rustc_mir_build/thir/pattern/
check_match.rs

1use rustc_arena::{DroplessArena, TypedArena};
2use rustc_ast::Mutability;
3use rustc_data_structures::fx::FxIndexSet;
4use rustc_data_structures::stack::ensure_sufficient_stack;
5use rustc_errors::codes::*;
6use rustc_errors::{Applicability, ErrorGuaranteed, MultiSpan, struct_span_code_err};
7use rustc_hir::def::*;
8use rustc_hir::def_id::LocalDefId;
9use rustc_hir::{self as hir, BindingMode, ByRef, HirId};
10use rustc_infer::infer::TyCtxtInferExt;
11use rustc_lint::Level;
12use rustc_middle::bug;
13use rustc_middle::thir::visit::Visitor;
14use rustc_middle::thir::*;
15use rustc_middle::ty::print::with_no_trimmed_paths;
16use rustc_middle::ty::{self, AdtDef, Ty, TyCtxt};
17use rustc_pattern_analysis::errors::Uncovered;
18use rustc_pattern_analysis::rustc::{
19    Constructor, DeconstructedPat, MatchArm, RedundancyExplanation, RevealedTy,
20    RustcPatCtxt as PatCtxt, Usefulness, UsefulnessReport, WitnessPat,
21};
22use rustc_session::lint::builtin::{
23    BINDINGS_WITH_VARIANT_NAME, IRREFUTABLE_LET_PATTERNS, UNREACHABLE_PATTERNS,
24};
25use rustc_span::edit_distance::find_best_match_for_name;
26use rustc_span::hygiene::DesugaringKind;
27use rustc_span::{Ident, Span};
28use rustc_trait_selection::infer::InferCtxtExt;
29use tracing::instrument;
30
31use crate::errors::*;
32use crate::fluent_generated as fluent;
33
34pub(crate) fn check_match(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Result<(), ErrorGuaranteed> {
35    let typeck_results = tcx.typeck(def_id);
36    let (thir, expr) = tcx.thir_body(def_id)?;
37    let thir = thir.borrow();
38    let pattern_arena = TypedArena::default();
39    let dropless_arena = DroplessArena::default();
40    let mut visitor = MatchVisitor {
41        tcx,
42        thir: &*thir,
43        typeck_results,
44        // FIXME(#132279): We're in a body, should handle opaques.
45        typing_env: ty::TypingEnv::non_body_analysis(tcx, def_id),
46        lint_level: tcx.local_def_id_to_hir_id(def_id),
47        let_source: LetSource::None,
48        pattern_arena: &pattern_arena,
49        dropless_arena: &dropless_arena,
50        error: Ok(()),
51    };
52    visitor.visit_expr(&thir[expr]);
53
54    let origin = match tcx.def_kind(def_id) {
55        DefKind::AssocFn | DefKind::Fn => "function argument",
56        DefKind::Closure => "closure argument",
57        // other types of MIR don't have function parameters, and we don't need to
58        // categorize those for the irrefutable check.
59        _ if thir.params.is_empty() => "",
60        kind => bug!("unexpected function parameters in THIR: {kind:?} {def_id:?}"),
61    };
62
63    for param in thir.params.iter() {
64        if let Some(box ref pattern) = param.pat {
65            visitor.check_binding_is_irrefutable(pattern, origin, None, None);
66        }
67    }
68    visitor.error
69}
70
71#[derive(Debug, Copy, Clone, PartialEq)]
72enum RefutableFlag {
73    Irrefutable,
74    Refutable,
75}
76use RefutableFlag::*;
77
78#[derive(Clone, Copy, Debug, PartialEq, Eq)]
79enum LetSource {
80    None,
81    PlainLet,
82    IfLet,
83    IfLetGuard,
84    LetElse,
85    WhileLet,
86    Else,
87    ElseIfLet,
88}
89
90struct MatchVisitor<'p, 'tcx> {
91    tcx: TyCtxt<'tcx>,
92    typing_env: ty::TypingEnv<'tcx>,
93    typeck_results: &'tcx ty::TypeckResults<'tcx>,
94    thir: &'p Thir<'tcx>,
95    lint_level: HirId,
96    let_source: LetSource,
97    pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
98    dropless_arena: &'p DroplessArena,
99    /// Tracks if we encountered an error while checking this body. That the first function to
100    /// report it stores it here. Some functions return `Result` to allow callers to short-circuit
101    /// on error, but callers don't need to store it here again.
102    error: Result<(), ErrorGuaranteed>,
103}
104
105// Visitor for a thir body. This calls `check_match`, `check_let` and `check_let_chain` as
106// appropriate.
107impl<'p, 'tcx> Visitor<'p, 'tcx> for MatchVisitor<'p, 'tcx> {
108    fn thir(&self) -> &'p Thir<'tcx> {
109        self.thir
110    }
111
112    #[instrument(level = "trace", skip(self))]
113    fn visit_arm(&mut self, arm: &'p Arm<'tcx>) {
114        self.with_lint_level(arm.lint_level, |this| {
115            if let Some(expr) = arm.guard {
116                this.with_let_source(LetSource::IfLetGuard, |this| {
117                    this.visit_expr(&this.thir[expr])
118                });
119            }
120            this.visit_pat(&arm.pattern);
121            this.visit_expr(&self.thir[arm.body]);
122        });
123    }
124
125    #[instrument(level = "trace", skip(self))]
126    fn visit_expr(&mut self, ex: &'p Expr<'tcx>) {
127        match ex.kind {
128            ExprKind::Scope { value, lint_level, .. } => {
129                self.with_lint_level(lint_level, |this| {
130                    this.visit_expr(&this.thir[value]);
131                });
132                return;
133            }
134            ExprKind::If { cond, then, else_opt, if_then_scope: _ } => {
135                // Give a specific `let_source` for the condition.
136                let let_source = match ex.span.desugaring_kind() {
137                    Some(DesugaringKind::WhileLoop) => LetSource::WhileLet,
138                    _ => match self.let_source {
139                        LetSource::Else => LetSource::ElseIfLet,
140                        _ => LetSource::IfLet,
141                    },
142                };
143                self.with_let_source(let_source, |this| this.visit_expr(&self.thir[cond]));
144                self.with_let_source(LetSource::None, |this| {
145                    this.visit_expr(&this.thir[then]);
146                });
147                if let Some(else_) = else_opt {
148                    self.with_let_source(LetSource::Else, |this| {
149                        this.visit_expr(&this.thir[else_])
150                    });
151                }
152                return;
153            }
154            ExprKind::Match { scrutinee, box ref arms, match_source } => {
155                self.check_match(scrutinee, arms, match_source, ex.span);
156            }
157            ExprKind::Let { box ref pat, expr } => {
158                self.check_let(pat, Some(expr), ex.span);
159            }
160            ExprKind::LogicalOp { op: LogicalOp::And, .. }
161                if !matches!(self.let_source, LetSource::None) =>
162            {
163                let mut chain_refutabilities = Vec::new();
164                let Ok(()) = self.visit_land(ex, &mut chain_refutabilities) else { return };
165                // If at least one of the operands is a `let ... = ...`.
166                if chain_refutabilities.iter().any(|x| x.is_some()) {
167                    self.check_let_chain(chain_refutabilities, ex.span);
168                }
169                return;
170            }
171            _ => {}
172        };
173        self.with_let_source(LetSource::None, |this| visit::walk_expr(this, ex));
174    }
175
176    fn visit_stmt(&mut self, stmt: &'p Stmt<'tcx>) {
177        match stmt.kind {
178            StmtKind::Let {
179                box ref pattern, initializer, else_block, lint_level, span, ..
180            } => {
181                self.with_lint_level(lint_level, |this| {
182                    let let_source =
183                        if else_block.is_some() { LetSource::LetElse } else { LetSource::PlainLet };
184                    this.with_let_source(let_source, |this| {
185                        this.check_let(pattern, initializer, span)
186                    });
187                    visit::walk_stmt(this, stmt);
188                });
189            }
190            StmtKind::Expr { .. } => {
191                visit::walk_stmt(self, stmt);
192            }
193        }
194    }
195}
196
197impl<'p, 'tcx> MatchVisitor<'p, 'tcx> {
198    #[instrument(level = "trace", skip(self, f))]
199    fn with_let_source(&mut self, let_source: LetSource, f: impl FnOnce(&mut Self)) {
200        let old_let_source = self.let_source;
201        self.let_source = let_source;
202        ensure_sufficient_stack(|| f(self));
203        self.let_source = old_let_source;
204    }
205
206    fn with_lint_level<T>(
207        &mut self,
208        new_lint_level: LintLevel,
209        f: impl FnOnce(&mut Self) -> T,
210    ) -> T {
211        if let LintLevel::Explicit(hir_id) = new_lint_level {
212            let old_lint_level = self.lint_level;
213            self.lint_level = hir_id;
214            let ret = f(self);
215            self.lint_level = old_lint_level;
216            ret
217        } else {
218            f(self)
219        }
220    }
221
222    /// Visit a nested chain of `&&`. Used for if-let chains. This must call `visit_expr` on the
223    /// subexpressions we are not handling ourselves.
224    fn visit_land(
225        &mut self,
226        ex: &'p Expr<'tcx>,
227        accumulator: &mut Vec<Option<(Span, RefutableFlag)>>,
228    ) -> Result<(), ErrorGuaranteed> {
229        match ex.kind {
230            ExprKind::Scope { value, lint_level, .. } => self.with_lint_level(lint_level, |this| {
231                this.visit_land(&this.thir[value], accumulator)
232            }),
233            ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
234                // We recurse into the lhs only, because `&&` chains associate to the left.
235                let res_lhs = self.visit_land(&self.thir[lhs], accumulator);
236                let res_rhs = self.visit_land_rhs(&self.thir[rhs])?;
237                accumulator.push(res_rhs);
238                res_lhs
239            }
240            _ => {
241                let res = self.visit_land_rhs(ex)?;
242                accumulator.push(res);
243                Ok(())
244            }
245        }
246    }
247
248    /// Visit the right-hand-side of a `&&`. Used for if-let chains. Returns `Some` if the
249    /// expression was ultimately a `let ... = ...`, and `None` if it was a normal boolean
250    /// expression. This must call `visit_expr` on the subexpressions we are not handling ourselves.
251    fn visit_land_rhs(
252        &mut self,
253        ex: &'p Expr<'tcx>,
254    ) -> Result<Option<(Span, RefutableFlag)>, ErrorGuaranteed> {
255        match ex.kind {
256            ExprKind::Scope { value, lint_level, .. } => {
257                self.with_lint_level(lint_level, |this| this.visit_land_rhs(&this.thir[value]))
258            }
259            ExprKind::Let { box ref pat, expr } => {
260                let expr = &self.thir()[expr];
261                self.with_let_source(LetSource::None, |this| {
262                    this.visit_expr(expr);
263                });
264                Ok(Some((ex.span, self.is_let_irrefutable(pat, Some(expr))?)))
265            }
266            _ => {
267                self.with_let_source(LetSource::None, |this| {
268                    this.visit_expr(ex);
269                });
270                Ok(None)
271            }
272        }
273    }
274
275    fn lower_pattern(
276        &mut self,
277        cx: &PatCtxt<'p, 'tcx>,
278        pat: &'p Pat<'tcx>,
279    ) -> Result<&'p DeconstructedPat<'p, 'tcx>, ErrorGuaranteed> {
280        if let Err(err) = pat.pat_error_reported() {
281            self.error = Err(err);
282            Err(err)
283        } else {
284            // Check the pattern for some things unrelated to exhaustiveness.
285            let refutable = if cx.refutable { Refutable } else { Irrefutable };
286            let mut err = Ok(());
287            pat.walk_always(|pat| {
288                check_borrow_conflicts_in_at_patterns(self, pat);
289                check_for_bindings_named_same_as_variants(self, pat, refutable);
290                err = err.and(check_never_pattern(cx, pat));
291            });
292            err?;
293            Ok(self.pattern_arena.alloc(cx.lower_pat(pat)))
294        }
295    }
296
297    /// Inspects the match scrutinee expression to determine whether the place it evaluates to may
298    /// hold invalid data.
299    fn is_known_valid_scrutinee(&self, scrutinee: &Expr<'tcx>) -> bool {
300        use ExprKind::*;
301        match &scrutinee.kind {
302            // Pointers can validly point to a place with invalid data. It is undecided whether
303            // references can too, so we conservatively assume they can.
304            Deref { .. } => false,
305            // Inherit validity of the parent place, unless the parent is an union.
306            Field { lhs, .. } => {
307                let lhs = &self.thir()[*lhs];
308                match lhs.ty.kind() {
309                    ty::Adt(def, _) if def.is_union() => false,
310                    _ => self.is_known_valid_scrutinee(lhs),
311                }
312            }
313            // Essentially a field access.
314            Index { lhs, .. } => {
315                let lhs = &self.thir()[*lhs];
316                self.is_known_valid_scrutinee(lhs)
317            }
318
319            // No-op.
320            Scope { value, .. } => self.is_known_valid_scrutinee(&self.thir()[*value]),
321
322            // Casts don't cause a load.
323            NeverToAny { source }
324            | Cast { source }
325            | Use { source }
326            | PointerCoercion { source, .. }
327            | PlaceTypeAscription { source, .. }
328            | ValueTypeAscription { source, .. }
329            | PlaceUnwrapUnsafeBinder { source }
330            | ValueUnwrapUnsafeBinder { source }
331            | WrapUnsafeBinder { source } => self.is_known_valid_scrutinee(&self.thir()[*source]),
332
333            // These diverge.
334            Become { .. } | Break { .. } | Continue { .. } | Return { .. } => true,
335
336            // These are statements that evaluate to `()`.
337            Assign { .. } | AssignOp { .. } | InlineAsm { .. } | Let { .. } => true,
338
339            // These evaluate to a value.
340            RawBorrow { .. }
341            | Adt { .. }
342            | Array { .. }
343            | Binary { .. }
344            | Block { .. }
345            | Borrow { .. }
346            | Box { .. }
347            | Call { .. }
348            | ByUse { .. }
349            | Closure { .. }
350            | ConstBlock { .. }
351            | ConstParam { .. }
352            | If { .. }
353            | Literal { .. }
354            | LogicalOp { .. }
355            | Loop { .. }
356            | Match { .. }
357            | NamedConst { .. }
358            | NonHirLiteral { .. }
359            | OffsetOf { .. }
360            | Repeat { .. }
361            | StaticRef { .. }
362            | ThreadLocalRef { .. }
363            | Tuple { .. }
364            | Unary { .. }
365            | UpvarRef { .. }
366            | VarRef { .. }
367            | ZstLiteral { .. }
368            | Yield { .. } => true,
369        }
370    }
371
372    fn new_cx(
373        &self,
374        refutability: RefutableFlag,
375        whole_match_span: Option<Span>,
376        scrutinee: Option<&Expr<'tcx>>,
377        scrut_span: Span,
378    ) -> PatCtxt<'p, 'tcx> {
379        let refutable = match refutability {
380            Irrefutable => false,
381            Refutable => true,
382        };
383        // If we don't have a scrutinee we're either a function parameter or a `let x;`. Both cases
384        // require validity.
385        let known_valid_scrutinee =
386            scrutinee.map(|scrut| self.is_known_valid_scrutinee(scrut)).unwrap_or(true);
387        PatCtxt {
388            tcx: self.tcx,
389            typeck_results: self.typeck_results,
390            typing_env: self.typing_env,
391            module: self.tcx.parent_module(self.lint_level).to_def_id(),
392            dropless_arena: self.dropless_arena,
393            match_lint_level: self.lint_level,
394            whole_match_span,
395            scrut_span,
396            refutable,
397            known_valid_scrutinee,
398        }
399    }
400
401    fn analyze_patterns(
402        &mut self,
403        cx: &PatCtxt<'p, 'tcx>,
404        arms: &[MatchArm<'p, 'tcx>],
405        scrut_ty: Ty<'tcx>,
406    ) -> Result<UsefulnessReport<'p, 'tcx>, ErrorGuaranteed> {
407        let report =
408            rustc_pattern_analysis::rustc::analyze_match(&cx, &arms, scrut_ty).map_err(|err| {
409                self.error = Err(err);
410                err
411            })?;
412
413        // Warn unreachable subpatterns.
414        for (arm, is_useful) in report.arm_usefulness.iter() {
415            if let Usefulness::Useful(redundant_subpats) = is_useful
416                && !redundant_subpats.is_empty()
417            {
418                let mut redundant_subpats = redundant_subpats.clone();
419                // Emit lints in the order in which they occur in the file.
420                redundant_subpats.sort_unstable_by_key(|(pat, _)| pat.data().span);
421                for (pat, explanation) in redundant_subpats {
422                    report_unreachable_pattern(cx, arm.arm_data, pat, &explanation, None)
423                }
424            }
425        }
426        Ok(report)
427    }
428
429    #[instrument(level = "trace", skip(self))]
430    fn check_let(&mut self, pat: &'p Pat<'tcx>, scrutinee: Option<ExprId>, span: Span) {
431        assert!(self.let_source != LetSource::None);
432        let scrut = scrutinee.map(|id| &self.thir[id]);
433        if let LetSource::PlainLet = self.let_source {
434            self.check_binding_is_irrefutable(pat, "local binding", scrut, Some(span))
435        } else {
436            let Ok(refutability) = self.is_let_irrefutable(pat, scrut) else { return };
437            if matches!(refutability, Irrefutable) {
438                report_irrefutable_let_patterns(
439                    self.tcx,
440                    self.lint_level,
441                    self.let_source,
442                    1,
443                    span,
444                );
445            }
446        }
447    }
448
449    fn check_match(
450        &mut self,
451        scrut: ExprId,
452        arms: &[ArmId],
453        source: hir::MatchSource,
454        expr_span: Span,
455    ) {
456        let scrut = &self.thir[scrut];
457        let cx = self.new_cx(Refutable, Some(expr_span), Some(scrut), scrut.span);
458
459        let mut tarms = Vec::with_capacity(arms.len());
460        for &arm in arms {
461            let arm = &self.thir.arms[arm];
462            let got_error = self.with_lint_level(arm.lint_level, |this| {
463                let Ok(pat) = this.lower_pattern(&cx, &arm.pattern) else { return true };
464                let arm =
465                    MatchArm { pat, arm_data: this.lint_level, has_guard: arm.guard.is_some() };
466                tarms.push(arm);
467                false
468            });
469            if got_error {
470                return;
471            }
472        }
473
474        let Ok(report) = self.analyze_patterns(&cx, &tarms, scrut.ty) else { return };
475
476        match source {
477            // Don't report arm reachability of desugared `match $iter.into_iter() { iter => .. }`
478            // when the iterator is an uninhabited type. unreachable_code will trigger instead.
479            hir::MatchSource::ForLoopDesugar if arms.len() == 1 => {}
480            hir::MatchSource::ForLoopDesugar
481            | hir::MatchSource::Postfix
482            | hir::MatchSource::Normal
483            | hir::MatchSource::FormatArgs => {
484                let is_match_arm =
485                    matches!(source, hir::MatchSource::Postfix | hir::MatchSource::Normal);
486                report_arm_reachability(&cx, &report, is_match_arm);
487            }
488            // Unreachable patterns in try and await expressions occur when one of
489            // the arms are an uninhabited type. Which is OK.
490            hir::MatchSource::AwaitDesugar | hir::MatchSource::TryDesugar(_) => {}
491        }
492
493        // Check if the match is exhaustive.
494        let witnesses = report.non_exhaustiveness_witnesses;
495        if !witnesses.is_empty() {
496            if source == hir::MatchSource::ForLoopDesugar
497                && let [_, snd_arm] = *arms
498            {
499                // the for loop pattern is not irrefutable
500                let pat = &self.thir[snd_arm].pattern;
501                // `pat` should be `Some(<pat_field>)` from a desugared for loop.
502                debug_assert_eq!(pat.span.desugaring_kind(), Some(DesugaringKind::ForLoop));
503                let PatKind::Variant { ref subpatterns, .. } = pat.kind else { bug!() };
504                let [pat_field] = &subpatterns[..] else { bug!() };
505                self.check_binding_is_irrefutable(
506                    &pat_field.pattern,
507                    "`for` loop binding",
508                    None,
509                    None,
510                );
511            } else {
512                // span after scrutinee, or after `.match`. That is, the braces, arms,
513                // and any whitespace preceding the braces.
514                let braces_span = match source {
515                    hir::MatchSource::Normal => scrut
516                        .span
517                        .find_ancestor_in_same_ctxt(expr_span)
518                        .map(|scrut_span| scrut_span.shrink_to_hi().with_hi(expr_span.hi())),
519                    hir::MatchSource::Postfix => {
520                        // This is horrendous, and we should deal with it by just
521                        // stashing the span of the braces somewhere (like in the match source).
522                        scrut.span.find_ancestor_in_same_ctxt(expr_span).and_then(|scrut_span| {
523                            let sm = self.tcx.sess.source_map();
524                            let brace_span = sm.span_extend_to_next_char(scrut_span, '{', true);
525                            if sm.span_to_snippet(sm.next_point(brace_span)).as_deref() == Ok("{") {
526                                let sp = brace_span.shrink_to_hi().with_hi(expr_span.hi());
527                                // We also need to extend backwards for whitespace
528                                sm.span_extend_prev_while(sp, |c| c.is_whitespace()).ok()
529                            } else {
530                                None
531                            }
532                        })
533                    }
534                    hir::MatchSource::ForLoopDesugar
535                    | hir::MatchSource::TryDesugar(_)
536                    | hir::MatchSource::AwaitDesugar
537                    | hir::MatchSource::FormatArgs => None,
538                };
539                self.error = Err(report_non_exhaustive_match(
540                    &cx,
541                    self.thir,
542                    scrut.ty,
543                    scrut.span,
544                    witnesses,
545                    arms,
546                    braces_span,
547                ));
548            }
549        }
550    }
551
552    #[instrument(level = "trace", skip(self))]
553    fn check_let_chain(
554        &mut self,
555        chain_refutabilities: Vec<Option<(Span, RefutableFlag)>>,
556        whole_chain_span: Span,
557    ) {
558        assert!(self.let_source != LetSource::None);
559
560        if chain_refutabilities.iter().all(|r| matches!(*r, Some((_, Irrefutable)))) {
561            // The entire chain is made up of irrefutable `let` statements
562            report_irrefutable_let_patterns(
563                self.tcx,
564                self.lint_level,
565                self.let_source,
566                chain_refutabilities.len(),
567                whole_chain_span,
568            );
569            return;
570        }
571
572        if let Some(until) =
573            chain_refutabilities.iter().position(|r| !matches!(*r, Some((_, Irrefutable))))
574            && until > 0
575        {
576            // The chain has a non-zero prefix of irrefutable `let` statements.
577
578            // Check if the let source is while, for there is no alternative place to put a prefix,
579            // and we shouldn't lint.
580            // For let guards inside a match, prefixes might use bindings of the match pattern,
581            // so can't always be moved out.
582            // For `else if let`, an extra indentation level would be required to move the bindings.
583            // FIXME: Add checking whether the bindings are actually used in the prefix,
584            // and lint if they are not.
585            if !matches!(
586                self.let_source,
587                LetSource::WhileLet | LetSource::IfLetGuard | LetSource::ElseIfLet
588            ) {
589                // Emit the lint
590                let prefix = &chain_refutabilities[..until];
591                let span_start = prefix[0].unwrap().0;
592                let span_end = prefix.last().unwrap().unwrap().0;
593                let span = span_start.to(span_end);
594                let count = prefix.len();
595                self.tcx.emit_node_span_lint(
596                    IRREFUTABLE_LET_PATTERNS,
597                    self.lint_level,
598                    span,
599                    LeadingIrrefutableLetPatterns { count },
600                );
601            }
602        }
603
604        if let Some(from) =
605            chain_refutabilities.iter().rposition(|r| !matches!(*r, Some((_, Irrefutable))))
606            && from != (chain_refutabilities.len() - 1)
607        {
608            // The chain has a non-empty suffix of irrefutable `let` statements
609            let suffix = &chain_refutabilities[from + 1..];
610            let span_start = suffix[0].unwrap().0;
611            let span_end = suffix.last().unwrap().unwrap().0;
612            let span = span_start.to(span_end);
613            let count = suffix.len();
614            self.tcx.emit_node_span_lint(
615                IRREFUTABLE_LET_PATTERNS,
616                self.lint_level,
617                span,
618                TrailingIrrefutableLetPatterns { count },
619            );
620        }
621    }
622
623    fn analyze_binding(
624        &mut self,
625        pat: &'p Pat<'tcx>,
626        refutability: RefutableFlag,
627        scrut: Option<&Expr<'tcx>>,
628    ) -> Result<(PatCtxt<'p, 'tcx>, UsefulnessReport<'p, 'tcx>), ErrorGuaranteed> {
629        let cx = self.new_cx(refutability, None, scrut, pat.span);
630        let pat = self.lower_pattern(&cx, pat)?;
631        let arms = [MatchArm { pat, arm_data: self.lint_level, has_guard: false }];
632        let report = self.analyze_patterns(&cx, &arms, pat.ty().inner())?;
633        Ok((cx, report))
634    }
635
636    fn is_let_irrefutable(
637        &mut self,
638        pat: &'p Pat<'tcx>,
639        scrut: Option<&Expr<'tcx>>,
640    ) -> Result<RefutableFlag, ErrorGuaranteed> {
641        let (cx, report) = self.analyze_binding(pat, Refutable, scrut)?;
642        // Report if the pattern is unreachable, which can only occur when the type is uninhabited.
643        report_arm_reachability(&cx, &report, false);
644        // If the list of witnesses is empty, the match is exhaustive, i.e. the `if let` pattern is
645        // irrefutable.
646        Ok(if report.non_exhaustiveness_witnesses.is_empty() { Irrefutable } else { Refutable })
647    }
648
649    #[instrument(level = "trace", skip(self))]
650    fn check_binding_is_irrefutable(
651        &mut self,
652        pat: &'p Pat<'tcx>,
653        origin: &str,
654        scrut: Option<&Expr<'tcx>>,
655        sp: Option<Span>,
656    ) {
657        let pattern_ty = pat.ty;
658
659        let Ok((cx, report)) = self.analyze_binding(pat, Irrefutable, scrut) else { return };
660        let witnesses = report.non_exhaustiveness_witnesses;
661        if witnesses.is_empty() {
662            // The pattern is irrefutable.
663            return;
664        }
665
666        let inform = sp.is_some().then_some(Inform);
667        let mut let_suggestion = None;
668        let mut misc_suggestion = None;
669        let mut interpreted_as_const = None;
670        let mut interpreted_as_const_sugg = None;
671
672        // These next few matches want to peek through `AscribeUserType` to see
673        // the underlying pattern.
674        let mut unpeeled_pat = pat;
675        while let PatKind::AscribeUserType { ref subpattern, .. } = unpeeled_pat.kind {
676            unpeeled_pat = subpattern;
677        }
678
679        if let PatKind::ExpandedConstant { def_id, is_inline: false, .. } = unpeeled_pat.kind
680            && let DefKind::Const = self.tcx.def_kind(def_id)
681            && let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(pat.span)
682            // We filter out paths with multiple path::segments.
683            && snippet.chars().all(|c| c.is_alphanumeric() || c == '_')
684        {
685            let span = self.tcx.def_span(def_id);
686            let variable = self.tcx.item_name(def_id).to_string();
687            // When we encounter a constant as the binding name, point at the `const` definition.
688            interpreted_as_const = Some(span);
689            interpreted_as_const_sugg = Some(InterpretedAsConst { span: pat.span, variable });
690        } else if let PatKind::Constant { .. } = unpeeled_pat.kind
691            && let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(pat.span)
692        {
693            // If the pattern to match is an integer literal:
694            if snippet.chars().all(|c| c.is_digit(10)) {
695                // Then give a suggestion, the user might've meant to create a binding instead.
696                misc_suggestion = Some(MiscPatternSuggestion::AttemptedIntegerLiteral {
697                    start_span: pat.span.shrink_to_lo(),
698                });
699            }
700        }
701
702        if let Some(span) = sp
703            && self.tcx.sess.source_map().is_span_accessible(span)
704            && interpreted_as_const.is_none()
705            && scrut.is_some()
706        {
707            let mut bindings = vec![];
708            pat.each_binding(|name, _, _, _| bindings.push(name));
709
710            let semi_span = span.shrink_to_hi();
711            let start_span = span.shrink_to_lo();
712            let end_span = semi_span.shrink_to_lo();
713            let count = witnesses.len();
714
715            let_suggestion = Some(if bindings.is_empty() {
716                SuggestLet::If { start_span, semi_span, count }
717            } else {
718                SuggestLet::Else { end_span, count }
719            });
720        };
721
722        let adt_defined_here = report_adt_defined_here(self.tcx, pattern_ty, &witnesses, false);
723
724        // Emit an extra note if the first uncovered witness would be uninhabited
725        // if we disregard visibility.
726        let witness_1_is_privately_uninhabited = if let Some(witness_1) = witnesses.get(0)
727            && let ty::Adt(adt, args) = witness_1.ty().kind()
728            && adt.is_enum()
729            && let Constructor::Variant(variant_index) = witness_1.ctor()
730        {
731            let variant_inhabited = adt
732                .variant(*variant_index)
733                .inhabited_predicate(self.tcx, *adt)
734                .instantiate(self.tcx, args);
735            variant_inhabited.apply(self.tcx, cx.typing_env, cx.module)
736                && !variant_inhabited.apply_ignore_module(self.tcx, cx.typing_env)
737        } else {
738            false
739        };
740
741        self.error = Err(self.tcx.dcx().emit_err(PatternNotCovered {
742            span: pat.span,
743            origin,
744            uncovered: Uncovered::new(pat.span, &cx, witnesses),
745            inform,
746            interpreted_as_const,
747            interpreted_as_const_sugg,
748            witness_1_is_privately_uninhabited,
749            _p: (),
750            pattern_ty,
751            let_suggestion,
752            misc_suggestion,
753            adt_defined_here,
754        }));
755    }
756}
757
758/// Check if a by-value binding is by-value. That is, check if the binding's type is not `Copy`.
759/// Check that there are no borrow or move conflicts in `binding @ subpat` patterns.
760///
761/// For example, this would reject:
762/// - `ref x @ Some(ref mut y)`,
763/// - `ref mut x @ Some(ref y)`,
764/// - `ref mut x @ Some(ref mut y)`,
765/// - `ref mut? x @ Some(y)`, and
766/// - `x @ Some(ref mut? y)`.
767///
768/// This analysis is *not* subsumed by NLL.
769fn check_borrow_conflicts_in_at_patterns<'tcx>(cx: &MatchVisitor<'_, 'tcx>, pat: &Pat<'tcx>) {
770    // Extract `sub` in `binding @ sub`.
771    let PatKind::Binding { name, mode, ty, subpattern: Some(box ref sub), .. } = pat.kind else {
772        return;
773    };
774
775    let is_binding_by_move = |ty: Ty<'tcx>| !cx.tcx.type_is_copy_modulo_regions(cx.typing_env, ty);
776
777    let sess = cx.tcx.sess;
778
779    // Get the binding move, extract the mutability if by-ref.
780    let mut_outer = match mode.0 {
781        ByRef::No if is_binding_by_move(ty) => {
782            // We have `x @ pat` where `x` is by-move. Reject all borrows in `pat`.
783            let mut conflicts_ref = Vec::new();
784            sub.each_binding(|_, mode, _, span| {
785                if matches!(mode, ByRef::Yes(_)) {
786                    conflicts_ref.push(span)
787                }
788            });
789            if !conflicts_ref.is_empty() {
790                sess.dcx().emit_err(BorrowOfMovedValue {
791                    binding_span: pat.span,
792                    conflicts_ref,
793                    name: Ident::new(name, pat.span),
794                    ty,
795                    suggest_borrowing: Some(pat.span.shrink_to_lo()),
796                });
797            }
798            return;
799        }
800        ByRef::No => return,
801        ByRef::Yes(m) => m,
802    };
803
804    // We now have `ref $mut_outer binding @ sub` (semantically).
805    // Recurse into each binding in `sub` and find mutability or move conflicts.
806    let mut conflicts_move = Vec::new();
807    let mut conflicts_mut_mut = Vec::new();
808    let mut conflicts_mut_ref = Vec::new();
809    sub.each_binding(|name, mode, ty, span| {
810        match mode {
811            ByRef::Yes(mut_inner) => match (mut_outer, mut_inner) {
812                // Both sides are `ref`.
813                (Mutability::Not, Mutability::Not) => {}
814                // 2x `ref mut`.
815                (Mutability::Mut, Mutability::Mut) => {
816                    conflicts_mut_mut.push(Conflict::Mut { span, name })
817                }
818                (Mutability::Not, Mutability::Mut) => {
819                    conflicts_mut_ref.push(Conflict::Mut { span, name })
820                }
821                (Mutability::Mut, Mutability::Not) => {
822                    conflicts_mut_ref.push(Conflict::Ref { span, name })
823                }
824            },
825            ByRef::No if is_binding_by_move(ty) => {
826                conflicts_move.push(Conflict::Moved { span, name }) // `ref mut?` + by-move conflict.
827            }
828            ByRef::No => {} // `ref mut?` + by-copy is fine.
829        }
830    });
831
832    let report_mut_mut = !conflicts_mut_mut.is_empty();
833    let report_mut_ref = !conflicts_mut_ref.is_empty();
834    let report_move_conflict = !conflicts_move.is_empty();
835
836    let mut occurrences = match mut_outer {
837        Mutability::Mut => vec![Conflict::Mut { span: pat.span, name }],
838        Mutability::Not => vec![Conflict::Ref { span: pat.span, name }],
839    };
840    occurrences.extend(conflicts_mut_mut);
841    occurrences.extend(conflicts_mut_ref);
842    occurrences.extend(conflicts_move);
843
844    // Report errors if any.
845    if report_mut_mut {
846        // Report mutability conflicts for e.g. `ref mut x @ Some(ref mut y)`.
847        sess.dcx().emit_err(MultipleMutBorrows { span: pat.span, occurrences });
848    } else if report_mut_ref {
849        // Report mutability conflicts for e.g. `ref x @ Some(ref mut y)` or the converse.
850        match mut_outer {
851            Mutability::Mut => {
852                sess.dcx().emit_err(AlreadyMutBorrowed { span: pat.span, occurrences });
853            }
854            Mutability::Not => {
855                sess.dcx().emit_err(AlreadyBorrowed { span: pat.span, occurrences });
856            }
857        };
858    } else if report_move_conflict {
859        // Report by-ref and by-move conflicts, e.g. `ref x @ y`.
860        sess.dcx().emit_err(MovedWhileBorrowed { span: pat.span, occurrences });
861    }
862}
863
864fn check_for_bindings_named_same_as_variants(
865    cx: &MatchVisitor<'_, '_>,
866    pat: &Pat<'_>,
867    rf: RefutableFlag,
868) {
869    if let PatKind::Binding {
870        name,
871        mode: BindingMode(ByRef::No, Mutability::Not),
872        subpattern: None,
873        ty,
874        ..
875    } = pat.kind
876        && let ty::Adt(edef, _) = ty.peel_refs().kind()
877        && edef.is_enum()
878        && edef
879            .variants()
880            .iter()
881            .any(|variant| variant.name == name && variant.ctor_kind() == Some(CtorKind::Const))
882    {
883        let variant_count = edef.variants().len();
884        let ty_path = with_no_trimmed_paths!(cx.tcx.def_path_str(edef.did()));
885        cx.tcx.emit_node_span_lint(
886            BINDINGS_WITH_VARIANT_NAME,
887            cx.lint_level,
888            pat.span,
889            BindingsWithVariantName {
890                // If this is an irrefutable pattern, and there's > 1 variant,
891                // then we can't actually match on this. Applying the below
892                // suggestion would produce code that breaks on `check_binding_is_irrefutable`.
893                suggestion: if rf == Refutable || variant_count == 1 {
894                    Some(pat.span)
895                } else {
896                    None
897                },
898                ty_path,
899                name: Ident::new(name, pat.span),
900            },
901        )
902    }
903}
904
905/// Check that never patterns are only used on inhabited types.
906fn check_never_pattern<'tcx>(
907    cx: &PatCtxt<'_, 'tcx>,
908    pat: &Pat<'tcx>,
909) -> Result<(), ErrorGuaranteed> {
910    if let PatKind::Never = pat.kind {
911        if !cx.is_uninhabited(pat.ty) {
912            return Err(cx.tcx.dcx().emit_err(NonEmptyNeverPattern { span: pat.span, ty: pat.ty }));
913        }
914    }
915    Ok(())
916}
917
918fn report_irrefutable_let_patterns(
919    tcx: TyCtxt<'_>,
920    id: HirId,
921    source: LetSource,
922    count: usize,
923    span: Span,
924) {
925    macro_rules! emit_diag {
926        ($lint:tt) => {{
927            tcx.emit_node_span_lint(IRREFUTABLE_LET_PATTERNS, id, span, $lint { count });
928        }};
929    }
930
931    match source {
932        LetSource::None | LetSource::PlainLet | LetSource::Else => bug!(),
933        LetSource::IfLet | LetSource::ElseIfLet => emit_diag!(IrrefutableLetPatternsIfLet),
934        LetSource::IfLetGuard => emit_diag!(IrrefutableLetPatternsIfLetGuard),
935        LetSource::LetElse => emit_diag!(IrrefutableLetPatternsLetElse),
936        LetSource::WhileLet => emit_diag!(IrrefutableLetPatternsWhileLet),
937    }
938}
939
940/// Report unreachable arms, if any.
941fn report_unreachable_pattern<'p, 'tcx>(
942    cx: &PatCtxt<'p, 'tcx>,
943    hir_id: HirId,
944    pat: &DeconstructedPat<'p, 'tcx>,
945    explanation: &RedundancyExplanation<'p, 'tcx>,
946    whole_arm_span: Option<Span>,
947) {
948    static CAP_COVERED_BY_MANY: usize = 4;
949    let pat_span = pat.data().span;
950    let mut lint = UnreachablePattern {
951        span: Some(pat_span),
952        matches_no_values: None,
953        matches_no_values_ty: **pat.ty(),
954        uninhabited_note: None,
955        covered_by_catchall: None,
956        covered_by_one: None,
957        covered_by_many: None,
958        covered_by_many_n_more_count: 0,
959        wanted_constant: None,
960        accessible_constant: None,
961        inaccessible_constant: None,
962        pattern_let_binding: None,
963        suggest_remove: None,
964    };
965    match explanation.covered_by.as_slice() {
966        [] => {
967            // Empty pattern; we report the uninhabited type that caused the emptiness.
968            lint.span = None; // Don't label the pattern itself
969            lint.uninhabited_note = Some(()); // Give a link about empty types
970            lint.matches_no_values = Some(pat_span);
971            lint.suggest_remove = whole_arm_span; // Suggest to remove the match arm
972            pat.walk(&mut |subpat| {
973                let ty = **subpat.ty();
974                if cx.is_uninhabited(ty) {
975                    lint.matches_no_values_ty = ty;
976                    false // No need to dig further.
977                } else if matches!(subpat.ctor(), Constructor::Ref | Constructor::UnionField) {
978                    false // Don't explore further since they are not by-value.
979                } else {
980                    true
981                }
982            });
983        }
984        [covering_pat] if pat_is_catchall(covering_pat) => {
985            // A binding pattern that matches all, a single binding name.
986            let pat = covering_pat.data();
987            lint.covered_by_catchall = Some(pat.span);
988            find_fallback_pattern_typo(cx, hir_id, pat, &mut lint);
989        }
990        [covering_pat] => {
991            lint.covered_by_one = Some(covering_pat.data().span);
992        }
993        covering_pats => {
994            let mut iter = covering_pats.iter();
995            let mut multispan = MultiSpan::from_span(pat_span);
996            for p in iter.by_ref().take(CAP_COVERED_BY_MANY) {
997                multispan.push_span_label(
998                    p.data().span,
999                    fluent::mir_build_unreachable_matches_same_values,
1000                );
1001            }
1002            let remain = iter.count();
1003            if remain == 0 {
1004                multispan.push_span_label(
1005                    pat_span,
1006                    fluent::mir_build_unreachable_making_this_unreachable,
1007                );
1008            } else {
1009                lint.covered_by_many_n_more_count = remain;
1010                multispan.push_span_label(
1011                    pat_span,
1012                    fluent::mir_build_unreachable_making_this_unreachable_n_more,
1013                );
1014            }
1015            lint.covered_by_many = Some(multispan);
1016        }
1017    }
1018    cx.tcx.emit_node_span_lint(UNREACHABLE_PATTERNS, hir_id, pat_span, lint);
1019}
1020
1021/// Detect typos that were meant to be a `const` but were interpreted as a new pattern binding.
1022fn find_fallback_pattern_typo<'tcx>(
1023    cx: &PatCtxt<'_, 'tcx>,
1024    hir_id: HirId,
1025    pat: &Pat<'tcx>,
1026    lint: &mut UnreachablePattern<'_>,
1027) {
1028    if let (Level::Allow, _) = cx.tcx.lint_level_at_node(UNREACHABLE_PATTERNS, hir_id) {
1029        // This is because we use `with_no_trimmed_paths` later, so if we never emit the lint we'd
1030        // ICE. At the same time, we don't really need to do all of this if we won't emit anything.
1031        return;
1032    }
1033    if let PatKind::Binding { name, subpattern: None, ty, .. } = pat.kind {
1034        // See if the binding might have been a `const` that was mistyped or out of scope.
1035        let mut accessible = vec![];
1036        let mut accessible_path = vec![];
1037        let mut inaccessible = vec![];
1038        let mut imported = vec![];
1039        let mut imported_spans = vec![];
1040        let (infcx, param_env) = cx.tcx.infer_ctxt().build_with_typing_env(cx.typing_env);
1041        let parent = cx.tcx.hir_get_parent_item(hir_id);
1042
1043        for item in cx.tcx.hir_crate_items(()).free_items() {
1044            if let DefKind::Use = cx.tcx.def_kind(item.owner_id) {
1045                // Look for consts being re-exported.
1046                let item = cx.tcx.hir_expect_item(item.owner_id.def_id);
1047                let hir::ItemKind::Use(path, _) = item.kind else {
1048                    continue;
1049                };
1050                for res in &path.res {
1051                    if let Res::Def(DefKind::Const, id) = res
1052                        && infcx.can_eq(param_env, ty, cx.tcx.type_of(id).instantiate_identity())
1053                    {
1054                        if cx.tcx.visibility(id).is_accessible_from(parent, cx.tcx) {
1055                            // The original const is accessible, suggest using it directly.
1056                            let item_name = cx.tcx.item_name(*id);
1057                            accessible.push(item_name);
1058                            accessible_path.push(with_no_trimmed_paths!(cx.tcx.def_path_str(id)));
1059                        } else if cx
1060                            .tcx
1061                            .visibility(item.owner_id)
1062                            .is_accessible_from(parent, cx.tcx)
1063                        {
1064                            // The const is accessible only through the re-export, point at
1065                            // the `use`.
1066                            let ident = item.kind.ident().unwrap();
1067                            imported.push(ident.name);
1068                            imported_spans.push(ident.span);
1069                        }
1070                    }
1071                }
1072            }
1073            if let DefKind::Const = cx.tcx.def_kind(item.owner_id)
1074                && infcx.can_eq(param_env, ty, cx.tcx.type_of(item.owner_id).instantiate_identity())
1075            {
1076                // Look for local consts.
1077                let item_name = cx.tcx.item_name(item.owner_id.into());
1078                let vis = cx.tcx.visibility(item.owner_id);
1079                if vis.is_accessible_from(parent, cx.tcx) {
1080                    accessible.push(item_name);
1081                    // FIXME: the line below from PR #135310 is a workaround for the ICE in issue
1082                    // #135289, where a macro in a dependency can create unreachable patterns in the
1083                    // current crate. Path trimming expects diagnostics for a typoed const, but no
1084                    // diagnostics are emitted and we ICE. See
1085                    // `tests/ui/resolve/const-with-typo-in-pattern-binding-ice-135289.rs` for a
1086                    // test that reproduces the ICE if we don't use `with_no_trimmed_paths!`.
1087                    let path = with_no_trimmed_paths!(cx.tcx.def_path_str(item.owner_id));
1088                    accessible_path.push(path);
1089                } else if name == item_name {
1090                    // The const exists somewhere in this crate, but it can't be imported
1091                    // from this pattern's scope. We'll just point at its definition.
1092                    inaccessible.push(cx.tcx.def_span(item.owner_id));
1093                }
1094            }
1095        }
1096        if let Some((i, &const_name)) =
1097            accessible.iter().enumerate().find(|&(_, &const_name)| const_name == name)
1098        {
1099            // The pattern name is an exact match, so the pattern needed to be imported.
1100            lint.wanted_constant = Some(WantedConstant {
1101                span: pat.span,
1102                is_typo: false,
1103                const_name: const_name.to_string(),
1104                const_path: accessible_path[i].clone(),
1105            });
1106        } else if let Some(name) = find_best_match_for_name(&accessible, name, None) {
1107            // The pattern name is likely a typo.
1108            lint.wanted_constant = Some(WantedConstant {
1109                span: pat.span,
1110                is_typo: true,
1111                const_name: name.to_string(),
1112                const_path: name.to_string(),
1113            });
1114        } else if let Some(i) =
1115            imported.iter().enumerate().find(|&(_, &const_name)| const_name == name).map(|(i, _)| i)
1116        {
1117            // The const with the exact name wasn't re-exported from an import in this
1118            // crate, we point at the import.
1119            lint.accessible_constant = Some(imported_spans[i]);
1120        } else if let Some(name) = find_best_match_for_name(&imported, name, None) {
1121            // The typoed const wasn't re-exported by an import in this crate, we suggest
1122            // the right name (which will likely require another follow up suggestion).
1123            lint.wanted_constant = Some(WantedConstant {
1124                span: pat.span,
1125                is_typo: true,
1126                const_path: name.to_string(),
1127                const_name: name.to_string(),
1128            });
1129        } else if !inaccessible.is_empty() {
1130            for span in inaccessible {
1131                // The const with the exact name match isn't accessible, we just point at it.
1132                lint.inaccessible_constant = Some(span);
1133            }
1134        } else {
1135            // Look for local bindings for people that might have gotten confused with how
1136            // `let` and `const` works.
1137            for (_, node) in cx.tcx.hir_parent_iter(hir_id) {
1138                match node {
1139                    hir::Node::Stmt(hir::Stmt { kind: hir::StmtKind::Let(let_stmt), .. }) => {
1140                        if let hir::PatKind::Binding(_, _, binding_name, _) = let_stmt.pat.kind {
1141                            if name == binding_name.name {
1142                                lint.pattern_let_binding = Some(binding_name.span);
1143                            }
1144                        }
1145                    }
1146                    hir::Node::Block(hir::Block { stmts, .. }) => {
1147                        for stmt in *stmts {
1148                            if let hir::StmtKind::Let(let_stmt) = stmt.kind {
1149                                if let hir::PatKind::Binding(_, _, binding_name, _) =
1150                                    let_stmt.pat.kind
1151                                {
1152                                    if name == binding_name.name {
1153                                        lint.pattern_let_binding = Some(binding_name.span);
1154                                    }
1155                                }
1156                            }
1157                        }
1158                    }
1159                    hir::Node::Item(_) => break,
1160                    _ => {}
1161                }
1162            }
1163        }
1164    }
1165}
1166
1167/// Report unreachable arms, if any.
1168fn report_arm_reachability<'p, 'tcx>(
1169    cx: &PatCtxt<'p, 'tcx>,
1170    report: &UsefulnessReport<'p, 'tcx>,
1171    is_match_arm: bool,
1172) {
1173    let sm = cx.tcx.sess.source_map();
1174    for (arm, is_useful) in report.arm_usefulness.iter() {
1175        if let Usefulness::Redundant(explanation) = is_useful {
1176            let hir_id = arm.arm_data;
1177            let arm_span = cx.tcx.hir().span(hir_id);
1178            let whole_arm_span = if is_match_arm {
1179                // If the arm is followed by a comma, extend the span to include it.
1180                let with_whitespace = sm.span_extend_while_whitespace(arm_span);
1181                if let Some(comma) = sm.span_look_ahead(with_whitespace, ",", Some(1)) {
1182                    Some(arm_span.to(comma))
1183                } else {
1184                    Some(arm_span)
1185                }
1186            } else {
1187                None
1188            };
1189            report_unreachable_pattern(cx, hir_id, arm.pat, explanation, whole_arm_span)
1190        }
1191    }
1192}
1193
1194/// Checks for common cases of "catchall" patterns that may not be intended as such.
1195fn pat_is_catchall(pat: &DeconstructedPat<'_, '_>) -> bool {
1196    match pat.ctor() {
1197        Constructor::Wildcard => true,
1198        Constructor::Struct | Constructor::Ref => {
1199            pat.iter_fields().all(|ipat| pat_is_catchall(&ipat.pat))
1200        }
1201        _ => false,
1202    }
1203}
1204
1205/// Report that a match is not exhaustive.
1206fn report_non_exhaustive_match<'p, 'tcx>(
1207    cx: &PatCtxt<'p, 'tcx>,
1208    thir: &Thir<'tcx>,
1209    scrut_ty: Ty<'tcx>,
1210    sp: Span,
1211    witnesses: Vec<WitnessPat<'p, 'tcx>>,
1212    arms: &[ArmId],
1213    braces_span: Option<Span>,
1214) -> ErrorGuaranteed {
1215    let is_empty_match = arms.is_empty();
1216    let non_empty_enum = match scrut_ty.kind() {
1217        ty::Adt(def, _) => def.is_enum() && !def.variants().is_empty(),
1218        _ => false,
1219    };
1220    // In the case of an empty match, replace the '`_` not covered' diagnostic with something more
1221    // informative.
1222    if is_empty_match && !non_empty_enum {
1223        return cx.tcx.dcx().emit_err(NonExhaustivePatternsTypeNotEmpty {
1224            cx,
1225            scrut_span: sp,
1226            braces_span,
1227            ty: scrut_ty,
1228        });
1229    }
1230
1231    // FIXME: migration of this diagnostic will require list support
1232    let joined_patterns = joined_uncovered_patterns(cx, &witnesses);
1233    let mut err = struct_span_code_err!(
1234        cx.tcx.dcx(),
1235        sp,
1236        E0004,
1237        "non-exhaustive patterns: {joined_patterns} not covered"
1238    );
1239    err.span_label(
1240        sp,
1241        format!(
1242            "pattern{} {} not covered",
1243            rustc_errors::pluralize!(witnesses.len()),
1244            joined_patterns
1245        ),
1246    );
1247
1248    // Point at the definition of non-covered `enum` variants.
1249    if let Some(AdtDefinedHere { adt_def_span, ty, variants }) =
1250        report_adt_defined_here(cx.tcx, scrut_ty, &witnesses, true)
1251    {
1252        let mut multi_span = MultiSpan::from_span(adt_def_span);
1253        multi_span.push_span_label(adt_def_span, "");
1254        for Variant { span } in variants {
1255            multi_span.push_span_label(span, "not covered");
1256        }
1257        err.span_note(multi_span, format!("`{ty}` defined here"));
1258    }
1259    err.note(format!("the matched value is of type `{}`", scrut_ty));
1260
1261    if !is_empty_match {
1262        let mut special_tys = FxIndexSet::default();
1263        // Look at the first witness.
1264        collect_special_tys(cx, &witnesses[0], &mut special_tys);
1265
1266        for ty in special_tys {
1267            if ty.is_ptr_sized_integral() {
1268                if ty.inner() == cx.tcx.types.usize {
1269                    err.note(format!(
1270                        "`{ty}` does not have a fixed maximum value, so half-open ranges are \
1271                         necessary to match exhaustively",
1272                    ));
1273                } else if ty.inner() == cx.tcx.types.isize {
1274                    err.note(format!(
1275                        "`{ty}` does not have fixed minimum and maximum values, so half-open \
1276                         ranges are necessary to match exhaustively",
1277                    ));
1278                }
1279            } else if ty.inner() == cx.tcx.types.str_ {
1280                err.note("`&str` cannot be matched exhaustively, so a wildcard `_` is necessary");
1281            } else if cx.is_foreign_non_exhaustive_enum(ty) {
1282                err.note(format!("`{ty}` is marked as non-exhaustive, so a wildcard `_` is necessary to match exhaustively"));
1283            } else if cx.is_uninhabited(ty.inner()) {
1284                // The type is uninhabited yet there is a witness: we must be in the `MaybeInvalid`
1285                // case.
1286                err.note(format!("`{ty}` is uninhabited but is not being matched by value, so a wildcard `_` is required"));
1287            }
1288        }
1289    }
1290
1291    if let ty::Ref(_, sub_ty, _) = scrut_ty.kind() {
1292        if !sub_ty.is_inhabited_from(cx.tcx, cx.module, cx.typing_env) {
1293            err.note("references are always considered inhabited");
1294        }
1295    }
1296
1297    for &arm in arms {
1298        let arm = &thir.arms[arm];
1299        if let PatKind::ExpandedConstant { def_id, is_inline: false, .. } = arm.pattern.kind
1300            && let Ok(snippet) = cx.tcx.sess.source_map().span_to_snippet(arm.pattern.span)
1301            // We filter out paths with multiple path::segments.
1302            && snippet.chars().all(|c| c.is_alphanumeric() || c == '_')
1303        {
1304            let const_name = cx.tcx.item_name(def_id);
1305            err.span_label(
1306                arm.pattern.span,
1307                format!(
1308                    "this pattern doesn't introduce a new catch-all binding, but rather pattern \
1309                     matches against the value of constant `{const_name}`",
1310                ),
1311            );
1312            err.span_note(cx.tcx.def_span(def_id), format!("constant `{const_name}` defined here"));
1313            err.span_suggestion_verbose(
1314                arm.pattern.span.shrink_to_hi(),
1315                "if you meant to introduce a binding, use a different name",
1316                "_var".to_string(),
1317                Applicability::MaybeIncorrect,
1318            );
1319        }
1320    }
1321
1322    // Whether we suggest the actual missing patterns or `_`.
1323    let suggest_the_witnesses = witnesses.len() < 4;
1324    let suggested_arm = if suggest_the_witnesses {
1325        let pattern = witnesses
1326            .iter()
1327            .map(|witness| cx.print_witness_pat(witness))
1328            .collect::<Vec<String>>()
1329            .join(" | ");
1330        if witnesses.iter().all(|p| p.is_never_pattern()) && cx.tcx.features().never_patterns() {
1331            // Arms with a never pattern don't take a body.
1332            pattern
1333        } else {
1334            format!("{pattern} => todo!()")
1335        }
1336    } else {
1337        format!("_ => todo!()")
1338    };
1339    let mut suggestion = None;
1340    let sm = cx.tcx.sess.source_map();
1341    match arms {
1342        [] if let Some(braces_span) = braces_span => {
1343            // Get the span for the empty match body `{}`.
1344            let (indentation, more) = if let Some(snippet) = sm.indentation_before(sp) {
1345                (format!("\n{snippet}"), "    ")
1346            } else {
1347                (" ".to_string(), "")
1348            };
1349            suggestion = Some((
1350                braces_span,
1351                format!(" {{{indentation}{more}{suggested_arm},{indentation}}}",),
1352            ));
1353        }
1354        [only] => {
1355            let only = &thir[*only];
1356            let (pre_indentation, is_multiline) = if let Some(snippet) =
1357                sm.indentation_before(only.span)
1358                && let Ok(with_trailing) =
1359                    sm.span_extend_while(only.span, |c| c.is_whitespace() || c == ',')
1360                && sm.is_multiline(with_trailing)
1361            {
1362                (format!("\n{snippet}"), true)
1363            } else {
1364                (" ".to_string(), false)
1365            };
1366            let only_body = &thir[only.body];
1367            let comma = if matches!(only_body.kind, ExprKind::Block { .. })
1368                && only.span.eq_ctxt(only_body.span)
1369                && is_multiline
1370            {
1371                ""
1372            } else {
1373                ","
1374            };
1375            suggestion = Some((
1376                only.span.shrink_to_hi(),
1377                format!("{comma}{pre_indentation}{suggested_arm}"),
1378            ));
1379        }
1380        [.., prev, last] => {
1381            let prev = &thir[*prev];
1382            let last = &thir[*last];
1383            if prev.span.eq_ctxt(last.span) {
1384                let last_body = &thir[last.body];
1385                let comma = if matches!(last_body.kind, ExprKind::Block { .. })
1386                    && last.span.eq_ctxt(last_body.span)
1387                {
1388                    ""
1389                } else {
1390                    ","
1391                };
1392                let spacing = if sm.is_multiline(prev.span.between(last.span)) {
1393                    sm.indentation_before(last.span).map(|indent| format!("\n{indent}"))
1394                } else {
1395                    Some(" ".to_string())
1396                };
1397                if let Some(spacing) = spacing {
1398                    suggestion = Some((
1399                        last.span.shrink_to_hi(),
1400                        format!("{comma}{spacing}{suggested_arm}"),
1401                    ));
1402                }
1403            }
1404        }
1405        _ => {}
1406    }
1407
1408    let msg = format!(
1409        "ensure that all possible cases are being handled by adding a match arm with a wildcard \
1410         pattern{}{}",
1411        if witnesses.len() > 1 && suggest_the_witnesses && suggestion.is_some() {
1412            ", a match arm with multiple or-patterns"
1413        } else {
1414            // we are either not suggesting anything, or suggesting `_`
1415            ""
1416        },
1417        match witnesses.len() {
1418            // non-exhaustive enum case
1419            0 if suggestion.is_some() => " as shown",
1420            0 => "",
1421            1 if suggestion.is_some() => " or an explicit pattern as shown",
1422            1 => " or an explicit pattern",
1423            _ if suggestion.is_some() => " as shown, or multiple match arms",
1424            _ => " or multiple match arms",
1425        },
1426    );
1427
1428    let all_arms_have_guards = arms.iter().all(|arm_id| thir[*arm_id].guard.is_some());
1429    if !is_empty_match && all_arms_have_guards {
1430        err.subdiagnostic(NonExhaustiveMatchAllArmsGuarded);
1431    }
1432    if let Some((span, sugg)) = suggestion {
1433        err.span_suggestion_verbose(span, msg, sugg, Applicability::HasPlaceholders);
1434    } else {
1435        err.help(msg);
1436    }
1437    err.emit()
1438}
1439
1440fn joined_uncovered_patterns<'p, 'tcx>(
1441    cx: &PatCtxt<'p, 'tcx>,
1442    witnesses: &[WitnessPat<'p, 'tcx>],
1443) -> String {
1444    const LIMIT: usize = 3;
1445    let pat_to_str = |pat: &WitnessPat<'p, 'tcx>| cx.print_witness_pat(pat);
1446    match witnesses {
1447        [] => bug!(),
1448        [witness] => format!("`{}`", cx.print_witness_pat(witness)),
1449        [head @ .., tail] if head.len() < LIMIT => {
1450            let head: Vec<_> = head.iter().map(pat_to_str).collect();
1451            format!("`{}` and `{}`", head.join("`, `"), cx.print_witness_pat(tail))
1452        }
1453        _ => {
1454            let (head, tail) = witnesses.split_at(LIMIT);
1455            let head: Vec<_> = head.iter().map(pat_to_str).collect();
1456            format!("`{}` and {} more", head.join("`, `"), tail.len())
1457        }
1458    }
1459}
1460
1461/// Collect types that require specific explanations when they show up in witnesses.
1462fn collect_special_tys<'tcx>(
1463    cx: &PatCtxt<'_, 'tcx>,
1464    pat: &WitnessPat<'_, 'tcx>,
1465    special_tys: &mut FxIndexSet<RevealedTy<'tcx>>,
1466) {
1467    if matches!(pat.ctor(), Constructor::NonExhaustive | Constructor::Never) {
1468        special_tys.insert(*pat.ty());
1469    }
1470    if let Constructor::IntRange(range) = pat.ctor() {
1471        if cx.is_range_beyond_boundaries(range, *pat.ty()) {
1472            // The range denotes the values before `isize::MIN` or the values after `usize::MAX`/`isize::MAX`.
1473            special_tys.insert(*pat.ty());
1474        }
1475    }
1476    pat.iter_fields().for_each(|field_pat| collect_special_tys(cx, field_pat, special_tys))
1477}
1478
1479fn report_adt_defined_here<'tcx>(
1480    tcx: TyCtxt<'tcx>,
1481    ty: Ty<'tcx>,
1482    witnesses: &[WitnessPat<'_, 'tcx>],
1483    point_at_non_local_ty: bool,
1484) -> Option<AdtDefinedHere<'tcx>> {
1485    let ty = ty.peel_refs();
1486    let ty::Adt(def, _) = ty.kind() else {
1487        return None;
1488    };
1489    let adt_def_span =
1490        tcx.hir_get_if_local(def.did()).and_then(|node| node.ident()).map(|ident| ident.span);
1491    let adt_def_span = if point_at_non_local_ty {
1492        adt_def_span.unwrap_or_else(|| tcx.def_span(def.did()))
1493    } else {
1494        adt_def_span?
1495    };
1496
1497    let mut variants = vec![];
1498    for span in maybe_point_at_variant(tcx, *def, witnesses.iter().take(5)) {
1499        variants.push(Variant { span });
1500    }
1501    Some(AdtDefinedHere { adt_def_span, ty, variants })
1502}
1503
1504fn maybe_point_at_variant<'a, 'p: 'a, 'tcx: 'p>(
1505    tcx: TyCtxt<'tcx>,
1506    def: AdtDef<'tcx>,
1507    patterns: impl Iterator<Item = &'a WitnessPat<'p, 'tcx>>,
1508) -> Vec<Span> {
1509    let mut covered = vec![];
1510    for pattern in patterns {
1511        if let Constructor::Variant(variant_index) = pattern.ctor() {
1512            if let ty::Adt(this_def, _) = pattern.ty().kind()
1513                && this_def.did() != def.did()
1514            {
1515                continue;
1516            }
1517            let sp = def.variant(*variant_index).ident(tcx).span;
1518            if covered.contains(&sp) {
1519                // Don't point at variants that have already been covered due to other patterns to avoid
1520                // visual clutter.
1521                continue;
1522            }
1523            covered.push(sp);
1524        }
1525        covered.extend(maybe_point_at_variant(tcx, def, pattern.iter_fields()));
1526    }
1527    covered
1528}