cargo/core/compiler/fingerprint/mod.rs
1//! Tracks changes to determine if something needs to be recompiled.
2//!
3//! This module implements change-tracking so that Cargo can know whether or
4//! not something needs to be recompiled. A Cargo [`Unit`] can be either "dirty"
5//! (needs to be recompiled) or "fresh" (it does not need to be recompiled).
6//!
7//! ## Mechanisms affecting freshness
8//!
9//! There are several mechanisms that influence a Unit's freshness:
10//!
11//! - The [`Fingerprint`] is a hash, saved to the filesystem in the
12//! `.fingerprint` directory, that tracks information about the Unit. If the
13//! fingerprint is missing (such as the first time the unit is being
14//! compiled), then the unit is dirty. If any of the fingerprint fields
15//! change (like the name of the source file), then the Unit is considered
16//! dirty.
17//!
18//! The `Fingerprint` also tracks the fingerprints of all its dependencies,
19//! so a change in a dependency will propagate the "dirty" status up.
20//!
21//! - Filesystem mtime tracking is also used to check if a unit is dirty.
22//! See the section below on "Mtime comparison" for more details. There
23//! are essentially two parts to mtime tracking:
24//!
25//! 1. The mtime of a Unit's output files is compared to the mtime of all
26//! its dependencies' output file mtimes (see
27//! [`check_filesystem`]). If any output is missing, or is
28//! older than a dependency's output, then the unit is dirty.
29//! 2. The mtime of a Unit's source files is compared to the mtime of its
30//! dep-info file in the fingerprint directory (see [`find_stale_file`]).
31//! The dep-info file is used as an anchor to know when the last build of
32//! the unit was done. See the "dep-info files" section below for more
33//! details. If any input files are missing, or are newer than the
34//! dep-info, then the unit is dirty.
35//!
36//! - Alternatively if you're using the unstable feature `checksum-freshness`
37//! mtimes are ignored entirely in favor of comparing first the file size, and
38//! then the checksum with a known prior value emitted by rustc. Only nightly
39//! rustc will emit the needed metadata at the time of writing. This is dependent
40//! on the unstable feature `-Z checksum-hash-algorithm`.
41//!
42//! Note: Fingerprinting is not a perfect solution. Filesystem mtime tracking
43//! is notoriously imprecise and problematic. Only a small part of the
44//! environment is captured. This is a balance of performance, simplicity, and
45//! completeness. Sandboxing, hashing file contents, tracking every file
46//! access, environment variable, and network operation would ensure more
47//! reliable and reproducible builds at the cost of being complex, slow, and
48//! platform-dependent.
49//!
50//! ## Fingerprints and [`UnitHash`]s
51//!
52//! [`Metadata`] tracks several [`UnitHash`]s, including
53//! [`Metadata::unit_id`], [`Metadata::c_metadata`], and [`Metadata::c_extra_filename`].
54//! See its documentation for more details.
55//!
56//! NOTE: Not all output files are isolated via filename hashes (like dylibs).
57//! The fingerprint directory uses a hash, but sometimes units share the same
58//! fingerprint directory (when they don't have Metadata) so care should be
59//! taken to handle this!
60//!
61//! Fingerprints and [`UnitHash`]s are similar, and track some of the same things.
62//! [`UnitHash`]s contains information that is required to keep Units separate.
63//! The Fingerprint includes additional information that should cause a
64//! recompile, but it is desired to reuse the same filenames. A comparison
65//! of what is tracked:
66//!
67//! Value | Fingerprint | `Metadata::unit_id` [^8] | `Metadata::c_metadata`
68//! -------------------------------------------|-------------|--------------------------|-----------------------
69//! rustc | ✓ | ✓ | ✓
70//! [`Profile`] | ✓ | ✓ | ✓
71//! `cargo rustc` extra args | ✓ | ✓[^7] |
72//! [`CompileMode`] | ✓ | ✓ | ✓
73//! Target Name | ✓ | ✓ | ✓
74//! `TargetKind` (bin/lib/etc.) | ✓ | ✓ | ✓
75//! Enabled Features | ✓ | ✓ | ✓
76//! Declared Features | ✓ | |
77//! Immediate dependency’s hashes | ✓[^1] | ✓ | ✓
78//! [`CompileKind`] (host/target) | ✓ | ✓ | ✓
79//! `__CARGO_DEFAULT_LIB_METADATA`[^4] | | ✓ | ✓
80//! `package_id` | | ✓ | ✓
81//! Target src path relative to ws | ✓ | |
82//! Target flags (test/bench/for_host/edition) | ✓ | |
83//! -C incremental=… flag | ✓ | |
84//! mtime of sources | ✓[^3] | |
85//! RUSTFLAGS/RUSTDOCFLAGS | ✓ | ✓[^7] |
86//! [`Lto`] flags | ✓ | ✓ | ✓
87//! config settings[^5] | ✓ | |
88//! `is_std` | | ✓ | ✓
89//! `[lints]` table[^6] | ✓ | |
90//! `[lints.rust.unexpected_cfgs.check-cfg]` | ✓ | |
91//!
92//! [^1]: Bin dependencies are not included.
93//!
94//! [^3]: See below for details on mtime tracking.
95//!
96//! [^4]: `__CARGO_DEFAULT_LIB_METADATA` is set by rustbuild to embed the
97//! release channel (bootstrap/stable/beta/nightly) in libstd.
98//!
99//! [^5]: Config settings that are not otherwise captured anywhere else.
100//! Currently, this is only `doc.extern-map`.
101//!
102//! [^6]: Via [`Manifest::lint_rustflags`][crate::core::Manifest::lint_rustflags]
103//!
104//! [^7]: extra-flags and RUSTFLAGS are conditionally excluded when `--remap-path-prefix` is
105//! present to avoid breaking build reproducibility while we wait for trim-paths
106//!
107//! [^8]: including `-Cextra-filename`
108//!
109//! When deciding what should go in the Metadata vs the Fingerprint, consider
110//! that some files (like dylibs) do not have a hash in their filename. Thus,
111//! if a value changes, only the fingerprint will detect the change (consider,
112//! for example, swapping between different features). Fields that are only in
113//! Metadata generally aren't relevant to the fingerprint because they
114//! fundamentally change the output (like target vs host changes the directory
115//! where it is emitted).
116//!
117//! ## Fingerprint files
118//!
119//! Fingerprint information is stored in the
120//! `target/{debug,release}/.fingerprint/` directory. Each Unit is stored in a
121//! separate directory. Each Unit directory contains:
122//!
123//! - A file with a 16 hex-digit hash. This is the Fingerprint hash, used for
124//! quick loading and comparison.
125//! - A `.json` file that contains details about the Fingerprint. This is only
126//! used to log details about *why* a fingerprint is considered dirty.
127//! `CARGO_LOG=cargo::core::compiler::fingerprint=trace cargo build` can be
128//! used to display this log information.
129//! - A "dep-info" file which is a translation of rustc's `*.d` dep-info files
130//! to a Cargo-specific format that tweaks file names and is optimized for
131//! reading quickly.
132//! - An `invoked.timestamp` file whose filesystem mtime is updated every time
133//! the Unit is built. This is used for capturing the time when the build
134//! starts, to detect if files are changed in the middle of the build. See
135//! below for more details.
136//!
137//! Note that some units are a little different. A Unit for *running* a build
138//! script or for `rustdoc` does not have a dep-info file (it's not
139//! applicable). Build script `invoked.timestamp` files are in the build
140//! output directory.
141//!
142//! ## Fingerprint calculation
143//!
144//! After the list of Units has been calculated, the Units are added to the
145//! [`JobQueue`]. As each one is added, the fingerprint is calculated, and the
146//! dirty/fresh status is recorded. A closure is used to update the fingerprint
147//! on-disk when the Unit successfully finishes. The closure will recompute the
148//! Fingerprint based on the updated information. If the Unit fails to compile,
149//! the fingerprint is not updated.
150//!
151//! Fingerprints are cached in the [`BuildRunner`]. This makes computing
152//! Fingerprints faster, but also is necessary for properly updating
153//! dependency information. Since a Fingerprint includes the Fingerprints of
154//! all dependencies, when it is updated, by using `Arc` clones, it
155//! automatically picks up the updates to its dependencies.
156//!
157//! ### dep-info files
158//!
159//! Cargo has several kinds of "dep info" files:
160//!
161//! * dep-info files generated by `rustc`.
162//! * Fingerprint dep-info files translated from the first one.
163//! * dep-info for external build system integration.
164//! * Unstable `-Zbinary-dep-depinfo`.
165//!
166//! #### `rustc` dep-info files
167//!
168//! Cargo passes the `--emit=dep-info` flag to `rustc` so that `rustc` will
169//! generate a "dep info" file (with the `.d` extension). This is a
170//! Makefile-like syntax that includes all of the source files used to build
171//! the crate. This file is used by Cargo to know which files to check to see
172//! if the crate will need to be rebuilt. Example:
173//!
174//! ```makefile
175//! /path/to/target/debug/deps/cargo-b6219d178925203d: src/bin/main.rs src/bin/cargo/cli.rs # … etc.
176//! ```
177//!
178//! #### Fingerprint dep-info files
179//!
180//! After `rustc` exits successfully, Cargo will read the first kind of dep
181//! info file and translate it into a binary format that is stored in the
182//! fingerprint directory ([`translate_dep_info`]).
183//!
184//! These are used to quickly scan for any changed files. The mtime of the
185//! fingerprint dep-info file itself is used as the reference for comparing the
186//! source files to determine if any of the source files have been modified
187//! (see [below](#mtime-comparison) for more detail).
188//!
189//! Note that Cargo parses the special `# env-var:...` comments in dep-info
190//! files to learn about environment variables that the rustc compile depends on.
191//! Cargo then later uses this to trigger a recompile if a referenced env var
192//! changes (even if the source didn't change).
193//! This also includes env vars generated from Cargo metadata like `CARGO_PKG_DESCRIPTION`.
194//! (See [`crate::core::manifest::ManifestMetadata`]
195//!
196//! #### dep-info files for build system integration.
197//!
198//! There is also a third dep-info file. Cargo will extend the file created by
199//! rustc with some additional information and saves this into the output
200//! directory. This is intended for build system integration. See the
201//! [`output_depinfo`] function for more detail.
202//!
203//! #### -Zbinary-dep-depinfo
204//!
205//! `rustc` has an experimental flag `-Zbinary-dep-depinfo`. This causes
206//! `rustc` to include binary files (like rlibs) in the dep-info file. This is
207//! primarily to support rustc development, so that Cargo can check the
208//! implicit dependency to the standard library (which lives in the sysroot).
209//! We want Cargo to recompile whenever the standard library rlib/dylibs
210//! change, and this is a generic mechanism to make that work.
211//!
212//! ### Mtime comparison
213//!
214//! The use of modification timestamps is the most common way a unit will be
215//! determined to be dirty or fresh between builds. There are many subtle
216//! issues and edge cases with mtime comparisons. This gives a high-level
217//! overview, but you'll need to read the code for the gritty details. Mtime
218//! handling is different for different unit kinds. The different styles are
219//! driven by the [`Fingerprint::local`] field, which is set based on the unit
220//! kind.
221//!
222//! The status of whether or not the mtime is "stale" or "up-to-date" is
223//! stored in [`Fingerprint::fs_status`].
224//!
225//! All units will compare the mtime of its newest output file with the mtimes
226//! of the outputs of all its dependencies. If any output file is missing,
227//! then the unit is stale. If any dependency is newer, the unit is stale.
228//!
229//! #### Normal package mtime handling
230//!
231//! [`LocalFingerprint::CheckDepInfo`] is used for checking the mtime of
232//! packages. It compares the mtime of the input files (the source files) to
233//! the mtime of the dep-info file (which is written last after a build is
234//! finished). If the dep-info is missing, the unit is stale (it has never
235//! been built). The list of input files comes from the dep-info file. See the
236//! section above for details on dep-info files.
237//!
238//! Also note that although registry and git packages use [`CheckDepInfo`], none
239//! of their source files are included in the dep-info (see
240//! [`translate_dep_info`]), so for those kinds no mtime checking is done
241//! (unless `-Zbinary-dep-depinfo` is used). Repository and git packages are
242//! static, so there is no need to check anything.
243//!
244//! When a build is complete, the mtime of the dep-info file in the
245//! fingerprint directory is modified to rewind it to the time when the build
246//! started. This is done by creating an `invoked.timestamp` file when the
247//! build starts to capture the start time. The mtime is rewound to the start
248//! to handle the case where the user modifies a source file while a build is
249//! running. Cargo can't know whether or not the file was included in the
250//! build, so it takes a conservative approach of assuming the file was *not*
251//! included, and it should be rebuilt during the next build.
252//!
253//! #### Rustdoc mtime handling
254//!
255//! Rustdoc does not emit a dep-info file, so Cargo currently has a relatively
256//! simple system for detecting rebuilds. [`LocalFingerprint::Precalculated`] is
257//! used for rustdoc units. For registry packages, this is the package
258//! version. For git packages, it is the git hash. For path packages, it is
259//! a string of the mtime of the newest file in the package.
260//!
261//! There are some known bugs with how this works, so it should be improved at
262//! some point.
263//!
264//! #### Build script mtime handling
265//!
266//! Build script mtime handling runs in different modes. There is the "old
267//! style" where the build script does not emit any `rerun-if` directives. In
268//! this mode, Cargo will use [`LocalFingerprint::Precalculated`]. See the
269//! "rustdoc" section above how it works.
270//!
271//! In the new-style, each `rerun-if` directive is translated to the
272//! corresponding [`LocalFingerprint`] variant. The [`RerunIfChanged`] variant
273//! compares the mtime of the given filenames against the mtime of the
274//! "output" file.
275//!
276//! Similar to normal units, the build script "output" file mtime is rewound
277//! to the time just before the build script is executed to handle mid-build
278//! modifications.
279//!
280//! ## Considerations for inclusion in a fingerprint
281//!
282//! Over time we've realized a few items which historically were included in
283//! fingerprint hashings should not actually be included. Examples are:
284//!
285//! * Modification time values. We strive to never include a modification time
286//! inside a `Fingerprint` to get hashed into an actual value. While
287//! theoretically fine to do, in practice this causes issues with common
288//! applications like Docker. Docker, after a layer is built, will zero out
289//! the nanosecond part of all filesystem modification times. This means that
290//! the actual modification time is different for all build artifacts, which
291//! if we tracked the actual values of modification times would cause
292//! unnecessary recompiles. To fix this we instead only track paths which are
293//! relevant. These paths are checked dynamically to see if they're up to
294//! date, and the modification time doesn't make its way into the fingerprint
295//! hash.
296//!
297//! * Absolute path names. We strive to maintain a property where if you rename
298//! a project directory Cargo will continue to preserve all build artifacts
299//! and reuse the cache. This means that we can't ever hash an absolute path
300//! name. Instead we always hash relative path names and the "root" is passed
301//! in at runtime dynamically. Some of this is best effort, but the general
302//! idea is that we assume all accesses within a crate stay within that
303//! crate.
304//!
305//! These are pretty tricky to test for unfortunately, but we should have a good
306//! test suite nowadays and lord knows Cargo gets enough testing in the wild!
307//!
308//! ## Build scripts
309//!
310//! The *running* of a build script ([`CompileMode::RunCustomBuild`]) is treated
311//! significantly different than all other Unit kinds. It has its own function
312//! for calculating the Fingerprint ([`calculate_run_custom_build`]) and has some
313//! unique considerations. It does not track the same information as a normal
314//! Unit. The information tracked depends on the `rerun-if-changed` and
315//! `rerun-if-env-changed` statements produced by the build script. If the
316//! script does not emit either of these statements, the Fingerprint runs in
317//! "old style" mode where an mtime change of *any* file in the package will
318//! cause the build script to be re-run. Otherwise, the fingerprint *only*
319//! tracks the individual "rerun-if" items listed by the build script.
320//!
321//! The "rerun-if" statements from a *previous* build are stored in the build
322//! output directory in a file called `output`. Cargo parses this file when
323//! the Unit for that build script is prepared for the [`JobQueue`]. The
324//! Fingerprint code can then use that information to compute the Fingerprint
325//! and compare against the old fingerprint hash.
326//!
327//! Care must be taken with build script Fingerprints because the
328//! [`Fingerprint::local`] value may be changed after the build script runs
329//! (such as if the build script adds or removes "rerun-if" items).
330//!
331//! Another complication is if a build script is overridden. In that case, the
332//! fingerprint is the hash of the output of the override.
333//!
334//! ## Special considerations
335//!
336//! Registry dependencies do not track the mtime of files. This is because
337//! registry dependencies are not expected to change (if a new version is
338//! used, the Package ID will change, causing a rebuild). Cargo currently
339//! partially works with Docker caching. When a Docker image is built, it has
340//! normal mtime information. However, when a step is cached, the nanosecond
341//! portions of all files is zeroed out. Currently this works, but care must
342//! be taken for situations like these.
343//!
344//! HFS on macOS only supports 1 second timestamps. This causes a significant
345//! number of problems, particularly with Cargo's testsuite which does rapid
346//! builds in succession. Other filesystems have various degrees of
347//! resolution.
348//!
349//! Various weird filesystems (such as network filesystems) also can cause
350//! complications. Network filesystems may track the time on the server
351//! (except when the time is set manually such as with
352//! `filetime::set_file_times`). Not all filesystems support modifying the
353//! mtime.
354//!
355//! See the [`A-rebuild-detection`] label on the issue tracker for more.
356//!
357//! [`check_filesystem`]: Fingerprint::check_filesystem
358//! [`Metadata`]: crate::core::compiler::Metadata
359//! [`Metadata::unit_id`]: crate::core::compiler::Metadata::unit_id
360//! [`Metadata::c_metadata`]: crate::core::compiler::Metadata::c_metadata
361//! [`Metadata::c_extra_filename`]: crate::core::compiler::Metadata::c_extra_filename
362//! [`UnitHash`]: crate::core::compiler::UnitHash
363//! [`Profile`]: crate::core::profiles::Profile
364//! [`CompileMode`]: crate::core::compiler::CompileMode
365//! [`Lto`]: crate::core::compiler::Lto
366//! [`CompileKind`]: crate::core::compiler::CompileKind
367//! [`JobQueue`]: super::job_queue::JobQueue
368//! [`output_depinfo`]: super::output_depinfo()
369//! [`CheckDepInfo`]: LocalFingerprint::CheckDepInfo
370//! [`RerunIfChanged`]: LocalFingerprint::RerunIfChanged
371//! [`CompileMode::RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
372//! [`A-rebuild-detection`]: https://github.com/rust-lang/cargo/issues?q=is%3Aissue+is%3Aopen+label%3AA-rebuild-detection
373
374mod dep_info;
375mod dirty_reason;
376mod rustdoc;
377
378use std::collections::hash_map::{Entry, HashMap};
379use std::env;
380use std::ffi::OsString;
381use std::fs;
382use std::fs::File;
383use std::hash::{self, Hash, Hasher};
384use std::io::{self};
385use std::path::{Path, PathBuf};
386use std::sync::{Arc, Mutex};
387use std::time::SystemTime;
388
389use anyhow::Context as _;
390use anyhow::format_err;
391use cargo_util::paths;
392use filetime::FileTime;
393use serde::de;
394use serde::ser;
395use serde::{Deserialize, Serialize};
396use tracing::{debug, info};
397
398use crate::core::Package;
399use crate::core::compiler::unit_graph::UnitDep;
400use crate::util;
401use crate::util::errors::CargoResult;
402use crate::util::interning::InternedString;
403use crate::util::log_message::LogMessage;
404use crate::util::{StableHasher, internal, path_args};
405use crate::{CARGO_ENV, GlobalContext};
406
407use super::custom_build::BuildDeps;
408use super::{BuildContext, BuildRunner, FileFlavor, Job, Unit, Work};
409
410pub use self::dep_info::Checksum;
411pub use self::dep_info::parse_dep_info;
412pub use self::dep_info::parse_rustc_dep_info;
413pub use self::dep_info::translate_dep_info;
414pub use self::dirty_reason::DirtyReason;
415pub use self::rustdoc::RustdocFingerprint;
416
417/// Result of comparing fingerprints between the current and previous builds.
418enum FingerprintComparison {
419 /// The unit does not need rebuilding.
420 Fresh,
421 /// The unit needs rebuilding.
422 Dirty {
423 /// The reason why the unit is dirty.
424 reason: DirtyReason,
425 },
426}
427
428/// Determines if a [`Unit`] is up-to-date, and if not prepares necessary work to
429/// update the persisted fingerprint.
430///
431/// This function will inspect `Unit`, calculate a fingerprint for it, and then
432/// return an appropriate [`Job`] to run. The returned `Job` will be a noop if
433/// `unit` is considered "fresh", or if it was previously built and cached.
434/// Otherwise the `Job` returned will write out the true fingerprint to the
435/// filesystem, to be executed after the unit's work has completed.
436///
437/// The `force` flag is a way to force the `Job` to be "dirty", or always
438/// update the fingerprint. **Beware using this flag** because it does not
439/// transitively propagate throughout the dependency graph, it only forces this
440/// one unit which is very unlikely to be what you want unless you're
441/// exclusively talking about top-level units.
442#[tracing::instrument(
443 skip(build_runner, unit),
444 fields(package_id = %unit.pkg.package_id(), target = unit.target.name())
445)]
446pub fn prepare_target(
447 build_runner: &mut BuildRunner<'_, '_>,
448 unit: &Unit,
449 force: bool,
450) -> CargoResult<Job> {
451 let bcx = build_runner.bcx;
452 let loc = build_runner.files().fingerprint_file_path(unit, "");
453
454 debug!("fingerprint at: {}", loc.display());
455
456 // Figure out if this unit is up to date. After calculating the fingerprint
457 // compare it to an old version, if any, and attempt to print diagnostic
458 // information about failed comparisons to aid in debugging.
459 let fingerprint = calculate(build_runner, unit)?;
460 let mtime_on_use = build_runner.bcx.gctx.cli_unstable().mtime_on_use;
461 let dirty_reason = match compare_old_fingerprint(unit, &loc, &*fingerprint, mtime_on_use, force)
462 {
463 FingerprintComparison::Fresh => None,
464 FingerprintComparison::Dirty { reason } => Some(reason),
465 };
466
467 if let Some(logger) = bcx.logger {
468 let index = bcx.unit_to_index[unit];
469 let mut cause = None;
470 let status = match dirty_reason.as_ref() {
471 Some(reason) if reason.is_fresh_build() => util::log_message::FingerprintStatus::New,
472 Some(reason) => {
473 cause = Some(reason.clone());
474 util::log_message::FingerprintStatus::Dirty
475 }
476 None => util::log_message::FingerprintStatus::Fresh,
477 };
478 logger.log(LogMessage::UnitFingerprint {
479 index,
480 status,
481 cause,
482 });
483 }
484
485 let Some(dirty_reason) = dirty_reason else {
486 return Ok(Job::new_fresh());
487 };
488
489 // We're going to rebuild, so ensure the source of the crate passes all
490 // verification checks before we build it.
491 //
492 // The `Source::verify` method is intended to allow sources to execute
493 // pre-build checks to ensure that the relevant source code is all
494 // up-to-date and as expected. This is currently used primarily for
495 // directory sources which will use this hook to perform an integrity check
496 // on all files in the source to ensure they haven't changed. If they have
497 // changed then an error is issued.
498 let source_id = unit.pkg.package_id().source_id();
499 let sources = bcx.packages.sources();
500 let source = sources
501 .get(source_id)
502 .ok_or_else(|| internal("missing package source"))?;
503 source.verify(unit.pkg.package_id())?;
504
505 // Clear out the old fingerprint file if it exists. This protects when
506 // compilation is interrupted leaving a corrupt file. For example, a
507 // project with a lib.rs and integration test (two units):
508 //
509 // 1. Build the library and integration test.
510 // 2. Make a change to lib.rs (NOT the integration test).
511 // 3. Build the integration test, hit Ctrl-C while linking. With gcc, this
512 // will leave behind an incomplete executable (zero size, or partially
513 // written). NOTE: The library builds successfully, it is the linking
514 // of the integration test that we are interrupting.
515 // 4. Build the integration test again.
516 //
517 // Without the following line, then step 3 will leave a valid fingerprint
518 // on the disk. Then step 4 will think the integration test is "fresh"
519 // because:
520 //
521 // - There is a valid fingerprint hash on disk (written in step 1).
522 // - The mtime of the output file (the corrupt integration executable
523 // written in step 3) is newer than all of its dependencies.
524 // - The mtime of the integration test fingerprint dep-info file (written
525 // in step 1) is newer than the integration test's source files, because
526 // we haven't modified any of its source files.
527 //
528 // But the executable is corrupt and needs to be rebuilt. Clearing the
529 // fingerprint at step 3 ensures that Cargo never mistakes a partially
530 // written output as up-to-date.
531 if loc.exists() {
532 // Truncate instead of delete so that compare_old_fingerprint will
533 // still log the reason for the fingerprint failure instead of just
534 // reporting "failed to read fingerprint" during the next build if
535 // this build fails.
536 paths::write(&loc, b"")?;
537 }
538
539 let write_fingerprint = if unit.mode.is_run_custom_build() {
540 // For build scripts the `local` field of the fingerprint may change
541 // while we're executing it. For example it could be in the legacy
542 // "consider everything a dependency mode" and then we switch to "deps
543 // are explicitly specified" mode.
544 //
545 // To handle this movement we need to regenerate the `local` field of a
546 // build script's fingerprint after it's executed. We do this by
547 // using the `build_script_local_fingerprints` function which returns a
548 // thunk we can invoke on a foreign thread to calculate this.
549 let build_script_outputs = Arc::clone(&build_runner.build_script_outputs);
550 let metadata = build_runner.get_run_build_script_metadata(unit);
551 let (gen_local, _overridden) = build_script_local_fingerprints(build_runner, unit)?;
552 let output_path = build_runner.build_explicit_deps[unit]
553 .build_script_output
554 .clone();
555 Work::new(move |_| {
556 let outputs = build_script_outputs.lock().unwrap();
557 let output = outputs
558 .get(metadata)
559 .expect("output must exist after running");
560 let deps = BuildDeps::new(&output_path, Some(output));
561
562 // FIXME: it's basically buggy that we pass `None` to `call_box`
563 // here. See documentation on `build_script_local_fingerprints`
564 // below for more information. Despite this just try to proceed and
565 // hobble along if it happens to return `Some`.
566 if let Some(new_local) = (gen_local)(&deps, None)? {
567 *fingerprint.local.lock().unwrap() = new_local;
568 }
569
570 write_fingerprint(&loc, &fingerprint)
571 })
572 } else {
573 Work::new(move |_| write_fingerprint(&loc, &fingerprint))
574 };
575
576 Ok(Job::new_dirty(write_fingerprint, dirty_reason))
577}
578
579/// Dependency edge information for fingerprints. This is generated for each
580/// dependency and is stored in a [`Fingerprint`].
581#[derive(Clone)]
582struct DepFingerprint {
583 /// The hash of the package id that this dependency points to
584 pkg_id: u64,
585 /// The crate name we're using for this dependency, which if we change we'll
586 /// need to recompile!
587 name: InternedString,
588 /// Whether or not this dependency is flagged as a public dependency or not.
589 public: bool,
590 /// Whether or not this dependency is an rmeta dependency or a "full"
591 /// dependency. In the case of an rmeta dependency our dependency edge only
592 /// actually requires the rmeta from what we depend on, so when checking
593 /// mtime information all files other than the rmeta can be ignored.
594 only_requires_rmeta: bool,
595 /// The dependency's fingerprint we recursively point to, containing all the
596 /// other hash information we'd otherwise need.
597 fingerprint: Arc<Fingerprint>,
598}
599
600/// A fingerprint can be considered to be a "short string" representing the
601/// state of a world for a package.
602///
603/// If a fingerprint ever changes, then the package itself needs to be
604/// recompiled. Inputs to the fingerprint include source code modifications,
605/// compiler flags, compiler version, etc. This structure is not simply a
606/// `String` due to the fact that some fingerprints cannot be calculated lazily.
607///
608/// Path sources, for example, use the mtime of the corresponding dep-info file
609/// as a fingerprint (all source files must be modified *before* this mtime).
610/// This dep-info file is not generated, however, until after the crate is
611/// compiled. As a result, this structure can be thought of as a fingerprint
612/// to-be. The actual value can be calculated via [`hash_u64()`], but the operation
613/// may fail as some files may not have been generated.
614///
615/// Note that dependencies are taken into account for fingerprints because rustc
616/// requires that whenever an upstream crate is recompiled that all downstream
617/// dependents are also recompiled. This is typically tracked through
618/// [`DependencyQueue`], but it also needs to be retained here because Cargo can
619/// be interrupted while executing, losing the state of the [`DependencyQueue`]
620/// graph.
621///
622/// [`hash_u64()`]: crate::core::compiler::fingerprint::Fingerprint::hash_u64
623/// [`DependencyQueue`]: crate::util::DependencyQueue
624#[derive(Serialize, Deserialize)]
625pub struct Fingerprint {
626 /// Hash of the version of `rustc` used.
627 rustc: u64,
628 /// Sorted list of cfg features enabled.
629 features: String,
630 /// Sorted list of all the declared cfg features.
631 declared_features: String,
632 /// Hash of the `Target` struct, including the target name,
633 /// package-relative source path, edition, etc.
634 target: u64,
635 /// Hash of the [`Profile`], [`CompileMode`], and any extra flags passed via
636 /// `cargo rustc` or `cargo rustdoc`.
637 ///
638 /// [`Profile`]: crate::core::profiles::Profile
639 /// [`CompileMode`]: crate::core::compiler::CompileMode
640 profile: u64,
641 /// Hash of the path to the base source file. This is relative to the
642 /// workspace root for path members, or absolute for other sources.
643 path: u64,
644 /// Fingerprints of dependencies.
645 deps: Vec<DepFingerprint>,
646 /// Information about the inputs that affect this Unit (such as source
647 /// file mtimes or build script environment variables).
648 local: Mutex<Vec<LocalFingerprint>>,
649 /// Cached hash of the [`Fingerprint`] struct. Used to improve performance
650 /// for hashing.
651 #[serde(skip)]
652 memoized_hash: Mutex<Option<u64>>,
653 /// RUSTFLAGS/RUSTDOCFLAGS environment variable value (or config value).
654 rustflags: Vec<String>,
655 /// Hash of various config settings that change how things are compiled.
656 config: u64,
657 /// The rustc target. This is only relevant for `.json` files, otherwise
658 /// the metadata hash segregates the units.
659 compile_kind: u64,
660 /// Description of whether the filesystem status for this unit is up to date
661 /// or should be considered stale.
662 #[serde(skip)]
663 fs_status: FsStatus,
664 /// Files, relative to `target_root`, that are produced by the step that
665 /// this `Fingerprint` represents. This is used to detect when the whole
666 /// fingerprint is out of date if this is missing, or if previous
667 /// fingerprints output files are regenerated and look newer than this one.
668 #[serde(skip)]
669 outputs: Vec<PathBuf>,
670}
671
672/// Indication of the status on the filesystem for a particular unit.
673#[derive(Clone, Default, Debug, Serialize)]
674#[serde(tag = "fs_status", rename_all = "kebab-case")]
675pub enum FsStatus {
676 /// This unit is to be considered stale, even if hash information all
677 /// matches.
678 #[default]
679 Stale,
680
681 /// File system inputs have changed (or are missing), or there were
682 /// changes to the environment variables that affect this unit. See
683 /// the variants of [`StaleItem`] for more information.
684 StaleItem(StaleItem),
685
686 /// A dependency was stale.
687 StaleDependency {
688 name: InternedString,
689 #[serde(serialize_with = "serialize_file_time")]
690 dep_mtime: FileTime,
691 #[serde(serialize_with = "serialize_file_time")]
692 max_mtime: FileTime,
693 },
694
695 /// A dependency was stale.
696 StaleDepFingerprint { name: InternedString },
697
698 /// This unit is up-to-date. All outputs and their corresponding mtime are
699 /// listed in the payload here for other dependencies to compare against.
700 #[serde(skip)]
701 UpToDate { mtimes: HashMap<PathBuf, FileTime> },
702}
703
704impl FsStatus {
705 fn up_to_date(&self) -> bool {
706 match self {
707 FsStatus::UpToDate { .. } => true,
708 FsStatus::Stale
709 | FsStatus::StaleItem(_)
710 | FsStatus::StaleDependency { .. }
711 | FsStatus::StaleDepFingerprint { .. } => false,
712 }
713 }
714}
715
716/// Serialize FileTime as milliseconds with nano.
717fn serialize_file_time<S>(ft: &FileTime, s: S) -> Result<S::Ok, S::Error>
718where
719 S: serde::Serializer,
720{
721 let secs_as_millis = ft.unix_seconds() as f64 * 1000.0;
722 let nanos_as_millis = ft.nanoseconds() as f64 / 1_000_000.0;
723 (secs_as_millis + nanos_as_millis).serialize(s)
724}
725
726impl Serialize for DepFingerprint {
727 fn serialize<S>(&self, ser: S) -> Result<S::Ok, S::Error>
728 where
729 S: ser::Serializer,
730 {
731 (
732 &self.pkg_id,
733 &self.name,
734 &self.public,
735 &self.fingerprint.hash_u64(),
736 )
737 .serialize(ser)
738 }
739}
740
741impl<'de> Deserialize<'de> for DepFingerprint {
742 fn deserialize<D>(d: D) -> Result<DepFingerprint, D::Error>
743 where
744 D: de::Deserializer<'de>,
745 {
746 let (pkg_id, name, public, hash) = <(u64, String, bool, u64)>::deserialize(d)?;
747 Ok(DepFingerprint {
748 pkg_id,
749 name: name.into(),
750 public,
751 fingerprint: Arc::new(Fingerprint {
752 memoized_hash: Mutex::new(Some(hash)),
753 ..Fingerprint::new()
754 }),
755 // This field is never read since it's only used in
756 // `check_filesystem` which isn't used by fingerprints loaded from
757 // disk.
758 only_requires_rmeta: false,
759 })
760 }
761}
762
763/// A `LocalFingerprint` represents something that we use to detect direct
764/// changes to a `Fingerprint`.
765///
766/// This is where we track file information, env vars, etc. This
767/// `LocalFingerprint` struct is hashed and if the hash changes will force a
768/// recompile of any fingerprint it's included into. Note that the "local"
769/// terminology comes from the fact that it only has to do with one crate, and
770/// `Fingerprint` tracks the transitive propagation of fingerprint changes.
771///
772/// Note that because this is hashed its contents are carefully managed. Like
773/// mentioned in the above module docs, we don't want to hash absolute paths or
774/// mtime information.
775///
776/// Also note that a `LocalFingerprint` is used in `check_filesystem` to detect
777/// when the filesystem contains stale information (based on mtime currently).
778/// The paths here don't change much between compilations but they're used as
779/// inputs when we probe the filesystem looking at information.
780#[derive(Debug, Serialize, Deserialize, Hash)]
781enum LocalFingerprint {
782 /// This is a precalculated fingerprint which has an opaque string we just
783 /// hash as usual. This variant is primarily used for rustdoc where we
784 /// don't have a dep-info file to compare against.
785 ///
786 /// This is also used for build scripts with no `rerun-if-*` statements, but
787 /// that's overall a mistake and causes bugs in Cargo. We shouldn't use this
788 /// for build scripts.
789 Precalculated(String),
790
791 /// This is used for crate compilations. The `dep_info` file is a relative
792 /// path anchored at `target_root(...)` to the dep-info file that Cargo
793 /// generates (which is a custom serialization after parsing rustc's own
794 /// `dep-info` output).
795 ///
796 /// The `dep_info` file, when present, also lists a number of other files
797 /// for us to look at. If any of those files are newer than this file then
798 /// we need to recompile.
799 ///
800 /// If the `checksum` bool is true then the `dep_info` file is expected to
801 /// contain file checksums instead of file mtimes.
802 CheckDepInfo { dep_info: PathBuf, checksum: bool },
803
804 /// This represents a nonempty set of `rerun-if-changed` annotations printed
805 /// out by a build script. The `output` file is a relative file anchored at
806 /// `target_root(...)` which is the actual output of the build script. That
807 /// output has already been parsed and the paths printed out via
808 /// `rerun-if-changed` are listed in `paths`. The `paths` field is relative
809 /// to `pkg.root()`
810 ///
811 /// This is considered up-to-date if all of the `paths` are older than
812 /// `output`, otherwise we need to recompile.
813 RerunIfChanged {
814 output: PathBuf,
815 paths: Vec<PathBuf>,
816 },
817
818 /// This represents a single `rerun-if-env-changed` annotation printed by a
819 /// build script. The exact env var and value are hashed here. There's no
820 /// filesystem dependence here, and if the values are changed the hash will
821 /// change forcing a recompile.
822 RerunIfEnvChanged { var: String, val: Option<String> },
823}
824
825/// See [`FsStatus::StaleItem`].
826#[derive(Clone, Debug, Serialize)]
827#[serde(tag = "stale_item", rename_all = "kebab-case")]
828pub enum StaleItem {
829 MissingFile {
830 path: PathBuf,
831 },
832 UnableToReadFile {
833 path: PathBuf,
834 },
835 FailedToReadMetadata {
836 path: PathBuf,
837 },
838 FileSizeChanged {
839 path: PathBuf,
840 old_size: u64,
841 new_size: u64,
842 },
843 ChangedFile {
844 reference: PathBuf,
845 #[serde(serialize_with = "serialize_file_time")]
846 reference_mtime: FileTime,
847 stale: PathBuf,
848 #[serde(serialize_with = "serialize_file_time")]
849 stale_mtime: FileTime,
850 },
851 ChangedChecksum {
852 source: PathBuf,
853 stored_checksum: Checksum,
854 new_checksum: Checksum,
855 },
856 MissingChecksum {
857 path: PathBuf,
858 },
859 ChangedEnv {
860 var: String,
861 previous: Option<String>,
862 current: Option<String>,
863 },
864}
865
866impl LocalFingerprint {
867 /// Read the environment variable of the given env `key`, and creates a new
868 /// [`LocalFingerprint::RerunIfEnvChanged`] for it. The `env_config` is used firstly
869 /// to check if the env var is set in the config system as some envs need to be overridden.
870 /// If not, it will fallback to `std::env::var`.
871 ///
872 // TODO: `std::env::var` is allowed at this moment. Should figure out
873 // if it makes sense if permitting to read env from the env snapshot.
874 #[allow(clippy::disallowed_methods)]
875 fn from_env<K: AsRef<str>>(
876 key: K,
877 env_config: &Arc<HashMap<String, OsString>>,
878 ) -> LocalFingerprint {
879 let key = key.as_ref();
880 let var = key.to_owned();
881 let val = if let Some(val) = env_config.get(key) {
882 val.to_str().map(ToOwned::to_owned)
883 } else {
884 env::var(key).ok()
885 };
886 LocalFingerprint::RerunIfEnvChanged { var, val }
887 }
888
889 /// Checks dynamically at runtime if this `LocalFingerprint` has a stale
890 /// item inside of it.
891 ///
892 /// The main purpose of this function is to handle two different ways
893 /// fingerprints can be invalidated:
894 ///
895 /// * One is a dependency listed in rustc's dep-info files is invalid. Note
896 /// that these could either be env vars or files. We check both here.
897 ///
898 /// * Another is the `rerun-if-changed` directive from build scripts. This
899 /// is where we'll find whether files have actually changed
900 fn find_stale_item(
901 &self,
902 mtime_cache: &mut HashMap<PathBuf, FileTime>,
903 checksum_cache: &mut HashMap<PathBuf, Checksum>,
904 pkg: &Package,
905 build_root: &Path,
906 cargo_exe: &Path,
907 gctx: &GlobalContext,
908 ) -> CargoResult<Option<StaleItem>> {
909 let pkg_root = pkg.root();
910 match self {
911 // We need to parse `dep_info`, learn about the crate's dependencies.
912 //
913 // For each env var we see if our current process's env var still
914 // matches, and for each file we see if any of them are newer than
915 // the `dep_info` file itself whose mtime represents the start of
916 // rustc.
917 LocalFingerprint::CheckDepInfo { dep_info, checksum } => {
918 let dep_info = build_root.join(dep_info);
919 let Some(info) = parse_dep_info(pkg_root, build_root, &dep_info)? else {
920 return Ok(Some(StaleItem::MissingFile { path: dep_info }));
921 };
922 for (key, previous) in info.env.iter() {
923 if let Some(value) = pkg.manifest().metadata().env_var(key.as_str()) {
924 if Some(value.as_ref()) == previous.as_deref() {
925 continue;
926 }
927 }
928
929 let current = if key == CARGO_ENV {
930 Some(cargo_exe.to_str().ok_or_else(|| {
931 format_err!(
932 "cargo exe path {} must be valid UTF-8",
933 cargo_exe.display()
934 )
935 })?)
936 } else {
937 if let Some(value) = gctx.env_config()?.get(key) {
938 value.to_str()
939 } else {
940 gctx.get_env(key).ok()
941 }
942 };
943 if current == previous.as_deref() {
944 continue;
945 }
946 return Ok(Some(StaleItem::ChangedEnv {
947 var: key.clone(),
948 previous: previous.clone(),
949 current: current.map(Into::into),
950 }));
951 }
952 if *checksum {
953 Ok(find_stale_file(
954 mtime_cache,
955 checksum_cache,
956 &dep_info,
957 info.files.iter().map(|(file, checksum)| (file, *checksum)),
958 *checksum,
959 ))
960 } else {
961 Ok(find_stale_file(
962 mtime_cache,
963 checksum_cache,
964 &dep_info,
965 info.files.into_keys().map(|p| (p, None)),
966 *checksum,
967 ))
968 }
969 }
970
971 // We need to verify that no paths listed in `paths` are newer than
972 // the `output` path itself, or the last time the build script ran.
973 LocalFingerprint::RerunIfChanged { output, paths } => Ok(find_stale_file(
974 mtime_cache,
975 checksum_cache,
976 &build_root.join(output),
977 paths.iter().map(|p| (pkg_root.join(p), None)),
978 false,
979 )),
980
981 // These have no dependencies on the filesystem, and their values
982 // are included natively in the `Fingerprint` hash so nothing
983 // tocheck for here.
984 LocalFingerprint::RerunIfEnvChanged { .. } => Ok(None),
985 LocalFingerprint::Precalculated(..) => Ok(None),
986 }
987 }
988
989 fn kind(&self) -> &'static str {
990 match self {
991 LocalFingerprint::Precalculated(..) => "precalculated",
992 LocalFingerprint::CheckDepInfo { .. } => "dep-info",
993 LocalFingerprint::RerunIfChanged { .. } => "rerun-if-changed",
994 LocalFingerprint::RerunIfEnvChanged { .. } => "rerun-if-env-changed",
995 }
996 }
997}
998
999impl Fingerprint {
1000 fn new() -> Fingerprint {
1001 Fingerprint {
1002 rustc: 0,
1003 target: 0,
1004 profile: 0,
1005 path: 0,
1006 features: String::new(),
1007 declared_features: String::new(),
1008 deps: Vec::new(),
1009 local: Mutex::new(Vec::new()),
1010 memoized_hash: Mutex::new(None),
1011 rustflags: Vec::new(),
1012 config: 0,
1013 compile_kind: 0,
1014 fs_status: FsStatus::Stale,
1015 outputs: Vec::new(),
1016 }
1017 }
1018
1019 /// For performance reasons fingerprints will memoize their own hash, but
1020 /// there's also internal mutability with its `local` field which can
1021 /// change, for example with build scripts, during a build.
1022 ///
1023 /// This method can be used to bust all memoized hashes just before a build
1024 /// to ensure that after a build completes everything is up-to-date.
1025 pub fn clear_memoized(&self) {
1026 *self.memoized_hash.lock().unwrap() = None;
1027 }
1028
1029 fn hash_u64(&self) -> u64 {
1030 if let Some(s) = *self.memoized_hash.lock().unwrap() {
1031 return s;
1032 }
1033 let ret = util::hash_u64(self);
1034 *self.memoized_hash.lock().unwrap() = Some(ret);
1035 ret
1036 }
1037
1038 /// Compares this fingerprint with an old version which was previously
1039 /// serialized to filesystem.
1040 ///
1041 /// The purpose of this is exclusively to produce a diagnostic message
1042 /// [`DirtyReason`], indicating why we're recompiling something.
1043 fn compare(&self, old: &Fingerprint) -> DirtyReason {
1044 if self.rustc != old.rustc {
1045 return DirtyReason::RustcChanged;
1046 }
1047 if self.features != old.features {
1048 return DirtyReason::FeaturesChanged {
1049 old: old.features.clone(),
1050 new: self.features.clone(),
1051 };
1052 }
1053 if self.declared_features != old.declared_features {
1054 return DirtyReason::DeclaredFeaturesChanged {
1055 old: old.declared_features.clone(),
1056 new: self.declared_features.clone(),
1057 };
1058 }
1059 if self.target != old.target {
1060 return DirtyReason::TargetConfigurationChanged;
1061 }
1062 if self.path != old.path {
1063 return DirtyReason::PathToSourceChanged;
1064 }
1065 if self.profile != old.profile {
1066 return DirtyReason::ProfileConfigurationChanged;
1067 }
1068 if self.rustflags != old.rustflags {
1069 return DirtyReason::RustflagsChanged {
1070 old: old.rustflags.clone(),
1071 new: self.rustflags.clone(),
1072 };
1073 }
1074 if self.config != old.config {
1075 return DirtyReason::ConfigSettingsChanged;
1076 }
1077 if self.compile_kind != old.compile_kind {
1078 return DirtyReason::CompileKindChanged;
1079 }
1080 let my_local = self.local.lock().unwrap();
1081 let old_local = old.local.lock().unwrap();
1082 if my_local.len() != old_local.len() {
1083 return DirtyReason::LocalLengthsChanged;
1084 }
1085 for (new, old) in my_local.iter().zip(old_local.iter()) {
1086 match (new, old) {
1087 (LocalFingerprint::Precalculated(a), LocalFingerprint::Precalculated(b)) => {
1088 if a != b {
1089 return DirtyReason::PrecalculatedComponentsChanged {
1090 old: b.to_string(),
1091 new: a.to_string(),
1092 };
1093 }
1094 }
1095 (
1096 LocalFingerprint::CheckDepInfo {
1097 dep_info: a_dep,
1098 checksum: checksum_a,
1099 },
1100 LocalFingerprint::CheckDepInfo {
1101 dep_info: b_dep,
1102 checksum: checksum_b,
1103 },
1104 ) => {
1105 if a_dep != b_dep {
1106 return DirtyReason::DepInfoOutputChanged {
1107 old: b_dep.clone(),
1108 new: a_dep.clone(),
1109 };
1110 }
1111 if checksum_a != checksum_b {
1112 return DirtyReason::ChecksumUseChanged { old: *checksum_b };
1113 }
1114 }
1115 (
1116 LocalFingerprint::RerunIfChanged {
1117 output: a_out,
1118 paths: a_paths,
1119 },
1120 LocalFingerprint::RerunIfChanged {
1121 output: b_out,
1122 paths: b_paths,
1123 },
1124 ) => {
1125 if a_out != b_out {
1126 return DirtyReason::RerunIfChangedOutputFileChanged {
1127 old: b_out.clone(),
1128 new: a_out.clone(),
1129 };
1130 }
1131 if a_paths != b_paths {
1132 return DirtyReason::RerunIfChangedOutputPathsChanged {
1133 old: b_paths.clone(),
1134 new: a_paths.clone(),
1135 };
1136 }
1137 }
1138 (
1139 LocalFingerprint::RerunIfEnvChanged {
1140 var: a_key,
1141 val: a_value,
1142 },
1143 LocalFingerprint::RerunIfEnvChanged {
1144 var: b_key,
1145 val: b_value,
1146 },
1147 ) => {
1148 if *a_key != *b_key {
1149 return DirtyReason::EnvVarsChanged {
1150 old: b_key.clone(),
1151 new: a_key.clone(),
1152 };
1153 }
1154 if *a_value != *b_value {
1155 return DirtyReason::EnvVarChanged {
1156 name: a_key.clone(),
1157 old_value: b_value.clone(),
1158 new_value: a_value.clone(),
1159 };
1160 }
1161 }
1162 (a, b) => {
1163 return DirtyReason::LocalFingerprintTypeChanged {
1164 old: b.kind(),
1165 new: a.kind(),
1166 };
1167 }
1168 }
1169 }
1170
1171 if self.deps.len() != old.deps.len() {
1172 return DirtyReason::NumberOfDependenciesChanged {
1173 old: old.deps.len(),
1174 new: self.deps.len(),
1175 };
1176 }
1177 for (a, b) in self.deps.iter().zip(old.deps.iter()) {
1178 if a.name != b.name {
1179 return DirtyReason::UnitDependencyNameChanged {
1180 old: b.name,
1181 new: a.name,
1182 };
1183 }
1184
1185 if a.fingerprint.hash_u64() != b.fingerprint.hash_u64() {
1186 return DirtyReason::UnitDependencyInfoChanged {
1187 new_name: a.name,
1188 new_fingerprint: a.fingerprint.hash_u64(),
1189 old_name: b.name,
1190 old_fingerprint: b.fingerprint.hash_u64(),
1191 };
1192 }
1193 }
1194
1195 if !self.fs_status.up_to_date() {
1196 return DirtyReason::FsStatusOutdated(self.fs_status.clone());
1197 }
1198
1199 // This typically means some filesystem modifications happened or
1200 // something transitive was odd. In general we should strive to provide
1201 // a better error message than this, so if you see this message a lot it
1202 // likely means this method needs to be updated!
1203 DirtyReason::NothingObvious
1204 }
1205
1206 /// Dynamically inspect the local filesystem to update the `fs_status` field
1207 /// of this `Fingerprint`.
1208 ///
1209 /// This function is used just after a `Fingerprint` is constructed to check
1210 /// the local state of the filesystem and propagate any dirtiness from
1211 /// dependencies up to this unit as well. This function assumes that the
1212 /// unit starts out as [`FsStatus::Stale`] and then it will optionally switch
1213 /// it to `UpToDate` if it can.
1214 fn check_filesystem(
1215 &mut self,
1216 mtime_cache: &mut HashMap<PathBuf, FileTime>,
1217 checksum_cache: &mut HashMap<PathBuf, Checksum>,
1218 pkg: &Package,
1219 build_root: &Path,
1220 cargo_exe: &Path,
1221 gctx: &GlobalContext,
1222 ) -> CargoResult<()> {
1223 assert!(!self.fs_status.up_to_date());
1224
1225 let pkg_root = pkg.root();
1226 let mut mtimes = HashMap::new();
1227
1228 // Get the `mtime` of all outputs. Optionally update their mtime
1229 // afterwards based on the `mtime_on_use` flag. Afterwards we want the
1230 // minimum mtime as it's the one we'll be comparing to inputs and
1231 // dependencies.
1232 for output in self.outputs.iter() {
1233 let Ok(mtime) = paths::mtime(output) else {
1234 // This path failed to report its `mtime`. It probably doesn't
1235 // exists, so leave ourselves as stale and bail out.
1236 let item = StaleItem::FailedToReadMetadata {
1237 path: output.clone(),
1238 };
1239 self.fs_status = FsStatus::StaleItem(item);
1240 return Ok(());
1241 };
1242 assert!(mtimes.insert(output.clone(), mtime).is_none());
1243 }
1244
1245 let opt_max = mtimes.iter().max_by_key(|kv| kv.1);
1246 let Some((max_path, max_mtime)) = opt_max else {
1247 // We had no output files. This means we're an overridden build
1248 // script and we're just always up to date because we aren't
1249 // watching the filesystem.
1250 self.fs_status = FsStatus::UpToDate { mtimes };
1251 return Ok(());
1252 };
1253 debug!(
1254 "max output mtime for {:?} is {:?} {}",
1255 pkg_root, max_path, max_mtime
1256 );
1257
1258 for dep in self.deps.iter() {
1259 let dep_mtimes = match &dep.fingerprint.fs_status {
1260 FsStatus::UpToDate { mtimes } => mtimes,
1261 // If our dependency is stale, so are we, so bail out.
1262 FsStatus::Stale
1263 | FsStatus::StaleItem(_)
1264 | FsStatus::StaleDependency { .. }
1265 | FsStatus::StaleDepFingerprint { .. } => {
1266 self.fs_status = FsStatus::StaleDepFingerprint { name: dep.name };
1267 return Ok(());
1268 }
1269 };
1270
1271 // If our dependency edge only requires the rmeta file to be present
1272 // then we only need to look at that one output file, otherwise we
1273 // need to consider all output files to see if we're out of date.
1274 let (dep_path, dep_mtime) = if dep.only_requires_rmeta {
1275 dep_mtimes
1276 .iter()
1277 .find(|(path, _mtime)| {
1278 path.extension().and_then(|s| s.to_str()) == Some("rmeta")
1279 })
1280 .expect("failed to find rmeta")
1281 } else {
1282 match dep_mtimes.iter().max_by_key(|kv| kv.1) {
1283 Some(dep_mtime) => dep_mtime,
1284 // If our dependencies is up to date and has no filesystem
1285 // interactions, then we can move on to the next dependency.
1286 None => continue,
1287 }
1288 };
1289 debug!(
1290 "max dep mtime for {:?} is {:?} {}",
1291 pkg_root, dep_path, dep_mtime
1292 );
1293
1294 // If the dependency is newer than our own output then it was
1295 // recompiled previously. We transitively become stale ourselves in
1296 // that case, so bail out.
1297 //
1298 // Note that this comparison should probably be `>=`, not `>`, but
1299 // for a discussion of why it's `>` see the discussion about #5918
1300 // below in `find_stale`.
1301 if dep_mtime > max_mtime {
1302 info!(
1303 "dependency on `{}` is newer than we are {} > {} {:?}",
1304 dep.name, dep_mtime, max_mtime, pkg_root
1305 );
1306
1307 self.fs_status = FsStatus::StaleDependency {
1308 name: dep.name,
1309 dep_mtime: *dep_mtime,
1310 max_mtime: *max_mtime,
1311 };
1312
1313 return Ok(());
1314 }
1315 }
1316
1317 // If we reached this far then all dependencies are up to date. Check
1318 // all our `LocalFingerprint` information to see if we have any stale
1319 // files for this package itself. If we do find something log a helpful
1320 // message and bail out so we stay stale.
1321 for local in self.local.get_mut().unwrap().iter() {
1322 if let Some(item) = local.find_stale_item(
1323 mtime_cache,
1324 checksum_cache,
1325 pkg,
1326 build_root,
1327 cargo_exe,
1328 gctx,
1329 )? {
1330 item.log();
1331 self.fs_status = FsStatus::StaleItem(item);
1332 return Ok(());
1333 }
1334 }
1335
1336 // Everything was up to date! Record such.
1337 self.fs_status = FsStatus::UpToDate { mtimes };
1338 debug!("filesystem up-to-date {:?}", pkg_root);
1339
1340 Ok(())
1341 }
1342}
1343
1344impl hash::Hash for Fingerprint {
1345 fn hash<H: Hasher>(&self, h: &mut H) {
1346 let Fingerprint {
1347 rustc,
1348 ref features,
1349 ref declared_features,
1350 target,
1351 path,
1352 profile,
1353 ref deps,
1354 ref local,
1355 config,
1356 compile_kind,
1357 ref rustflags,
1358 ..
1359 } = *self;
1360 let local = local.lock().unwrap();
1361 (
1362 rustc,
1363 features,
1364 declared_features,
1365 target,
1366 path,
1367 profile,
1368 &*local,
1369 config,
1370 compile_kind,
1371 rustflags,
1372 )
1373 .hash(h);
1374
1375 h.write_usize(deps.len());
1376 for DepFingerprint {
1377 pkg_id,
1378 name,
1379 public,
1380 fingerprint,
1381 only_requires_rmeta: _, // static property, no need to hash
1382 } in deps
1383 {
1384 pkg_id.hash(h);
1385 name.hash(h);
1386 public.hash(h);
1387 // use memoized dep hashes to avoid exponential blowup
1388 h.write_u64(fingerprint.hash_u64());
1389 }
1390 }
1391}
1392
1393impl DepFingerprint {
1394 fn new(
1395 build_runner: &mut BuildRunner<'_, '_>,
1396 parent: &Unit,
1397 dep: &UnitDep,
1398 ) -> CargoResult<DepFingerprint> {
1399 let fingerprint = calculate(build_runner, &dep.unit)?;
1400 // We need to be careful about what we hash here. We have a goal of
1401 // supporting renaming a project directory and not rebuilding
1402 // everything. To do that, however, we need to make sure that the cwd
1403 // doesn't make its way into any hashes, and one source of that is the
1404 // `SourceId` for `path` packages.
1405 //
1406 // We already have a requirement that `path` packages all have unique
1407 // names (sort of for this same reason), so if the package source is a
1408 // `path` then we just hash the name, but otherwise we hash the full
1409 // id as it won't change when the directory is renamed.
1410 let pkg_id = if dep.unit.pkg.package_id().source_id().is_path() {
1411 util::hash_u64(dep.unit.pkg.package_id().name())
1412 } else {
1413 util::hash_u64(dep.unit.pkg.package_id())
1414 };
1415
1416 Ok(DepFingerprint {
1417 pkg_id,
1418 name: dep.extern_crate_name,
1419 public: dep.public,
1420 fingerprint,
1421 only_requires_rmeta: build_runner.only_requires_rmeta(parent, &dep.unit),
1422 })
1423 }
1424}
1425
1426impl StaleItem {
1427 /// Use the `log` crate to log a hopefully helpful message in diagnosing
1428 /// what file is considered stale and why. This is intended to be used in
1429 /// conjunction with `CARGO_LOG` to determine why Cargo is recompiling
1430 /// something. Currently there's no user-facing usage of this other than
1431 /// that.
1432 fn log(&self) {
1433 match self {
1434 StaleItem::MissingFile { path } => {
1435 info!("stale: missing {:?}", path);
1436 }
1437 StaleItem::UnableToReadFile { path } => {
1438 info!("stale: unable to read {:?}", path);
1439 }
1440 StaleItem::FailedToReadMetadata { path } => {
1441 info!("stale: couldn't read metadata {:?}", path);
1442 }
1443 StaleItem::ChangedFile {
1444 reference,
1445 reference_mtime,
1446 stale,
1447 stale_mtime,
1448 } => {
1449 info!("stale: changed {:?}", stale);
1450 info!(" (vs) {:?}", reference);
1451 info!(" {:?} < {:?}", reference_mtime, stale_mtime);
1452 }
1453 StaleItem::FileSizeChanged {
1454 path,
1455 new_size,
1456 old_size,
1457 } => {
1458 info!("stale: changed {:?}", path);
1459 info!("prior file size {old_size}");
1460 info!(" new file size {new_size}");
1461 }
1462 StaleItem::ChangedChecksum {
1463 source,
1464 stored_checksum,
1465 new_checksum,
1466 } => {
1467 info!("stale: changed {:?}", source);
1468 info!("prior checksum {stored_checksum}");
1469 info!(" new checksum {new_checksum}");
1470 }
1471 StaleItem::MissingChecksum { path } => {
1472 info!("stale: no prior checksum {:?}", path);
1473 }
1474 StaleItem::ChangedEnv {
1475 var,
1476 previous,
1477 current,
1478 } => {
1479 info!("stale: changed env {:?}", var);
1480 info!(" {:?} != {:?}", previous, current);
1481 }
1482 }
1483 }
1484}
1485
1486/// Calculates the fingerprint for a [`Unit`].
1487///
1488/// This fingerprint is used by Cargo to learn about when information such as:
1489///
1490/// * A non-path package changes (changes version, changes revision, etc).
1491/// * Any dependency changes
1492/// * The compiler changes
1493/// * The set of features a package is built with changes
1494/// * The profile a target is compiled with changes (e.g., opt-level changes)
1495/// * Any other compiler flags change that will affect the result
1496///
1497/// Information like file modification time is only calculated for path
1498/// dependencies.
1499fn calculate(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> CargoResult<Arc<Fingerprint>> {
1500 // This function is slammed quite a lot, so the result is memoized.
1501 if let Some(s) = build_runner.fingerprints.get(unit) {
1502 return Ok(Arc::clone(s));
1503 }
1504 let mut fingerprint = if unit.mode.is_run_custom_build() {
1505 calculate_run_custom_build(build_runner, unit)?
1506 } else if unit.mode.is_doc_test() {
1507 panic!("doc tests do not fingerprint");
1508 } else {
1509 calculate_normal(build_runner, unit)?
1510 };
1511
1512 // After we built the initial `Fingerprint` be sure to update the
1513 // `fs_status` field of it.
1514 let build_root = build_root(build_runner);
1515 let cargo_exe = build_runner.bcx.gctx.cargo_exe()?;
1516 fingerprint.check_filesystem(
1517 &mut build_runner.mtime_cache,
1518 &mut build_runner.checksum_cache,
1519 &unit.pkg,
1520 &build_root,
1521 cargo_exe,
1522 build_runner.bcx.gctx,
1523 )?;
1524
1525 let fingerprint = Arc::new(fingerprint);
1526 build_runner
1527 .fingerprints
1528 .insert(unit.clone(), Arc::clone(&fingerprint));
1529 Ok(fingerprint)
1530}
1531
1532/// Calculate a fingerprint for a "normal" unit, or anything that's not a build
1533/// script. This is an internal helper of [`calculate`], don't call directly.
1534fn calculate_normal(
1535 build_runner: &mut BuildRunner<'_, '_>,
1536 unit: &Unit,
1537) -> CargoResult<Fingerprint> {
1538 let deps = {
1539 // Recursively calculate the fingerprint for all of our dependencies.
1540 //
1541 // Skip fingerprints of binaries because they don't actually induce a
1542 // recompile, they're just dependencies in the sense that they need to be
1543 // built. The only exception here are artifact dependencies,
1544 // which is an actual dependency that needs a recompile.
1545 //
1546 // Create Vec since mutable build_runner is needed in closure.
1547 let deps = Vec::from(build_runner.unit_deps(unit));
1548 let mut deps = deps
1549 .into_iter()
1550 .filter(|dep| !dep.unit.target.is_bin() || dep.unit.artifact.is_true())
1551 .map(|dep| DepFingerprint::new(build_runner, unit, &dep))
1552 .collect::<CargoResult<Vec<_>>>()?;
1553 deps.sort_by(|a, b| a.pkg_id.cmp(&b.pkg_id));
1554 deps
1555 };
1556
1557 // Afterwards calculate our own fingerprint information.
1558 let build_root = build_root(build_runner);
1559 let is_any_doc_gen = unit.mode.is_doc() || unit.mode.is_doc_scrape();
1560 let rustdoc_depinfo_enabled = build_runner.bcx.gctx.cli_unstable().rustdoc_depinfo;
1561 let local = if is_any_doc_gen && !rustdoc_depinfo_enabled {
1562 // rustdoc does not have dep-info files.
1563 let fingerprint = pkg_fingerprint(build_runner.bcx, &unit.pkg).with_context(|| {
1564 format!(
1565 "failed to determine package fingerprint for documenting {}",
1566 unit.pkg
1567 )
1568 })?;
1569 vec![LocalFingerprint::Precalculated(fingerprint)]
1570 } else {
1571 let dep_info = dep_info_loc(build_runner, unit);
1572 let dep_info = dep_info.strip_prefix(&build_root).unwrap().to_path_buf();
1573 vec![LocalFingerprint::CheckDepInfo {
1574 dep_info,
1575 checksum: build_runner.bcx.gctx.cli_unstable().checksum_freshness,
1576 }]
1577 };
1578
1579 // Figure out what the outputs of our unit is, and we'll be storing them
1580 // into the fingerprint as well.
1581 let outputs = build_runner
1582 .outputs(unit)?
1583 .iter()
1584 .filter(|output| {
1585 !matches!(
1586 output.flavor,
1587 FileFlavor::DebugInfo | FileFlavor::Auxiliary | FileFlavor::Sbom
1588 )
1589 })
1590 .map(|output| output.path.clone())
1591 .collect();
1592
1593 // Fill out a bunch more information that we'll be tracking typically
1594 // hashed to take up less space on disk as we just need to know when things
1595 // change.
1596 let extra_flags = if unit.mode.is_doc() || unit.mode.is_doc_scrape() {
1597 &unit.rustdocflags
1598 } else {
1599 &unit.rustflags
1600 }
1601 .to_vec();
1602
1603 let profile_hash = util::hash_u64((
1604 &unit.profile,
1605 unit.mode,
1606 build_runner.bcx.extra_args_for(unit),
1607 build_runner.lto[unit],
1608 unit.pkg.manifest().lint_rustflags(),
1609 ));
1610 let mut config = StableHasher::new();
1611 if let Some(linker) = build_runner.compilation.target_linker(unit.kind) {
1612 linker.hash(&mut config);
1613 }
1614 if unit.mode.is_doc() && build_runner.bcx.gctx.cli_unstable().rustdoc_map {
1615 if let Ok(map) = build_runner.bcx.gctx.doc_extern_map() {
1616 map.hash(&mut config);
1617 }
1618 }
1619 if let Some(allow_features) = &build_runner.bcx.gctx.cli_unstable().allow_features {
1620 allow_features.hash(&mut config);
1621 }
1622 let compile_kind = unit.kind.fingerprint_hash();
1623 let mut declared_features = unit.pkg.summary().features().keys().collect::<Vec<_>>();
1624 declared_features.sort(); // to avoid useless rebuild if the user orders it's features
1625 // differently
1626 Ok(Fingerprint {
1627 rustc: util::hash_u64(&build_runner.bcx.rustc().verbose_version),
1628 target: util::hash_u64(&unit.target),
1629 profile: profile_hash,
1630 // Note that .0 is hashed here, not .1 which is the cwd. That doesn't
1631 // actually affect the output artifact so there's no need to hash it.
1632 path: util::hash_u64(path_args(build_runner.bcx.ws, unit).0),
1633 features: format!("{:?}", unit.features),
1634 declared_features: format!("{declared_features:?}"),
1635 deps,
1636 local: Mutex::new(local),
1637 memoized_hash: Mutex::new(None),
1638 config: Hasher::finish(&config),
1639 compile_kind,
1640 rustflags: extra_flags,
1641 fs_status: FsStatus::Stale,
1642 outputs,
1643 })
1644}
1645
1646/// Calculate a fingerprint for an "execute a build script" unit. This is an
1647/// internal helper of [`calculate`], don't call directly.
1648fn calculate_run_custom_build(
1649 build_runner: &mut BuildRunner<'_, '_>,
1650 unit: &Unit,
1651) -> CargoResult<Fingerprint> {
1652 assert!(unit.mode.is_run_custom_build());
1653 // Using the `BuildDeps` information we'll have previously parsed and
1654 // inserted into `build_explicit_deps` built an initial snapshot of the
1655 // `LocalFingerprint` list for this build script. If we previously executed
1656 // the build script this means we'll be watching files and env vars.
1657 // Otherwise if we haven't previously executed it we'll just start watching
1658 // the whole crate.
1659 let (gen_local, overridden) = build_script_local_fingerprints(build_runner, unit)?;
1660 let deps = &build_runner.build_explicit_deps[unit];
1661 let local = (gen_local)(
1662 deps,
1663 Some(&|| {
1664 const IO_ERR_MESSAGE: &str = "\
1665An I/O error happened. Please make sure you can access the file.
1666
1667By default, if your project contains a build script, cargo scans all files in
1668it to determine whether a rebuild is needed. If you don't expect to access the
1669file, specify `rerun-if-changed` in your build script.
1670See https://doc.rust-lang.org/cargo/reference/build-scripts.html#rerun-if-changed for more information.";
1671 pkg_fingerprint(build_runner.bcx, &unit.pkg).map_err(|err| {
1672 let mut message = format!("failed to determine package fingerprint for build script for {}", unit.pkg);
1673 if err.root_cause().is::<io::Error>() {
1674 message = format!("{}\n{}", message, IO_ERR_MESSAGE)
1675 }
1676 err.context(message)
1677 })
1678 }),
1679 )?
1680 .unwrap();
1681 let output = deps.build_script_output.clone();
1682
1683 // Include any dependencies of our execution, which is typically just the
1684 // compilation of the build script itself. (if the build script changes we
1685 // should be rerun!). Note though that if we're an overridden build script
1686 // we have no dependencies so no need to recurse in that case.
1687 let deps = if overridden {
1688 // Overridden build scripts don't need to track deps.
1689 vec![]
1690 } else {
1691 // Create Vec since mutable build_runner is needed in closure.
1692 let deps = Vec::from(build_runner.unit_deps(unit));
1693 deps.into_iter()
1694 .map(|dep| DepFingerprint::new(build_runner, unit, &dep))
1695 .collect::<CargoResult<Vec<_>>>()?
1696 };
1697
1698 let rustflags = unit.rustflags.to_vec();
1699
1700 Ok(Fingerprint {
1701 local: Mutex::new(local),
1702 rustc: util::hash_u64(&build_runner.bcx.rustc().verbose_version),
1703 deps,
1704 outputs: if overridden { Vec::new() } else { vec![output] },
1705 rustflags,
1706
1707 // Most of the other info is blank here as we don't really include it
1708 // in the execution of the build script, but... this may be a latent
1709 // bug in Cargo.
1710 ..Fingerprint::new()
1711 })
1712}
1713
1714/// Get ready to compute the [`LocalFingerprint`] values
1715/// for a [`RunCustomBuild`] unit.
1716///
1717/// This function has, what's on the surface, a seriously wonky interface.
1718/// You'll call this function and it'll return a closure and a boolean. The
1719/// boolean is pretty simple in that it indicates whether the `unit` has been
1720/// overridden via `.cargo/config.toml`. The closure is much more complicated.
1721///
1722/// This closure is intended to capture any local state necessary to compute
1723/// the `LocalFingerprint` values for this unit. It is `Send` and `'static` to
1724/// be sent to other threads as well (such as when we're executing build
1725/// scripts). That deduplication is the rationale for the closure at least.
1726///
1727/// The arguments to the closure are a bit weirder, though, and I'll apologize
1728/// in advance for the weirdness too. The first argument to the closure is a
1729/// `&BuildDeps`. This is the parsed version of a build script, and when Cargo
1730/// starts up this is cached from previous runs of a build script. After a
1731/// build script executes the output file is reparsed and passed in here.
1732///
1733/// The second argument is the weirdest, it's *optionally* a closure to
1734/// call [`pkg_fingerprint`]. The `pkg_fingerprint` requires access to
1735/// "source map" located in `Context`. That's very non-`'static` and
1736/// non-`Send`, so it can't be used on other threads, such as when we invoke
1737/// this after a build script has finished. The `Option` allows us to for sure
1738/// calculate it on the main thread at the beginning, and then swallow the bug
1739/// for now where a worker thread after a build script has finished doesn't
1740/// have access. Ideally there would be no second argument or it would be more
1741/// "first class" and not an `Option` but something that can be sent between
1742/// threads. In any case, it's a bug for now.
1743///
1744/// This isn't the greatest of interfaces, and if there's suggestions to
1745/// improve please do so!
1746///
1747/// FIXME(#6779) - see all the words above
1748///
1749/// [`RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
1750fn build_script_local_fingerprints(
1751 build_runner: &mut BuildRunner<'_, '_>,
1752 unit: &Unit,
1753) -> CargoResult<(
1754 Box<
1755 dyn FnOnce(
1756 &BuildDeps,
1757 Option<&dyn Fn() -> CargoResult<String>>,
1758 ) -> CargoResult<Option<Vec<LocalFingerprint>>>
1759 + Send,
1760 >,
1761 bool,
1762)> {
1763 assert!(unit.mode.is_run_custom_build());
1764 // First up, if this build script is entirely overridden, then we just
1765 // return the hash of what we overrode it with. This is the easy case!
1766 if let Some(fingerprint) = build_script_override_fingerprint(build_runner, unit) {
1767 debug!("override local fingerprints deps {}", unit.pkg);
1768 return Ok((
1769 Box::new(
1770 move |_: &BuildDeps, _: Option<&dyn Fn() -> CargoResult<String>>| {
1771 Ok(Some(vec![fingerprint]))
1772 },
1773 ),
1774 true, // this is an overridden build script
1775 ));
1776 }
1777
1778 // ... Otherwise this is a "real" build script and we need to return a real
1779 // closure. Our returned closure classifies the build script based on
1780 // whether it prints `rerun-if-*`. If it *doesn't* print this it's where the
1781 // magical second argument comes into play, which fingerprints a whole
1782 // package. Remember that the fact that this is an `Option` is a bug, but a
1783 // longstanding bug, in Cargo. Recent refactorings just made it painfully
1784 // obvious.
1785 let pkg_root = unit.pkg.root().to_path_buf();
1786 let build_dir = build_root(build_runner);
1787 let env_config = Arc::clone(build_runner.bcx.gctx.env_config()?);
1788 let calculate =
1789 move |deps: &BuildDeps, pkg_fingerprint: Option<&dyn Fn() -> CargoResult<String>>| {
1790 if deps.rerun_if_changed.is_empty() && deps.rerun_if_env_changed.is_empty() {
1791 match pkg_fingerprint {
1792 // FIXME: this is somewhat buggy with respect to docker and
1793 // weird filesystems. The `Precalculated` variant
1794 // constructed below will, for `path` dependencies, contain
1795 // a stringified version of the mtime for the local crate.
1796 // This violates one of the things we describe in this
1797 // module's doc comment, never hashing mtimes. We should
1798 // figure out a better scheme where a package fingerprint
1799 // may be a string (like for a registry) or a list of files
1800 // (like for a path dependency). Those list of files would
1801 // be stored here rather than the mtime of them.
1802 Some(f) => {
1803 let s = f()?;
1804 debug!(
1805 "old local fingerprints deps {:?} precalculated={:?}",
1806 pkg_root, s
1807 );
1808 return Ok(Some(vec![LocalFingerprint::Precalculated(s)]));
1809 }
1810 None => return Ok(None),
1811 }
1812 }
1813
1814 // Ok so now we're in "new mode" where we can have files listed as
1815 // dependencies as well as env vars listed as dependencies. Process
1816 // them all here.
1817 Ok(Some(local_fingerprints_deps(
1818 deps,
1819 &build_dir,
1820 &pkg_root,
1821 &env_config,
1822 )))
1823 };
1824
1825 // Note that `false` == "not overridden"
1826 Ok((Box::new(calculate), false))
1827}
1828
1829/// Create a [`LocalFingerprint`] for an overridden build script.
1830/// Returns None if it is not overridden.
1831fn build_script_override_fingerprint(
1832 build_runner: &mut BuildRunner<'_, '_>,
1833 unit: &Unit,
1834) -> Option<LocalFingerprint> {
1835 // Build script output is only populated at this stage when it is
1836 // overridden.
1837 let build_script_outputs = build_runner.build_script_outputs.lock().unwrap();
1838 let metadata = build_runner.get_run_build_script_metadata(unit);
1839 // Returns None if it is not overridden.
1840 let output = build_script_outputs.get(metadata)?;
1841 let s = format!(
1842 "overridden build state with hash: {}",
1843 util::hash_u64(output)
1844 );
1845 Some(LocalFingerprint::Precalculated(s))
1846}
1847
1848/// Compute the [`LocalFingerprint`] values for a [`RunCustomBuild`] unit for
1849/// non-overridden new-style build scripts only. This is only used when `deps`
1850/// is already known to have a nonempty `rerun-if-*` somewhere.
1851///
1852/// [`RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
1853fn local_fingerprints_deps(
1854 deps: &BuildDeps,
1855 build_root: &Path,
1856 pkg_root: &Path,
1857 env_config: &Arc<HashMap<String, OsString>>,
1858) -> Vec<LocalFingerprint> {
1859 debug!("new local fingerprints deps {:?}", pkg_root);
1860 let mut local = Vec::new();
1861
1862 if !deps.rerun_if_changed.is_empty() {
1863 // Note that like the module comment above says we are careful to never
1864 // store an absolute path in `LocalFingerprint`, so ensure that we strip
1865 // absolute prefixes from them.
1866 let output = deps
1867 .build_script_output
1868 .strip_prefix(build_root)
1869 .unwrap()
1870 .to_path_buf();
1871 let paths = deps
1872 .rerun_if_changed
1873 .iter()
1874 .map(|p| p.strip_prefix(pkg_root).unwrap_or(p).to_path_buf())
1875 .collect();
1876 local.push(LocalFingerprint::RerunIfChanged { output, paths });
1877 }
1878
1879 local.extend(
1880 deps.rerun_if_env_changed
1881 .iter()
1882 .map(|s| LocalFingerprint::from_env(s, env_config)),
1883 );
1884
1885 local
1886}
1887
1888/// Writes the short fingerprint hash value to `<loc>`
1889/// and logs detailed JSON information to `<loc>.json`.
1890fn write_fingerprint(loc: &Path, fingerprint: &Fingerprint) -> CargoResult<()> {
1891 debug_assert_ne!(fingerprint.rustc, 0);
1892 // fingerprint::new().rustc == 0, make sure it doesn't make it to the file system.
1893 // This is mostly so outside tools can reliably find out what rust version this file is for,
1894 // as we can use the full hash.
1895 let hash = fingerprint.hash_u64();
1896 debug!("write fingerprint ({:x}) : {}", hash, loc.display());
1897 paths::write(loc, util::to_hex(hash).as_bytes())?;
1898
1899 let json = serde_json::to_string(fingerprint).unwrap();
1900 if cfg!(debug_assertions) {
1901 let f: Fingerprint = serde_json::from_str(&json).unwrap();
1902 assert_eq!(f.hash_u64(), hash);
1903 }
1904 paths::write(&loc.with_extension("json"), json.as_bytes())?;
1905 Ok(())
1906}
1907
1908/// Prepare for work when a package starts to build
1909pub fn prepare_init(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> CargoResult<()> {
1910 let new1 = build_runner.files().fingerprint_dir(unit);
1911
1912 // Doc tests have no output, thus no fingerprint.
1913 if !new1.exists() && !unit.mode.is_doc_test() {
1914 paths::create_dir_all(&new1)?;
1915 }
1916
1917 Ok(())
1918}
1919
1920/// Returns the location that the dep-info file will show up at
1921/// for the [`Unit`] specified.
1922pub fn dep_info_loc(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> PathBuf {
1923 build_runner.files().fingerprint_file_path(unit, "dep-")
1924}
1925
1926/// Returns an absolute path that build directory.
1927/// All paths are rewritten to be relative to this.
1928fn build_root(build_runner: &BuildRunner<'_, '_>) -> PathBuf {
1929 build_runner.bcx.ws.build_dir().into_path_unlocked()
1930}
1931
1932/// Reads the value from the old fingerprint hash file and compare.
1933///
1934/// If dirty, it then restores the detailed information
1935/// from the fingerprint JSON file, and provides an rich dirty reason.
1936fn compare_old_fingerprint(
1937 unit: &Unit,
1938 old_hash_path: &Path,
1939 new_fingerprint: &Fingerprint,
1940 mtime_on_use: bool,
1941 forced: bool,
1942) -> FingerprintComparison {
1943 if mtime_on_use {
1944 // update the mtime so other cleaners know we used it
1945 let t = FileTime::from_system_time(SystemTime::now());
1946 debug!("mtime-on-use forcing {:?} to {}", old_hash_path, t);
1947 paths::set_file_time_no_err(old_hash_path, t);
1948 }
1949
1950 let compare = _compare_old_fingerprint(old_hash_path, new_fingerprint);
1951
1952 match compare.as_ref() {
1953 Ok(FingerprintComparison::Fresh) => {}
1954 Ok(FingerprintComparison::Dirty { reason }) => {
1955 info!(
1956 "fingerprint dirty for {}/{:?}/{:?}",
1957 unit.pkg, unit.mode, unit.target,
1958 );
1959 info!(" dirty: {reason:?}");
1960 }
1961 Err(e) => {
1962 info!(
1963 "fingerprint error for {}/{:?}/{:?}",
1964 unit.pkg, unit.mode, unit.target,
1965 );
1966 info!(" err: {e:?}");
1967 }
1968 }
1969
1970 match compare {
1971 Ok(FingerprintComparison::Fresh) if forced => FingerprintComparison::Dirty {
1972 reason: DirtyReason::Forced,
1973 },
1974 Ok(cmp) => cmp,
1975 Err(_) => FingerprintComparison::Dirty {
1976 reason: DirtyReason::FreshBuild,
1977 },
1978 }
1979}
1980
1981fn _compare_old_fingerprint(
1982 old_hash_path: &Path,
1983 new_fingerprint: &Fingerprint,
1984) -> CargoResult<FingerprintComparison> {
1985 let old_fingerprint_short = paths::read(old_hash_path)?;
1986
1987 let new_hash = new_fingerprint.hash_u64();
1988
1989 if util::to_hex(new_hash) == old_fingerprint_short && new_fingerprint.fs_status.up_to_date() {
1990 return Ok(FingerprintComparison::Fresh);
1991 }
1992
1993 let old_fingerprint_json = paths::read(&old_hash_path.with_extension("json"))?;
1994 let old_fingerprint: Fingerprint = serde_json::from_str(&old_fingerprint_json)
1995 .with_context(|| internal("failed to deserialize json"))?;
1996 // Fingerprint can be empty after a failed rebuild (see comment in prepare_target).
1997 if !old_fingerprint_short.is_empty() {
1998 debug_assert_eq!(
1999 util::to_hex(old_fingerprint.hash_u64()),
2000 old_fingerprint_short
2001 );
2002 }
2003
2004 let reason = new_fingerprint.compare(&old_fingerprint);
2005 Ok(FingerprintComparison::Dirty { reason })
2006}
2007
2008/// Calculates the fingerprint of a unit thats contains no dep-info files.
2009fn pkg_fingerprint(bcx: &BuildContext<'_, '_>, pkg: &Package) -> CargoResult<String> {
2010 let source_id = pkg.package_id().source_id();
2011 let sources = bcx.packages.sources();
2012
2013 let source = sources
2014 .get(source_id)
2015 .ok_or_else(|| internal("missing package source"))?;
2016 source.fingerprint(pkg)
2017}
2018
2019/// The `reference` file is considered as "stale" if any file from `paths` has a newer mtime.
2020fn find_stale_file<I, P>(
2021 mtime_cache: &mut HashMap<PathBuf, FileTime>,
2022 checksum_cache: &mut HashMap<PathBuf, Checksum>,
2023 reference: &Path,
2024 paths: I,
2025 use_checksums: bool,
2026) -> Option<StaleItem>
2027where
2028 I: IntoIterator<Item = (P, Option<(u64, Checksum)>)>,
2029 P: AsRef<Path>,
2030{
2031 let reference_mtime = match paths::mtime(reference) {
2032 Ok(mtime) => mtime,
2033 Err(..) => {
2034 return Some(StaleItem::MissingFile {
2035 path: reference.to_path_buf(),
2036 });
2037 }
2038 };
2039
2040 let skippable_dirs = if let Ok(cargo_home) = home::cargo_home() {
2041 let skippable_dirs: Vec<_> = ["git", "registry"]
2042 .into_iter()
2043 .map(|subfolder| cargo_home.join(subfolder))
2044 .collect();
2045 Some(skippable_dirs)
2046 } else {
2047 None
2048 };
2049 for (path, prior_checksum) in paths {
2050 let path = path.as_ref();
2051
2052 // Assuming anything in cargo_home/{git, registry} is immutable
2053 // (see also #9455 about marking the src directory readonly) which avoids rebuilds when CI
2054 // caches $CARGO_HOME/registry/{index, cache} and $CARGO_HOME/git/db across runs, keeping
2055 // the content the same but changing the mtime.
2056 if let Some(ref skippable_dirs) = skippable_dirs {
2057 if skippable_dirs.iter().any(|dir| path.starts_with(dir)) {
2058 continue;
2059 }
2060 }
2061 if use_checksums {
2062 let Some((file_len, prior_checksum)) = prior_checksum else {
2063 return Some(StaleItem::MissingChecksum {
2064 path: path.to_path_buf(),
2065 });
2066 };
2067 let path_buf = path.to_path_buf();
2068
2069 let path_checksum = match checksum_cache.entry(path_buf) {
2070 Entry::Occupied(o) => *o.get(),
2071 Entry::Vacant(v) => {
2072 let Ok(current_file_len) = fs::metadata(&path).map(|m| m.len()) else {
2073 return Some(StaleItem::FailedToReadMetadata {
2074 path: path.to_path_buf(),
2075 });
2076 };
2077 if current_file_len != file_len {
2078 return Some(StaleItem::FileSizeChanged {
2079 path: path.to_path_buf(),
2080 new_size: current_file_len,
2081 old_size: file_len,
2082 });
2083 }
2084 let Ok(file) = File::open(path) else {
2085 return Some(StaleItem::MissingFile {
2086 path: path.to_path_buf(),
2087 });
2088 };
2089 let Ok(checksum) = Checksum::compute(prior_checksum.algo(), file) else {
2090 return Some(StaleItem::UnableToReadFile {
2091 path: path.to_path_buf(),
2092 });
2093 };
2094 *v.insert(checksum)
2095 }
2096 };
2097 if path_checksum == prior_checksum {
2098 continue;
2099 }
2100 return Some(StaleItem::ChangedChecksum {
2101 source: path.to_path_buf(),
2102 stored_checksum: prior_checksum,
2103 new_checksum: path_checksum,
2104 });
2105 } else {
2106 let path_mtime = match mtime_cache.entry(path.to_path_buf()) {
2107 Entry::Occupied(o) => *o.get(),
2108 Entry::Vacant(v) => {
2109 let Ok(mtime) = paths::mtime_recursive(path) else {
2110 return Some(StaleItem::MissingFile {
2111 path: path.to_path_buf(),
2112 });
2113 };
2114 *v.insert(mtime)
2115 }
2116 };
2117
2118 // TODO: fix #5918.
2119 // Note that equal mtimes should be considered "stale". For filesystems with
2120 // not much timestamp precision like 1s this is would be a conservative approximation
2121 // to handle the case where a file is modified within the same second after
2122 // a build starts. We want to make sure that incremental rebuilds pick that up!
2123 //
2124 // For filesystems with nanosecond precision it's been seen in the wild that
2125 // its "nanosecond precision" isn't really nanosecond-accurate. It turns out that
2126 // kernels may cache the current time so files created at different times actually
2127 // list the same nanosecond precision. Some digging on #5919 picked up that the
2128 // kernel caches the current time between timer ticks, which could mean that if
2129 // a file is updated at most 10ms after a build starts then Cargo may not
2130 // pick up the build changes.
2131 //
2132 // All in all, an equality check here would be a conservative assumption that,
2133 // if equal, files were changed just after a previous build finished.
2134 // Unfortunately this became problematic when (in #6484) cargo switch to more accurately
2135 // measuring the start time of builds.
2136 if path_mtime <= reference_mtime {
2137 continue;
2138 }
2139
2140 return Some(StaleItem::ChangedFile {
2141 reference: reference.to_path_buf(),
2142 reference_mtime,
2143 stale: path.to_path_buf(),
2144 stale_mtime: path_mtime,
2145 });
2146 }
2147 }
2148
2149 debug!(
2150 "all paths up-to-date relative to {:?} mtime={}",
2151 reference, reference_mtime
2152 );
2153 None
2154}