1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
pub mod ambiguity;
mod fulfillment_errors;
pub mod on_unimplemented;
mod overflow;
pub mod suggestions;

use std::{fmt, iter};

use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_errors::{struct_span_code_err, Applicability, Diag, MultiSpan, E0038, E0276};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::Visitor;
use rustc_hir::{self as hir, LangItem};
use rustc_infer::traits::{
    ObjectSafetyViolation, Obligation, ObligationCause, ObligationCauseCode, PredicateObligation,
    SelectionError,
};
use rustc_middle::ty::print::{with_no_trimmed_paths, PrintTraitRefExt as _};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::{ErrorGuaranteed, ExpnKind, Span};
use tracing::{info, instrument};

pub use self::overflow::*;
use crate::error_reporting::TypeErrCtxt;
use crate::traits::{FulfillmentError, FulfillmentErrorCode};

// When outputting impl candidates, prefer showing those that are more similar.
//
// We also compare candidates after skipping lifetimes, which has a lower
// priority than exact matches.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum CandidateSimilarity {
    Exact { ignoring_lifetimes: bool },
    Fuzzy { ignoring_lifetimes: bool },
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct ImplCandidate<'tcx> {
    pub trait_ref: ty::TraitRef<'tcx>,
    pub similarity: CandidateSimilarity,
    impl_def_id: DefId,
}

enum GetSafeTransmuteErrorAndReason {
    Silent,
    Error { err_msg: String, safe_transmute_explanation: Option<String> },
}

struct UnsatisfiedConst(pub bool);

/// Crude way of getting back an `Expr` from a `Span`.
pub struct FindExprBySpan<'hir> {
    pub span: Span,
    pub result: Option<&'hir hir::Expr<'hir>>,
    pub ty_result: Option<&'hir hir::Ty<'hir>>,
    pub include_closures: bool,
    pub tcx: TyCtxt<'hir>,
}

impl<'hir> FindExprBySpan<'hir> {
    pub fn new(span: Span, tcx: TyCtxt<'hir>) -> Self {
        Self { span, result: None, ty_result: None, tcx, include_closures: false }
    }
}

impl<'v> Visitor<'v> for FindExprBySpan<'v> {
    type NestedFilter = rustc_middle::hir::nested_filter::OnlyBodies;

    fn nested_visit_map(&mut self) -> Self::Map {
        self.tcx.hir()
    }

    fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
        if self.span == ex.span {
            self.result = Some(ex);
        } else {
            if let hir::ExprKind::Closure(..) = ex.kind
                && self.include_closures
                && let closure_header_sp = self.span.with_hi(ex.span.hi())
                && closure_header_sp == ex.span
            {
                self.result = Some(ex);
            }
            hir::intravisit::walk_expr(self, ex);
        }
    }

    fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
        if self.span == ty.span {
            self.ty_result = Some(ty);
        } else {
            hir::intravisit::walk_ty(self, ty);
        }
    }
}

/// Summarizes information
#[derive(Clone)]
pub enum ArgKind {
    /// An argument of non-tuple type. Parameters are (name, ty)
    Arg(String, String),

    /// An argument of tuple type. For a "found" argument, the span is
    /// the location in the source of the pattern. For an "expected"
    /// argument, it will be None. The vector is a list of (name, ty)
    /// strings for the components of the tuple.
    Tuple(Option<Span>, Vec<(String, String)>),
}

impl ArgKind {
    fn empty() -> ArgKind {
        ArgKind::Arg("_".to_owned(), "_".to_owned())
    }

    /// Creates an `ArgKind` from the expected type of an
    /// argument. It has no name (`_`) and an optional source span.
    pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
        match t.kind() {
            ty::Tuple(tys) => ArgKind::Tuple(
                span,
                tys.iter().map(|ty| ("_".to_owned(), ty.to_string())).collect::<Vec<_>>(),
            ),
            _ => ArgKind::Arg("_".to_owned(), t.to_string()),
        }
    }
}

#[derive(Copy, Clone)]
pub enum DefIdOrName {
    DefId(DefId),
    Name(&'static str),
}

impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
    pub fn report_fulfillment_errors(
        &self,
        mut errors: Vec<FulfillmentError<'tcx>>,
    ) -> ErrorGuaranteed {
        self.sub_relations
            .borrow_mut()
            .add_constraints(self, errors.iter().map(|e| e.obligation.predicate));

        #[derive(Debug)]
        struct ErrorDescriptor<'tcx> {
            predicate: ty::Predicate<'tcx>,
            index: Option<usize>, // None if this is an old error
        }

        let mut error_map: FxIndexMap<_, Vec<_>> = self
            .reported_trait_errors
            .borrow()
            .iter()
            .map(|(&span, predicates)| {
                (
                    span,
                    predicates
                        .0
                        .iter()
                        .map(|&predicate| ErrorDescriptor { predicate, index: None })
                        .collect(),
                )
            })
            .collect();

        // Ensure `T: Sized` and `T: WF` obligations come last. This lets us display diagnostics
        // with more relevant type information and hide redundant E0282 errors.
        errors.sort_by_key(|e| match e.obligation.predicate.kind().skip_binder() {
            ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred))
                if self.tcx.is_lang_item(pred.def_id(), LangItem::Sized) =>
            {
                1
            }
            ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(_)) => 3,
            ty::PredicateKind::Coerce(_) => 2,
            _ => 0,
        });

        for (index, error) in errors.iter().enumerate() {
            // We want to ignore desugarings here: spans are equivalent even
            // if one is the result of a desugaring and the other is not.
            let mut span = error.obligation.cause.span;
            let expn_data = span.ctxt().outer_expn_data();
            if let ExpnKind::Desugaring(_) = expn_data.kind {
                span = expn_data.call_site;
            }

            error_map.entry(span).or_default().push(ErrorDescriptor {
                predicate: error.obligation.predicate,
                index: Some(index),
            });
        }

        // We do this in 2 passes because we want to display errors in order, though
        // maybe it *is* better to sort errors by span or something.
        let mut is_suppressed = vec![false; errors.len()];
        for (_, error_set) in error_map.iter() {
            // We want to suppress "duplicate" errors with the same span.
            for error in error_set {
                if let Some(index) = error.index {
                    // Suppress errors that are either:
                    // 1) strictly implied by another error.
                    // 2) implied by an error with a smaller index.
                    for error2 in error_set {
                        if error2.index.is_some_and(|index2| is_suppressed[index2]) {
                            // Avoid errors being suppressed by already-suppressed
                            // errors, to prevent all errors from being suppressed
                            // at once.
                            continue;
                        }

                        if self.error_implies(error2.predicate, error.predicate)
                            && !(error2.index >= error.index
                                && self.error_implies(error.predicate, error2.predicate))
                        {
                            info!("skipping {:?} (implied by {:?})", error, error2);
                            is_suppressed[index] = true;
                            break;
                        }
                    }
                }
            }
        }

        let mut reported = None;

        for from_expansion in [false, true] {
            for (error, suppressed) in iter::zip(&errors, &is_suppressed) {
                if !suppressed && error.obligation.cause.span.from_expansion() == from_expansion {
                    let guar = self.report_fulfillment_error(error);
                    self.infcx.set_tainted_by_errors(guar);
                    reported = Some(guar);
                    // We want to ignore desugarings here: spans are equivalent even
                    // if one is the result of a desugaring and the other is not.
                    let mut span = error.obligation.cause.span;
                    let expn_data = span.ctxt().outer_expn_data();
                    if let ExpnKind::Desugaring(_) = expn_data.kind {
                        span = expn_data.call_site;
                    }
                    self.reported_trait_errors
                        .borrow_mut()
                        .entry(span)
                        .or_insert_with(|| (vec![], guar))
                        .0
                        .push(error.obligation.predicate);
                }
            }
        }

        // It could be that we don't report an error because we have seen an `ErrorReported` from
        // another source. We should probably be able to fix most of these, but some are delayed
        // bugs that get a proper error after this function.
        reported.unwrap_or_else(|| self.dcx().delayed_bug("failed to report fulfillment errors"))
    }

    #[instrument(skip(self), level = "debug")]
    fn report_fulfillment_error(&self, error: &FulfillmentError<'tcx>) -> ErrorGuaranteed {
        let mut error = FulfillmentError {
            obligation: error.obligation.clone(),
            code: error.code.clone(),
            root_obligation: error.root_obligation.clone(),
        };
        if matches!(
            error.code,
            FulfillmentErrorCode::Select(crate::traits::SelectionError::Unimplemented)
                | FulfillmentErrorCode::Project(_)
        ) && self.apply_do_not_recommend(&mut error.obligation)
        {
            error.code = FulfillmentErrorCode::Select(SelectionError::Unimplemented);
        }

        match error.code {
            FulfillmentErrorCode::Select(ref selection_error) => self.report_selection_error(
                error.obligation.clone(),
                &error.root_obligation,
                selection_error,
            ),
            FulfillmentErrorCode::Project(ref e) => {
                self.report_projection_error(&error.obligation, e)
            }
            FulfillmentErrorCode::Ambiguity { overflow: None } => {
                self.maybe_report_ambiguity(&error.obligation)
            }
            FulfillmentErrorCode::Ambiguity { overflow: Some(suggest_increasing_limit) } => {
                self.report_overflow_no_abort(error.obligation.clone(), suggest_increasing_limit)
            }
            FulfillmentErrorCode::Subtype(ref expected_found, ref err) => self
                .report_mismatched_types(
                    &error.obligation.cause,
                    expected_found.expected,
                    expected_found.found,
                    *err,
                )
                .emit(),
            FulfillmentErrorCode::ConstEquate(ref expected_found, ref err) => {
                let mut diag = self.report_mismatched_consts(
                    &error.obligation.cause,
                    expected_found.expected,
                    expected_found.found,
                    *err,
                );
                let code = error.obligation.cause.code().peel_derives().peel_match_impls();
                if let ObligationCauseCode::WhereClause(..)
                | ObligationCauseCode::WhereClauseInExpr(..) = code
                {
                    self.note_obligation_cause_code(
                        error.obligation.cause.body_id,
                        &mut diag,
                        error.obligation.predicate,
                        error.obligation.param_env,
                        code,
                        &mut vec![],
                        &mut Default::default(),
                    );
                }
                diag.emit()
            }
            FulfillmentErrorCode::Cycle(ref cycle) => self.report_overflow_obligation_cycle(cycle),
        }
    }
}

/// Recovers the "impl X for Y" signature from `impl_def_id` and returns it as a
/// string.
pub(crate) fn to_pretty_impl_header(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Option<String> {
    use std::fmt::Write;

    let trait_ref = tcx.impl_trait_ref(impl_def_id)?.instantiate_identity();
    let mut w = "impl".to_owned();

    let args = ty::GenericArgs::identity_for_item(tcx, impl_def_id);

    // FIXME: Currently only handles ?Sized.
    //        Needs to support ?Move and ?DynSized when they are implemented.
    let mut types_without_default_bounds = FxIndexSet::default();
    let sized_trait = tcx.lang_items().sized_trait();

    let arg_names = args.iter().map(|k| k.to_string()).filter(|k| k != "'_").collect::<Vec<_>>();
    if !arg_names.is_empty() {
        types_without_default_bounds.extend(args.types());
        w.push('<');
        w.push_str(&arg_names.join(", "));
        w.push('>');
    }

    write!(
        w,
        " {}{} for {}",
        tcx.impl_polarity(impl_def_id).as_str(),
        trait_ref.print_only_trait_path(),
        tcx.type_of(impl_def_id).instantiate_identity()
    )
    .unwrap();

    // The predicates will contain default bounds like `T: Sized`. We need to
    // remove these bounds, and add `T: ?Sized` to any untouched type parameters.
    let predicates = tcx.predicates_of(impl_def_id).predicates;
    let mut pretty_predicates =
        Vec::with_capacity(predicates.len() + types_without_default_bounds.len());

    for (p, _) in predicates {
        if let Some(poly_trait_ref) = p.as_trait_clause() {
            if Some(poly_trait_ref.def_id()) == sized_trait {
                // FIXME(#120456) - is `swap_remove` correct?
                types_without_default_bounds.swap_remove(&poly_trait_ref.self_ty().skip_binder());
                continue;
            }
        }
        pretty_predicates.push(p.to_string());
    }

    pretty_predicates.extend(types_without_default_bounds.iter().map(|ty| format!("{ty}: ?Sized")));

    if !pretty_predicates.is_empty() {
        write!(w, "\n  where {}", pretty_predicates.join(", ")).unwrap();
    }

    w.push(';');
    Some(w)
}

impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
    pub fn report_extra_impl_obligation(
        &self,
        error_span: Span,
        impl_item_def_id: LocalDefId,
        trait_item_def_id: DefId,
        requirement: &dyn fmt::Display,
    ) -> Diag<'a> {
        let mut err = struct_span_code_err!(
            self.dcx(),
            error_span,
            E0276,
            "impl has stricter requirements than trait"
        );

        if !self.tcx.is_impl_trait_in_trait(trait_item_def_id) {
            if let Some(span) = self.tcx.hir().span_if_local(trait_item_def_id) {
                let item_name = self.tcx.item_name(impl_item_def_id.to_def_id());
                err.span_label(span, format!("definition of `{item_name}` from trait"));
            }
        }

        err.span_label(error_span, format!("impl has extra requirement {requirement}"));

        err
    }
}

pub fn report_object_safety_error<'tcx>(
    tcx: TyCtxt<'tcx>,
    span: Span,
    hir_id: Option<hir::HirId>,
    trait_def_id: DefId,
    violations: &[ObjectSafetyViolation],
) -> Diag<'tcx> {
    let trait_str = tcx.def_path_str(trait_def_id);
    let trait_span = tcx.hir().get_if_local(trait_def_id).and_then(|node| match node {
        hir::Node::Item(item) => Some(item.ident.span),
        _ => None,
    });
    let mut err = struct_span_code_err!(
        tcx.dcx(),
        span,
        E0038,
        "the trait `{}` cannot be made into an object",
        trait_str
    );
    err.span_label(span, format!("`{trait_str}` cannot be made into an object"));

    if let Some(hir_id) = hir_id
        && let hir::Node::Ty(ty) = tcx.hir_node(hir_id)
        && let hir::TyKind::TraitObject([trait_ref, ..], ..) = ty.kind
    {
        let mut hir_id = hir_id;
        while let hir::Node::Ty(ty) = tcx.parent_hir_node(hir_id) {
            hir_id = ty.hir_id;
        }
        if tcx.parent_hir_node(hir_id).fn_sig().is_some() {
            // Do not suggest `impl Trait` when dealing with things like super-traits.
            err.span_suggestion_verbose(
                ty.span.until(trait_ref.0.span),
                "consider using an opaque type instead",
                "impl ",
                Applicability::MaybeIncorrect,
            );
        }
    }
    let mut reported_violations = FxIndexSet::default();
    let mut multi_span = vec![];
    let mut messages = vec![];
    for violation in violations {
        if let ObjectSafetyViolation::SizedSelf(sp) = &violation
            && !sp.is_empty()
        {
            // Do not report `SizedSelf` without spans pointing at `SizedSelf` obligations
            // with a `Span`.
            reported_violations.insert(ObjectSafetyViolation::SizedSelf(vec![].into()));
        }
        if reported_violations.insert(violation.clone()) {
            let spans = violation.spans();
            let msg = if trait_span.is_none() || spans.is_empty() {
                format!("the trait cannot be made into an object because {}", violation.error_msg())
            } else {
                format!("...because {}", violation.error_msg())
            };
            if spans.is_empty() {
                err.note(msg);
            } else {
                for span in spans {
                    multi_span.push(span);
                    messages.push(msg.clone());
                }
            }
        }
    }
    let has_multi_span = !multi_span.is_empty();
    let mut note_span = MultiSpan::from_spans(multi_span.clone());
    if let (Some(trait_span), true) = (trait_span, has_multi_span) {
        note_span.push_span_label(trait_span, "this trait cannot be made into an object...");
    }
    for (span, msg) in iter::zip(multi_span, messages) {
        note_span.push_span_label(span, msg);
    }
    err.span_note(
        note_span,
        "for a trait to be \"object safe\" it needs to allow building a vtable to allow the call \
         to be resolvable dynamically; for more information visit \
         <https://doc.rust-lang.org/reference/items/traits.html#object-safety>",
    );

    // Only provide the help if its a local trait, otherwise it's not actionable.
    if trait_span.is_some() {
        let mut reported_violations: Vec<_> = reported_violations.into_iter().collect();
        reported_violations.sort();

        let mut potential_solutions: Vec<_> =
            reported_violations.into_iter().map(|violation| violation.solution()).collect();
        potential_solutions.sort();
        // Allows us to skip suggesting that the same item should be moved to another trait multiple times.
        potential_solutions.dedup();
        for solution in potential_solutions {
            solution.add_to(&mut err);
        }
    }

    let impls_of = tcx.trait_impls_of(trait_def_id);
    let impls = if impls_of.blanket_impls().is_empty() {
        impls_of
            .non_blanket_impls()
            .values()
            .flatten()
            .filter(|def_id| {
                !matches!(tcx.type_of(*def_id).instantiate_identity().kind(), ty::Dynamic(..))
            })
            .collect::<Vec<_>>()
    } else {
        vec![]
    };
    let externally_visible = if !impls.is_empty()
        && let Some(def_id) = trait_def_id.as_local()
        // We may be executing this during typeck, which would result in cycle
        // if we used effective_visibilities query, which looks into opaque types
        // (and therefore calls typeck).
        && tcx.resolutions(()).effective_visibilities.is_exported(def_id)
    {
        true
    } else {
        false
    };
    match &impls[..] {
        [] => {}
        _ if impls.len() > 9 => {}
        [only] if externally_visible => {
            err.help(with_no_trimmed_paths!(format!(
                "only type `{}` is seen to implement the trait in this crate, consider using it \
                 directly instead",
                tcx.type_of(*only).instantiate_identity(),
            )));
        }
        [only] => {
            err.help(with_no_trimmed_paths!(format!(
                "only type `{}` implements the trait, consider using it directly instead",
                tcx.type_of(*only).instantiate_identity(),
            )));
        }
        impls => {
            let types = impls
                .iter()
                .map(|t| {
                    with_no_trimmed_paths!(format!("  {}", tcx.type_of(*t).instantiate_identity(),))
                })
                .collect::<Vec<_>>();
            err.help(format!(
                "the following types implement the trait, consider defining an enum where each \
                 variant holds one of these types, implementing `{}` for this new enum and using \
                 it instead:\n{}",
                trait_str,
                types.join("\n"),
            ));
        }
    }
    if externally_visible {
        err.note(format!(
            "`{trait_str}` can be implemented in other crates; if you want to support your users \
             passing their own types here, you can't refer to a specific type",
        ));
    }

    err
}