cargo/core/compiler/fingerprint/mod.rs
1//! Tracks changes to determine if something needs to be recompiled.
2//!
3//! This module implements change-tracking so that Cargo can know whether or
4//! not something needs to be recompiled. A Cargo [`Unit`] can be either "dirty"
5//! (needs to be recompiled) or "fresh" (it does not need to be recompiled).
6//!
7//! ## Mechanisms affecting freshness
8//!
9//! There are several mechanisms that influence a Unit's freshness:
10//!
11//! - The [`Fingerprint`] is a hash, saved to the filesystem in the
12//! `.fingerprint` directory, that tracks information about the Unit. If the
13//! fingerprint is missing (such as the first time the unit is being
14//! compiled), then the unit is dirty. If any of the fingerprint fields
15//! change (like the name of the source file), then the Unit is considered
16//! dirty.
17//!
18//! The `Fingerprint` also tracks the fingerprints of all its dependencies,
19//! so a change in a dependency will propagate the "dirty" status up.
20//!
21//! - Filesystem mtime tracking is also used to check if a unit is dirty.
22//! See the section below on "Mtime comparison" for more details. There
23//! are essentially two parts to mtime tracking:
24//!
25//! 1. The mtime of a Unit's output files is compared to the mtime of all
26//! its dependencies' output file mtimes (see
27//! [`check_filesystem`]). If any output is missing, or is
28//! older than a dependency's output, then the unit is dirty.
29//! 2. The mtime of a Unit's source files is compared to the mtime of its
30//! dep-info file in the fingerprint directory (see [`find_stale_file`]).
31//! The dep-info file is used as an anchor to know when the last build of
32//! the unit was done. See the "dep-info files" section below for more
33//! details. If any input files are missing, or are newer than the
34//! dep-info, then the unit is dirty.
35//!
36//! - Alternatively if you're using the unstable feature `checksum-freshness`
37//! mtimes are ignored entirely in favor of comparing first the file size, and
38//! then the checksum with a known prior value emitted by rustc. Only nightly
39//! rustc will emit the needed metadata at the time of writing. This is dependent
40//! on the unstable feature `-Z checksum-hash-algorithm`.
41//!
42//! Note: Fingerprinting is not a perfect solution. Filesystem mtime tracking
43//! is notoriously imprecise and problematic. Only a small part of the
44//! environment is captured. This is a balance of performance, simplicity, and
45//! completeness. Sandboxing, hashing file contents, tracking every file
46//! access, environment variable, and network operation would ensure more
47//! reliable and reproducible builds at the cost of being complex, slow, and
48//! platform-dependent.
49//!
50//! ## Fingerprints and [`UnitHash`]s
51//!
52//! [`Metadata`] tracks several [`UnitHash`]s, including
53//! [`Metadata::unit_id`], [`Metadata::c_metadata`], and [`Metadata::c_extra_filename`].
54//! See its documentation for more details.
55//!
56//! NOTE: Not all output files are isolated via filename hashes (like dylibs).
57//! The fingerprint directory uses a hash, but sometimes units share the same
58//! fingerprint directory (when they don't have Metadata) so care should be
59//! taken to handle this!
60//!
61//! Fingerprints and [`UnitHash`]s are similar, and track some of the same things.
62//! [`UnitHash`]s contains information that is required to keep Units separate.
63//! The Fingerprint includes additional information that should cause a
64//! recompile, but it is desired to reuse the same filenames. A comparison
65//! of what is tracked:
66//!
67//! Value | Fingerprint | `Metadata::unit_id` [^8] | `Metadata::c_metadata`
68//! -------------------------------------------|-------------|--------------------------|-----------------------
69//! rustc | ✓ | ✓ | ✓
70//! [`Profile`] | ✓ | ✓ | ✓
71//! `cargo rustc` extra args | ✓ | ✓[^7] |
72//! [`CompileMode`] | ✓ | ✓ | ✓
73//! Target Name | ✓ | ✓ | ✓
74//! `TargetKind` (bin/lib/etc.) | ✓ | ✓ | ✓
75//! Enabled Features | ✓ | ✓ | ✓
76//! Declared Features | ✓ | |
77//! Immediate dependency’s hashes | ✓[^1] | ✓ | ✓
78//! [`CompileKind`] (host/target) | ✓ | ✓ | ✓
79//! `__CARGO_DEFAULT_LIB_METADATA`[^4] | | ✓ | ✓
80//! `package_id` | | ✓ | ✓
81//! Target src path relative to ws | ✓ | |
82//! Target flags (test/bench/for_host/edition) | ✓ | |
83//! -C incremental=… flag | ✓ | |
84//! mtime of sources | ✓[^3] | |
85//! RUSTFLAGS/RUSTDOCFLAGS | ✓ | ✓[^7] |
86//! [`Lto`] flags | ✓ | ✓ | ✓
87//! config settings[^5] | ✓ | |
88//! `is_std` | | ✓ | ✓
89//! `[lints]` table[^6] | ✓ | |
90//! `[lints.rust.unexpected_cfgs.check-cfg]` | ✓ | |
91//!
92//! [^1]: Bin dependencies are not included.
93//!
94//! [^3]: See below for details on mtime tracking.
95//!
96//! [^4]: `__CARGO_DEFAULT_LIB_METADATA` is set by rustbuild to embed the
97//! release channel (bootstrap/stable/beta/nightly) in libstd.
98//!
99//! [^5]: Config settings that are not otherwise captured anywhere else.
100//! Currently, this is only `doc.extern-map`.
101//!
102//! [^6]: Via [`Manifest::lint_rustflags`][crate::core::Manifest::lint_rustflags]
103//!
104//! [^7]: extra-flags and RUSTFLAGS are conditionally excluded when `--remap-path-prefix` is
105//! present to avoid breaking build reproducibility while we wait for trim-paths
106//!
107//! [^8]: including `-Cextra-filename`
108//!
109//! When deciding what should go in the Metadata vs the Fingerprint, consider
110//! that some files (like dylibs) do not have a hash in their filename. Thus,
111//! if a value changes, only the fingerprint will detect the change (consider,
112//! for example, swapping between different features). Fields that are only in
113//! Metadata generally aren't relevant to the fingerprint because they
114//! fundamentally change the output (like target vs host changes the directory
115//! where it is emitted).
116//!
117//! ## Fingerprint files
118//!
119//! Fingerprint information is stored in the
120//! `target/{debug,release}/.fingerprint/` directory. Each Unit is stored in a
121//! separate directory. Each Unit directory contains:
122//!
123//! - A file with a 16 hex-digit hash. This is the Fingerprint hash, used for
124//! quick loading and comparison.
125//! - A `.json` file that contains details about the Fingerprint. This is only
126//! used to log details about *why* a fingerprint is considered dirty.
127//! `CARGO_LOG=cargo::core::compiler::fingerprint=trace cargo build` can be
128//! used to display this log information.
129//! - A "dep-info" file which is a translation of rustc's `*.d` dep-info files
130//! to a Cargo-specific format that tweaks file names and is optimized for
131//! reading quickly.
132//! - An `invoked.timestamp` file whose filesystem mtime is updated every time
133//! the Unit is built. This is used for capturing the time when the build
134//! starts, to detect if files are changed in the middle of the build. See
135//! below for more details.
136//!
137//! Note that some units are a little different. A Unit for *running* a build
138//! script or for `rustdoc` does not have a dep-info file (it's not
139//! applicable). Build script `invoked.timestamp` files are in the build
140//! output directory.
141//!
142//! ## Fingerprint calculation
143//!
144//! After the list of Units has been calculated, the Units are added to the
145//! [`JobQueue`]. As each one is added, the fingerprint is calculated, and the
146//! dirty/fresh status is recorded. A closure is used to update the fingerprint
147//! on-disk when the Unit successfully finishes. The closure will recompute the
148//! Fingerprint based on the updated information. If the Unit fails to compile,
149//! the fingerprint is not updated.
150//!
151//! Fingerprints are cached in the [`BuildRunner`]. This makes computing
152//! Fingerprints faster, but also is necessary for properly updating
153//! dependency information. Since a Fingerprint includes the Fingerprints of
154//! all dependencies, when it is updated, by using `Arc` clones, it
155//! automatically picks up the updates to its dependencies.
156//!
157//! ### dep-info files
158//!
159//! Cargo has several kinds of "dep info" files:
160//!
161//! * dep-info files generated by `rustc`.
162//! * Fingerprint dep-info files translated from the first one.
163//! * dep-info for external build system integration.
164//! * Unstable `-Zbinary-dep-depinfo`.
165//!
166//! #### `rustc` dep-info files
167//!
168//! Cargo passes the `--emit=dep-info` flag to `rustc` so that `rustc` will
169//! generate a "dep info" file (with the `.d` extension). This is a
170//! Makefile-like syntax that includes all of the source files used to build
171//! the crate. This file is used by Cargo to know which files to check to see
172//! if the crate will need to be rebuilt. Example:
173//!
174//! ```makefile
175//! /path/to/target/debug/deps/cargo-b6219d178925203d: src/bin/main.rs src/bin/cargo/cli.rs # … etc.
176//! ```
177//!
178//! #### Fingerprint dep-info files
179//!
180//! After `rustc` exits successfully, Cargo will read the first kind of dep
181//! info file and translate it into a binary format that is stored in the
182//! fingerprint directory ([`translate_dep_info`]).
183//!
184//! These are used to quickly scan for any changed files. The mtime of the
185//! fingerprint dep-info file itself is used as the reference for comparing the
186//! source files to determine if any of the source files have been modified
187//! (see [below](#mtime-comparison) for more detail).
188//!
189//! Note that Cargo parses the special `# env-var:...` comments in dep-info
190//! files to learn about environment variables that the rustc compile depends on.
191//! Cargo then later uses this to trigger a recompile if a referenced env var
192//! changes (even if the source didn't change).
193//! This also includes env vars generated from Cargo metadata like `CARGO_PKG_DESCRIPTION`.
194//! (See [`crate::core::manifest::ManifestMetadata`]
195//!
196//! #### dep-info files for build system integration.
197//!
198//! There is also a third dep-info file. Cargo will extend the file created by
199//! rustc with some additional information and saves this into the output
200//! directory. This is intended for build system integration. See the
201//! [`output_depinfo`] function for more detail.
202//!
203//! #### -Zbinary-dep-depinfo
204//!
205//! `rustc` has an experimental flag `-Zbinary-dep-depinfo`. This causes
206//! `rustc` to include binary files (like rlibs) in the dep-info file. This is
207//! primarily to support rustc development, so that Cargo can check the
208//! implicit dependency to the standard library (which lives in the sysroot).
209//! We want Cargo to recompile whenever the standard library rlib/dylibs
210//! change, and this is a generic mechanism to make that work.
211//!
212//! ### Mtime comparison
213//!
214//! The use of modification timestamps is the most common way a unit will be
215//! determined to be dirty or fresh between builds. There are many subtle
216//! issues and edge cases with mtime comparisons. This gives a high-level
217//! overview, but you'll need to read the code for the gritty details. Mtime
218//! handling is different for different unit kinds. The different styles are
219//! driven by the [`Fingerprint::local`] field, which is set based on the unit
220//! kind.
221//!
222//! The status of whether or not the mtime is "stale" or "up-to-date" is
223//! stored in [`Fingerprint::fs_status`].
224//!
225//! All units will compare the mtime of its newest output file with the mtimes
226//! of the outputs of all its dependencies. If any output file is missing,
227//! then the unit is stale. If any dependency is newer, the unit is stale.
228//!
229//! #### Normal package mtime handling
230//!
231//! [`LocalFingerprint::CheckDepInfo`] is used for checking the mtime of
232//! packages. It compares the mtime of the input files (the source files) to
233//! the mtime of the dep-info file (which is written last after a build is
234//! finished). If the dep-info is missing, the unit is stale (it has never
235//! been built). The list of input files comes from the dep-info file. See the
236//! section above for details on dep-info files.
237//!
238//! Also note that although registry and git packages use [`CheckDepInfo`], none
239//! of their source files are included in the dep-info (see
240//! [`translate_dep_info`]), so for those kinds no mtime checking is done
241//! (unless `-Zbinary-dep-depinfo` is used). Repository and git packages are
242//! static, so there is no need to check anything.
243//!
244//! When a build is complete, the mtime of the dep-info file in the
245//! fingerprint directory is modified to rewind it to the time when the build
246//! started. This is done by creating an `invoked.timestamp` file when the
247//! build starts to capture the start time. The mtime is rewound to the start
248//! to handle the case where the user modifies a source file while a build is
249//! running. Cargo can't know whether or not the file was included in the
250//! build, so it takes a conservative approach of assuming the file was *not*
251//! included, and it should be rebuilt during the next build.
252//!
253//! #### Rustdoc mtime handling
254//!
255//! Rustdoc does not emit a dep-info file, so Cargo currently has a relatively
256//! simple system for detecting rebuilds. [`LocalFingerprint::Precalculated`] is
257//! used for rustdoc units. For registry packages, this is the package
258//! version. For git packages, it is the git hash. For path packages, it is
259//! a string of the mtime of the newest file in the package.
260//!
261//! There are some known bugs with how this works, so it should be improved at
262//! some point.
263//!
264//! #### Build script mtime handling
265//!
266//! Build script mtime handling runs in different modes. There is the "old
267//! style" where the build script does not emit any `rerun-if` directives. In
268//! this mode, Cargo will use [`LocalFingerprint::Precalculated`]. See the
269//! "rustdoc" section above how it works.
270//!
271//! In the new-style, each `rerun-if` directive is translated to the
272//! corresponding [`LocalFingerprint`] variant. The [`RerunIfChanged`] variant
273//! compares the mtime of the given filenames against the mtime of the
274//! "output" file.
275//!
276//! Similar to normal units, the build script "output" file mtime is rewound
277//! to the time just before the build script is executed to handle mid-build
278//! modifications.
279//!
280//! ## Considerations for inclusion in a fingerprint
281//!
282//! Over time we've realized a few items which historically were included in
283//! fingerprint hashings should not actually be included. Examples are:
284//!
285//! * Modification time values. We strive to never include a modification time
286//! inside a `Fingerprint` to get hashed into an actual value. While
287//! theoretically fine to do, in practice this causes issues with common
288//! applications like Docker. Docker, after a layer is built, will zero out
289//! the nanosecond part of all filesystem modification times. This means that
290//! the actual modification time is different for all build artifacts, which
291//! if we tracked the actual values of modification times would cause
292//! unnecessary recompiles. To fix this we instead only track paths which are
293//! relevant. These paths are checked dynamically to see if they're up to
294//! date, and the modification time doesn't make its way into the fingerprint
295//! hash.
296//!
297//! * Absolute path names. We strive to maintain a property where if you rename
298//! a project directory Cargo will continue to preserve all build artifacts
299//! and reuse the cache. This means that we can't ever hash an absolute path
300//! name. Instead we always hash relative path names and the "root" is passed
301//! in at runtime dynamically. Some of this is best effort, but the general
302//! idea is that we assume all accesses within a crate stay within that
303//! crate.
304//!
305//! These are pretty tricky to test for unfortunately, but we should have a good
306//! test suite nowadays and lord knows Cargo gets enough testing in the wild!
307//!
308//! ## Build scripts
309//!
310//! The *running* of a build script ([`CompileMode::RunCustomBuild`]) is treated
311//! significantly different than all other Unit kinds. It has its own function
312//! for calculating the Fingerprint ([`calculate_run_custom_build`]) and has some
313//! unique considerations. It does not track the same information as a normal
314//! Unit. The information tracked depends on the `rerun-if-changed` and
315//! `rerun-if-env-changed` statements produced by the build script. If the
316//! script does not emit either of these statements, the Fingerprint runs in
317//! "old style" mode where an mtime change of *any* file in the package will
318//! cause the build script to be re-run. Otherwise, the fingerprint *only*
319//! tracks the individual "rerun-if" items listed by the build script.
320//!
321//! The "rerun-if" statements from a *previous* build are stored in the build
322//! output directory in a file called `output`. Cargo parses this file when
323//! the Unit for that build script is prepared for the [`JobQueue`]. The
324//! Fingerprint code can then use that information to compute the Fingerprint
325//! and compare against the old fingerprint hash.
326//!
327//! Care must be taken with build script Fingerprints because the
328//! [`Fingerprint::local`] value may be changed after the build script runs
329//! (such as if the build script adds or removes "rerun-if" items).
330//!
331//! Another complication is if a build script is overridden. In that case, the
332//! fingerprint is the hash of the output of the override.
333//!
334//! ## Special considerations
335//!
336//! Registry dependencies do not track the mtime of files. This is because
337//! registry dependencies are not expected to change (if a new version is
338//! used, the Package ID will change, causing a rebuild). Cargo currently
339//! partially works with Docker caching. When a Docker image is built, it has
340//! normal mtime information. However, when a step is cached, the nanosecond
341//! portions of all files is zeroed out. Currently this works, but care must
342//! be taken for situations like these.
343//!
344//! HFS on macOS only supports 1 second timestamps. This causes a significant
345//! number of problems, particularly with Cargo's testsuite which does rapid
346//! builds in succession. Other filesystems have various degrees of
347//! resolution.
348//!
349//! Various weird filesystems (such as network filesystems) also can cause
350//! complications. Network filesystems may track the time on the server
351//! (except when the time is set manually such as with
352//! `filetime::set_file_times`). Not all filesystems support modifying the
353//! mtime.
354//!
355//! See the [`A-rebuild-detection`] label on the issue tracker for more.
356//!
357//! [`check_filesystem`]: Fingerprint::check_filesystem
358//! [`Metadata`]: crate::core::compiler::Metadata
359//! [`Metadata::unit_id`]: crate::core::compiler::Metadata::unit_id
360//! [`Metadata::c_metadata`]: crate::core::compiler::Metadata::c_metadata
361//! [`Metadata::c_extra_filename`]: crate::core::compiler::Metadata::c_extra_filename
362//! [`UnitHash`]: crate::core::compiler::UnitHash
363//! [`Profile`]: crate::core::profiles::Profile
364//! [`CompileMode`]: crate::core::compiler::CompileMode
365//! [`Lto`]: crate::core::compiler::Lto
366//! [`CompileKind`]: crate::core::compiler::CompileKind
367//! [`JobQueue`]: super::job_queue::JobQueue
368//! [`output_depinfo`]: super::output_depinfo()
369//! [`CheckDepInfo`]: LocalFingerprint::CheckDepInfo
370//! [`RerunIfChanged`]: LocalFingerprint::RerunIfChanged
371//! [`CompileMode::RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
372//! [`A-rebuild-detection`]: https://github.com/rust-lang/cargo/issues?q=is%3Aissue+is%3Aopen+label%3AA-rebuild-detection
373
374mod dep_info;
375mod dirty_reason;
376mod rustdoc;
377
378use std::collections::hash_map::{Entry, HashMap};
379use std::env;
380use std::ffi::OsString;
381use std::fs;
382use std::fs::File;
383use std::hash::{self, Hash, Hasher};
384use std::io::{self};
385use std::path::{Path, PathBuf};
386use std::sync::{Arc, Mutex};
387use std::time::SystemTime;
388
389use anyhow::Context as _;
390use anyhow::format_err;
391use cargo_util::paths;
392use filetime::FileTime;
393use serde::de;
394use serde::ser;
395use serde::{Deserialize, Serialize};
396use tracing::{debug, info};
397
398use crate::core::Package;
399use crate::core::compiler::unit_graph::UnitDep;
400use crate::util;
401use crate::util::errors::CargoResult;
402use crate::util::interning::InternedString;
403use crate::util::log_message::LogMessage;
404use crate::util::{StableHasher, internal, path_args};
405use crate::{CARGO_ENV, GlobalContext};
406
407use super::BuildContext;
408use super::BuildRunner;
409use super::FileFlavor;
410use super::Job;
411use super::Unit;
412use super::UnitIndex;
413use super::Work;
414use super::custom_build::BuildDeps;
415
416pub use self::dep_info::Checksum;
417pub use self::dep_info::parse_dep_info;
418pub use self::dep_info::parse_rustc_dep_info;
419pub use self::dep_info::translate_dep_info;
420pub use self::dirty_reason::DirtyReason;
421pub use self::rustdoc::RustdocFingerprint;
422
423/// Result of comparing fingerprints between the current and previous builds.
424enum FingerprintComparison {
425 /// The unit does not need rebuilding.
426 Fresh,
427 /// The unit needs rebuilding.
428 Dirty {
429 /// The reason why the unit is dirty.
430 reason: DirtyReason,
431 },
432}
433
434/// Determines if a [`Unit`] is up-to-date, and if not prepares necessary work to
435/// update the persisted fingerprint.
436///
437/// This function will inspect `Unit`, calculate a fingerprint for it, and then
438/// return an appropriate [`Job`] to run. The returned `Job` will be a noop if
439/// `unit` is considered "fresh", or if it was previously built and cached.
440/// Otherwise the `Job` returned will write out the true fingerprint to the
441/// filesystem, to be executed after the unit's work has completed.
442///
443/// The `force` flag is a way to force the `Job` to be "dirty", or always
444/// update the fingerprint. **Beware using this flag** because it does not
445/// transitively propagate throughout the dependency graph, it only forces this
446/// one unit which is very unlikely to be what you want unless you're
447/// exclusively talking about top-level units.
448#[tracing::instrument(
449 skip(build_runner, unit),
450 fields(package_id = %unit.pkg.package_id(), target = unit.target.name())
451)]
452pub fn prepare_target(
453 build_runner: &mut BuildRunner<'_, '_>,
454 unit: &Unit,
455 force: bool,
456) -> CargoResult<Job> {
457 let bcx = build_runner.bcx;
458 let loc = build_runner.files().fingerprint_file_path(unit, "");
459
460 debug!("fingerprint at: {}", loc.display());
461
462 // Figure out if this unit is up to date. After calculating the fingerprint
463 // compare it to an old version, if any, and attempt to print diagnostic
464 // information about failed comparisons to aid in debugging.
465 let fingerprint = calculate(build_runner, unit)?;
466 let mtime_on_use = build_runner.bcx.gctx.cli_unstable().mtime_on_use;
467 let dirty_reason = match compare_old_fingerprint(unit, &loc, &*fingerprint, mtime_on_use, force)
468 {
469 FingerprintComparison::Fresh => None,
470 FingerprintComparison::Dirty { reason } => Some(reason),
471 };
472
473 if let Some(logger) = bcx.logger {
474 let index = bcx.unit_to_index[unit];
475 let mut cause = None;
476 let status = match dirty_reason.as_ref() {
477 Some(reason) if reason.is_fresh_build() => util::log_message::FingerprintStatus::New,
478 Some(reason) => {
479 cause = Some(reason.clone());
480 util::log_message::FingerprintStatus::Dirty
481 }
482 None => util::log_message::FingerprintStatus::Fresh,
483 };
484 logger.log(LogMessage::UnitFingerprint {
485 index,
486 status,
487 cause,
488 });
489 }
490
491 let Some(dirty_reason) = dirty_reason else {
492 return Ok(Job::new_fresh());
493 };
494
495 // We're going to rebuild, so ensure the source of the crate passes all
496 // verification checks before we build it.
497 //
498 // The `Source::verify` method is intended to allow sources to execute
499 // pre-build checks to ensure that the relevant source code is all
500 // up-to-date and as expected. This is currently used primarily for
501 // directory sources which will use this hook to perform an integrity check
502 // on all files in the source to ensure they haven't changed. If they have
503 // changed then an error is issued.
504 let source_id = unit.pkg.package_id().source_id();
505 let sources = bcx.packages.sources();
506 let source = sources
507 .get(source_id)
508 .ok_or_else(|| internal("missing package source"))?;
509 source.verify(unit.pkg.package_id())?;
510
511 // Clear out the old fingerprint file if it exists. This protects when
512 // compilation is interrupted leaving a corrupt file. For example, a
513 // project with a lib.rs and integration test (two units):
514 //
515 // 1. Build the library and integration test.
516 // 2. Make a change to lib.rs (NOT the integration test).
517 // 3. Build the integration test, hit Ctrl-C while linking. With gcc, this
518 // will leave behind an incomplete executable (zero size, or partially
519 // written). NOTE: The library builds successfully, it is the linking
520 // of the integration test that we are interrupting.
521 // 4. Build the integration test again.
522 //
523 // Without the following line, then step 3 will leave a valid fingerprint
524 // on the disk. Then step 4 will think the integration test is "fresh"
525 // because:
526 //
527 // - There is a valid fingerprint hash on disk (written in step 1).
528 // - The mtime of the output file (the corrupt integration executable
529 // written in step 3) is newer than all of its dependencies.
530 // - The mtime of the integration test fingerprint dep-info file (written
531 // in step 1) is newer than the integration test's source files, because
532 // we haven't modified any of its source files.
533 //
534 // But the executable is corrupt and needs to be rebuilt. Clearing the
535 // fingerprint at step 3 ensures that Cargo never mistakes a partially
536 // written output as up-to-date.
537 if loc.exists() {
538 // Truncate instead of delete so that compare_old_fingerprint will
539 // still log the reason for the fingerprint failure instead of just
540 // reporting "failed to read fingerprint" during the next build if
541 // this build fails.
542 paths::write(&loc, b"")?;
543 }
544
545 let write_fingerprint = if unit.mode.is_run_custom_build() {
546 // For build scripts the `local` field of the fingerprint may change
547 // while we're executing it. For example it could be in the legacy
548 // "consider everything a dependency mode" and then we switch to "deps
549 // are explicitly specified" mode.
550 //
551 // To handle this movement we need to regenerate the `local` field of a
552 // build script's fingerprint after it's executed. We do this by
553 // using the `build_script_local_fingerprints` function which returns a
554 // thunk we can invoke on a foreign thread to calculate this.
555 let build_script_outputs = Arc::clone(&build_runner.build_script_outputs);
556 let metadata = build_runner.get_run_build_script_metadata(unit);
557 let (gen_local, _overridden) = build_script_local_fingerprints(build_runner, unit)?;
558 let output_path = build_runner.build_explicit_deps[unit]
559 .build_script_output
560 .clone();
561 Work::new(move |_| {
562 let outputs = build_script_outputs.lock().unwrap();
563 let output = outputs
564 .get(metadata)
565 .expect("output must exist after running");
566 let deps = BuildDeps::new(&output_path, Some(output));
567
568 // FIXME: it's basically buggy that we pass `None` to `call_box`
569 // here. See documentation on `build_script_local_fingerprints`
570 // below for more information. Despite this just try to proceed and
571 // hobble along if it happens to return `Some`.
572 if let Some(new_local) = (gen_local)(&deps, None)? {
573 *fingerprint.local.lock().unwrap() = new_local;
574 }
575
576 write_fingerprint(&loc, &fingerprint)
577 })
578 } else {
579 Work::new(move |_| write_fingerprint(&loc, &fingerprint))
580 };
581
582 Ok(Job::new_dirty(write_fingerprint, dirty_reason))
583}
584
585/// Dependency edge information for fingerprints. This is generated for each
586/// dependency and is stored in a [`Fingerprint`].
587#[derive(Clone)]
588struct DepFingerprint {
589 /// The hash of the package id that this dependency points to
590 pkg_id: u64,
591 /// The crate name we're using for this dependency, which if we change we'll
592 /// need to recompile!
593 name: InternedString,
594 /// Whether or not this dependency is flagged as a public dependency or not.
595 public: bool,
596 /// Whether or not this dependency is an rmeta dependency or a "full"
597 /// dependency. In the case of an rmeta dependency our dependency edge only
598 /// actually requires the rmeta from what we depend on, so when checking
599 /// mtime information all files other than the rmeta can be ignored.
600 only_requires_rmeta: bool,
601 /// The dependency's fingerprint we recursively point to, containing all the
602 /// other hash information we'd otherwise need.
603 fingerprint: Arc<Fingerprint>,
604}
605
606/// A fingerprint can be considered to be a "short string" representing the
607/// state of a world for a package.
608///
609/// If a fingerprint ever changes, then the package itself needs to be
610/// recompiled. Inputs to the fingerprint include source code modifications,
611/// compiler flags, compiler version, etc. This structure is not simply a
612/// `String` due to the fact that some fingerprints cannot be calculated lazily.
613///
614/// Path sources, for example, use the mtime of the corresponding dep-info file
615/// as a fingerprint (all source files must be modified *before* this mtime).
616/// This dep-info file is not generated, however, until after the crate is
617/// compiled. As a result, this structure can be thought of as a fingerprint
618/// to-be. The actual value can be calculated via [`hash_u64()`], but the operation
619/// may fail as some files may not have been generated.
620///
621/// Note that dependencies are taken into account for fingerprints because rustc
622/// requires that whenever an upstream crate is recompiled that all downstream
623/// dependents are also recompiled. This is typically tracked through
624/// [`DependencyQueue`], but it also needs to be retained here because Cargo can
625/// be interrupted while executing, losing the state of the [`DependencyQueue`]
626/// graph.
627///
628/// [`hash_u64()`]: crate::core::compiler::fingerprint::Fingerprint::hash_u64
629/// [`DependencyQueue`]: crate::util::DependencyQueue
630#[derive(Serialize, Deserialize)]
631pub struct Fingerprint {
632 /// Hash of the version of `rustc` used.
633 rustc: u64,
634 /// Sorted list of cfg features enabled.
635 features: String,
636 /// Sorted list of all the declared cfg features.
637 declared_features: String,
638 /// Hash of the `Target` struct, including the target name,
639 /// package-relative source path, edition, etc.
640 target: u64,
641 /// Hash of the [`Profile`], [`CompileMode`], and any extra flags passed via
642 /// `cargo rustc` or `cargo rustdoc`.
643 ///
644 /// [`Profile`]: crate::core::profiles::Profile
645 /// [`CompileMode`]: crate::core::compiler::CompileMode
646 profile: u64,
647 /// Hash of the path to the base source file. This is relative to the
648 /// workspace root for path members, or absolute for other sources.
649 path: u64,
650 /// Fingerprints of dependencies.
651 deps: Vec<DepFingerprint>,
652 /// Information about the inputs that affect this Unit (such as source
653 /// file mtimes or build script environment variables).
654 local: Mutex<Vec<LocalFingerprint>>,
655 /// Cached hash of the [`Fingerprint`] struct. Used to improve performance
656 /// for hashing.
657 #[serde(skip)]
658 memoized_hash: Mutex<Option<u64>>,
659 /// RUSTFLAGS/RUSTDOCFLAGS environment variable value (or config value).
660 rustflags: Vec<String>,
661 /// Hash of various config settings that change how things are compiled.
662 config: u64,
663 /// The rustc target. This is only relevant for `.json` files, otherwise
664 /// the metadata hash segregates the units.
665 compile_kind: u64,
666 /// Unit index for this fingerprint, used for tracing cascading rebuilds.
667 /// Not persisted to disk as indices can change between builds.
668 #[serde(skip)]
669 index: UnitIndex,
670 /// Description of whether the filesystem status for this unit is up to date
671 /// or should be considered stale.
672 #[serde(skip)]
673 fs_status: FsStatus,
674 /// Files, relative to `target_root`, that are produced by the step that
675 /// this `Fingerprint` represents. This is used to detect when the whole
676 /// fingerprint is out of date if this is missing, or if previous
677 /// fingerprints output files are regenerated and look newer than this one.
678 #[serde(skip)]
679 outputs: Vec<PathBuf>,
680}
681
682/// Indication of the status on the filesystem for a particular unit.
683#[derive(Clone, Default, Debug, Serialize, Deserialize)]
684#[serde(tag = "fs_status", rename_all = "kebab-case")]
685pub enum FsStatus {
686 /// This unit is to be considered stale, even if hash information all
687 /// matches.
688 #[default]
689 Stale,
690
691 /// File system inputs have changed (or are missing), or there were
692 /// changes to the environment variables that affect this unit. See
693 /// the variants of [`StaleItem`] for more information.
694 StaleItem(StaleItem),
695
696 /// A dependency was stale.
697 StaleDependency {
698 unit: UnitIndex,
699 #[serde(with = "serde_file_time")]
700 dep_mtime: FileTime,
701 #[serde(with = "serde_file_time")]
702 max_mtime: FileTime,
703 },
704
705 /// A dependency's fingerprint was stale.
706 StaleDepFingerprint { unit: UnitIndex },
707
708 /// This unit is up-to-date. All outputs and their corresponding mtime are
709 /// listed in the payload here for other dependencies to compare against.
710 #[serde(skip)]
711 UpToDate { mtimes: HashMap<PathBuf, FileTime> },
712}
713
714impl FsStatus {
715 fn up_to_date(&self) -> bool {
716 match self {
717 FsStatus::UpToDate { .. } => true,
718 FsStatus::Stale
719 | FsStatus::StaleItem(_)
720 | FsStatus::StaleDependency { .. }
721 | FsStatus::StaleDepFingerprint { .. } => false,
722 }
723 }
724}
725
726mod serde_file_time {
727 use filetime::FileTime;
728 use serde::Deserialize;
729 use serde::Serialize;
730
731 /// Serialize FileTime as milliseconds with nano.
732 pub(super) fn serialize<S>(ft: &FileTime, s: S) -> Result<S::Ok, S::Error>
733 where
734 S: serde::Serializer,
735 {
736 let secs_as_millis = ft.unix_seconds() as f64 * 1000.0;
737 let nanos_as_millis = ft.nanoseconds() as f64 / 1_000_000.0;
738 (secs_as_millis + nanos_as_millis).serialize(s)
739 }
740
741 /// Deserialize FileTime from milliseconds with nano.
742 pub(super) fn deserialize<'de, D>(d: D) -> Result<FileTime, D::Error>
743 where
744 D: serde::Deserializer<'de>,
745 {
746 let millis = f64::deserialize(d)?;
747 let secs = (millis / 1000.0) as i64;
748 let nanos = ((millis % 1000.0) * 1_000_000.0) as u32;
749 Ok(FileTime::from_unix_time(secs, nanos))
750 }
751}
752
753impl Serialize for DepFingerprint {
754 fn serialize<S>(&self, ser: S) -> Result<S::Ok, S::Error>
755 where
756 S: ser::Serializer,
757 {
758 (
759 &self.pkg_id,
760 &self.name,
761 &self.public,
762 &self.fingerprint.hash_u64(),
763 )
764 .serialize(ser)
765 }
766}
767
768impl<'de> Deserialize<'de> for DepFingerprint {
769 fn deserialize<D>(d: D) -> Result<DepFingerprint, D::Error>
770 where
771 D: de::Deserializer<'de>,
772 {
773 let (pkg_id, name, public, hash) = <(u64, String, bool, u64)>::deserialize(d)?;
774 Ok(DepFingerprint {
775 pkg_id,
776 name: name.into(),
777 public,
778 fingerprint: Arc::new(Fingerprint {
779 memoized_hash: Mutex::new(Some(hash)),
780 ..Fingerprint::new()
781 }),
782 // This field is never read since it's only used in
783 // `check_filesystem` which isn't used by fingerprints loaded from
784 // disk.
785 only_requires_rmeta: false,
786 })
787 }
788}
789
790/// A `LocalFingerprint` represents something that we use to detect direct
791/// changes to a `Fingerprint`.
792///
793/// This is where we track file information, env vars, etc. This
794/// `LocalFingerprint` struct is hashed and if the hash changes will force a
795/// recompile of any fingerprint it's included into. Note that the "local"
796/// terminology comes from the fact that it only has to do with one crate, and
797/// `Fingerprint` tracks the transitive propagation of fingerprint changes.
798///
799/// Note that because this is hashed its contents are carefully managed. Like
800/// mentioned in the above module docs, we don't want to hash absolute paths or
801/// mtime information.
802///
803/// Also note that a `LocalFingerprint` is used in `check_filesystem` to detect
804/// when the filesystem contains stale information (based on mtime currently).
805/// The paths here don't change much between compilations but they're used as
806/// inputs when we probe the filesystem looking at information.
807#[derive(Debug, Serialize, Deserialize, Hash)]
808enum LocalFingerprint {
809 /// This is a precalculated fingerprint which has an opaque string we just
810 /// hash as usual. This variant is primarily used for rustdoc where we
811 /// don't have a dep-info file to compare against.
812 ///
813 /// This is also used for build scripts with no `rerun-if-*` statements, but
814 /// that's overall a mistake and causes bugs in Cargo. We shouldn't use this
815 /// for build scripts.
816 Precalculated(String),
817
818 /// This is used for crate compilations. The `dep_info` file is a relative
819 /// path anchored at `target_root(...)` to the dep-info file that Cargo
820 /// generates (which is a custom serialization after parsing rustc's own
821 /// `dep-info` output).
822 ///
823 /// The `dep_info` file, when present, also lists a number of other files
824 /// for us to look at. If any of those files are newer than this file then
825 /// we need to recompile.
826 ///
827 /// If the `checksum` bool is true then the `dep_info` file is expected to
828 /// contain file checksums instead of file mtimes.
829 CheckDepInfo { dep_info: PathBuf, checksum: bool },
830
831 /// This represents a nonempty set of `rerun-if-changed` annotations printed
832 /// out by a build script. The `output` file is a relative file anchored at
833 /// `target_root(...)` which is the actual output of the build script. That
834 /// output has already been parsed and the paths printed out via
835 /// `rerun-if-changed` are listed in `paths`. The `paths` field is relative
836 /// to `pkg.root()`
837 ///
838 /// This is considered up-to-date if all of the `paths` are older than
839 /// `output`, otherwise we need to recompile.
840 RerunIfChanged {
841 output: PathBuf,
842 paths: Vec<PathBuf>,
843 },
844
845 /// This represents a single `rerun-if-env-changed` annotation printed by a
846 /// build script. The exact env var and value are hashed here. There's no
847 /// filesystem dependence here, and if the values are changed the hash will
848 /// change forcing a recompile.
849 RerunIfEnvChanged { var: String, val: Option<String> },
850}
851
852/// See [`FsStatus::StaleItem`].
853#[derive(Clone, Debug, Serialize, Deserialize)]
854#[serde(tag = "stale_item", rename_all = "kebab-case")]
855pub enum StaleItem {
856 MissingFile {
857 path: PathBuf,
858 },
859 UnableToReadFile {
860 path: PathBuf,
861 },
862 FailedToReadMetadata {
863 path: PathBuf,
864 },
865 FileSizeChanged {
866 path: PathBuf,
867 old_size: u64,
868 new_size: u64,
869 },
870 ChangedFile {
871 reference: PathBuf,
872 #[serde(with = "serde_file_time")]
873 reference_mtime: FileTime,
874 stale: PathBuf,
875 #[serde(with = "serde_file_time")]
876 stale_mtime: FileTime,
877 },
878 ChangedChecksum {
879 source: PathBuf,
880 stored_checksum: Checksum,
881 new_checksum: Checksum,
882 },
883 MissingChecksum {
884 path: PathBuf,
885 },
886 ChangedEnv {
887 var: String,
888 previous: Option<String>,
889 current: Option<String>,
890 },
891}
892
893impl LocalFingerprint {
894 /// Read the environment variable of the given env `key`, and creates a new
895 /// [`LocalFingerprint::RerunIfEnvChanged`] for it. The `env_config` is used firstly
896 /// to check if the env var is set in the config system as some envs need to be overridden.
897 /// If not, it will fallback to `std::env::var`.
898 ///
899 // TODO: `std::env::var` is allowed at this moment. Should figure out
900 // if it makes sense if permitting to read env from the env snapshot.
901 #[allow(clippy::disallowed_methods)]
902 fn from_env<K: AsRef<str>>(
903 key: K,
904 env_config: &Arc<HashMap<String, OsString>>,
905 ) -> LocalFingerprint {
906 let key = key.as_ref();
907 let var = key.to_owned();
908 let val = if let Some(val) = env_config.get(key) {
909 val.to_str().map(ToOwned::to_owned)
910 } else {
911 env::var(key).ok()
912 };
913 LocalFingerprint::RerunIfEnvChanged { var, val }
914 }
915
916 /// Checks dynamically at runtime if this `LocalFingerprint` has a stale
917 /// item inside of it.
918 ///
919 /// The main purpose of this function is to handle two different ways
920 /// fingerprints can be invalidated:
921 ///
922 /// * One is a dependency listed in rustc's dep-info files is invalid. Note
923 /// that these could either be env vars or files. We check both here.
924 ///
925 /// * Another is the `rerun-if-changed` directive from build scripts. This
926 /// is where we'll find whether files have actually changed
927 fn find_stale_item(
928 &self,
929 mtime_cache: &mut HashMap<PathBuf, FileTime>,
930 checksum_cache: &mut HashMap<PathBuf, Checksum>,
931 pkg: &Package,
932 build_root: &Path,
933 cargo_exe: &Path,
934 gctx: &GlobalContext,
935 ) -> CargoResult<Option<StaleItem>> {
936 let pkg_root = pkg.root();
937 match self {
938 // We need to parse `dep_info`, learn about the crate's dependencies.
939 //
940 // For each env var we see if our current process's env var still
941 // matches, and for each file we see if any of them are newer than
942 // the `dep_info` file itself whose mtime represents the start of
943 // rustc.
944 LocalFingerprint::CheckDepInfo { dep_info, checksum } => {
945 let dep_info = build_root.join(dep_info);
946 let Some(info) = parse_dep_info(pkg_root, build_root, &dep_info)? else {
947 return Ok(Some(StaleItem::MissingFile { path: dep_info }));
948 };
949 for (key, previous) in info.env.iter() {
950 if let Some(value) = pkg.manifest().metadata().env_var(key.as_str()) {
951 if Some(value.as_ref()) == previous.as_deref() {
952 continue;
953 }
954 }
955
956 let current = if key == CARGO_ENV {
957 Some(cargo_exe.to_str().ok_or_else(|| {
958 format_err!(
959 "cargo exe path {} must be valid UTF-8",
960 cargo_exe.display()
961 )
962 })?)
963 } else {
964 if let Some(value) = gctx.env_config()?.get(key) {
965 value.to_str()
966 } else {
967 gctx.get_env(key).ok()
968 }
969 };
970 if current == previous.as_deref() {
971 continue;
972 }
973 return Ok(Some(StaleItem::ChangedEnv {
974 var: key.clone(),
975 previous: previous.clone(),
976 current: current.map(Into::into),
977 }));
978 }
979 if *checksum {
980 Ok(find_stale_file(
981 mtime_cache,
982 checksum_cache,
983 &dep_info,
984 info.files.iter().map(|(file, checksum)| (file, *checksum)),
985 *checksum,
986 ))
987 } else {
988 Ok(find_stale_file(
989 mtime_cache,
990 checksum_cache,
991 &dep_info,
992 info.files.into_keys().map(|p| (p, None)),
993 *checksum,
994 ))
995 }
996 }
997
998 // We need to verify that no paths listed in `paths` are newer than
999 // the `output` path itself, or the last time the build script ran.
1000 LocalFingerprint::RerunIfChanged { output, paths } => Ok(find_stale_file(
1001 mtime_cache,
1002 checksum_cache,
1003 &build_root.join(output),
1004 paths.iter().map(|p| (pkg_root.join(p), None)),
1005 false,
1006 )),
1007
1008 // These have no dependencies on the filesystem, and their values
1009 // are included natively in the `Fingerprint` hash so nothing
1010 // tocheck for here.
1011 LocalFingerprint::RerunIfEnvChanged { .. } => Ok(None),
1012 LocalFingerprint::Precalculated(..) => Ok(None),
1013 }
1014 }
1015
1016 fn kind(&self) -> &'static str {
1017 match self {
1018 LocalFingerprint::Precalculated(..) => "precalculated",
1019 LocalFingerprint::CheckDepInfo { .. } => "dep-info",
1020 LocalFingerprint::RerunIfChanged { .. } => "rerun-if-changed",
1021 LocalFingerprint::RerunIfEnvChanged { .. } => "rerun-if-env-changed",
1022 }
1023 }
1024}
1025
1026impl Fingerprint {
1027 fn new() -> Fingerprint {
1028 Fingerprint {
1029 rustc: 0,
1030 target: 0,
1031 profile: 0,
1032 path: 0,
1033 features: String::new(),
1034 declared_features: String::new(),
1035 deps: Vec::new(),
1036 local: Mutex::new(Vec::new()),
1037 memoized_hash: Mutex::new(None),
1038 rustflags: Vec::new(),
1039 config: 0,
1040 compile_kind: 0,
1041 index: UnitIndex::default(),
1042 fs_status: FsStatus::Stale,
1043 outputs: Vec::new(),
1044 }
1045 }
1046
1047 /// For performance reasons fingerprints will memoize their own hash, but
1048 /// there's also internal mutability with its `local` field which can
1049 /// change, for example with build scripts, during a build.
1050 ///
1051 /// This method can be used to bust all memoized hashes just before a build
1052 /// to ensure that after a build completes everything is up-to-date.
1053 pub fn clear_memoized(&self) {
1054 *self.memoized_hash.lock().unwrap() = None;
1055 }
1056
1057 fn hash_u64(&self) -> u64 {
1058 if let Some(s) = *self.memoized_hash.lock().unwrap() {
1059 return s;
1060 }
1061 let ret = util::hash_u64(self);
1062 *self.memoized_hash.lock().unwrap() = Some(ret);
1063 ret
1064 }
1065
1066 /// Compares this fingerprint with an old version which was previously
1067 /// serialized to filesystem.
1068 ///
1069 /// The purpose of this is exclusively to produce a diagnostic message
1070 /// [`DirtyReason`], indicating why we're recompiling something.
1071 fn compare(&self, old: &Fingerprint) -> DirtyReason {
1072 if self.rustc != old.rustc {
1073 return DirtyReason::RustcChanged;
1074 }
1075 if self.features != old.features {
1076 return DirtyReason::FeaturesChanged {
1077 old: old.features.clone(),
1078 new: self.features.clone(),
1079 };
1080 }
1081 if self.declared_features != old.declared_features {
1082 return DirtyReason::DeclaredFeaturesChanged {
1083 old: old.declared_features.clone(),
1084 new: self.declared_features.clone(),
1085 };
1086 }
1087 if self.target != old.target {
1088 return DirtyReason::TargetConfigurationChanged;
1089 }
1090 if self.path != old.path {
1091 return DirtyReason::PathToSourceChanged;
1092 }
1093 if self.profile != old.profile {
1094 return DirtyReason::ProfileConfigurationChanged;
1095 }
1096 if self.rustflags != old.rustflags {
1097 return DirtyReason::RustflagsChanged {
1098 old: old.rustflags.clone(),
1099 new: self.rustflags.clone(),
1100 };
1101 }
1102 if self.config != old.config {
1103 return DirtyReason::ConfigSettingsChanged;
1104 }
1105 if self.compile_kind != old.compile_kind {
1106 return DirtyReason::CompileKindChanged;
1107 }
1108 let my_local = self.local.lock().unwrap();
1109 let old_local = old.local.lock().unwrap();
1110 if my_local.len() != old_local.len() {
1111 return DirtyReason::LocalLengthsChanged;
1112 }
1113 for (new, old) in my_local.iter().zip(old_local.iter()) {
1114 match (new, old) {
1115 (LocalFingerprint::Precalculated(a), LocalFingerprint::Precalculated(b)) => {
1116 if a != b {
1117 return DirtyReason::PrecalculatedComponentsChanged {
1118 old: b.to_string(),
1119 new: a.to_string(),
1120 };
1121 }
1122 }
1123 (
1124 LocalFingerprint::CheckDepInfo {
1125 dep_info: a_dep,
1126 checksum: checksum_a,
1127 },
1128 LocalFingerprint::CheckDepInfo {
1129 dep_info: b_dep,
1130 checksum: checksum_b,
1131 },
1132 ) => {
1133 if a_dep != b_dep {
1134 return DirtyReason::DepInfoOutputChanged {
1135 old: b_dep.clone(),
1136 new: a_dep.clone(),
1137 };
1138 }
1139 if checksum_a != checksum_b {
1140 return DirtyReason::ChecksumUseChanged { old: *checksum_b };
1141 }
1142 }
1143 (
1144 LocalFingerprint::RerunIfChanged {
1145 output: a_out,
1146 paths: a_paths,
1147 },
1148 LocalFingerprint::RerunIfChanged {
1149 output: b_out,
1150 paths: b_paths,
1151 },
1152 ) => {
1153 if a_out != b_out {
1154 return DirtyReason::RerunIfChangedOutputFileChanged {
1155 old: b_out.clone(),
1156 new: a_out.clone(),
1157 };
1158 }
1159 if a_paths != b_paths {
1160 return DirtyReason::RerunIfChangedOutputPathsChanged {
1161 old: b_paths.clone(),
1162 new: a_paths.clone(),
1163 };
1164 }
1165 }
1166 (
1167 LocalFingerprint::RerunIfEnvChanged {
1168 var: a_key,
1169 val: a_value,
1170 },
1171 LocalFingerprint::RerunIfEnvChanged {
1172 var: b_key,
1173 val: b_value,
1174 },
1175 ) => {
1176 if *a_key != *b_key {
1177 return DirtyReason::EnvVarsChanged {
1178 old: b_key.clone(),
1179 new: a_key.clone(),
1180 };
1181 }
1182 if *a_value != *b_value {
1183 return DirtyReason::EnvVarChanged {
1184 name: a_key.clone(),
1185 old_value: b_value.clone(),
1186 new_value: a_value.clone(),
1187 };
1188 }
1189 }
1190 (a, b) => {
1191 return DirtyReason::LocalFingerprintTypeChanged {
1192 old: b.kind().to_owned(),
1193 new: a.kind().to_owned(),
1194 };
1195 }
1196 }
1197 }
1198
1199 if self.deps.len() != old.deps.len() {
1200 return DirtyReason::NumberOfDependenciesChanged {
1201 old: old.deps.len(),
1202 new: self.deps.len(),
1203 };
1204 }
1205 for (a, b) in self.deps.iter().zip(old.deps.iter()) {
1206 if a.name != b.name {
1207 return DirtyReason::UnitDependencyNameChanged {
1208 old: b.name,
1209 new: a.name,
1210 };
1211 }
1212
1213 if a.fingerprint.hash_u64() != b.fingerprint.hash_u64() {
1214 return DirtyReason::UnitDependencyInfoChanged {
1215 unit: a.fingerprint.index,
1216 };
1217 }
1218 }
1219
1220 if !self.fs_status.up_to_date() {
1221 return DirtyReason::FsStatusOutdated(self.fs_status.clone());
1222 }
1223
1224 // This typically means some filesystem modifications happened or
1225 // something transitive was odd. In general we should strive to provide
1226 // a better error message than this, so if you see this message a lot it
1227 // likely means this method needs to be updated!
1228 DirtyReason::NothingObvious
1229 }
1230
1231 /// Dynamically inspect the local filesystem to update the `fs_status` field
1232 /// of this `Fingerprint`.
1233 ///
1234 /// This function is used just after a `Fingerprint` is constructed to check
1235 /// the local state of the filesystem and propagate any dirtiness from
1236 /// dependencies up to this unit as well. This function assumes that the
1237 /// unit starts out as [`FsStatus::Stale`] and then it will optionally switch
1238 /// it to `UpToDate` if it can.
1239 fn check_filesystem(
1240 &mut self,
1241 mtime_cache: &mut HashMap<PathBuf, FileTime>,
1242 checksum_cache: &mut HashMap<PathBuf, Checksum>,
1243 pkg: &Package,
1244 build_root: &Path,
1245 cargo_exe: &Path,
1246 gctx: &GlobalContext,
1247 ) -> CargoResult<()> {
1248 assert!(!self.fs_status.up_to_date());
1249
1250 let pkg_root = pkg.root();
1251 let mut mtimes = HashMap::new();
1252
1253 // Get the `mtime` of all outputs. Optionally update their mtime
1254 // afterwards based on the `mtime_on_use` flag. Afterwards we want the
1255 // minimum mtime as it's the one we'll be comparing to inputs and
1256 // dependencies.
1257 for output in self.outputs.iter() {
1258 let Ok(mtime) = paths::mtime(output) else {
1259 // This path failed to report its `mtime`. It probably doesn't
1260 // exists, so leave ourselves as stale and bail out.
1261 let item = StaleItem::FailedToReadMetadata {
1262 path: output.clone(),
1263 };
1264 self.fs_status = FsStatus::StaleItem(item);
1265 return Ok(());
1266 };
1267 assert!(mtimes.insert(output.clone(), mtime).is_none());
1268 }
1269
1270 let opt_max = mtimes.iter().max_by_key(|kv| kv.1);
1271 let Some((max_path, max_mtime)) = opt_max else {
1272 // We had no output files. This means we're an overridden build
1273 // script and we're just always up to date because we aren't
1274 // watching the filesystem.
1275 self.fs_status = FsStatus::UpToDate { mtimes };
1276 return Ok(());
1277 };
1278 debug!(
1279 "max output mtime for {:?} is {:?} {}",
1280 pkg_root, max_path, max_mtime
1281 );
1282
1283 for dep in self.deps.iter() {
1284 let dep_mtimes = match &dep.fingerprint.fs_status {
1285 FsStatus::UpToDate { mtimes } => mtimes,
1286 // If our dependency is stale, so are we, so bail out.
1287 FsStatus::Stale
1288 | FsStatus::StaleItem(_)
1289 | FsStatus::StaleDependency { .. }
1290 | FsStatus::StaleDepFingerprint { .. } => {
1291 self.fs_status = FsStatus::StaleDepFingerprint {
1292 unit: dep.fingerprint.index,
1293 };
1294 return Ok(());
1295 }
1296 };
1297
1298 // If our dependency edge only requires the rmeta file to be present
1299 // then we only need to look at that one output file, otherwise we
1300 // need to consider all output files to see if we're out of date.
1301 let (dep_path, dep_mtime) = if dep.only_requires_rmeta {
1302 dep_mtimes
1303 .iter()
1304 .find(|(path, _mtime)| {
1305 path.extension().and_then(|s| s.to_str()) == Some("rmeta")
1306 })
1307 .expect("failed to find rmeta")
1308 } else {
1309 match dep_mtimes.iter().max_by_key(|kv| kv.1) {
1310 Some(dep_mtime) => dep_mtime,
1311 // If our dependencies is up to date and has no filesystem
1312 // interactions, then we can move on to the next dependency.
1313 None => continue,
1314 }
1315 };
1316 debug!(
1317 "max dep mtime for {:?} is {:?} {}",
1318 pkg_root, dep_path, dep_mtime
1319 );
1320
1321 // If the dependency is newer than our own output then it was
1322 // recompiled previously. We transitively become stale ourselves in
1323 // that case, so bail out.
1324 //
1325 // Note that this comparison should probably be `>=`, not `>`, but
1326 // for a discussion of why it's `>` see the discussion about #5918
1327 // below in `find_stale`.
1328 if dep_mtime > max_mtime {
1329 info!(
1330 "dependency on `{}` is newer than we are {} > {} {:?}",
1331 dep.name, dep_mtime, max_mtime, pkg_root
1332 );
1333
1334 self.fs_status = FsStatus::StaleDependency {
1335 unit: dep.fingerprint.index,
1336 dep_mtime: *dep_mtime,
1337 max_mtime: *max_mtime,
1338 };
1339
1340 return Ok(());
1341 }
1342 }
1343
1344 // If we reached this far then all dependencies are up to date. Check
1345 // all our `LocalFingerprint` information to see if we have any stale
1346 // files for this package itself. If we do find something log a helpful
1347 // message and bail out so we stay stale.
1348 for local in self.local.get_mut().unwrap().iter() {
1349 if let Some(item) = local.find_stale_item(
1350 mtime_cache,
1351 checksum_cache,
1352 pkg,
1353 build_root,
1354 cargo_exe,
1355 gctx,
1356 )? {
1357 item.log();
1358 self.fs_status = FsStatus::StaleItem(item);
1359 return Ok(());
1360 }
1361 }
1362
1363 // Everything was up to date! Record such.
1364 self.fs_status = FsStatus::UpToDate { mtimes };
1365 debug!("filesystem up-to-date {:?}", pkg_root);
1366
1367 Ok(())
1368 }
1369}
1370
1371impl hash::Hash for Fingerprint {
1372 fn hash<H: Hasher>(&self, h: &mut H) {
1373 let Fingerprint {
1374 rustc,
1375 ref features,
1376 ref declared_features,
1377 target,
1378 path,
1379 profile,
1380 ref deps,
1381 ref local,
1382 config,
1383 compile_kind,
1384 ref rustflags,
1385 ..
1386 } = *self;
1387 let local = local.lock().unwrap();
1388 (
1389 rustc,
1390 features,
1391 declared_features,
1392 target,
1393 path,
1394 profile,
1395 &*local,
1396 config,
1397 compile_kind,
1398 rustflags,
1399 )
1400 .hash(h);
1401
1402 h.write_usize(deps.len());
1403 for DepFingerprint {
1404 pkg_id,
1405 name,
1406 public,
1407 fingerprint,
1408 only_requires_rmeta: _, // static property, no need to hash
1409 } in deps
1410 {
1411 pkg_id.hash(h);
1412 name.hash(h);
1413 public.hash(h);
1414 // use memoized dep hashes to avoid exponential blowup
1415 h.write_u64(fingerprint.hash_u64());
1416 }
1417 }
1418}
1419
1420impl DepFingerprint {
1421 fn new(
1422 build_runner: &mut BuildRunner<'_, '_>,
1423 parent: &Unit,
1424 dep: &UnitDep,
1425 ) -> CargoResult<DepFingerprint> {
1426 let fingerprint = calculate(build_runner, &dep.unit)?;
1427 // We need to be careful about what we hash here. We have a goal of
1428 // supporting renaming a project directory and not rebuilding
1429 // everything. To do that, however, we need to make sure that the cwd
1430 // doesn't make its way into any hashes, and one source of that is the
1431 // `SourceId` for `path` packages.
1432 //
1433 // We already have a requirement that `path` packages all have unique
1434 // names (sort of for this same reason), so if the package source is a
1435 // `path` then we just hash the name, but otherwise we hash the full
1436 // id as it won't change when the directory is renamed.
1437 let pkg_id = if dep.unit.pkg.package_id().source_id().is_path() {
1438 util::hash_u64(dep.unit.pkg.package_id().name())
1439 } else {
1440 util::hash_u64(dep.unit.pkg.package_id())
1441 };
1442
1443 Ok(DepFingerprint {
1444 pkg_id,
1445 name: dep.extern_crate_name,
1446 public: dep.public,
1447 fingerprint,
1448 only_requires_rmeta: build_runner.only_requires_rmeta(parent, &dep.unit),
1449 })
1450 }
1451}
1452
1453impl StaleItem {
1454 /// Use the `log` crate to log a hopefully helpful message in diagnosing
1455 /// what file is considered stale and why. This is intended to be used in
1456 /// conjunction with `CARGO_LOG` to determine why Cargo is recompiling
1457 /// something. Currently there's no user-facing usage of this other than
1458 /// that.
1459 fn log(&self) {
1460 match self {
1461 StaleItem::MissingFile { path } => {
1462 info!("stale: missing {:?}", path);
1463 }
1464 StaleItem::UnableToReadFile { path } => {
1465 info!("stale: unable to read {:?}", path);
1466 }
1467 StaleItem::FailedToReadMetadata { path } => {
1468 info!("stale: couldn't read metadata {:?}", path);
1469 }
1470 StaleItem::ChangedFile {
1471 reference,
1472 reference_mtime,
1473 stale,
1474 stale_mtime,
1475 } => {
1476 info!("stale: changed {:?}", stale);
1477 info!(" (vs) {:?}", reference);
1478 info!(" {:?} < {:?}", reference_mtime, stale_mtime);
1479 }
1480 StaleItem::FileSizeChanged {
1481 path,
1482 new_size,
1483 old_size,
1484 } => {
1485 info!("stale: changed {:?}", path);
1486 info!("prior file size {old_size}");
1487 info!(" new file size {new_size}");
1488 }
1489 StaleItem::ChangedChecksum {
1490 source,
1491 stored_checksum,
1492 new_checksum,
1493 } => {
1494 info!("stale: changed {:?}", source);
1495 info!("prior checksum {stored_checksum}");
1496 info!(" new checksum {new_checksum}");
1497 }
1498 StaleItem::MissingChecksum { path } => {
1499 info!("stale: no prior checksum {:?}", path);
1500 }
1501 StaleItem::ChangedEnv {
1502 var,
1503 previous,
1504 current,
1505 } => {
1506 info!("stale: changed env {:?}", var);
1507 info!(" {:?} != {:?}", previous, current);
1508 }
1509 }
1510 }
1511}
1512
1513/// Calculates the fingerprint for a [`Unit`].
1514///
1515/// This fingerprint is used by Cargo to learn about when information such as:
1516///
1517/// * A non-path package changes (changes version, changes revision, etc).
1518/// * Any dependency changes
1519/// * The compiler changes
1520/// * The set of features a package is built with changes
1521/// * The profile a target is compiled with changes (e.g., opt-level changes)
1522/// * Any other compiler flags change that will affect the result
1523///
1524/// Information like file modification time is only calculated for path
1525/// dependencies.
1526fn calculate(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> CargoResult<Arc<Fingerprint>> {
1527 // This function is slammed quite a lot, so the result is memoized.
1528 if let Some(s) = build_runner.fingerprints.get(unit) {
1529 return Ok(Arc::clone(s));
1530 }
1531 let mut fingerprint = if unit.mode.is_run_custom_build() {
1532 calculate_run_custom_build(build_runner, unit)?
1533 } else if unit.mode.is_doc_test() {
1534 panic!("doc tests do not fingerprint");
1535 } else {
1536 calculate_normal(build_runner, unit)?
1537 };
1538
1539 // After we built the initial `Fingerprint` be sure to update the
1540 // `fs_status` field of it.
1541 let build_root = build_root(build_runner);
1542 let cargo_exe = build_runner.bcx.gctx.cargo_exe()?;
1543 fingerprint.check_filesystem(
1544 &mut build_runner.mtime_cache,
1545 &mut build_runner.checksum_cache,
1546 &unit.pkg,
1547 &build_root,
1548 cargo_exe,
1549 build_runner.bcx.gctx,
1550 )?;
1551
1552 let fingerprint = Arc::new(fingerprint);
1553 build_runner
1554 .fingerprints
1555 .insert(unit.clone(), Arc::clone(&fingerprint));
1556 Ok(fingerprint)
1557}
1558
1559/// Calculate a fingerprint for a "normal" unit, or anything that's not a build
1560/// script. This is an internal helper of [`calculate`], don't call directly.
1561fn calculate_normal(
1562 build_runner: &mut BuildRunner<'_, '_>,
1563 unit: &Unit,
1564) -> CargoResult<Fingerprint> {
1565 let deps = {
1566 // Recursively calculate the fingerprint for all of our dependencies.
1567 //
1568 // Skip fingerprints of binaries because they don't actually induce a
1569 // recompile, they're just dependencies in the sense that they need to be
1570 // built. The only exception here are artifact dependencies,
1571 // which is an actual dependency that needs a recompile.
1572 //
1573 // Create Vec since mutable build_runner is needed in closure.
1574 let deps = Vec::from(build_runner.unit_deps(unit));
1575 let mut deps = deps
1576 .into_iter()
1577 .filter(|dep| !dep.unit.target.is_bin() || dep.unit.artifact.is_true())
1578 .map(|dep| DepFingerprint::new(build_runner, unit, &dep))
1579 .collect::<CargoResult<Vec<_>>>()?;
1580 deps.sort_by(|a, b| a.pkg_id.cmp(&b.pkg_id));
1581 deps
1582 };
1583
1584 // Afterwards calculate our own fingerprint information.
1585 let build_root = build_root(build_runner);
1586 let is_any_doc_gen = unit.mode.is_doc() || unit.mode.is_doc_scrape();
1587 let rustdoc_depinfo_enabled = build_runner.bcx.gctx.cli_unstable().rustdoc_depinfo;
1588 let local = if is_any_doc_gen && !rustdoc_depinfo_enabled {
1589 // rustdoc does not have dep-info files.
1590 let fingerprint = pkg_fingerprint(build_runner.bcx, &unit.pkg).with_context(|| {
1591 format!(
1592 "failed to determine package fingerprint for documenting {}",
1593 unit.pkg
1594 )
1595 })?;
1596 vec![LocalFingerprint::Precalculated(fingerprint)]
1597 } else {
1598 let dep_info = dep_info_loc(build_runner, unit);
1599 let dep_info = dep_info.strip_prefix(&build_root).unwrap().to_path_buf();
1600 vec![LocalFingerprint::CheckDepInfo {
1601 dep_info,
1602 checksum: build_runner.bcx.gctx.cli_unstable().checksum_freshness,
1603 }]
1604 };
1605
1606 // Figure out what the outputs of our unit is, and we'll be storing them
1607 // into the fingerprint as well.
1608 let outputs = build_runner
1609 .outputs(unit)?
1610 .iter()
1611 .filter(|output| {
1612 !matches!(
1613 output.flavor,
1614 FileFlavor::DebugInfo | FileFlavor::Auxiliary | FileFlavor::Sbom
1615 )
1616 })
1617 .map(|output| output.path.clone())
1618 .collect();
1619
1620 // Fill out a bunch more information that we'll be tracking typically
1621 // hashed to take up less space on disk as we just need to know when things
1622 // change.
1623 let extra_flags = if unit.mode.is_doc() || unit.mode.is_doc_scrape() {
1624 &unit.rustdocflags
1625 } else {
1626 &unit.rustflags
1627 }
1628 .to_vec();
1629
1630 let profile_hash = util::hash_u64((
1631 &unit.profile,
1632 unit.mode,
1633 build_runner.bcx.extra_args_for(unit),
1634 build_runner.lto[unit],
1635 unit.pkg.manifest().lint_rustflags(),
1636 ));
1637 let mut config = StableHasher::new();
1638 if let Some(linker) = build_runner.compilation.target_linker(unit.kind) {
1639 linker.hash(&mut config);
1640 }
1641 if unit.mode.is_doc() && build_runner.bcx.gctx.cli_unstable().rustdoc_map {
1642 if let Ok(map) = build_runner.bcx.gctx.doc_extern_map() {
1643 map.hash(&mut config);
1644 }
1645 }
1646 if let Some(allow_features) = &build_runner.bcx.gctx.cli_unstable().allow_features {
1647 allow_features.hash(&mut config);
1648 }
1649 let compile_kind = unit.kind.fingerprint_hash();
1650 let mut declared_features = unit.pkg.summary().features().keys().collect::<Vec<_>>();
1651 declared_features.sort(); // to avoid useless rebuild if the user orders it's features
1652 // differently
1653 Ok(Fingerprint {
1654 rustc: util::hash_u64(&build_runner.bcx.rustc().verbose_version),
1655 target: util::hash_u64(&unit.target),
1656 profile: profile_hash,
1657 // Note that .0 is hashed here, not .1 which is the cwd. That doesn't
1658 // actually affect the output artifact so there's no need to hash it.
1659 path: util::hash_u64(path_args(build_runner.bcx.ws, unit).0),
1660 features: format!("{:?}", unit.features),
1661 declared_features: format!("{declared_features:?}"),
1662 deps,
1663 local: Mutex::new(local),
1664 memoized_hash: Mutex::new(None),
1665 config: Hasher::finish(&config),
1666 compile_kind,
1667 index: build_runner.bcx.unit_to_index[unit],
1668 rustflags: extra_flags,
1669 fs_status: FsStatus::Stale,
1670 outputs,
1671 })
1672}
1673
1674/// Calculate a fingerprint for an "execute a build script" unit. This is an
1675/// internal helper of [`calculate`], don't call directly.
1676fn calculate_run_custom_build(
1677 build_runner: &mut BuildRunner<'_, '_>,
1678 unit: &Unit,
1679) -> CargoResult<Fingerprint> {
1680 assert!(unit.mode.is_run_custom_build());
1681 // Using the `BuildDeps` information we'll have previously parsed and
1682 // inserted into `build_explicit_deps` built an initial snapshot of the
1683 // `LocalFingerprint` list for this build script. If we previously executed
1684 // the build script this means we'll be watching files and env vars.
1685 // Otherwise if we haven't previously executed it we'll just start watching
1686 // the whole crate.
1687 let (gen_local, overridden) = build_script_local_fingerprints(build_runner, unit)?;
1688 let deps = &build_runner.build_explicit_deps[unit];
1689 let local = (gen_local)(
1690 deps,
1691 Some(&|| {
1692 const IO_ERR_MESSAGE: &str = "\
1693An I/O error happened. Please make sure you can access the file.
1694
1695By default, if your project contains a build script, cargo scans all files in
1696it to determine whether a rebuild is needed. If you don't expect to access the
1697file, specify `rerun-if-changed` in your build script.
1698See https://doc.rust-lang.org/cargo/reference/build-scripts.html#rerun-if-changed for more information.";
1699 pkg_fingerprint(build_runner.bcx, &unit.pkg).map_err(|err| {
1700 let mut message = format!("failed to determine package fingerprint for build script for {}", unit.pkg);
1701 if err.root_cause().is::<io::Error>() {
1702 message = format!("{}\n{}", message, IO_ERR_MESSAGE)
1703 }
1704 err.context(message)
1705 })
1706 }),
1707 )?
1708 .unwrap();
1709 let output = deps.build_script_output.clone();
1710
1711 // Include any dependencies of our execution, which is typically just the
1712 // compilation of the build script itself. (if the build script changes we
1713 // should be rerun!). Note though that if we're an overridden build script
1714 // we have no dependencies so no need to recurse in that case.
1715 let deps = if overridden {
1716 // Overridden build scripts don't need to track deps.
1717 vec![]
1718 } else {
1719 // Create Vec since mutable build_runner is needed in closure.
1720 let deps = Vec::from(build_runner.unit_deps(unit));
1721 deps.into_iter()
1722 .map(|dep| DepFingerprint::new(build_runner, unit, &dep))
1723 .collect::<CargoResult<Vec<_>>>()?
1724 };
1725
1726 let rustflags = unit.rustflags.to_vec();
1727
1728 Ok(Fingerprint {
1729 local: Mutex::new(local),
1730 rustc: util::hash_u64(&build_runner.bcx.rustc().verbose_version),
1731 deps,
1732 outputs: if overridden { Vec::new() } else { vec![output] },
1733 rustflags,
1734 index: build_runner.bcx.unit_to_index[unit],
1735
1736 // Most of the other info is blank here as we don't really include it
1737 // in the execution of the build script, but... this may be a latent
1738 // bug in Cargo.
1739 ..Fingerprint::new()
1740 })
1741}
1742
1743/// Get ready to compute the [`LocalFingerprint`] values
1744/// for a [`RunCustomBuild`] unit.
1745///
1746/// This function has, what's on the surface, a seriously wonky interface.
1747/// You'll call this function and it'll return a closure and a boolean. The
1748/// boolean is pretty simple in that it indicates whether the `unit` has been
1749/// overridden via `.cargo/config.toml`. The closure is much more complicated.
1750///
1751/// This closure is intended to capture any local state necessary to compute
1752/// the `LocalFingerprint` values for this unit. It is `Send` and `'static` to
1753/// be sent to other threads as well (such as when we're executing build
1754/// scripts). That deduplication is the rationale for the closure at least.
1755///
1756/// The arguments to the closure are a bit weirder, though, and I'll apologize
1757/// in advance for the weirdness too. The first argument to the closure is a
1758/// `&BuildDeps`. This is the parsed version of a build script, and when Cargo
1759/// starts up this is cached from previous runs of a build script. After a
1760/// build script executes the output file is reparsed and passed in here.
1761///
1762/// The second argument is the weirdest, it's *optionally* a closure to
1763/// call [`pkg_fingerprint`]. The `pkg_fingerprint` requires access to
1764/// "source map" located in `Context`. That's very non-`'static` and
1765/// non-`Send`, so it can't be used on other threads, such as when we invoke
1766/// this after a build script has finished. The `Option` allows us to for sure
1767/// calculate it on the main thread at the beginning, and then swallow the bug
1768/// for now where a worker thread after a build script has finished doesn't
1769/// have access. Ideally there would be no second argument or it would be more
1770/// "first class" and not an `Option` but something that can be sent between
1771/// threads. In any case, it's a bug for now.
1772///
1773/// This isn't the greatest of interfaces, and if there's suggestions to
1774/// improve please do so!
1775///
1776/// FIXME(#6779) - see all the words above
1777///
1778/// [`RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
1779fn build_script_local_fingerprints(
1780 build_runner: &mut BuildRunner<'_, '_>,
1781 unit: &Unit,
1782) -> CargoResult<(
1783 Box<
1784 dyn FnOnce(
1785 &BuildDeps,
1786 Option<&dyn Fn() -> CargoResult<String>>,
1787 ) -> CargoResult<Option<Vec<LocalFingerprint>>>
1788 + Send,
1789 >,
1790 bool,
1791)> {
1792 assert!(unit.mode.is_run_custom_build());
1793 // First up, if this build script is entirely overridden, then we just
1794 // return the hash of what we overrode it with. This is the easy case!
1795 if let Some(fingerprint) = build_script_override_fingerprint(build_runner, unit) {
1796 debug!("override local fingerprints deps {}", unit.pkg);
1797 return Ok((
1798 Box::new(
1799 move |_: &BuildDeps, _: Option<&dyn Fn() -> CargoResult<String>>| {
1800 Ok(Some(vec![fingerprint]))
1801 },
1802 ),
1803 true, // this is an overridden build script
1804 ));
1805 }
1806
1807 // ... Otherwise this is a "real" build script and we need to return a real
1808 // closure. Our returned closure classifies the build script based on
1809 // whether it prints `rerun-if-*`. If it *doesn't* print this it's where the
1810 // magical second argument comes into play, which fingerprints a whole
1811 // package. Remember that the fact that this is an `Option` is a bug, but a
1812 // longstanding bug, in Cargo. Recent refactorings just made it painfully
1813 // obvious.
1814 let pkg_root = unit.pkg.root().to_path_buf();
1815 let build_dir = build_root(build_runner);
1816 let env_config = Arc::clone(build_runner.bcx.gctx.env_config()?);
1817 let calculate =
1818 move |deps: &BuildDeps, pkg_fingerprint: Option<&dyn Fn() -> CargoResult<String>>| {
1819 if deps.rerun_if_changed.is_empty() && deps.rerun_if_env_changed.is_empty() {
1820 match pkg_fingerprint {
1821 // FIXME: this is somewhat buggy with respect to docker and
1822 // weird filesystems. The `Precalculated` variant
1823 // constructed below will, for `path` dependencies, contain
1824 // a stringified version of the mtime for the local crate.
1825 // This violates one of the things we describe in this
1826 // module's doc comment, never hashing mtimes. We should
1827 // figure out a better scheme where a package fingerprint
1828 // may be a string (like for a registry) or a list of files
1829 // (like for a path dependency). Those list of files would
1830 // be stored here rather than the mtime of them.
1831 Some(f) => {
1832 let s = f()?;
1833 debug!(
1834 "old local fingerprints deps {:?} precalculated={:?}",
1835 pkg_root, s
1836 );
1837 return Ok(Some(vec![LocalFingerprint::Precalculated(s)]));
1838 }
1839 None => return Ok(None),
1840 }
1841 }
1842
1843 // Ok so now we're in "new mode" where we can have files listed as
1844 // dependencies as well as env vars listed as dependencies. Process
1845 // them all here.
1846 Ok(Some(local_fingerprints_deps(
1847 deps,
1848 &build_dir,
1849 &pkg_root,
1850 &env_config,
1851 )))
1852 };
1853
1854 // Note that `false` == "not overridden"
1855 Ok((Box::new(calculate), false))
1856}
1857
1858/// Create a [`LocalFingerprint`] for an overridden build script.
1859/// Returns None if it is not overridden.
1860fn build_script_override_fingerprint(
1861 build_runner: &mut BuildRunner<'_, '_>,
1862 unit: &Unit,
1863) -> Option<LocalFingerprint> {
1864 // Build script output is only populated at this stage when it is
1865 // overridden.
1866 let build_script_outputs = build_runner.build_script_outputs.lock().unwrap();
1867 let metadata = build_runner.get_run_build_script_metadata(unit);
1868 // Returns None if it is not overridden.
1869 let output = build_script_outputs.get(metadata)?;
1870 let s = format!(
1871 "overridden build state with hash: {}",
1872 util::hash_u64(output)
1873 );
1874 Some(LocalFingerprint::Precalculated(s))
1875}
1876
1877/// Compute the [`LocalFingerprint`] values for a [`RunCustomBuild`] unit for
1878/// non-overridden new-style build scripts only. This is only used when `deps`
1879/// is already known to have a nonempty `rerun-if-*` somewhere.
1880///
1881/// [`RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
1882fn local_fingerprints_deps(
1883 deps: &BuildDeps,
1884 build_root: &Path,
1885 pkg_root: &Path,
1886 env_config: &Arc<HashMap<String, OsString>>,
1887) -> Vec<LocalFingerprint> {
1888 debug!("new local fingerprints deps {:?}", pkg_root);
1889 let mut local = Vec::new();
1890
1891 if !deps.rerun_if_changed.is_empty() {
1892 // Note that like the module comment above says we are careful to never
1893 // store an absolute path in `LocalFingerprint`, so ensure that we strip
1894 // absolute prefixes from them.
1895 let output = deps
1896 .build_script_output
1897 .strip_prefix(build_root)
1898 .unwrap()
1899 .to_path_buf();
1900 let paths = deps
1901 .rerun_if_changed
1902 .iter()
1903 .map(|p| p.strip_prefix(pkg_root).unwrap_or(p).to_path_buf())
1904 .collect();
1905 local.push(LocalFingerprint::RerunIfChanged { output, paths });
1906 }
1907
1908 local.extend(
1909 deps.rerun_if_env_changed
1910 .iter()
1911 .map(|s| LocalFingerprint::from_env(s, env_config)),
1912 );
1913
1914 local
1915}
1916
1917/// Writes the short fingerprint hash value to `<loc>`
1918/// and logs detailed JSON information to `<loc>.json`.
1919fn write_fingerprint(loc: &Path, fingerprint: &Fingerprint) -> CargoResult<()> {
1920 debug_assert_ne!(fingerprint.rustc, 0);
1921 // fingerprint::new().rustc == 0, make sure it doesn't make it to the file system.
1922 // This is mostly so outside tools can reliably find out what rust version this file is for,
1923 // as we can use the full hash.
1924 let hash = fingerprint.hash_u64();
1925 debug!("write fingerprint ({:x}) : {}", hash, loc.display());
1926 paths::write(loc, util::to_hex(hash).as_bytes())?;
1927
1928 let json = serde_json::to_string(fingerprint).unwrap();
1929 if cfg!(debug_assertions) {
1930 let f: Fingerprint = serde_json::from_str(&json).unwrap();
1931 assert_eq!(f.hash_u64(), hash);
1932 }
1933 paths::write(&loc.with_extension("json"), json.as_bytes())?;
1934 Ok(())
1935}
1936
1937/// Prepare for work when a package starts to build
1938pub fn prepare_init(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> CargoResult<()> {
1939 let new1 = build_runner.files().fingerprint_dir(unit);
1940
1941 // Doc tests have no output, thus no fingerprint.
1942 if !new1.exists() && !unit.mode.is_doc_test() {
1943 paths::create_dir_all(&new1)?;
1944 }
1945
1946 Ok(())
1947}
1948
1949/// Returns the location that the dep-info file will show up at
1950/// for the [`Unit`] specified.
1951pub fn dep_info_loc(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> PathBuf {
1952 build_runner.files().fingerprint_file_path(unit, "dep-")
1953}
1954
1955/// Returns an absolute path that build directory.
1956/// All paths are rewritten to be relative to this.
1957fn build_root(build_runner: &BuildRunner<'_, '_>) -> PathBuf {
1958 build_runner.bcx.ws.build_dir().into_path_unlocked()
1959}
1960
1961/// Reads the value from the old fingerprint hash file and compare.
1962///
1963/// If dirty, it then restores the detailed information
1964/// from the fingerprint JSON file, and provides an rich dirty reason.
1965fn compare_old_fingerprint(
1966 unit: &Unit,
1967 old_hash_path: &Path,
1968 new_fingerprint: &Fingerprint,
1969 mtime_on_use: bool,
1970 forced: bool,
1971) -> FingerprintComparison {
1972 if mtime_on_use {
1973 // update the mtime so other cleaners know we used it
1974 let t = FileTime::from_system_time(SystemTime::now());
1975 debug!("mtime-on-use forcing {:?} to {}", old_hash_path, t);
1976 paths::set_file_time_no_err(old_hash_path, t);
1977 }
1978
1979 let compare = _compare_old_fingerprint(old_hash_path, new_fingerprint);
1980
1981 match compare.as_ref() {
1982 Ok(FingerprintComparison::Fresh) => {}
1983 Ok(FingerprintComparison::Dirty { reason }) => {
1984 info!(
1985 "fingerprint dirty for {}/{:?}/{:?}",
1986 unit.pkg, unit.mode, unit.target,
1987 );
1988 info!(" dirty: {reason:?}");
1989 }
1990 Err(e) => {
1991 info!(
1992 "fingerprint error for {}/{:?}/{:?}",
1993 unit.pkg, unit.mode, unit.target,
1994 );
1995 info!(" err: {e:?}");
1996 }
1997 }
1998
1999 match compare {
2000 Ok(FingerprintComparison::Fresh) if forced => FingerprintComparison::Dirty {
2001 reason: DirtyReason::Forced,
2002 },
2003 Ok(cmp) => cmp,
2004 Err(_) => FingerprintComparison::Dirty {
2005 reason: DirtyReason::FreshBuild,
2006 },
2007 }
2008}
2009
2010fn _compare_old_fingerprint(
2011 old_hash_path: &Path,
2012 new_fingerprint: &Fingerprint,
2013) -> CargoResult<FingerprintComparison> {
2014 let old_fingerprint_short = paths::read(old_hash_path)?;
2015
2016 let new_hash = new_fingerprint.hash_u64();
2017
2018 if util::to_hex(new_hash) == old_fingerprint_short && new_fingerprint.fs_status.up_to_date() {
2019 return Ok(FingerprintComparison::Fresh);
2020 }
2021
2022 let old_fingerprint_json = paths::read(&old_hash_path.with_extension("json"))?;
2023 let old_fingerprint: Fingerprint = serde_json::from_str(&old_fingerprint_json)
2024 .with_context(|| internal("failed to deserialize json"))?;
2025 // Fingerprint can be empty after a failed rebuild (see comment in prepare_target).
2026 if !old_fingerprint_short.is_empty() {
2027 debug_assert_eq!(
2028 util::to_hex(old_fingerprint.hash_u64()),
2029 old_fingerprint_short
2030 );
2031 }
2032
2033 let reason = new_fingerprint.compare(&old_fingerprint);
2034 Ok(FingerprintComparison::Dirty { reason })
2035}
2036
2037/// Calculates the fingerprint of a unit thats contains no dep-info files.
2038fn pkg_fingerprint(bcx: &BuildContext<'_, '_>, pkg: &Package) -> CargoResult<String> {
2039 let source_id = pkg.package_id().source_id();
2040 let sources = bcx.packages.sources();
2041
2042 let source = sources
2043 .get(source_id)
2044 .ok_or_else(|| internal("missing package source"))?;
2045 source.fingerprint(pkg)
2046}
2047
2048/// The `reference` file is considered as "stale" if any file from `paths` has a newer mtime.
2049fn find_stale_file<I, P>(
2050 mtime_cache: &mut HashMap<PathBuf, FileTime>,
2051 checksum_cache: &mut HashMap<PathBuf, Checksum>,
2052 reference: &Path,
2053 paths: I,
2054 use_checksums: bool,
2055) -> Option<StaleItem>
2056where
2057 I: IntoIterator<Item = (P, Option<(u64, Checksum)>)>,
2058 P: AsRef<Path>,
2059{
2060 let reference_mtime = match paths::mtime(reference) {
2061 Ok(mtime) => mtime,
2062 Err(..) => {
2063 return Some(StaleItem::MissingFile {
2064 path: reference.to_path_buf(),
2065 });
2066 }
2067 };
2068
2069 let skippable_dirs = if let Ok(cargo_home) = home::cargo_home() {
2070 let skippable_dirs: Vec<_> = ["git", "registry"]
2071 .into_iter()
2072 .map(|subfolder| cargo_home.join(subfolder))
2073 .collect();
2074 Some(skippable_dirs)
2075 } else {
2076 None
2077 };
2078 for (path, prior_checksum) in paths {
2079 let path = path.as_ref();
2080
2081 // Assuming anything in cargo_home/{git, registry} is immutable
2082 // (see also #9455 about marking the src directory readonly) which avoids rebuilds when CI
2083 // caches $CARGO_HOME/registry/{index, cache} and $CARGO_HOME/git/db across runs, keeping
2084 // the content the same but changing the mtime.
2085 if let Some(ref skippable_dirs) = skippable_dirs {
2086 if skippable_dirs.iter().any(|dir| path.starts_with(dir)) {
2087 continue;
2088 }
2089 }
2090 if use_checksums {
2091 let Some((file_len, prior_checksum)) = prior_checksum else {
2092 return Some(StaleItem::MissingChecksum {
2093 path: path.to_path_buf(),
2094 });
2095 };
2096 let path_buf = path.to_path_buf();
2097
2098 let path_checksum = match checksum_cache.entry(path_buf) {
2099 Entry::Occupied(o) => *o.get(),
2100 Entry::Vacant(v) => {
2101 let Ok(current_file_len) = fs::metadata(&path).map(|m| m.len()) else {
2102 return Some(StaleItem::FailedToReadMetadata {
2103 path: path.to_path_buf(),
2104 });
2105 };
2106 if current_file_len != file_len {
2107 return Some(StaleItem::FileSizeChanged {
2108 path: path.to_path_buf(),
2109 new_size: current_file_len,
2110 old_size: file_len,
2111 });
2112 }
2113 let Ok(file) = File::open(path) else {
2114 return Some(StaleItem::MissingFile {
2115 path: path.to_path_buf(),
2116 });
2117 };
2118 let Ok(checksum) = Checksum::compute(prior_checksum.algo(), file) else {
2119 return Some(StaleItem::UnableToReadFile {
2120 path: path.to_path_buf(),
2121 });
2122 };
2123 *v.insert(checksum)
2124 }
2125 };
2126 if path_checksum == prior_checksum {
2127 continue;
2128 }
2129 return Some(StaleItem::ChangedChecksum {
2130 source: path.to_path_buf(),
2131 stored_checksum: prior_checksum,
2132 new_checksum: path_checksum,
2133 });
2134 } else {
2135 let path_mtime = match mtime_cache.entry(path.to_path_buf()) {
2136 Entry::Occupied(o) => *o.get(),
2137 Entry::Vacant(v) => {
2138 let Ok(mtime) = paths::mtime_recursive(path) else {
2139 return Some(StaleItem::MissingFile {
2140 path: path.to_path_buf(),
2141 });
2142 };
2143 *v.insert(mtime)
2144 }
2145 };
2146
2147 // TODO: fix #5918.
2148 // Note that equal mtimes should be considered "stale". For filesystems with
2149 // not much timestamp precision like 1s this is would be a conservative approximation
2150 // to handle the case where a file is modified within the same second after
2151 // a build starts. We want to make sure that incremental rebuilds pick that up!
2152 //
2153 // For filesystems with nanosecond precision it's been seen in the wild that
2154 // its "nanosecond precision" isn't really nanosecond-accurate. It turns out that
2155 // kernels may cache the current time so files created at different times actually
2156 // list the same nanosecond precision. Some digging on #5919 picked up that the
2157 // kernel caches the current time between timer ticks, which could mean that if
2158 // a file is updated at most 10ms after a build starts then Cargo may not
2159 // pick up the build changes.
2160 //
2161 // All in all, an equality check here would be a conservative assumption that,
2162 // if equal, files were changed just after a previous build finished.
2163 // Unfortunately this became problematic when (in #6484) cargo switch to more accurately
2164 // measuring the start time of builds.
2165 if path_mtime <= reference_mtime {
2166 continue;
2167 }
2168
2169 return Some(StaleItem::ChangedFile {
2170 reference: reference.to_path_buf(),
2171 reference_mtime,
2172 stale: path.to_path_buf(),
2173 stale_mtime: path_mtime,
2174 });
2175 }
2176 }
2177
2178 debug!(
2179 "all paths up-to-date relative to {:?} mtime={}",
2180 reference, reference_mtime
2181 );
2182 None
2183}