rustc_codegen_llvm/back/
lto.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
use std::collections::BTreeMap;
use std::ffi::{CStr, CString};
use std::fs::File;
use std::mem::ManuallyDrop;
use std::path::Path;
use std::sync::Arc;
use std::{io, iter, slice};

use object::read::archive::ArchiveFile;
use rustc_codegen_ssa::back::lto::{LtoModuleCodegen, SerializedModule, ThinModule, ThinShared};
use rustc_codegen_ssa::back::symbol_export;
use rustc_codegen_ssa::back::write::{CodegenContext, FatLtoInput, TargetMachineFactoryConfig};
use rustc_codegen_ssa::traits::*;
use rustc_codegen_ssa::{ModuleCodegen, ModuleKind, looks_like_rust_object_file};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::memmap::Mmap;
use rustc_errors::{DiagCtxtHandle, FatalError};
use rustc_hir::def_id::LOCAL_CRATE;
use rustc_middle::bug;
use rustc_middle::dep_graph::WorkProduct;
use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
use rustc_session::config::{self, CrateType, Lto};
use tracing::{debug, info};

use crate::back::write::{
    self, CodegenDiagnosticsStage, DiagnosticHandlers, bitcode_section_name, save_temp_bitcode,
};
use crate::errors::{
    DynamicLinkingWithLTO, LlvmError, LtoBitcodeFromRlib, LtoDisallowed, LtoDylib, LtoProcMacro,
};
use crate::llvm::{self, build_string};
use crate::{LlvmCodegenBackend, ModuleLlvm};

/// We keep track of the computed LTO cache keys from the previous
/// session to determine which CGUs we can reuse.
const THIN_LTO_KEYS_INCR_COMP_FILE_NAME: &str = "thin-lto-past-keys.bin";

fn crate_type_allows_lto(crate_type: CrateType) -> bool {
    match crate_type {
        CrateType::Executable
        | CrateType::Dylib
        | CrateType::Staticlib
        | CrateType::Cdylib
        | CrateType::ProcMacro => true,
        CrateType::Rlib => false,
    }
}

fn prepare_lto(
    cgcx: &CodegenContext<LlvmCodegenBackend>,
    dcx: DiagCtxtHandle<'_>,
) -> Result<(Vec<CString>, Vec<(SerializedModule<ModuleBuffer>, CString)>), FatalError> {
    let export_threshold = match cgcx.lto {
        // We're just doing LTO for our one crate
        Lto::ThinLocal => SymbolExportLevel::Rust,

        // We're doing LTO for the entire crate graph
        Lto::Fat | Lto::Thin => symbol_export::crates_export_threshold(&cgcx.crate_types),

        Lto::No => panic!("didn't request LTO but we're doing LTO"),
    };

    let symbol_filter = &|&(ref name, info): &(String, SymbolExportInfo)| {
        if info.level.is_below_threshold(export_threshold) || info.used {
            Some(CString::new(name.as_str()).unwrap())
        } else {
            None
        }
    };
    let exported_symbols = cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO");
    let mut symbols_below_threshold = {
        let _timer = cgcx.prof.generic_activity("LLVM_lto_generate_symbols_below_threshold");
        exported_symbols[&LOCAL_CRATE].iter().filter_map(symbol_filter).collect::<Vec<CString>>()
    };
    info!("{} symbols to preserve in this crate", symbols_below_threshold.len());

    // If we're performing LTO for the entire crate graph, then for each of our
    // upstream dependencies, find the corresponding rlib and load the bitcode
    // from the archive.
    //
    // We save off all the bytecode and LLVM module ids for later processing
    // with either fat or thin LTO
    let mut upstream_modules = Vec::new();
    if cgcx.lto != Lto::ThinLocal {
        // Make sure we actually can run LTO
        for crate_type in cgcx.crate_types.iter() {
            if !crate_type_allows_lto(*crate_type) {
                dcx.emit_err(LtoDisallowed);
                return Err(FatalError);
            } else if *crate_type == CrateType::Dylib {
                if !cgcx.opts.unstable_opts.dylib_lto {
                    dcx.emit_err(LtoDylib);
                    return Err(FatalError);
                }
            } else if *crate_type == CrateType::ProcMacro && !cgcx.opts.unstable_opts.dylib_lto {
                dcx.emit_err(LtoProcMacro);
                return Err(FatalError);
            }
        }

        if cgcx.opts.cg.prefer_dynamic && !cgcx.opts.unstable_opts.dylib_lto {
            dcx.emit_err(DynamicLinkingWithLTO);
            return Err(FatalError);
        }

        for &(cnum, ref path) in cgcx.each_linked_rlib_for_lto.iter() {
            let exported_symbols =
                cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO");
            {
                let _timer =
                    cgcx.prof.generic_activity("LLVM_lto_generate_symbols_below_threshold");
                symbols_below_threshold
                    .extend(exported_symbols[&cnum].iter().filter_map(symbol_filter));
            }

            let archive_data = unsafe {
                Mmap::map(std::fs::File::open(&path).expect("couldn't open rlib"))
                    .expect("couldn't map rlib")
            };
            let archive = ArchiveFile::parse(&*archive_data).expect("wanted an rlib");
            let obj_files = archive
                .members()
                .filter_map(|child| {
                    child.ok().and_then(|c| {
                        std::str::from_utf8(c.name()).ok().map(|name| (name.trim(), c))
                    })
                })
                .filter(|&(name, _)| looks_like_rust_object_file(name));
            for (name, child) in obj_files {
                info!("adding bitcode from {}", name);
                match get_bitcode_slice_from_object_data(
                    child.data(&*archive_data).expect("corrupt rlib"),
                    cgcx,
                ) {
                    Ok(data) => {
                        let module = SerializedModule::FromRlib(data.to_vec());
                        upstream_modules.push((module, CString::new(name).unwrap()));
                    }
                    Err(e) => {
                        dcx.emit_err(e);
                        return Err(FatalError);
                    }
                }
            }
        }
    }

    // __llvm_profile_counter_bias is pulled in at link time by an undefined reference to
    // __llvm_profile_runtime, therefore we won't know until link time if this symbol
    // should have default visibility.
    symbols_below_threshold.push(c"__llvm_profile_counter_bias".to_owned());
    Ok((symbols_below_threshold, upstream_modules))
}

fn get_bitcode_slice_from_object_data<'a>(
    obj: &'a [u8],
    cgcx: &CodegenContext<LlvmCodegenBackend>,
) -> Result<&'a [u8], LtoBitcodeFromRlib> {
    // We're about to assume the data here is an object file with sections, but if it's raw LLVM IR
    // that won't work. Fortunately, if that's what we have we can just return the object directly,
    // so we sniff the relevant magic strings here and return.
    if obj.starts_with(b"\xDE\xC0\x17\x0B") || obj.starts_with(b"BC\xC0\xDE") {
        return Ok(obj);
    }
    // We drop the "__LLVM," prefix here because on Apple platforms there's a notion of "segment
    // name" which in the public API for sections gets treated as part of the section name, but
    // internally in MachOObjectFile.cpp gets treated separately.
    let section_name = bitcode_section_name(cgcx).to_str().unwrap().trim_start_matches("__LLVM,");
    let mut len = 0;
    let data = unsafe {
        llvm::LLVMRustGetSliceFromObjectDataByName(
            obj.as_ptr(),
            obj.len(),
            section_name.as_ptr(),
            section_name.len(),
            &mut len,
        )
    };
    if !data.is_null() {
        assert!(len != 0);
        let bc = unsafe { slice::from_raw_parts(data, len) };

        // `bc` must be a sub-slice of `obj`.
        assert!(obj.as_ptr() <= bc.as_ptr());
        assert!(bc[bc.len()..bc.len()].as_ptr() <= obj[obj.len()..obj.len()].as_ptr());

        Ok(bc)
    } else {
        assert!(len == 0);
        Err(LtoBitcodeFromRlib {
            llvm_err: llvm::last_error().unwrap_or_else(|| "unknown LLVM error".to_string()),
        })
    }
}

/// Performs fat LTO by merging all modules into a single one and returning it
/// for further optimization.
pub(crate) fn run_fat(
    cgcx: &CodegenContext<LlvmCodegenBackend>,
    modules: Vec<FatLtoInput<LlvmCodegenBackend>>,
    cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
) -> Result<LtoModuleCodegen<LlvmCodegenBackend>, FatalError> {
    let dcx = cgcx.create_dcx();
    let dcx = dcx.handle();
    let (symbols_below_threshold, upstream_modules) = prepare_lto(cgcx, dcx)?;
    let symbols_below_threshold =
        symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>();
    fat_lto(cgcx, dcx, modules, cached_modules, upstream_modules, &symbols_below_threshold)
}

/// Performs thin LTO by performing necessary global analysis and returning two
/// lists, one of the modules that need optimization and another for modules that
/// can simply be copied over from the incr. comp. cache.
pub(crate) fn run_thin(
    cgcx: &CodegenContext<LlvmCodegenBackend>,
    modules: Vec<(String, ThinBuffer)>,
    cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
) -> Result<(Vec<LtoModuleCodegen<LlvmCodegenBackend>>, Vec<WorkProduct>), FatalError> {
    let dcx = cgcx.create_dcx();
    let dcx = dcx.handle();
    let (symbols_below_threshold, upstream_modules) = prepare_lto(cgcx, dcx)?;
    let symbols_below_threshold =
        symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>();
    if cgcx.opts.cg.linker_plugin_lto.enabled() {
        unreachable!(
            "We should never reach this case if the LTO step \
                      is deferred to the linker"
        );
    }
    thin_lto(cgcx, dcx, modules, upstream_modules, cached_modules, &symbols_below_threshold)
}

pub(crate) fn prepare_thin(
    module: ModuleCodegen<ModuleLlvm>,
    emit_summary: bool,
) -> (String, ThinBuffer) {
    let name = module.name;
    let buffer = ThinBuffer::new(module.module_llvm.llmod(), true, emit_summary);
    (name, buffer)
}

fn fat_lto(
    cgcx: &CodegenContext<LlvmCodegenBackend>,
    dcx: DiagCtxtHandle<'_>,
    modules: Vec<FatLtoInput<LlvmCodegenBackend>>,
    cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
    mut serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>,
    symbols_below_threshold: &[*const libc::c_char],
) -> Result<LtoModuleCodegen<LlvmCodegenBackend>, FatalError> {
    let _timer = cgcx.prof.generic_activity("LLVM_fat_lto_build_monolithic_module");
    info!("going for a fat lto");

    // Sort out all our lists of incoming modules into two lists.
    //
    // * `serialized_modules` (also and argument to this function) contains all
    //   modules that are serialized in-memory.
    // * `in_memory` contains modules which are already parsed and in-memory,
    //   such as from multi-CGU builds.
    //
    // All of `cached_modules` (cached from previous incremental builds) can
    // immediately go onto the `serialized_modules` modules list and then we can
    // split the `modules` array into these two lists.
    let mut in_memory = Vec::new();
    serialized_modules.extend(cached_modules.into_iter().map(|(buffer, wp)| {
        info!("pushing cached module {:?}", wp.cgu_name);
        (buffer, CString::new(wp.cgu_name).unwrap())
    }));
    for module in modules {
        match module {
            FatLtoInput::InMemory(m) => in_memory.push(m),
            FatLtoInput::Serialized { name, buffer } => {
                info!("pushing serialized module {:?}", name);
                let buffer = SerializedModule::Local(buffer);
                serialized_modules.push((buffer, CString::new(name).unwrap()));
            }
        }
    }

    // Find the "costliest" module and merge everything into that codegen unit.
    // All the other modules will be serialized and reparsed into the new
    // context, so this hopefully avoids serializing and parsing the largest
    // codegen unit.
    //
    // Additionally use a regular module as the base here to ensure that various
    // file copy operations in the backend work correctly. The only other kind
    // of module here should be an allocator one, and if your crate is smaller
    // than the allocator module then the size doesn't really matter anyway.
    let costliest_module = in_memory
        .iter()
        .enumerate()
        .filter(|&(_, module)| module.kind == ModuleKind::Regular)
        .map(|(i, module)| {
            let cost = unsafe { llvm::LLVMRustModuleCost(module.module_llvm.llmod()) };
            (cost, i)
        })
        .max();

    // If we found a costliest module, we're good to go. Otherwise all our
    // inputs were serialized which could happen in the case, for example, that
    // all our inputs were incrementally reread from the cache and we're just
    // re-executing the LTO passes. If that's the case deserialize the first
    // module and create a linker with it.
    let module: ModuleCodegen<ModuleLlvm> = match costliest_module {
        Some((_cost, i)) => in_memory.remove(i),
        None => {
            assert!(!serialized_modules.is_empty(), "must have at least one serialized module");
            let (buffer, name) = serialized_modules.remove(0);
            info!("no in-memory regular modules to choose from, parsing {:?}", name);
            ModuleCodegen {
                module_llvm: ModuleLlvm::parse(cgcx, &name, buffer.data(), dcx)?,
                name: name.into_string().unwrap(),
                kind: ModuleKind::Regular,
            }
        }
    };
    {
        let (llcx, llmod) = {
            let llvm = &module.module_llvm;
            (&llvm.llcx, llvm.llmod())
        };
        info!("using {:?} as a base module", module.name);

        // The linking steps below may produce errors and diagnostics within LLVM
        // which we'd like to handle and print, so set up our diagnostic handlers
        // (which get unregistered when they go out of scope below).
        let _handler =
            DiagnosticHandlers::new(cgcx, dcx, llcx, &module, CodegenDiagnosticsStage::LTO);

        // For all other modules we codegened we'll need to link them into our own
        // bitcode. All modules were codegened in their own LLVM context, however,
        // and we want to move everything to the same LLVM context. Currently the
        // way we know of to do that is to serialize them to a string and them parse
        // them later. Not great but hey, that's why it's "fat" LTO, right?
        for module in in_memory {
            let buffer = ModuleBuffer::new(module.module_llvm.llmod());
            let llmod_id = CString::new(&module.name[..]).unwrap();
            serialized_modules.push((SerializedModule::Local(buffer), llmod_id));
        }
        // Sort the modules to ensure we produce deterministic results.
        serialized_modules.sort_by(|module1, module2| module1.1.cmp(&module2.1));

        // For all serialized bitcode files we parse them and link them in as we did
        // above, this is all mostly handled in C++.
        let mut linker = Linker::new(llmod);
        for (bc_decoded, name) in serialized_modules {
            let _timer = cgcx
                .prof
                .generic_activity_with_arg_recorder("LLVM_fat_lto_link_module", |recorder| {
                    recorder.record_arg(format!("{name:?}"))
                });
            info!("linking {:?}", name);
            let data = bc_decoded.data();
            linker.add(data).map_err(|()| write::llvm_err(dcx, LlvmError::LoadBitcode { name }))?;
        }
        drop(linker);
        save_temp_bitcode(cgcx, &module, "lto.input");

        // Internalize everything below threshold to help strip out more modules and such.
        unsafe {
            let ptr = symbols_below_threshold.as_ptr();
            llvm::LLVMRustRunRestrictionPass(
                llmod,
                ptr as *const *const libc::c_char,
                symbols_below_threshold.len() as libc::size_t,
            );
            save_temp_bitcode(cgcx, &module, "lto.after-restriction");
        }
    }

    Ok(LtoModuleCodegen::Fat(module))
}

pub(crate) struct Linker<'a>(&'a mut llvm::Linker<'a>);

impl<'a> Linker<'a> {
    pub(crate) fn new(llmod: &'a llvm::Module) -> Self {
        unsafe { Linker(llvm::LLVMRustLinkerNew(llmod)) }
    }

    pub(crate) fn add(&mut self, bytecode: &[u8]) -> Result<(), ()> {
        unsafe {
            if llvm::LLVMRustLinkerAdd(
                self.0,
                bytecode.as_ptr() as *const libc::c_char,
                bytecode.len(),
            ) {
                Ok(())
            } else {
                Err(())
            }
        }
    }
}

impl Drop for Linker<'_> {
    fn drop(&mut self) {
        unsafe {
            llvm::LLVMRustLinkerFree(&mut *(self.0 as *mut _));
        }
    }
}

/// Prepare "thin" LTO to get run on these modules.
///
/// The general structure of ThinLTO is quite different from the structure of
/// "fat" LTO above. With "fat" LTO all LLVM modules in question are merged into
/// one giant LLVM module, and then we run more optimization passes over this
/// big module after internalizing most symbols. Thin LTO, on the other hand,
/// avoid this large bottleneck through more targeted optimization.
///
/// At a high level Thin LTO looks like:
///
///    1. Prepare a "summary" of each LLVM module in question which describes
///       the values inside, cost of the values, etc.
///    2. Merge the summaries of all modules in question into one "index"
///    3. Perform some global analysis on this index
///    4. For each module, use the index and analysis calculated previously to
///       perform local transformations on the module, for example inlining
///       small functions from other modules.
///    5. Run thin-specific optimization passes over each module, and then code
///       generate everything at the end.
///
/// The summary for each module is intended to be quite cheap, and the global
/// index is relatively quite cheap to create as well. As a result, the goal of
/// ThinLTO is to reduce the bottleneck on LTO and enable LTO to be used in more
/// situations. For example one cheap optimization is that we can parallelize
/// all codegen modules, easily making use of all the cores on a machine.
///
/// With all that in mind, the function here is designed at specifically just
/// calculating the *index* for ThinLTO. This index will then be shared amongst
/// all of the `LtoModuleCodegen` units returned below and destroyed once
/// they all go out of scope.
fn thin_lto(
    cgcx: &CodegenContext<LlvmCodegenBackend>,
    dcx: DiagCtxtHandle<'_>,
    modules: Vec<(String, ThinBuffer)>,
    serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>,
    cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
    symbols_below_threshold: &[*const libc::c_char],
) -> Result<(Vec<LtoModuleCodegen<LlvmCodegenBackend>>, Vec<WorkProduct>), FatalError> {
    let _timer = cgcx.prof.generic_activity("LLVM_thin_lto_global_analysis");
    unsafe {
        info!("going for that thin, thin LTO");

        let green_modules: FxHashMap<_, _> =
            cached_modules.iter().map(|(_, wp)| (wp.cgu_name.clone(), wp.clone())).collect();

        let full_scope_len = modules.len() + serialized_modules.len() + cached_modules.len();
        let mut thin_buffers = Vec::with_capacity(modules.len());
        let mut module_names = Vec::with_capacity(full_scope_len);
        let mut thin_modules = Vec::with_capacity(full_scope_len);

        for (i, (name, buffer)) in modules.into_iter().enumerate() {
            info!("local module: {} - {}", i, name);
            let cname = CString::new(name.as_bytes()).unwrap();
            thin_modules.push(llvm::ThinLTOModule {
                identifier: cname.as_ptr(),
                data: buffer.data().as_ptr(),
                len: buffer.data().len(),
            });
            thin_buffers.push(buffer);
            module_names.push(cname);
        }

        // FIXME: All upstream crates are deserialized internally in the
        //        function below to extract their summary and modules. Note that
        //        unlike the loop above we *must* decode and/or read something
        //        here as these are all just serialized files on disk. An
        //        improvement, however, to make here would be to store the
        //        module summary separately from the actual module itself. Right
        //        now this is store in one large bitcode file, and the entire
        //        file is deflate-compressed. We could try to bypass some of the
        //        decompression by storing the index uncompressed and only
        //        lazily decompressing the bytecode if necessary.
        //
        //        Note that truly taking advantage of this optimization will
        //        likely be further down the road. We'd have to implement
        //        incremental ThinLTO first where we could actually avoid
        //        looking at upstream modules entirely sometimes (the contents,
        //        we must always unconditionally look at the index).
        let mut serialized = Vec::with_capacity(serialized_modules.len() + cached_modules.len());

        let cached_modules =
            cached_modules.into_iter().map(|(sm, wp)| (sm, CString::new(wp.cgu_name).unwrap()));

        for (module, name) in serialized_modules.into_iter().chain(cached_modules) {
            info!("upstream or cached module {:?}", name);
            thin_modules.push(llvm::ThinLTOModule {
                identifier: name.as_ptr(),
                data: module.data().as_ptr(),
                len: module.data().len(),
            });
            serialized.push(module);
            module_names.push(name);
        }

        // Sanity check
        assert_eq!(thin_modules.len(), module_names.len());

        // Delegate to the C++ bindings to create some data here. Once this is a
        // tried-and-true interface we may wish to try to upstream some of this
        // to LLVM itself, right now we reimplement a lot of what they do
        // upstream...
        let data = llvm::LLVMRustCreateThinLTOData(
            thin_modules.as_ptr(),
            thin_modules.len(),
            symbols_below_threshold.as_ptr(),
            symbols_below_threshold.len(),
        )
        .ok_or_else(|| write::llvm_err(dcx, LlvmError::PrepareThinLtoContext))?;

        let data = ThinData(data);

        info!("thin LTO data created");

        let (key_map_path, prev_key_map, curr_key_map) = if let Some(ref incr_comp_session_dir) =
            cgcx.incr_comp_session_dir
        {
            let path = incr_comp_session_dir.join(THIN_LTO_KEYS_INCR_COMP_FILE_NAME);
            // If the previous file was deleted, or we get an IO error
            // reading the file, then we'll just use `None` as the
            // prev_key_map, which will force the code to be recompiled.
            let prev =
                if path.exists() { ThinLTOKeysMap::load_from_file(&path).ok() } else { None };
            let curr = ThinLTOKeysMap::from_thin_lto_modules(&data, &thin_modules, &module_names);
            (Some(path), prev, curr)
        } else {
            // If we don't compile incrementally, we don't need to load the
            // import data from LLVM.
            assert!(green_modules.is_empty());
            let curr = ThinLTOKeysMap::default();
            (None, None, curr)
        };
        info!("thin LTO cache key map loaded");
        info!("prev_key_map: {:#?}", prev_key_map);
        info!("curr_key_map: {:#?}", curr_key_map);

        // Throw our data in an `Arc` as we'll be sharing it across threads. We
        // also put all memory referenced by the C++ data (buffers, ids, etc)
        // into the arc as well. After this we'll create a thin module
        // codegen per module in this data.
        let shared = Arc::new(ThinShared {
            data,
            thin_buffers,
            serialized_modules: serialized,
            module_names,
        });

        let mut copy_jobs = vec![];
        let mut opt_jobs = vec![];

        info!("checking which modules can be-reused and which have to be re-optimized.");
        for (module_index, module_name) in shared.module_names.iter().enumerate() {
            let module_name = module_name_to_str(module_name);
            if let (Some(prev_key_map), true) =
                (prev_key_map.as_ref(), green_modules.contains_key(module_name))
            {
                assert!(cgcx.incr_comp_session_dir.is_some());

                // If a module exists in both the current and the previous session,
                // and has the same LTO cache key in both sessions, then we can re-use it
                if prev_key_map.keys.get(module_name) == curr_key_map.keys.get(module_name) {
                    let work_product = green_modules[module_name].clone();
                    copy_jobs.push(work_product);
                    info!(" - {}: re-used", module_name);
                    assert!(cgcx.incr_comp_session_dir.is_some());
                    continue;
                }
            }

            info!(" - {}: re-compiled", module_name);
            opt_jobs.push(LtoModuleCodegen::Thin(ThinModule {
                shared: Arc::clone(&shared),
                idx: module_index,
            }));
        }

        // Save the current ThinLTO import information for the next compilation
        // session, overwriting the previous serialized data (if any).
        if let Some(path) = key_map_path {
            if let Err(err) = curr_key_map.save_to_file(&path) {
                return Err(write::llvm_err(dcx, LlvmError::WriteThinLtoKey { err }));
            }
        }

        Ok((opt_jobs, copy_jobs))
    }
}

pub(crate) fn run_pass_manager(
    cgcx: &CodegenContext<LlvmCodegenBackend>,
    dcx: DiagCtxtHandle<'_>,
    module: &mut ModuleCodegen<ModuleLlvm>,
    thin: bool,
) -> Result<(), FatalError> {
    let _timer = cgcx.prof.generic_activity_with_arg("LLVM_lto_optimize", &*module.name);
    let config = cgcx.config(module.kind);

    // Now we have one massive module inside of llmod. Time to run the
    // LTO-specific optimization passes that LLVM provides.
    //
    // This code is based off the code found in llvm's LTO code generator:
    //      llvm/lib/LTO/LTOCodeGenerator.cpp
    debug!("running the pass manager");
    let opt_stage = if thin { llvm::OptStage::ThinLTO } else { llvm::OptStage::FatLTO };
    let opt_level = config.opt_level.unwrap_or(config::OptLevel::No);
    unsafe { write::llvm_optimize(cgcx, dcx, module, config, opt_level, opt_stage) }?;
    debug!("lto done");
    Ok(())
}

pub struct ModuleBuffer(&'static mut llvm::ModuleBuffer);

unsafe impl Send for ModuleBuffer {}
unsafe impl Sync for ModuleBuffer {}

impl ModuleBuffer {
    pub fn new(m: &llvm::Module) -> ModuleBuffer {
        ModuleBuffer(unsafe { llvm::LLVMRustModuleBufferCreate(m) })
    }
}

impl ModuleBufferMethods for ModuleBuffer {
    fn data(&self) -> &[u8] {
        unsafe {
            let ptr = llvm::LLVMRustModuleBufferPtr(self.0);
            let len = llvm::LLVMRustModuleBufferLen(self.0);
            slice::from_raw_parts(ptr, len)
        }
    }
}

impl Drop for ModuleBuffer {
    fn drop(&mut self) {
        unsafe {
            llvm::LLVMRustModuleBufferFree(&mut *(self.0 as *mut _));
        }
    }
}

pub struct ThinData(&'static mut llvm::ThinLTOData);

unsafe impl Send for ThinData {}
unsafe impl Sync for ThinData {}

impl Drop for ThinData {
    fn drop(&mut self) {
        unsafe {
            llvm::LLVMRustFreeThinLTOData(&mut *(self.0 as *mut _));
        }
    }
}

pub struct ThinBuffer(&'static mut llvm::ThinLTOBuffer);

unsafe impl Send for ThinBuffer {}
unsafe impl Sync for ThinBuffer {}

impl ThinBuffer {
    pub fn new(m: &llvm::Module, is_thin: bool, emit_summary: bool) -> ThinBuffer {
        unsafe {
            let buffer = llvm::LLVMRustThinLTOBufferCreate(m, is_thin, emit_summary);
            ThinBuffer(buffer)
        }
    }
}

impl ThinBufferMethods for ThinBuffer {
    fn data(&self) -> &[u8] {
        unsafe {
            let ptr = llvm::LLVMRustThinLTOBufferPtr(self.0) as *const _;
            let len = llvm::LLVMRustThinLTOBufferLen(self.0);
            slice::from_raw_parts(ptr, len)
        }
    }

    fn thin_link_data(&self) -> &[u8] {
        unsafe {
            let ptr = llvm::LLVMRustThinLTOBufferThinLinkDataPtr(self.0) as *const _;
            let len = llvm::LLVMRustThinLTOBufferThinLinkDataLen(self.0);
            slice::from_raw_parts(ptr, len)
        }
    }
}

impl Drop for ThinBuffer {
    fn drop(&mut self) {
        unsafe {
            llvm::LLVMRustThinLTOBufferFree(&mut *(self.0 as *mut _));
        }
    }
}

pub(crate) unsafe fn optimize_thin_module(
    thin_module: ThinModule<LlvmCodegenBackend>,
    cgcx: &CodegenContext<LlvmCodegenBackend>,
) -> Result<ModuleCodegen<ModuleLlvm>, FatalError> {
    let dcx = cgcx.create_dcx();
    let dcx = dcx.handle();

    let module_name = &thin_module.shared.module_names[thin_module.idx];
    let tm_factory_config = TargetMachineFactoryConfig::new(cgcx, module_name.to_str().unwrap());
    let tm = (cgcx.tm_factory)(tm_factory_config).map_err(|e| write::llvm_err(dcx, e))?;

    // Right now the implementation we've got only works over serialized
    // modules, so we create a fresh new LLVM context and parse the module
    // into that context. One day, however, we may do this for upstream
    // crates but for locally codegened modules we may be able to reuse
    // that LLVM Context and Module.
    let llcx = unsafe { llvm::LLVMRustContextCreate(cgcx.fewer_names) };
    let llmod_raw = parse_module(llcx, module_name, thin_module.data(), dcx)? as *const _;
    let mut module = ModuleCodegen {
        module_llvm: ModuleLlvm { llmod_raw, llcx, tm: ManuallyDrop::new(tm) },
        name: thin_module.name().to_string(),
        kind: ModuleKind::Regular,
    };
    {
        let target = &*module.module_llvm.tm;
        let llmod = module.module_llvm.llmod();
        save_temp_bitcode(cgcx, &module, "thin-lto-input");

        // Up next comes the per-module local analyses that we do for Thin LTO.
        // Each of these functions is basically copied from the LLVM
        // implementation and then tailored to suit this implementation. Ideally
        // each of these would be supported by upstream LLVM but that's perhaps
        // a patch for another day!
        //
        // You can find some more comments about these functions in the LLVM
        // bindings we've got (currently `PassWrapper.cpp`)
        {
            let _timer =
                cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_rename", thin_module.name());
            if unsafe {
                !llvm::LLVMRustPrepareThinLTORename(thin_module.shared.data.0, llmod, target)
            } {
                return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule));
            }
            save_temp_bitcode(cgcx, &module, "thin-lto-after-rename");
        }

        {
            let _timer = cgcx
                .prof
                .generic_activity_with_arg("LLVM_thin_lto_resolve_weak", thin_module.name());
            if unsafe { !llvm::LLVMRustPrepareThinLTOResolveWeak(thin_module.shared.data.0, llmod) }
            {
                return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule));
            }
            save_temp_bitcode(cgcx, &module, "thin-lto-after-resolve");
        }

        {
            let _timer = cgcx
                .prof
                .generic_activity_with_arg("LLVM_thin_lto_internalize", thin_module.name());
            if unsafe { !llvm::LLVMRustPrepareThinLTOInternalize(thin_module.shared.data.0, llmod) }
            {
                return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule));
            }
            save_temp_bitcode(cgcx, &module, "thin-lto-after-internalize");
        }

        {
            let _timer =
                cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_import", thin_module.name());
            if unsafe {
                !llvm::LLVMRustPrepareThinLTOImport(thin_module.shared.data.0, llmod, target)
            } {
                return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule));
            }
            save_temp_bitcode(cgcx, &module, "thin-lto-after-import");
        }

        // Alright now that we've done everything related to the ThinLTO
        // analysis it's time to run some optimizations! Here we use the same
        // `run_pass_manager` as the "fat" LTO above except that we tell it to
        // populate a thin-specific pass manager, which presumably LLVM treats a
        // little differently.
        {
            info!("running thin lto passes over {}", module.name);
            run_pass_manager(cgcx, dcx, &mut module, true)?;
            save_temp_bitcode(cgcx, &module, "thin-lto-after-pm");
        }
    }
    Ok(module)
}

/// Maps LLVM module identifiers to their corresponding LLVM LTO cache keys
#[derive(Debug, Default)]
struct ThinLTOKeysMap {
    // key = llvm name of importing module, value = LLVM cache key
    keys: BTreeMap<String, String>,
}

impl ThinLTOKeysMap {
    fn save_to_file(&self, path: &Path) -> io::Result<()> {
        use std::io::Write;
        let mut writer = File::create_buffered(path)?;
        // The entries are loaded back into a hash map in `load_from_file()`, so
        // the order in which we write them to file here does not matter.
        for (module, key) in &self.keys {
            writeln!(writer, "{module} {key}")?;
        }
        Ok(())
    }

    fn load_from_file(path: &Path) -> io::Result<Self> {
        use std::io::BufRead;
        let mut keys = BTreeMap::default();
        let file = File::open_buffered(path)?;
        for line in file.lines() {
            let line = line?;
            let mut split = line.split(' ');
            let module = split.next().unwrap();
            let key = split.next().unwrap();
            assert_eq!(split.next(), None, "Expected two space-separated values, found {line:?}");
            keys.insert(module.to_string(), key.to_string());
        }
        Ok(Self { keys })
    }

    fn from_thin_lto_modules(
        data: &ThinData,
        modules: &[llvm::ThinLTOModule],
        names: &[CString],
    ) -> Self {
        let keys = iter::zip(modules, names)
            .map(|(module, name)| {
                let key = build_string(|rust_str| unsafe {
                    llvm::LLVMRustComputeLTOCacheKey(rust_str, module.identifier, data.0);
                })
                .expect("Invalid ThinLTO module key");
                (module_name_to_str(name).to_string(), key)
            })
            .collect();
        Self { keys }
    }
}

fn module_name_to_str(c_str: &CStr) -> &str {
    c_str.to_str().unwrap_or_else(|e| {
        bug!("Encountered non-utf8 LLVM module name `{}`: {}", c_str.to_string_lossy(), e)
    })
}

pub(crate) fn parse_module<'a>(
    cx: &'a llvm::Context,
    name: &CStr,
    data: &[u8],
    dcx: DiagCtxtHandle<'_>,
) -> Result<&'a llvm::Module, FatalError> {
    unsafe {
        llvm::LLVMRustParseBitcodeForLTO(cx, data.as_ptr(), data.len(), name.as_ptr())
            .ok_or_else(|| write::llvm_err(dcx, LlvmError::ParseBitcode))
    }
}