rustc_mir_dataflow/framework/
direction.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
use std::ops::RangeInclusive;

use rustc_middle::mir::{
    self, BasicBlock, CallReturnPlaces, Location, SwitchTargets, TerminatorEdges,
};

use super::visitor::{ResultsVisitable, ResultsVisitor};
use super::{Analysis, Effect, EffectIndex, SwitchIntTarget};

pub trait Direction {
    const IS_FORWARD: bool;

    const IS_BACKWARD: bool = !Self::IS_FORWARD;

    /// Applies all effects between the given `EffectIndex`s.
    ///
    /// `effects.start()` must precede or equal `effects.end()` in this direction.
    fn apply_effects_in_range<'tcx, A>(
        analysis: &mut A,
        state: &mut A::Domain,
        block: BasicBlock,
        block_data: &mir::BasicBlockData<'tcx>,
        effects: RangeInclusive<EffectIndex>,
    ) where
        A: Analysis<'tcx>;

    fn apply_effects_in_block<'mir, 'tcx, A>(
        analysis: &mut A,
        state: &mut A::Domain,
        block: BasicBlock,
        block_data: &'mir mir::BasicBlockData<'tcx>,
    ) -> TerminatorEdges<'mir, 'tcx>
    where
        A: Analysis<'tcx>;

    fn visit_results_in_block<'mir, 'tcx, D, R>(
        state: &mut D,
        block: BasicBlock,
        block_data: &'mir mir::BasicBlockData<'tcx>,
        results: &mut R,
        vis: &mut impl ResultsVisitor<'mir, 'tcx, R, Domain = D>,
    ) where
        R: ResultsVisitable<'tcx, Domain = D>;

    fn join_state_into_successors_of<'tcx, A>(
        analysis: &mut A,
        body: &mir::Body<'tcx>,
        exit_state: &mut A::Domain,
        block: BasicBlock,
        edges: TerminatorEdges<'_, 'tcx>,
        propagate: impl FnMut(BasicBlock, &A::Domain),
    ) where
        A: Analysis<'tcx>;
}

/// Dataflow that runs from the exit of a block (the terminator), to its entry (the first statement).
pub struct Backward;

impl Direction for Backward {
    const IS_FORWARD: bool = false;

    fn apply_effects_in_block<'mir, 'tcx, A>(
        analysis: &mut A,
        state: &mut A::Domain,
        block: BasicBlock,
        block_data: &'mir mir::BasicBlockData<'tcx>,
    ) -> TerminatorEdges<'mir, 'tcx>
    where
        A: Analysis<'tcx>,
    {
        let terminator = block_data.terminator();
        let location = Location { block, statement_index: block_data.statements.len() };
        analysis.apply_before_terminator_effect(state, terminator, location);
        let edges = analysis.apply_terminator_effect(state, terminator, location);
        for (statement_index, statement) in block_data.statements.iter().enumerate().rev() {
            let location = Location { block, statement_index };
            analysis.apply_before_statement_effect(state, statement, location);
            analysis.apply_statement_effect(state, statement, location);
        }
        edges
    }

    fn apply_effects_in_range<'tcx, A>(
        analysis: &mut A,
        state: &mut A::Domain,
        block: BasicBlock,
        block_data: &mir::BasicBlockData<'tcx>,
        effects: RangeInclusive<EffectIndex>,
    ) where
        A: Analysis<'tcx>,
    {
        let (from, to) = (*effects.start(), *effects.end());
        let terminator_index = block_data.statements.len();

        assert!(from.statement_index <= terminator_index);
        assert!(!to.precedes_in_backward_order(from));

        // Handle the statement (or terminator) at `from`.

        let next_effect = match from.effect {
            // If we need to apply the terminator effect in all or in part, do so now.
            _ if from.statement_index == terminator_index => {
                let location = Location { block, statement_index: from.statement_index };
                let terminator = block_data.terminator();

                if from.effect == Effect::Before {
                    analysis.apply_before_terminator_effect(state, terminator, location);
                    if to == Effect::Before.at_index(terminator_index) {
                        return;
                    }
                }

                analysis.apply_terminator_effect(state, terminator, location);
                if to == Effect::Primary.at_index(terminator_index) {
                    return;
                }

                // If `from.statement_index` is `0`, we will have hit one of the earlier comparisons
                // with `to`.
                from.statement_index - 1
            }

            Effect::Primary => {
                let location = Location { block, statement_index: from.statement_index };
                let statement = &block_data.statements[from.statement_index];

                analysis.apply_statement_effect(state, statement, location);
                if to == Effect::Primary.at_index(from.statement_index) {
                    return;
                }

                from.statement_index - 1
            }

            Effect::Before => from.statement_index,
        };

        // Handle all statements between `first_unapplied_idx` and `to.statement_index`.

        for statement_index in (to.statement_index..next_effect).rev().map(|i| i + 1) {
            let location = Location { block, statement_index };
            let statement = &block_data.statements[statement_index];
            analysis.apply_before_statement_effect(state, statement, location);
            analysis.apply_statement_effect(state, statement, location);
        }

        // Handle the statement at `to`.

        let location = Location { block, statement_index: to.statement_index };
        let statement = &block_data.statements[to.statement_index];
        analysis.apply_before_statement_effect(state, statement, location);

        if to.effect == Effect::Before {
            return;
        }

        analysis.apply_statement_effect(state, statement, location);
    }

    fn visit_results_in_block<'mir, 'tcx, D, R>(
        state: &mut D,
        block: BasicBlock,
        block_data: &'mir mir::BasicBlockData<'tcx>,
        results: &mut R,
        vis: &mut impl ResultsVisitor<'mir, 'tcx, R, Domain = D>,
    ) where
        R: ResultsVisitable<'tcx, Domain = D>,
    {
        results.reset_to_block_entry(state, block);

        vis.visit_block_end(state);

        // Terminator
        let loc = Location { block, statement_index: block_data.statements.len() };
        let term = block_data.terminator();
        results.reconstruct_before_terminator_effect(state, term, loc);
        vis.visit_terminator_before_primary_effect(results, state, term, loc);
        results.reconstruct_terminator_effect(state, term, loc);
        vis.visit_terminator_after_primary_effect(results, state, term, loc);

        for (statement_index, stmt) in block_data.statements.iter().enumerate().rev() {
            let loc = Location { block, statement_index };
            results.reconstruct_before_statement_effect(state, stmt, loc);
            vis.visit_statement_before_primary_effect(results, state, stmt, loc);
            results.reconstruct_statement_effect(state, stmt, loc);
            vis.visit_statement_after_primary_effect(results, state, stmt, loc);
        }

        vis.visit_block_start(state);
    }

    fn join_state_into_successors_of<'tcx, A>(
        analysis: &mut A,
        body: &mir::Body<'tcx>,
        exit_state: &mut A::Domain,
        bb: BasicBlock,
        _edges: TerminatorEdges<'_, 'tcx>,
        mut propagate: impl FnMut(BasicBlock, &A::Domain),
    ) where
        A: Analysis<'tcx>,
    {
        for pred in body.basic_blocks.predecessors()[bb].iter().copied() {
            match body[pred].terminator().kind {
                // Apply terminator-specific edge effects.
                //
                // FIXME(ecstaticmorse): Avoid cloning the exit state unconditionally.
                mir::TerminatorKind::Call { destination, target: Some(dest), .. } if dest == bb => {
                    let mut tmp = exit_state.clone();
                    analysis.apply_call_return_effect(
                        &mut tmp,
                        pred,
                        CallReturnPlaces::Call(destination),
                    );
                    propagate(pred, &tmp);
                }

                mir::TerminatorKind::InlineAsm { ref targets, ref operands, .. }
                    if targets.contains(&bb) =>
                {
                    let mut tmp = exit_state.clone();
                    analysis.apply_call_return_effect(
                        &mut tmp,
                        pred,
                        CallReturnPlaces::InlineAsm(operands),
                    );
                    propagate(pred, &tmp);
                }

                mir::TerminatorKind::Yield { resume, resume_arg, .. } if resume == bb => {
                    let mut tmp = exit_state.clone();
                    analysis.apply_call_return_effect(
                        &mut tmp,
                        resume,
                        CallReturnPlaces::Yield(resume_arg),
                    );
                    propagate(pred, &tmp);
                }

                mir::TerminatorKind::SwitchInt { targets: _, ref discr } => {
                    let mut applier = BackwardSwitchIntEdgeEffectsApplier {
                        body,
                        pred,
                        exit_state,
                        bb,
                        propagate: &mut propagate,
                        effects_applied: false,
                    };

                    analysis.apply_switch_int_edge_effects(pred, discr, &mut applier);

                    if !applier.effects_applied {
                        propagate(pred, exit_state)
                    }
                }

                _ => propagate(pred, exit_state),
            }
        }
    }
}

struct BackwardSwitchIntEdgeEffectsApplier<'mir, 'tcx, D, F> {
    body: &'mir mir::Body<'tcx>,
    pred: BasicBlock,
    exit_state: &'mir mut D,
    bb: BasicBlock,
    propagate: &'mir mut F,
    effects_applied: bool,
}

impl<D, F> super::SwitchIntEdgeEffects<D> for BackwardSwitchIntEdgeEffectsApplier<'_, '_, D, F>
where
    D: Clone,
    F: FnMut(BasicBlock, &D),
{
    fn apply(&mut self, mut apply_edge_effect: impl FnMut(&mut D, SwitchIntTarget)) {
        assert!(!self.effects_applied);

        let values = &self.body.basic_blocks.switch_sources()[&(self.bb, self.pred)];
        let targets = values.iter().map(|&value| SwitchIntTarget { value, target: self.bb });

        let mut tmp = None;
        for target in targets {
            let tmp = opt_clone_from_or_clone(&mut tmp, self.exit_state);
            apply_edge_effect(tmp, target);
            (self.propagate)(self.pred, tmp);
        }

        self.effects_applied = true;
    }
}

/// Dataflow that runs from the entry of a block (the first statement), to its exit (terminator).
pub struct Forward;

impl Direction for Forward {
    const IS_FORWARD: bool = true;

    fn apply_effects_in_block<'mir, 'tcx, A>(
        analysis: &mut A,
        state: &mut A::Domain,
        block: BasicBlock,
        block_data: &'mir mir::BasicBlockData<'tcx>,
    ) -> TerminatorEdges<'mir, 'tcx>
    where
        A: Analysis<'tcx>,
    {
        for (statement_index, statement) in block_data.statements.iter().enumerate() {
            let location = Location { block, statement_index };
            analysis.apply_before_statement_effect(state, statement, location);
            analysis.apply_statement_effect(state, statement, location);
        }
        let terminator = block_data.terminator();
        let location = Location { block, statement_index: block_data.statements.len() };
        analysis.apply_before_terminator_effect(state, terminator, location);
        analysis.apply_terminator_effect(state, terminator, location)
    }

    fn apply_effects_in_range<'tcx, A>(
        analysis: &mut A,
        state: &mut A::Domain,
        block: BasicBlock,
        block_data: &mir::BasicBlockData<'tcx>,
        effects: RangeInclusive<EffectIndex>,
    ) where
        A: Analysis<'tcx>,
    {
        let (from, to) = (*effects.start(), *effects.end());
        let terminator_index = block_data.statements.len();

        assert!(to.statement_index <= terminator_index);
        assert!(!to.precedes_in_forward_order(from));

        // If we have applied the before affect of the statement or terminator at `from` but not its
        // after effect, do so now and start the loop below from the next statement.

        let first_unapplied_index = match from.effect {
            Effect::Before => from.statement_index,

            Effect::Primary if from.statement_index == terminator_index => {
                debug_assert_eq!(from, to);

                let location = Location { block, statement_index: terminator_index };
                let terminator = block_data.terminator();
                analysis.apply_terminator_effect(state, terminator, location);
                return;
            }

            Effect::Primary => {
                let location = Location { block, statement_index: from.statement_index };
                let statement = &block_data.statements[from.statement_index];
                analysis.apply_statement_effect(state, statement, location);

                // If we only needed to apply the after effect of the statement at `idx`, we are done.
                if from == to {
                    return;
                }

                from.statement_index + 1
            }
        };

        // Handle all statements between `from` and `to` whose effects must be applied in full.

        for statement_index in first_unapplied_index..to.statement_index {
            let location = Location { block, statement_index };
            let statement = &block_data.statements[statement_index];
            analysis.apply_before_statement_effect(state, statement, location);
            analysis.apply_statement_effect(state, statement, location);
        }

        // Handle the statement or terminator at `to`.

        let location = Location { block, statement_index: to.statement_index };
        if to.statement_index == terminator_index {
            let terminator = block_data.terminator();
            analysis.apply_before_terminator_effect(state, terminator, location);

            if to.effect == Effect::Primary {
                analysis.apply_terminator_effect(state, terminator, location);
            }
        } else {
            let statement = &block_data.statements[to.statement_index];
            analysis.apply_before_statement_effect(state, statement, location);

            if to.effect == Effect::Primary {
                analysis.apply_statement_effect(state, statement, location);
            }
        }
    }

    fn visit_results_in_block<'mir, 'tcx, F, R>(
        state: &mut F,
        block: BasicBlock,
        block_data: &'mir mir::BasicBlockData<'tcx>,
        results: &mut R,
        vis: &mut impl ResultsVisitor<'mir, 'tcx, R, Domain = F>,
    ) where
        R: ResultsVisitable<'tcx, Domain = F>,
    {
        results.reset_to_block_entry(state, block);

        vis.visit_block_start(state);

        for (statement_index, stmt) in block_data.statements.iter().enumerate() {
            let loc = Location { block, statement_index };
            results.reconstruct_before_statement_effect(state, stmt, loc);
            vis.visit_statement_before_primary_effect(results, state, stmt, loc);
            results.reconstruct_statement_effect(state, stmt, loc);
            vis.visit_statement_after_primary_effect(results, state, stmt, loc);
        }

        let loc = Location { block, statement_index: block_data.statements.len() };
        let term = block_data.terminator();
        results.reconstruct_before_terminator_effect(state, term, loc);
        vis.visit_terminator_before_primary_effect(results, state, term, loc);
        results.reconstruct_terminator_effect(state, term, loc);
        vis.visit_terminator_after_primary_effect(results, state, term, loc);

        vis.visit_block_end(state);
    }

    fn join_state_into_successors_of<'tcx, A>(
        analysis: &mut A,
        _body: &mir::Body<'tcx>,
        exit_state: &mut A::Domain,
        bb: BasicBlock,
        edges: TerminatorEdges<'_, 'tcx>,
        mut propagate: impl FnMut(BasicBlock, &A::Domain),
    ) where
        A: Analysis<'tcx>,
    {
        match edges {
            TerminatorEdges::None => {}
            TerminatorEdges::Single(target) => propagate(target, exit_state),
            TerminatorEdges::Double(target, unwind) => {
                propagate(target, exit_state);
                propagate(unwind, exit_state);
            }
            TerminatorEdges::AssignOnReturn { return_, cleanup, place } => {
                // This must be done *first*, otherwise the unwind path will see the assignments.
                if let Some(cleanup) = cleanup {
                    propagate(cleanup, exit_state);
                }

                if !return_.is_empty() {
                    analysis.apply_call_return_effect(exit_state, bb, place);
                    for &target in return_ {
                        propagate(target, exit_state);
                    }
                }
            }
            TerminatorEdges::SwitchInt { targets, discr } => {
                let mut applier = ForwardSwitchIntEdgeEffectsApplier {
                    exit_state,
                    targets,
                    propagate,
                    effects_applied: false,
                };

                analysis.apply_switch_int_edge_effects(bb, discr, &mut applier);

                let ForwardSwitchIntEdgeEffectsApplier {
                    exit_state,
                    mut propagate,
                    effects_applied,
                    ..
                } = applier;

                if !effects_applied {
                    for target in targets.all_targets() {
                        propagate(*target, exit_state);
                    }
                }
            }
        }
    }
}

struct ForwardSwitchIntEdgeEffectsApplier<'mir, D, F> {
    exit_state: &'mir mut D,
    targets: &'mir SwitchTargets,
    propagate: F,

    effects_applied: bool,
}

impl<D, F> super::SwitchIntEdgeEffects<D> for ForwardSwitchIntEdgeEffectsApplier<'_, D, F>
where
    D: Clone,
    F: FnMut(BasicBlock, &D),
{
    fn apply(&mut self, mut apply_edge_effect: impl FnMut(&mut D, SwitchIntTarget)) {
        assert!(!self.effects_applied);

        let mut tmp = None;
        for (value, target) in self.targets.iter() {
            let tmp = opt_clone_from_or_clone(&mut tmp, self.exit_state);
            apply_edge_effect(tmp, SwitchIntTarget { value: Some(value), target });
            (self.propagate)(target, tmp);
        }

        // Once we get to the final, "otherwise" branch, there is no need to preserve `exit_state`,
        // so pass it directly to `apply_edge_effect` to save a clone of the dataflow state.
        let otherwise = self.targets.otherwise();
        apply_edge_effect(self.exit_state, SwitchIntTarget { value: None, target: otherwise });
        (self.propagate)(otherwise, self.exit_state);

        self.effects_applied = true;
    }
}

/// An analogue of `Option::get_or_insert_with` that stores a clone of `val` into `opt`, but uses
/// the more efficient `clone_from` if `opt` was `Some`.
///
/// Returns a mutable reference to the new clone that resides in `opt`.
//
// FIXME: Figure out how to express this using `Option::clone_from`, or maybe lift it into the
// standard library?
fn opt_clone_from_or_clone<'a, T: Clone>(opt: &'a mut Option<T>, val: &T) -> &'a mut T {
    if opt.is_some() {
        let ret = opt.as_mut().unwrap();
        ret.clone_from(val);
        ret
    } else {
        *opt = Some(val.clone());
        opt.as_mut().unwrap()
    }
}