }
2784 let rvalue = match binding.binding_mode.0 {
2785 ByRef::No => Rvalue::Use(self.consume_by_copy_or_move(binding.source)),
2786 ByRef::Yes(mutbl) => {
2787 Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source)
2788 }
2789 };
2790 self.cfg.push_assign(block, source_info, local, rvalue);
2791 }
2792 }
2793
2794 /// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where the bound
2795 /// `var` has type `T` in the arm body) in a pattern maps to 2 locals. The
2796 /// first local is a binding for occurrences of `var` in the guard, which
2797 /// will have type `&T`. The second local is a binding for occurrences of
2798 /// `var` in the arm body, which will have type `T`.
2799 #[instrument(skip(self), level = "debug")]
2800 fn declare_binding(
2801 &mut self,
2802 source_info: SourceInfo,
2803 visibility_scope: SourceScope,
2804 name: Symbol,
2805 mode: BindingMode,
2806 var_id: LocalVarId,
2807 var_ty: Ty<'tcx>,
2808 user_ty: Option<Box<UserTypeProjections>>,
2809 has_guard: ArmHasGuard,
2810 opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
2811 pat_span: Span,
2812 ) {
2813 let tcx = self.tcx;
2814 let debug_source_info = SourceInfo { span: source_info.span, scope: visibility_scope };
2815 let local = LocalDecl {
2816 mutability: mode.1,
2817 ty: var_ty,
2818 user_ty,
2819 source_info,
2820 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(BindingForm::Var(
2821 VarBindingForm {
2822 binding_mode: mode,
2823 // hypothetically, `visit_primary_bindings` could try to unzip
2824 // an outermost hir::Ty as we descend, matching up
2825 // idents in pat; but complex w/ unclear UI payoff.
2826 // Instead, just abandon providing diagnostic info.
2827 opt_ty_info: None,
2828 opt_match_place,
2829 pat_span,
2830 },
2831 )))),
2832 };
2833 let for_arm_body = self.local_decls.push(local);
2834 if self.should_emit_debug_info_for_binding(name, var_id) {
2835 self.var_debug_info.push(VarDebugInfo {
2836 name,
2837 source_info: debug_source_info,
2838 value: VarDebugInfoContents::Place(for_arm_body.into()),
2839 composite: None,
2840 argument_index: None,
2841 });
2842 }
2843 let locals = if has_guard.0 {
2844 let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
2845 // This variable isn't mutated but has a name, so has to be
2846 // immutable to avoid the unused mut lint.
2847 mutability: Mutability::Not,
2848 ty: Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, var_ty),
2849 user_ty: None,
2850 source_info,
2851 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(
2852 BindingForm::RefForGuard,
2853 ))),
2854 });
2855 if self.should_emit_debug_info_for_binding(name, var_id) {
2856 self.var_debug_info.push(VarDebugInfo {
2857 name,
2858 source_info: debug_source_info,
2859 value: VarDebugInfoContents::Place(ref_for_guard.into()),
2860 composite: None,
2861 argument_index: None,
2862 });
2863 }
2864 LocalsForNode::ForGuard { ref_for_guard, for_arm_body }
2865 } else {
2866 LocalsForNode::One(for_arm_body)
2867 };
2868 debug!(?locals);
2869 self.var_indices.insert(var_id, locals);
2870 }
2871
2872 /// Some bindings are introduced when producing HIR from the AST and don't
2873 /// actually exist in the source. Skip producing debug info for those when
2874 /// we can recognize them.
2875 fn should_emit_debug_info_for_binding(&self, name: Symbol, var_id: LocalVarId) -> bool {
2876 // For now we only recognize the output of desugaring assigns.
2877 if name != sym::lhs {
2878 return true;
2879 }
2880
2881 let tcx = self.tcx;
2882 for (_, node) in tcx.hir_parent_iter(var_id.0) {
2883 // FIXME(khuey) at what point is it safe to bail on the iterator?
2884 // Can we stop at the first non-Pat node?
2885 if matches!(node, Node::LetStmt(&LetStmt { source: LocalSource::AssignDesugar(_), .. }))
2886 {
2887 return false;
2888 }
2889 }
2890
2891 true
2892 }
2893
2894 /// Attempt to statically pick the `BasicBlock` that a value would resolve to at runtime.
2895 pub(crate) fn static_pattern_match(
2896 &self,
2897 cx: &RustcPatCtxt<'_, 'tcx>,
2898 valtree: ValTree<'tcx>,
2899 arms: &[ArmId],
2900 built_match_tree: &BuiltMatchTree<'tcx>,
2901 ) -> Option<BasicBlock> {
2902 let it = arms.iter().zip(built_match_tree.branches.iter());
2903 for (&arm_id, branch) in it {
2904 let pat = cx.lower_pat(&*self.thir.arms[arm_id].pattern);
2905
2906 // Peel off or-patterns if they exist.
2907 if let rustc_pattern_analysis::rustc::Constructor::Or = pat.ctor() {
2908 for pat in pat.iter_fields() {
2909 // For top-level or-patterns (the only ones we accept right now), when the
2910 // bindings are the same (e.g. there are none), the sub_branch is stored just
2911 // once.
2912 let sub_branch = branch
2913 .sub_branches
2914 .get(pat.idx)
2915 .or_else(|| branch.sub_branches.last())
2916 .unwrap();
2917
2918 match self.static_pattern_match_inner(valtree, &pat.pat) {
2919 true => return Some(sub_branch.success_block),
2920 false => continue,
2921 }
2922 }
2923 } else if self.static_pattern_match_inner(valtree, &pat) {
2924 return Some(branch.sub_branches[0].success_block);
2925 }
2926 }
2927
2928 None
2929 }
2930
2931 /// Helper for [`Self::static_pattern_match`], checking whether the value represented by the
2932 /// `ValTree` matches the given pattern. This function does not recurse, meaning that it does
2933 /// not handle or-patterns, or patterns for types with fields.
2934 fn static_pattern_match_inner(
2935 &self,
2936 valtree: ty::ValTree<'tcx>,
2937 pat: &DeconstructedPat<'_, 'tcx>,
2938 ) -> bool {
2939 use rustc_pattern_analysis::constructor::{IntRange, MaybeInfiniteInt};
2940 use rustc_pattern_analysis::rustc::Constructor;
2941
2942 match pat.ctor() {
2943 Constructor::Variant(variant_index) => {
2944 let ValTreeKind::Branch(box [actual_variant_idx]) = *valtree else {
2945 bug!("malformed valtree for an enum")
2946 };
2947
2948 let ValTreeKind::Leaf(actual_variant_idx) = ***actual_variant_idx else {
2949 bug!("malformed valtree for an enum")
2950 };
2951
2952 *variant_index == VariantIdx::from_u32(actual_variant_idx.to_u32())
2953 }
2954 Constructor::IntRange(int_range) => {
2955 let size = pat.ty().primitive_size(self.tcx);
2956 let actual_int = valtree.unwrap_leaf().to_bits(size);
2957 let actual_int = if pat.ty().is_signed() {
2958 MaybeInfiniteInt::new_finite_int(actual_int, size.bits())
2959 } else {
2960 MaybeInfiniteInt::new_finite_uint(actual_int)
2961 };
2962 IntRange::from_singleton(actual_int).is_subrange(int_range)
2963 }
2964 Constructor::Bool(pattern_value) => match valtree.unwrap_leaf().try_to_bool() {
2965 Ok(actual_value) => *pattern_value == actual_value,
2966 Err(()) => bug!("bool value with invalid bits"),
2967 },
2968 Constructor::F16Range(l, h, end) => {
2969 let actual = valtree.unwrap_leaf().to_f16();
2970 match end {
2971 RangeEnd::Included => (*l..=*h).contains(&actual),
2972 RangeEnd::Excluded => (*l..*h).contains(&actual),
2973 }
2974 }
2975 Constructor::F32Range(l, h, end) => {
2976 let actual = valtree.unwrap_leaf().to_f32();
2977 match end {
2978 RangeEnd::Included => (*l..=*h).contains(&actual),
2979 RangeEnd::Excluded => (*l..*h).contains(&actual),
2980 }
2981 }
2982 Constructor::F64Range(l, h, end) => {
2983 let actual = valtree.unwrap_leaf().to_f64();
2984 match end {
2985 RangeEnd::Included => (*l..=*h).contains(&actual),
2986 RangeEnd::Excluded => (*l..*h).contains(&actual),
2987 }
2988 }
2989 Constructor::F128Range(l, h, end) => {
2990 let actual = valtree.unwrap_leaf().to_f128();
2991 match end {
2992 RangeEnd::Included => (*l..=*h).contains(&actual),
2993 RangeEnd::Excluded => (*l..*h).contains(&actual),
2994 }
2995 }
2996 Constructor::Wildcard => true,
2997
2998 // Opaque patterns must not be matched on structurally.
2999 Constructor::Opaque(_) => false,
3000
3001 // These we may eventually support:
3002 Constructor::Struct
3003 | Constructor::Ref
3004 | Constructor::DerefPattern(_)
3005 | Constructor::Slice(_)
3006 | Constructor::UnionField
3007 | Constructor::Or
3008 | Constructor::Str(_) => bug!("unsupported pattern constructor {:?}", pat.ctor()),
3009
3010 // These should never occur here:
3011 Constructor::Never
3012 | Constructor::NonExhaustive
3013 | Constructor::Hidden
3014 | Constructor::Missing
3015 | Constructor::PrivateUninhabited => {
3016 bug!("unsupported pattern constructor {:?}", pat.ctor())
3017 }
3018 }
3019 }
3020}