1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
use super::{
    mir::{Body, Mutability, Safety},
    with, DefId, Error, Symbol,
};
use crate::abi::Layout;
use crate::mir::alloc::{read_target_int, read_target_uint, AllocId};
use crate::target::MachineInfo;
use crate::{crate_def::CrateDef, mir::mono::StaticDef};
use crate::{Filename, Opaque};
use std::fmt::{self, Debug, Display, Formatter};
use std::ops::Range;

#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct Ty(usize);

impl Debug for Ty {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.debug_struct("Ty").field("id", &self.0).field("kind", &self.kind()).finish()
    }
}

/// Constructors for `Ty`.
impl Ty {
    /// Create a new type from a given kind.
    pub fn from_rigid_kind(kind: RigidTy) -> Ty {
        with(|cx| cx.new_rigid_ty(kind))
    }

    /// Create a new array type.
    pub fn try_new_array(elem_ty: Ty, size: u64) -> Result<Ty, Error> {
        Ok(Ty::from_rigid_kind(RigidTy::Array(elem_ty, Const::try_from_target_usize(size)?)))
    }

    /// Create a new array type from Const length.
    pub fn new_array_with_const_len(elem_ty: Ty, len: Const) -> Ty {
        Ty::from_rigid_kind(RigidTy::Array(elem_ty, len))
    }

    /// Create a new pointer type.
    pub fn new_ptr(pointee_ty: Ty, mutability: Mutability) -> Ty {
        Ty::from_rigid_kind(RigidTy::RawPtr(pointee_ty, mutability))
    }

    /// Create a new reference type.
    pub fn new_ref(reg: Region, pointee_ty: Ty, mutability: Mutability) -> Ty {
        Ty::from_rigid_kind(RigidTy::Ref(reg, pointee_ty, mutability))
    }

    /// Create a new pointer type.
    pub fn new_tuple(tys: &[Ty]) -> Ty {
        Ty::from_rigid_kind(RigidTy::Tuple(Vec::from(tys)))
    }

    /// Create a new closure type.
    pub fn new_closure(def: ClosureDef, args: GenericArgs) -> Ty {
        Ty::from_rigid_kind(RigidTy::Closure(def, args))
    }

    /// Create a new coroutine type.
    pub fn new_coroutine(def: CoroutineDef, args: GenericArgs, mov: Movability) -> Ty {
        Ty::from_rigid_kind(RigidTy::Coroutine(def, args, mov))
    }

    /// Create a new box type that represents `Box<T>`, for the given inner type `T`.
    pub fn new_box(inner_ty: Ty) -> Ty {
        with(|cx| cx.new_box_ty(inner_ty))
    }

    /// Create a type representing `usize`.
    pub fn usize_ty() -> Ty {
        Ty::from_rigid_kind(RigidTy::Uint(UintTy::Usize))
    }

    /// Create a type representing `bool`.
    pub fn bool_ty() -> Ty {
        Ty::from_rigid_kind(RigidTy::Bool)
    }

    /// Create a type representing a signed integer.
    pub fn signed_ty(inner: IntTy) -> Ty {
        Ty::from_rigid_kind(RigidTy::Int(inner))
    }

    /// Create a type representing an unsigned integer.
    pub fn unsigned_ty(inner: UintTy) -> Ty {
        Ty::from_rigid_kind(RigidTy::Uint(inner))
    }

    /// Get a type layout.
    pub fn layout(self) -> Result<Layout, Error> {
        with(|cx| cx.ty_layout(self))
    }
}

impl Ty {
    pub fn kind(&self) -> TyKind {
        with(|context| context.ty_kind(*self))
    }
}

/// Represents a pattern in the type system
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Pattern {
    Range { start: Option<Const>, end: Option<Const>, include_end: bool },
}

/// Represents a constant in MIR or from the Type system.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Const {
    /// The constant kind.
    pub(crate) kind: ConstantKind,
    /// The constant type.
    pub(crate) ty: Ty,
    /// Used for internal tracking of the internal constant.
    pub id: ConstId,
}

impl Const {
    /// Build a constant. Note that this should only be used by the compiler.
    pub fn new(kind: ConstantKind, ty: Ty, id: ConstId) -> Const {
        Const { kind, ty, id }
    }

    /// Retrieve the constant kind.
    pub fn kind(&self) -> &ConstantKind {
        &self.kind
    }

    /// Get the constant type.
    pub fn ty(&self) -> Ty {
        self.ty
    }

    /// Creates an interned usize constant.
    fn try_from_target_usize(val: u64) -> Result<Self, Error> {
        with(|cx| cx.try_new_const_uint(val.into(), UintTy::Usize))
    }

    /// Try to evaluate to a target `usize`.
    pub fn eval_target_usize(&self) -> Result<u64, Error> {
        with(|cx| cx.eval_target_usize(self))
    }

    /// Create a constant that represents a new zero-sized constant of type T.
    /// Fails if the type is not a ZST or if it doesn't have a known size.
    pub fn try_new_zero_sized(ty: Ty) -> Result<Const, Error> {
        with(|cx| cx.try_new_const_zst(ty))
    }

    /// Build a new constant that represents the given string.
    ///
    /// Note that there is no guarantee today about duplication of the same constant.
    /// I.e.: Calling this function multiple times with the same argument may or may not return
    /// the same allocation.
    pub fn from_str(value: &str) -> Const {
        with(|cx| cx.new_const_str(value))
    }

    /// Build a new constant that represents the given boolean value.
    pub fn from_bool(value: bool) -> Const {
        with(|cx| cx.new_const_bool(value))
    }

    /// Build a new constant that represents the given unsigned integer.
    pub fn try_from_uint(value: u128, uint_ty: UintTy) -> Result<Const, Error> {
        with(|cx| cx.try_new_const_uint(value, uint_ty))
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ConstId(usize);

type Ident = Opaque;

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Region {
    pub kind: RegionKind,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum RegionKind {
    ReEarlyParam(EarlyParamRegion),
    ReBound(DebruijnIndex, BoundRegion),
    ReStatic,
    RePlaceholder(Placeholder<BoundRegion>),
    ReErased,
}

pub(crate) type DebruijnIndex = u32;

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct EarlyParamRegion {
    pub def_id: RegionDef,
    pub index: u32,
    pub name: Symbol,
}

pub(crate) type BoundVar = u32;

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct BoundRegion {
    pub var: BoundVar,
    pub kind: BoundRegionKind,
}

pub(crate) type UniverseIndex = u32;

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Placeholder<T> {
    pub universe: UniverseIndex,
    pub bound: T,
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct Span(usize);

impl Debug for Span {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.debug_struct("Span")
            .field("id", &self.0)
            .field("repr", &with(|cx| cx.span_to_string(*self)))
            .finish()
    }
}

impl Span {
    /// Return filename for diagnostic purposes
    pub fn get_filename(&self) -> Filename {
        with(|c| c.get_filename(self))
    }

    /// Return lines that corespond to this `Span`
    pub fn get_lines(&self) -> LineInfo {
        with(|c| c.get_lines(self))
    }
}

#[derive(Clone, Copy, Debug)]
/// Information you get from `Span` in a struct form.
/// Line and col start from 1.
pub struct LineInfo {
    pub start_line: usize,
    pub start_col: usize,
    pub end_line: usize,
    pub end_col: usize,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum TyKind {
    RigidTy(RigidTy),
    Alias(AliasKind, AliasTy),
    Param(ParamTy),
    Bound(usize, BoundTy),
}

impl TyKind {
    pub fn rigid(&self) -> Option<&RigidTy> {
        if let TyKind::RigidTy(inner) = self { Some(inner) } else { None }
    }

    #[inline]
    pub fn is_unit(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Tuple(data)) if data.is_empty())
    }

    #[inline]
    pub fn is_bool(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Bool))
    }

    #[inline]
    pub fn is_char(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Char))
    }

    #[inline]
    pub fn is_trait(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Dynamic(_, _, DynKind::Dyn)))
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Adt(def, _)) if def.kind() == AdtKind::Enum)
    }

    #[inline]
    pub fn is_struct(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Adt(def, _)) if def.kind() == AdtKind::Struct)
    }

    #[inline]
    pub fn is_union(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Adt(def, _)) if def.kind() == AdtKind::Union)
    }

    #[inline]
    pub fn is_adt(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Adt(..)))
    }

    #[inline]
    pub fn is_ref(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Ref(..)))
    }

    #[inline]
    pub fn is_fn(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::FnDef(..)))
    }

    #[inline]
    pub fn is_fn_ptr(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::FnPtr(..)))
    }

    #[inline]
    pub fn is_primitive(&self) -> bool {
        matches!(
            self,
            TyKind::RigidTy(
                RigidTy::Bool
                    | RigidTy::Char
                    | RigidTy::Int(_)
                    | RigidTy::Uint(_)
                    | RigidTy::Float(_)
            )
        )
    }

    #[inline]
    pub fn is_float(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Float(_)))
    }

    #[inline]
    pub fn is_integral(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Int(_) | RigidTy::Uint(_)))
    }

    #[inline]
    pub fn is_numeric(&self) -> bool {
        self.is_integral() || self.is_float()
    }

    #[inline]
    pub fn is_signed(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Int(_)))
    }

    #[inline]
    pub fn is_str(&self) -> bool {
        *self == TyKind::RigidTy(RigidTy::Str)
    }

    #[inline]
    pub fn is_cstr(&self) -> bool {
        let TyKind::RigidTy(RigidTy::Adt(def, _)) = self else {
            return false;
        };
        with(|cx| cx.adt_is_cstr(*def))
    }

    #[inline]
    pub fn is_slice(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Slice(_)))
    }

    #[inline]
    pub fn is_array(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Array(..)))
    }

    #[inline]
    pub fn is_mutable_ptr(&self) -> bool {
        matches!(
            self,
            TyKind::RigidTy(RigidTy::RawPtr(_, Mutability::Mut))
                | TyKind::RigidTy(RigidTy::Ref(_, _, Mutability::Mut))
        )
    }

    #[inline]
    pub fn is_raw_ptr(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::RawPtr(..)))
    }

    /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
    #[inline]
    pub fn is_any_ptr(&self) -> bool {
        self.is_ref() || self.is_raw_ptr() || self.is_fn_ptr()
    }

    #[inline]
    pub fn is_coroutine(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Coroutine(..)))
    }

    #[inline]
    pub fn is_closure(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Closure(..)))
    }

    #[inline]
    pub fn is_box(&self) -> bool {
        match self {
            TyKind::RigidTy(RigidTy::Adt(def, _)) => def.is_box(),
            _ => false,
        }
    }

    #[inline]
    pub fn is_simd(&self) -> bool {
        matches!(self, TyKind::RigidTy(RigidTy::Adt(def, _)) if def.is_simd())
    }

    pub fn trait_principal(&self) -> Option<Binder<ExistentialTraitRef>> {
        if let TyKind::RigidTy(RigidTy::Dynamic(predicates, _, _)) = self {
            if let Some(Binder { value: ExistentialPredicate::Trait(trait_ref), bound_vars }) =
                predicates.first()
            {
                Some(Binder { value: trait_ref.clone(), bound_vars: bound_vars.clone() })
            } else {
                None
            }
        } else {
            None
        }
    }

    /// Returns the type of `ty[i]` for builtin types.
    pub fn builtin_index(&self) -> Option<Ty> {
        match self.rigid()? {
            RigidTy::Array(ty, _) | RigidTy::Slice(ty) => Some(*ty),
            _ => None,
        }
    }

    /// Returns the type and mutability of `*ty` for builtin types.
    ///
    /// The parameter `explicit` indicates if this is an *explicit* dereference.
    /// Some types -- notably unsafe ptrs -- can only be dereferenced explicitly.
    pub fn builtin_deref(&self, explicit: bool) -> Option<TypeAndMut> {
        match self.rigid()? {
            RigidTy::Adt(def, args) if def.is_box() => {
                Some(TypeAndMut { ty: *args.0.first()?.ty()?, mutability: Mutability::Not })
            }
            RigidTy::Ref(_, ty, mutability) => {
                Some(TypeAndMut { ty: *ty, mutability: *mutability })
            }
            RigidTy::RawPtr(ty, mutability) if explicit => {
                Some(TypeAndMut { ty: *ty, mutability: *mutability })
            }
            _ => None,
        }
    }

    /// Get the function signature for function like types (Fn, FnPtr, and Closure)
    pub fn fn_sig(&self) -> Option<PolyFnSig> {
        match self {
            TyKind::RigidTy(RigidTy::FnDef(def, args)) => Some(with(|cx| cx.fn_sig(*def, args))),
            TyKind::RigidTy(RigidTy::FnPtr(sig)) => Some(sig.clone()),
            TyKind::RigidTy(RigidTy::Closure(_def, args)) => Some(with(|cx| cx.closure_sig(args))),
            _ => None,
        }
    }

    /// Get the discriminant type for this type.
    pub fn discriminant_ty(&self) -> Option<Ty> {
        self.rigid().map(|ty| with(|cx| cx.rigid_ty_discriminant_ty(ty)))
    }
}

pub struct TypeAndMut {
    pub ty: Ty,
    pub mutability: Mutability,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum RigidTy {
    Bool,
    Char,
    Int(IntTy),
    Uint(UintTy),
    Float(FloatTy),
    Adt(AdtDef, GenericArgs),
    Foreign(ForeignDef),
    Str,
    Array(Ty, Const),
    Pat(Ty, Pattern),
    Slice(Ty),
    RawPtr(Ty, Mutability),
    Ref(Region, Ty, Mutability),
    FnDef(FnDef, GenericArgs),
    FnPtr(PolyFnSig),
    Closure(ClosureDef, GenericArgs),
    // FIXME(stable_mir): Movability here is redundant
    Coroutine(CoroutineDef, GenericArgs, Movability),
    Dynamic(Vec<Binder<ExistentialPredicate>>, Region, DynKind),
    Never,
    Tuple(Vec<Ty>),
    CoroutineWitness(CoroutineWitnessDef, GenericArgs),
}

impl RigidTy {
    /// Get the discriminant type for this type.
    pub fn discriminant_ty(&self) -> Ty {
        with(|cx| cx.rigid_ty_discriminant_ty(self))
    }
}

impl From<RigidTy> for TyKind {
    fn from(value: RigidTy) -> Self {
        TyKind::RigidTy(value)
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum IntTy {
    Isize,
    I8,
    I16,
    I32,
    I64,
    I128,
}

impl IntTy {
    pub fn num_bytes(self) -> usize {
        match self {
            IntTy::Isize => crate::target::MachineInfo::target_pointer_width().bytes().into(),
            IntTy::I8 => 1,
            IntTy::I16 => 2,
            IntTy::I32 => 4,
            IntTy::I64 => 8,
            IntTy::I128 => 16,
        }
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum UintTy {
    Usize,
    U8,
    U16,
    U32,
    U64,
    U128,
}

impl UintTy {
    pub fn num_bytes(self) -> usize {
        match self {
            UintTy::Usize => crate::target::MachineInfo::target_pointer_width().bytes().into(),
            UintTy::U8 => 1,
            UintTy::U16 => 2,
            UintTy::U32 => 4,
            UintTy::U64 => 8,
            UintTy::U128 => 16,
        }
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum FloatTy {
    F32,
    F64,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Movability {
    Static,
    Movable,
}

crate_def! {
    pub ForeignModuleDef;
}

impl ForeignModuleDef {
    pub fn module(&self) -> ForeignModule {
        with(|cx| cx.foreign_module(*self))
    }
}

pub struct ForeignModule {
    pub def_id: ForeignModuleDef,
    pub abi: Abi,
}

impl ForeignModule {
    pub fn items(&self) -> Vec<ForeignDef> {
        with(|cx| cx.foreign_items(self.def_id))
    }
}

crate_def! {
    /// Hold information about a ForeignItem in a crate.
    pub ForeignDef;
}

impl ForeignDef {
    pub fn kind(&self) -> ForeignItemKind {
        with(|cx| cx.foreign_item_kind(*self))
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum ForeignItemKind {
    Fn(FnDef),
    Static(StaticDef),
    Type(Ty),
}

crate_def! {
    /// Hold information about a function definition in a crate.
    pub FnDef;
}

impl FnDef {
    // Get the function body if available.
    pub fn body(&self) -> Option<Body> {
        with(|ctx| ctx.has_body(self.0).then(|| ctx.mir_body(self.0)))
    }
}

crate_def! {
    pub ClosureDef;
}

crate_def! {
    pub CoroutineDef;
}

crate_def! {
    pub ParamDef;
}

crate_def! {
    pub BrNamedDef;
}

crate_def! {
    pub AdtDef;
}

#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum AdtKind {
    Enum,
    Union,
    Struct,
}

impl AdtDef {
    pub fn kind(&self) -> AdtKind {
        with(|cx| cx.adt_kind(*self))
    }

    /// Retrieve the type of this Adt.
    pub fn ty(&self) -> Ty {
        with(|cx| cx.def_ty(self.0))
    }

    /// Retrieve the type of this Adt by instantiating and normalizing it with the given arguments.
    ///
    /// This will assume the type can be instantiated with these arguments.
    pub fn ty_with_args(&self, args: &GenericArgs) -> Ty {
        with(|cx| cx.def_ty_with_args(self.0, args))
    }

    pub fn is_box(&self) -> bool {
        with(|cx| cx.adt_is_box(*self))
    }

    pub fn is_simd(&self) -> bool {
        with(|cx| cx.adt_is_simd(*self))
    }

    /// The number of variants in this ADT.
    pub fn num_variants(&self) -> usize {
        with(|cx| cx.adt_variants_len(*self))
    }

    /// Retrieve the variants in this ADT.
    pub fn variants(&self) -> Vec<VariantDef> {
        self.variants_iter().collect()
    }

    /// Iterate over the variants in this ADT.
    pub fn variants_iter(&self) -> impl Iterator<Item = VariantDef> + '_ {
        (0..self.num_variants())
            .map(|idx| VariantDef { idx: VariantIdx::to_val(idx), adt_def: *self })
    }

    pub fn variant(&self, idx: VariantIdx) -> Option<VariantDef> {
        (idx.to_index() < self.num_variants()).then_some(VariantDef { idx, adt_def: *self })
    }
}

/// Definition of a variant, which can be either a struct / union field or an enum variant.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct VariantDef {
    /// The variant index.
    ///
    /// ## Warning
    /// Do not access this field directly!
    pub idx: VariantIdx,
    /// The data type where this variant comes from.
    /// For now, we use this to retrieve information about the variant itself so we don't need to
    /// cache more information.
    ///
    /// ## Warning
    /// Do not access this field directly!
    pub adt_def: AdtDef,
}

impl VariantDef {
    pub fn name(&self) -> Symbol {
        with(|cx| cx.variant_name(*self))
    }

    /// Retrieve all the fields in this variant.
    // We expect user to cache this and use it directly since today it is expensive to generate all
    // fields name.
    pub fn fields(&self) -> Vec<FieldDef> {
        with(|cx| cx.variant_fields(*self))
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct FieldDef {
    /// The field definition.
    ///
    /// ## Warning
    /// Do not access this field directly! This is public for the compiler to have access to it.
    pub def: DefId,

    /// The field name.
    pub name: Symbol,
}

impl FieldDef {
    /// Retrieve the type of this field instantiating and normalizing it with the given arguments.
    ///
    /// This will assume the type can be instantiated with these arguments.
    pub fn ty_with_args(&self, args: &GenericArgs) -> Ty {
        with(|cx| cx.def_ty_with_args(self.def, args))
    }

    /// Retrieve the type of this field.
    pub fn ty(&self) -> Ty {
        with(|cx| cx.def_ty(self.def))
    }
}

impl Display for AdtKind {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            AdtKind::Enum => "enum",
            AdtKind::Union => "union",
            AdtKind::Struct => "struct",
        })
    }
}

impl AdtKind {
    pub fn is_enum(&self) -> bool {
        matches!(self, AdtKind::Enum)
    }

    pub fn is_struct(&self) -> bool {
        matches!(self, AdtKind::Struct)
    }

    pub fn is_union(&self) -> bool {
        matches!(self, AdtKind::Union)
    }
}

crate_def! {
    pub AliasDef;
}

crate_def! {
    /// A trait's definition.
    pub TraitDef;
}

impl TraitDef {
    pub fn declaration(trait_def: &TraitDef) -> TraitDecl {
        with(|cx| cx.trait_decl(trait_def))
    }
}

crate_def! {
    pub GenericDef;
}

crate_def! {
    pub ConstDef;
}

crate_def! {
    /// A trait impl definition.
    pub ImplDef;
}

impl ImplDef {
    /// Retrieve information about this implementation.
    pub fn trait_impl(&self) -> ImplTrait {
        with(|cx| cx.trait_impl(self))
    }
}

crate_def! {
    pub RegionDef;
}

crate_def! {
    pub CoroutineWitnessDef;
}

/// A list of generic arguments.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct GenericArgs(pub Vec<GenericArgKind>);

impl std::ops::Index<ParamTy> for GenericArgs {
    type Output = Ty;

    fn index(&self, index: ParamTy) -> &Self::Output {
        self.0[index.index as usize].expect_ty()
    }
}

impl std::ops::Index<ParamConst> for GenericArgs {
    type Output = Const;

    fn index(&self, index: ParamConst) -> &Self::Output {
        self.0[index.index as usize].expect_const()
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum GenericArgKind {
    Lifetime(Region),
    Type(Ty),
    Const(Const),
}

impl GenericArgKind {
    /// Panic if this generic argument is not a type, otherwise
    /// return the type.
    #[track_caller]
    pub fn expect_ty(&self) -> &Ty {
        match self {
            GenericArgKind::Type(ty) => ty,
            _ => panic!("{self:?}"),
        }
    }

    /// Panic if this generic argument is not a const, otherwise
    /// return the const.
    #[track_caller]
    pub fn expect_const(&self) -> &Const {
        match self {
            GenericArgKind::Const(c) => c,
            _ => panic!("{self:?}"),
        }
    }

    /// Return the generic argument type if applicable, otherwise return `None`.
    pub fn ty(&self) -> Option<&Ty> {
        match self {
            GenericArgKind::Type(ty) => Some(ty),
            _ => None,
        }
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum TermKind {
    Type(Ty),
    Const(Const),
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum AliasKind {
    Projection,
    Inherent,
    Opaque,
    Weak,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct AliasTy {
    pub def_id: AliasDef,
    pub args: GenericArgs,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct AliasTerm {
    pub def_id: AliasDef,
    pub args: GenericArgs,
}

pub type PolyFnSig = Binder<FnSig>;

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct FnSig {
    pub inputs_and_output: Vec<Ty>,
    pub c_variadic: bool,
    pub safety: Safety,
    pub abi: Abi,
}

impl FnSig {
    pub fn output(&self) -> Ty {
        self.inputs_and_output[self.inputs_and_output.len() - 1]
    }

    pub fn inputs(&self) -> &[Ty] {
        &self.inputs_and_output[..self.inputs_and_output.len() - 1]
    }
}

#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Abi {
    Rust,
    C { unwind: bool },
    Cdecl { unwind: bool },
    Stdcall { unwind: bool },
    Fastcall { unwind: bool },
    Vectorcall { unwind: bool },
    Thiscall { unwind: bool },
    Aapcs { unwind: bool },
    Win64 { unwind: bool },
    SysV64 { unwind: bool },
    PtxKernel,
    Msp430Interrupt,
    X86Interrupt,
    EfiApi,
    AvrInterrupt,
    AvrNonBlockingInterrupt,
    CCmseNonSecureCall,
    Wasm,
    System { unwind: bool },
    RustIntrinsic,
    RustCall,
    Unadjusted,
    RustCold,
    RiscvInterruptM,
    RiscvInterruptS,
}

/// A binder represents a possibly generic type and its bound vars.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Binder<T> {
    pub value: T,
    pub bound_vars: Vec<BoundVariableKind>,
}

impl<T> Binder<T> {
    /// Create a new binder with the given bound vars.
    pub fn bind_with_vars(value: T, bound_vars: Vec<BoundVariableKind>) -> Self {
        Binder { value, bound_vars }
    }

    /// Create a new binder with no bounded variable.
    pub fn dummy(value: T) -> Self {
        Binder { value, bound_vars: vec![] }
    }

    pub fn skip_binder(self) -> T {
        self.value
    }

    pub fn map_bound_ref<F, U>(&self, f: F) -> Binder<U>
    where
        F: FnOnce(&T) -> U,
    {
        let Binder { value, bound_vars } = self;
        let new_value = f(value);
        Binder { value: new_value, bound_vars: bound_vars.clone() }
    }

    pub fn map_bound<F, U>(self, f: F) -> Binder<U>
    where
        F: FnOnce(T) -> U,
    {
        let Binder { value, bound_vars } = self;
        let new_value = f(value);
        Binder { value: new_value, bound_vars }
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct EarlyBinder<T> {
    pub value: T,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum BoundVariableKind {
    Ty(BoundTyKind),
    Region(BoundRegionKind),
    Const,
}

#[derive(Clone, PartialEq, Eq, Debug)]
pub enum BoundTyKind {
    Anon,
    Param(ParamDef, String),
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum BoundRegionKind {
    BrAnon,
    BrNamed(BrNamedDef, String),
    BrEnv,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum DynKind {
    Dyn,
    DynStar,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ExistentialPredicate {
    Trait(ExistentialTraitRef),
    Projection(ExistentialProjection),
    AutoTrait(TraitDef),
}

/// An existential reference to a trait where `Self` is not included.
///
/// The `generic_args` will include any other known argument.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ExistentialTraitRef {
    pub def_id: TraitDef,
    pub generic_args: GenericArgs,
}

impl Binder<ExistentialTraitRef> {
    pub fn with_self_ty(&self, self_ty: Ty) -> Binder<TraitRef> {
        self.map_bound_ref(|trait_ref| trait_ref.with_self_ty(self_ty))
    }
}

impl ExistentialTraitRef {
    pub fn with_self_ty(&self, self_ty: Ty) -> TraitRef {
        TraitRef::new(self.def_id, self_ty, &self.generic_args)
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ExistentialProjection {
    pub def_id: TraitDef,
    pub generic_args: GenericArgs,
    pub term: TermKind,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ParamTy {
    pub index: u32,
    pub name: String,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct BoundTy {
    pub var: usize,
    pub kind: BoundTyKind,
}

pub type Bytes = Vec<Option<u8>>;

/// Size in bytes.
pub type Size = usize;

#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub struct Prov(pub AllocId);

pub type Align = u64;
pub type Promoted = u32;
pub type InitMaskMaterialized = Vec<u64>;

/// Stores the provenance information of pointers stored in memory.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct ProvenanceMap {
    /// Provenance in this map applies from the given offset for an entire pointer-size worth of
    /// bytes. Two entries in this map are always at least a pointer size apart.
    pub ptrs: Vec<(Size, Prov)>,
}

#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct Allocation {
    pub bytes: Bytes,
    pub provenance: ProvenanceMap,
    pub align: Align,
    pub mutability: Mutability,
}

impl Allocation {
    /// Get a vector of bytes for an Allocation that has been fully initialized
    pub fn raw_bytes(&self) -> Result<Vec<u8>, Error> {
        self.bytes
            .iter()
            .copied()
            .collect::<Option<Vec<_>>>()
            .ok_or_else(|| error!("Found uninitialized bytes: `{:?}`", self.bytes))
    }

    /// Read a uint value from the specified range.
    pub fn read_partial_uint(&self, range: Range<usize>) -> Result<u128, Error> {
        if range.end - range.start > 16 {
            return Err(error!("Allocation is bigger than largest integer"));
        }
        if range.end > self.bytes.len() {
            return Err(error!(
                "Range is out of bounds. Allocation length is `{}`, but requested range `{:?}`",
                self.bytes.len(),
                range
            ));
        }
        let raw = self.bytes[range]
            .iter()
            .copied()
            .collect::<Option<Vec<_>>>()
            .ok_or_else(|| error!("Found uninitialized bytes: `{:?}`", self.bytes))?;
        read_target_uint(&raw)
    }

    /// Read this allocation and try to convert it to an unassigned integer.
    pub fn read_uint(&self) -> Result<u128, Error> {
        if self.bytes.len() > 16 {
            return Err(error!("Allocation is bigger than largest integer"));
        }
        let raw = self.raw_bytes()?;
        read_target_uint(&raw)
    }

    /// Read this allocation and try to convert it to a signed integer.
    pub fn read_int(&self) -> Result<i128, Error> {
        if self.bytes.len() > 16 {
            return Err(error!("Allocation is bigger than largest integer"));
        }
        let raw = self.raw_bytes()?;
        read_target_int(&raw)
    }

    /// Read this allocation and try to convert it to a boolean.
    pub fn read_bool(&self) -> Result<bool, Error> {
        match self.read_int()? {
            0 => Ok(false),
            1 => Ok(true),
            val @ _ => Err(error!("Unexpected value for bool: `{val}`")),
        }
    }

    /// Read this allocation as a pointer and return whether it represents a `null` pointer.
    pub fn is_null(&self) -> Result<bool, Error> {
        let len = self.bytes.len();
        let ptr_len = MachineInfo::target_pointer_width().bytes();
        if len != ptr_len {
            return Err(error!("Expected width of pointer (`{ptr_len}`), but found: `{len}`"));
        }
        Ok(self.read_uint()? == 0 && self.provenance.ptrs.is_empty())
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ConstantKind {
    Allocated(Allocation),
    Unevaluated(UnevaluatedConst),
    Param(ParamConst),
    /// Store ZST constants.
    /// We have to special handle these constants since its type might be generic.
    ZeroSized,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ParamConst {
    pub index: u32,
    pub name: String,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct UnevaluatedConst {
    pub def: ConstDef,
    pub args: GenericArgs,
    pub promoted: Option<Promoted>,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TraitSpecializationKind {
    None,
    Marker,
    AlwaysApplicable,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct TraitDecl {
    pub def_id: TraitDef,
    pub safety: Safety,
    pub paren_sugar: bool,
    pub has_auto_impl: bool,
    pub is_marker: bool,
    pub is_coinductive: bool,
    pub skip_array_during_method_dispatch: bool,
    pub specialization_kind: TraitSpecializationKind,
    pub must_implement_one_of: Option<Vec<Ident>>,
    pub implement_via_object: bool,
    pub deny_explicit_impl: bool,
}

impl TraitDecl {
    pub fn generics_of(&self) -> Generics {
        with(|cx| cx.generics_of(self.def_id.0))
    }

    pub fn predicates_of(&self) -> GenericPredicates {
        with(|cx| cx.predicates_of(self.def_id.0))
    }

    pub fn explicit_predicates_of(&self) -> GenericPredicates {
        with(|cx| cx.explicit_predicates_of(self.def_id.0))
    }
}

pub type ImplTrait = EarlyBinder<TraitRef>;

/// A complete reference to a trait, i.e., one where `Self` is known.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct TraitRef {
    pub def_id: TraitDef,
    /// The generic arguments for this definition.
    /// The first element must always be type, and it represents `Self`.
    args: GenericArgs,
}

impl TraitRef {
    pub fn new(def_id: TraitDef, self_ty: Ty, gen_args: &GenericArgs) -> TraitRef {
        let mut args = vec![GenericArgKind::Type(self_ty)];
        args.extend_from_slice(&gen_args.0);
        TraitRef { def_id, args: GenericArgs(args) }
    }

    pub fn try_new(def_id: TraitDef, args: GenericArgs) -> Result<TraitRef, ()> {
        match &args.0[..] {
            [GenericArgKind::Type(_), ..] => Ok(TraitRef { def_id, args }),
            _ => Err(()),
        }
    }

    pub fn args(&self) -> &GenericArgs {
        &self.args
    }

    pub fn self_ty(&self) -> Ty {
        let GenericArgKind::Type(self_ty) = self.args.0[0] else {
            panic!("Self must be a type, but found: {:?}", self.args.0[0])
        };
        self_ty
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Generics {
    pub parent: Option<GenericDef>,
    pub parent_count: usize,
    pub params: Vec<GenericParamDef>,
    pub param_def_id_to_index: Vec<(GenericDef, u32)>,
    pub has_self: bool,
    pub has_late_bound_regions: Option<Span>,
    pub host_effect_index: Option<usize>,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum GenericParamDefKind {
    Lifetime,
    Type { has_default: bool, synthetic: bool },
    Const { has_default: bool },
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct GenericParamDef {
    pub name: super::Symbol,
    pub def_id: GenericDef,
    pub index: u32,
    pub pure_wrt_drop: bool,
    pub kind: GenericParamDefKind,
}

pub struct GenericPredicates {
    pub parent: Option<TraitDef>,
    pub predicates: Vec<(PredicateKind, Span)>,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum PredicateKind {
    Clause(ClauseKind),
    ObjectSafe(TraitDef),
    SubType(SubtypePredicate),
    Coerce(CoercePredicate),
    ConstEquate(Const, Const),
    Ambiguous,
    AliasRelate(TermKind, TermKind, AliasRelationDirection),
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ClauseKind {
    Trait(TraitPredicate),
    RegionOutlives(RegionOutlivesPredicate),
    TypeOutlives(TypeOutlivesPredicate),
    Projection(ProjectionPredicate),
    ConstArgHasType(Const, Ty),
    WellFormed(GenericArgKind),
    ConstEvaluatable(Const),
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ClosureKind {
    Fn,
    FnMut,
    FnOnce,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SubtypePredicate {
    pub a: Ty,
    pub b: Ty,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CoercePredicate {
    pub a: Ty,
    pub b: Ty,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum AliasRelationDirection {
    Equate,
    Subtype,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct TraitPredicate {
    pub trait_ref: TraitRef,
    pub polarity: PredicatePolarity,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct OutlivesPredicate<A, B>(pub A, pub B);

pub type RegionOutlivesPredicate = OutlivesPredicate<Region, Region>;
pub type TypeOutlivesPredicate = OutlivesPredicate<Ty, Region>;

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ProjectionPredicate {
    pub projection_term: AliasTerm,
    pub term: TermKind,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ImplPolarity {
    Positive,
    Negative,
    Reservation,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub enum PredicatePolarity {
    Positive,
    Negative,
}

pub trait IndexedVal {
    fn to_val(index: usize) -> Self;

    fn to_index(&self) -> usize;
}

macro_rules! index_impl {
    ($name:ident) => {
        impl IndexedVal for $name {
            fn to_val(index: usize) -> Self {
                $name(index)
            }
            fn to_index(&self) -> usize {
                self.0
            }
        }
    };
}

index_impl!(ConstId);
index_impl!(Ty);
index_impl!(Span);

/// The source-order index of a variant in a type.
///
/// For example, in the following types,
/// ```ignore(illustrative)
/// enum Demo1 {
///    Variant0 { a: bool, b: i32 },
///    Variant1 { c: u8, d: u64 },
/// }
/// struct Demo2 { e: u8, f: u16, g: u8 }
/// ```
/// `a` is in the variant with the `VariantIdx` of `0`,
/// `c` is in the variant with the `VariantIdx` of `1`, and
/// `g` is in the variant with the `VariantIdx` of `0`.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct VariantIdx(usize);

index_impl!(VariantIdx);