rustc_mir_transform/
dataflow_const_prop.rs

1//! A constant propagation optimization pass based on dataflow analysis.
2//!
3//! Currently, this pass only propagates scalar values.
4
5use std::assert_matches::assert_matches;
6use std::cell::RefCell;
7use std::fmt::Formatter;
8
9use rustc_abi::{BackendRepr, FIRST_VARIANT, FieldIdx, Size, VariantIdx};
10use rustc_const_eval::const_eval::{DummyMachine, throw_machine_stop_str};
11use rustc_const_eval::interpret::{
12    ImmTy, Immediate, InterpCx, OpTy, PlaceTy, Projectable, interp_ok,
13};
14use rustc_data_structures::fx::FxHashMap;
15use rustc_hir::def::DefKind;
16use rustc_middle::bug;
17use rustc_middle::mir::interpret::{InterpResult, Scalar};
18use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
19use rustc_middle::mir::*;
20use rustc_middle::ty::{self, Ty, TyCtxt};
21use rustc_mir_dataflow::fmt::DebugWithContext;
22use rustc_mir_dataflow::lattice::{FlatSet, HasBottom};
23use rustc_mir_dataflow::value_analysis::{
24    Map, PlaceIndex, State, TrackElem, ValueOrPlace, debug_with_context,
25};
26use rustc_mir_dataflow::{Analysis, ResultsVisitor, visit_reachable_results};
27use rustc_span::DUMMY_SP;
28use tracing::{debug, debug_span, instrument};
29
30// These constants are somewhat random guesses and have not been optimized.
31// If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive).
32const BLOCK_LIMIT: usize = 100;
33const PLACE_LIMIT: usize = 100;
34
35pub(super) struct DataflowConstProp;
36
37impl<'tcx> crate::MirPass<'tcx> for DataflowConstProp {
38    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
39        sess.mir_opt_level() >= 3
40    }
41
42    #[instrument(skip_all level = "debug")]
43    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
44        debug!(def_id = ?body.source.def_id());
45        if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT {
46            debug!("aborted dataflow const prop due too many basic blocks");
47            return;
48        }
49
50        // We want to have a somewhat linear runtime w.r.t. the number of statements/terminators.
51        // Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function
52        // applications, where `h` is the height of the lattice. Because the height of our lattice
53        // is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However,
54        // because every transfer function application could traverse the whole map, this becomes
55        // `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of
56        // map nodes is strongly correlated to the number of tracked places, this becomes more or
57        // less `O(n)` if we place a constant limit on the number of tracked places.
58        let place_limit = if tcx.sess.mir_opt_level() < 4 { Some(PLACE_LIMIT) } else { None };
59
60        // Decide which places to track during the analysis.
61        let map = Map::new(tcx, body, place_limit);
62
63        // Perform the actual dataflow analysis.
64        let const_ = debug_span!("analyze")
65            .in_scope(|| ConstAnalysis::new(tcx, body, map).iterate_to_fixpoint(tcx, body, None));
66
67        // Collect results and patch the body afterwards.
68        let mut visitor = Collector::new(tcx, &body.local_decls);
69        debug_span!("collect").in_scope(|| visit_reachable_results(body, &const_, &mut visitor));
70        let mut patch = visitor.patch;
71        debug_span!("patch").in_scope(|| patch.visit_body_preserves_cfg(body));
72    }
73
74    fn is_required(&self) -> bool {
75        false
76    }
77}
78
79// Note: Currently, places that have their reference taken cannot be tracked. Although this would
80// be possible, it has to rely on some aliasing model, which we are not ready to commit to yet.
81// Because of that, we can assume that the only way to change the value behind a tracked place is
82// by direct assignment.
83struct ConstAnalysis<'a, 'tcx> {
84    map: Map<'tcx>,
85    tcx: TyCtxt<'tcx>,
86    local_decls: &'a LocalDecls<'tcx>,
87    ecx: RefCell<InterpCx<'tcx, DummyMachine>>,
88    typing_env: ty::TypingEnv<'tcx>,
89}
90
91impl<'tcx> Analysis<'tcx> for ConstAnalysis<'_, 'tcx> {
92    type Domain = State<FlatSet<Scalar>>;
93
94    const NAME: &'static str = "ConstAnalysis";
95
96    // The bottom state denotes uninitialized memory. Because we are only doing a sound
97    // approximation of the actual execution, we can also use this state for places where access
98    // would be UB.
99    fn bottom_value(&self, _body: &Body<'tcx>) -> Self::Domain {
100        State::Unreachable
101    }
102
103    fn initialize_start_block(&self, body: &Body<'tcx>, state: &mut Self::Domain) {
104        // The initial state maps all tracked places of argument projections to ⊤ and the rest to ⊥.
105        assert_matches!(state, State::Unreachable);
106        *state = State::new_reachable();
107        for arg in body.args_iter() {
108            state.flood(PlaceRef { local: arg, projection: &[] }, &self.map);
109        }
110    }
111
112    fn apply_primary_statement_effect(
113        &self,
114        state: &mut Self::Domain,
115        statement: &Statement<'tcx>,
116        _location: Location,
117    ) {
118        if state.is_reachable() {
119            self.handle_statement(statement, state);
120        }
121    }
122
123    fn apply_primary_terminator_effect<'mir>(
124        &self,
125        state: &mut Self::Domain,
126        terminator: &'mir Terminator<'tcx>,
127        _location: Location,
128    ) -> TerminatorEdges<'mir, 'tcx> {
129        if state.is_reachable() {
130            self.handle_terminator(terminator, state)
131        } else {
132            TerminatorEdges::None
133        }
134    }
135
136    fn apply_call_return_effect(
137        &self,
138        state: &mut Self::Domain,
139        _block: BasicBlock,
140        return_places: CallReturnPlaces<'_, 'tcx>,
141    ) {
142        if state.is_reachable() {
143            self.handle_call_return(return_places, state)
144        }
145    }
146}
147
148impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
149    fn new(tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, map: Map<'tcx>) -> Self {
150        let typing_env = body.typing_env(tcx);
151        Self {
152            map,
153            tcx,
154            local_decls: &body.local_decls,
155            ecx: RefCell::new(InterpCx::new(tcx, DUMMY_SP, typing_env, DummyMachine)),
156            typing_env,
157        }
158    }
159
160    fn handle_statement(&self, statement: &Statement<'tcx>, state: &mut State<FlatSet<Scalar>>) {
161        match &statement.kind {
162            StatementKind::Assign(box (place, rvalue)) => {
163                self.handle_assign(*place, rvalue, state);
164            }
165            StatementKind::SetDiscriminant { box place, variant_index } => {
166                self.handle_set_discriminant(*place, *variant_index, state);
167            }
168            StatementKind::Intrinsic(box intrinsic) => {
169                self.handle_intrinsic(intrinsic);
170            }
171            StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
172                // StorageLive leaves the local in an uninitialized state.
173                // StorageDead makes it UB to access the local afterwards.
174                state.flood_with(
175                    Place::from(*local).as_ref(),
176                    &self.map,
177                    FlatSet::<Scalar>::BOTTOM,
178                );
179            }
180            StatementKind::Retag(..) => {
181                // We don't track references.
182            }
183            StatementKind::ConstEvalCounter
184            | StatementKind::Nop
185            | StatementKind::FakeRead(..)
186            | StatementKind::PlaceMention(..)
187            | StatementKind::Coverage(..)
188            | StatementKind::BackwardIncompatibleDropHint { .. }
189            | StatementKind::AscribeUserType(..) => {}
190        }
191    }
192
193    fn handle_intrinsic(&self, intrinsic: &NonDivergingIntrinsic<'tcx>) {
194        match intrinsic {
195            NonDivergingIntrinsic::Assume(..) => {
196                // Could use this, but ignoring it is sound.
197            }
198            NonDivergingIntrinsic::CopyNonOverlapping(CopyNonOverlapping {
199                dst: _,
200                src: _,
201                count: _,
202            }) => {
203                // This statement represents `*dst = *src`, `count` times.
204            }
205        }
206    }
207
208    fn handle_operand(
209        &self,
210        operand: &Operand<'tcx>,
211        state: &mut State<FlatSet<Scalar>>,
212    ) -> ValueOrPlace<FlatSet<Scalar>> {
213        match operand {
214            Operand::RuntimeChecks(_) => ValueOrPlace::TOP,
215            Operand::Constant(box constant) => {
216                ValueOrPlace::Value(self.handle_constant(constant, state))
217            }
218            Operand::Copy(place) | Operand::Move(place) => {
219                // On move, we would ideally flood the place with bottom. But with the current
220                // framework this is not possible (similar to `InterpCx::eval_operand`).
221                self.map.find(place.as_ref()).map(ValueOrPlace::Place).unwrap_or(ValueOrPlace::TOP)
222            }
223        }
224    }
225
226    /// The effect of a successful function call return should not be
227    /// applied here, see [`Analysis::apply_primary_terminator_effect`].
228    fn handle_terminator<'mir>(
229        &self,
230        terminator: &'mir Terminator<'tcx>,
231        state: &mut State<FlatSet<Scalar>>,
232    ) -> TerminatorEdges<'mir, 'tcx> {
233        match &terminator.kind {
234            TerminatorKind::Call { .. } | TerminatorKind::InlineAsm { .. } => {
235                // Effect is applied by `handle_call_return`.
236            }
237            TerminatorKind::Drop { place, .. } => {
238                state.flood_with(place.as_ref(), &self.map, FlatSet::<Scalar>::BOTTOM);
239            }
240            TerminatorKind::Yield { .. } => {
241                // They would have an effect, but are not allowed in this phase.
242                bug!("encountered disallowed terminator");
243            }
244            TerminatorKind::SwitchInt { discr, targets } => {
245                return self.handle_switch_int(discr, targets, state);
246            }
247            TerminatorKind::TailCall { .. } => {
248                // FIXME(explicit_tail_calls): determine if we need to do something here (probably
249                // not)
250            }
251            TerminatorKind::Goto { .. }
252            | TerminatorKind::UnwindResume
253            | TerminatorKind::UnwindTerminate(_)
254            | TerminatorKind::Return
255            | TerminatorKind::Unreachable
256            | TerminatorKind::Assert { .. }
257            | TerminatorKind::CoroutineDrop
258            | TerminatorKind::FalseEdge { .. }
259            | TerminatorKind::FalseUnwind { .. } => {
260                // These terminators have no effect on the analysis.
261            }
262        }
263        terminator.edges()
264    }
265
266    fn handle_call_return(
267        &self,
268        return_places: CallReturnPlaces<'_, 'tcx>,
269        state: &mut State<FlatSet<Scalar>>,
270    ) {
271        return_places.for_each(|place| {
272            state.flood(place.as_ref(), &self.map);
273        })
274    }
275
276    fn handle_set_discriminant(
277        &self,
278        place: Place<'tcx>,
279        variant_index: VariantIdx,
280        state: &mut State<FlatSet<Scalar>>,
281    ) {
282        state.flood_discr(place.as_ref(), &self.map);
283        if self.map.find_discr(place.as_ref()).is_some() {
284            let enum_ty = place.ty(self.local_decls, self.tcx).ty;
285            if let Some(discr) = self.eval_discriminant(enum_ty, variant_index) {
286                state.assign_discr(
287                    place.as_ref(),
288                    ValueOrPlace::Value(FlatSet::Elem(discr)),
289                    &self.map,
290                );
291            }
292        }
293    }
294
295    fn handle_assign(
296        &self,
297        target: Place<'tcx>,
298        rvalue: &Rvalue<'tcx>,
299        state: &mut State<FlatSet<Scalar>>,
300    ) {
301        match rvalue {
302            Rvalue::Use(operand) => {
303                state.flood(target.as_ref(), &self.map);
304                if let Some(target) = self.map.find(target.as_ref()) {
305                    self.assign_operand(state, target, operand);
306                }
307            }
308            Rvalue::CopyForDeref(_) => bug!("`CopyForDeref` in runtime MIR"),
309            Rvalue::Aggregate(kind, operands) => {
310                // If we assign `target = Enum::Variant#0(operand)`,
311                // we must make sure that all `target as Variant#i` are `Top`.
312                state.flood(target.as_ref(), &self.map);
313
314                let Some(target_idx) = self.map.find(target.as_ref()) else { return };
315
316                let (variant_target, variant_index) = match **kind {
317                    AggregateKind::Tuple | AggregateKind::Closure(..) => (Some(target_idx), None),
318                    AggregateKind::Adt(def_id, variant_index, ..) => {
319                        match self.tcx.def_kind(def_id) {
320                            DefKind::Struct => (Some(target_idx), None),
321                            DefKind::Enum => (
322                                self.map.apply(target_idx, TrackElem::Variant(variant_index)),
323                                Some(variant_index),
324                            ),
325                            _ => return,
326                        }
327                    }
328                    _ => return,
329                };
330                if let Some(variant_target_idx) = variant_target {
331                    for (field_index, operand) in operands.iter_enumerated() {
332                        if let Some(field) =
333                            self.map.apply(variant_target_idx, TrackElem::Field(field_index))
334                        {
335                            self.assign_operand(state, field, operand);
336                        }
337                    }
338                }
339                if let Some(variant_index) = variant_index
340                    && let Some(discr_idx) = self.map.apply(target_idx, TrackElem::Discriminant)
341                {
342                    // We are assigning the discriminant as part of an aggregate.
343                    // This discriminant can only alias a variant field's value if the operand
344                    // had an invalid value for that type.
345                    // Using invalid values is UB, so we are allowed to perform the assignment
346                    // without extra flooding.
347                    let enum_ty = target.ty(self.local_decls, self.tcx).ty;
348                    if let Some(discr_val) = self.eval_discriminant(enum_ty, variant_index) {
349                        state.insert_value_idx(discr_idx, FlatSet::Elem(discr_val), &self.map);
350                    }
351                }
352            }
353            Rvalue::BinaryOp(op, box (left, right)) if op.is_overflowing() => {
354                // Flood everything now, so we can use `insert_value_idx` directly later.
355                state.flood(target.as_ref(), &self.map);
356
357                let Some(target) = self.map.find(target.as_ref()) else { return };
358
359                let value_target = self.map.apply(target, TrackElem::Field(0_u32.into()));
360                let overflow_target = self.map.apply(target, TrackElem::Field(1_u32.into()));
361
362                if value_target.is_some() || overflow_target.is_some() {
363                    let (val, overflow) = self.binary_op(state, *op, left, right);
364
365                    if let Some(value_target) = value_target {
366                        // We have flooded `target` earlier.
367                        state.insert_value_idx(value_target, val, &self.map);
368                    }
369                    if let Some(overflow_target) = overflow_target {
370                        // We have flooded `target` earlier.
371                        state.insert_value_idx(overflow_target, overflow, &self.map);
372                    }
373                }
374            }
375            Rvalue::Cast(
376                CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _),
377                operand,
378                _,
379            ) => {
380                let pointer = self.handle_operand(operand, state);
381                state.assign(target.as_ref(), pointer, &self.map);
382
383                if let Some(target_len) = self.map.find_len(target.as_ref())
384                    && let operand_ty = operand.ty(self.local_decls, self.tcx)
385                    && let Some(operand_ty) = operand_ty.builtin_deref(true)
386                    && let ty::Array(_, len) = operand_ty.kind()
387                    && let Some(len) = Const::Ty(self.tcx.types.usize, *len)
388                        .try_eval_scalar_int(self.tcx, self.typing_env)
389                {
390                    state.insert_value_idx(target_len, FlatSet::Elem(len.into()), &self.map);
391                }
392            }
393            _ => {
394                let result = self.handle_rvalue(rvalue, state);
395                state.assign(target.as_ref(), result, &self.map);
396            }
397        }
398    }
399
400    fn handle_rvalue(
401        &self,
402        rvalue: &Rvalue<'tcx>,
403        state: &mut State<FlatSet<Scalar>>,
404    ) -> ValueOrPlace<FlatSet<Scalar>> {
405        let val = match rvalue {
406            Rvalue::Cast(CastKind::IntToInt | CastKind::IntToFloat, operand, ty) => {
407                let Ok(layout) = self.tcx.layout_of(self.typing_env.as_query_input(*ty)) else {
408                    return ValueOrPlace::Value(FlatSet::Top);
409                };
410                match self.eval_operand(operand, state) {
411                    FlatSet::Elem(op) => self
412                        .ecx
413                        .borrow()
414                        .int_to_int_or_float(&op, layout)
415                        .discard_err()
416                        .map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
417                    FlatSet::Bottom => FlatSet::Bottom,
418                    FlatSet::Top => FlatSet::Top,
419                }
420            }
421            Rvalue::Cast(CastKind::FloatToInt | CastKind::FloatToFloat, operand, ty) => {
422                let Ok(layout) = self.tcx.layout_of(self.typing_env.as_query_input(*ty)) else {
423                    return ValueOrPlace::Value(FlatSet::Top);
424                };
425                match self.eval_operand(operand, state) {
426                    FlatSet::Elem(op) => self
427                        .ecx
428                        .borrow()
429                        .float_to_float_or_int(&op, layout)
430                        .discard_err()
431                        .map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
432                    FlatSet::Bottom => FlatSet::Bottom,
433                    FlatSet::Top => FlatSet::Top,
434                }
435            }
436            Rvalue::Cast(CastKind::Transmute | CastKind::Subtype, operand, _) => {
437                match self.eval_operand(operand, state) {
438                    FlatSet::Elem(op) => self.wrap_immediate(*op),
439                    FlatSet::Bottom => FlatSet::Bottom,
440                    FlatSet::Top => FlatSet::Top,
441                }
442            }
443            Rvalue::BinaryOp(op, box (left, right)) if !op.is_overflowing() => {
444                // Overflows must be ignored here.
445                // The overflowing operators are handled in `handle_assign`.
446                let (val, _overflow) = self.binary_op(state, *op, left, right);
447                val
448            }
449            Rvalue::UnaryOp(op, operand) => {
450                if let UnOp::PtrMetadata = op
451                    && let Some(place) = operand.place()
452                    && let Some(len) = self.map.find_len(place.as_ref())
453                {
454                    return ValueOrPlace::Place(len);
455                }
456                match self.eval_operand(operand, state) {
457                    FlatSet::Elem(value) => self
458                        .ecx
459                        .borrow()
460                        .unary_op(*op, &value)
461                        .discard_err()
462                        .map_or(FlatSet::Top, |val| self.wrap_immediate(*val)),
463                    FlatSet::Bottom => FlatSet::Bottom,
464                    FlatSet::Top => FlatSet::Top,
465                }
466            }
467            Rvalue::Discriminant(place) => state.get_discr(place.as_ref(), &self.map),
468            Rvalue::Use(operand) => return self.handle_operand(operand, state),
469            Rvalue::CopyForDeref(_) => bug!("`CopyForDeref` in runtime MIR"),
470            Rvalue::ShallowInitBox(..) => bug!("`ShallowInitBox` in runtime MIR"),
471            Rvalue::Ref(..) | Rvalue::RawPtr(..) => {
472                // We don't track such places.
473                return ValueOrPlace::TOP;
474            }
475            Rvalue::Repeat(..)
476            | Rvalue::ThreadLocalRef(..)
477            | Rvalue::Cast(..)
478            | Rvalue::BinaryOp(..)
479            | Rvalue::Aggregate(..)
480            | Rvalue::WrapUnsafeBinder(..) => {
481                // No modification is possible through these r-values.
482                return ValueOrPlace::TOP;
483            }
484        };
485        ValueOrPlace::Value(val)
486    }
487
488    fn handle_constant(
489        &self,
490        constant: &ConstOperand<'tcx>,
491        _state: &mut State<FlatSet<Scalar>>,
492    ) -> FlatSet<Scalar> {
493        constant
494            .const_
495            .try_eval_scalar(self.tcx, self.typing_env)
496            .map_or(FlatSet::Top, FlatSet::Elem)
497    }
498
499    fn handle_switch_int<'mir>(
500        &self,
501        discr: &'mir Operand<'tcx>,
502        targets: &'mir SwitchTargets,
503        state: &mut State<FlatSet<Scalar>>,
504    ) -> TerminatorEdges<'mir, 'tcx> {
505        let value = match self.handle_operand(discr, state) {
506            ValueOrPlace::Value(value) => value,
507            ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
508        };
509        match value {
510            // We are branching on uninitialized data, this is UB, treat it as unreachable.
511            // This allows the set of visited edges to grow monotonically with the lattice.
512            FlatSet::Bottom => TerminatorEdges::None,
513            FlatSet::Elem(scalar) => {
514                if let Ok(scalar_int) = scalar.try_to_scalar_int() {
515                    TerminatorEdges::Single(
516                        targets.target_for_value(scalar_int.to_bits_unchecked()),
517                    )
518                } else {
519                    TerminatorEdges::SwitchInt { discr, targets }
520                }
521            }
522            FlatSet::Top => TerminatorEdges::SwitchInt { discr, targets },
523        }
524    }
525
526    /// The caller must have flooded `place`.
527    fn assign_operand(
528        &self,
529        state: &mut State<FlatSet<Scalar>>,
530        place: PlaceIndex,
531        operand: &Operand<'tcx>,
532    ) {
533        match operand {
534            Operand::RuntimeChecks(_) => {}
535            Operand::Copy(rhs) | Operand::Move(rhs) => {
536                if let Some(rhs) = self.map.find(rhs.as_ref()) {
537                    state.insert_place_idx(place, rhs, &self.map);
538                } else if rhs.projection.first() == Some(&PlaceElem::Deref)
539                    && let FlatSet::Elem(pointer) = state.get(rhs.local.into(), &self.map)
540                    && let rhs_ty = self.local_decls[rhs.local].ty
541                    && let Ok(rhs_layout) =
542                        self.tcx.layout_of(self.typing_env.as_query_input(rhs_ty))
543                {
544                    let op = ImmTy::from_scalar(pointer, rhs_layout).into();
545                    self.assign_constant(state, place, op, rhs.projection);
546                }
547            }
548            Operand::Constant(box constant) => {
549                if let Some(constant) = self
550                    .ecx
551                    .borrow()
552                    .eval_mir_constant(&constant.const_, constant.span, None)
553                    .discard_err()
554                {
555                    self.assign_constant(state, place, constant, &[]);
556                }
557            }
558        }
559    }
560
561    /// The caller must have flooded `place`.
562    ///
563    /// Perform: `place = operand.projection`.
564    #[instrument(level = "trace", skip(self, state))]
565    fn assign_constant(
566        &self,
567        state: &mut State<FlatSet<Scalar>>,
568        place: PlaceIndex,
569        mut operand: OpTy<'tcx>,
570        projection: &[PlaceElem<'tcx>],
571    ) {
572        for &(mut proj_elem) in projection {
573            if let PlaceElem::Index(index) = proj_elem {
574                if let FlatSet::Elem(index) = state.get(index.into(), &self.map)
575                    && let Some(offset) = index.to_target_usize(&self.tcx).discard_err()
576                    && let Some(min_length) = offset.checked_add(1)
577                {
578                    proj_elem = PlaceElem::ConstantIndex { offset, min_length, from_end: false };
579                } else {
580                    return;
581                }
582            }
583            operand = if let Some(operand) =
584                self.ecx.borrow().project(&operand, proj_elem).discard_err()
585            {
586                operand
587            } else {
588                return;
589            }
590        }
591
592        self.map.for_each_projection_value(
593            place,
594            operand,
595            &mut |elem, op| match elem {
596                TrackElem::Field(idx) => self.ecx.borrow().project_field(op, idx).discard_err(),
597                TrackElem::Variant(idx) => {
598                    self.ecx.borrow().project_downcast(op, idx).discard_err()
599                }
600                TrackElem::Discriminant => {
601                    let variant = self.ecx.borrow().read_discriminant(op).discard_err()?;
602                    let discr_value = self
603                        .ecx
604                        .borrow()
605                        .discriminant_for_variant(op.layout.ty, variant)
606                        .discard_err()?;
607                    Some(discr_value.into())
608                }
609                TrackElem::DerefLen => {
610                    let op: OpTy<'_> = self.ecx.borrow().deref_pointer(op).discard_err()?.into();
611                    let len_usize = op.len(&self.ecx.borrow()).discard_err()?;
612                    let layout = self
613                        .tcx
614                        .layout_of(self.typing_env.as_query_input(self.tcx.types.usize))
615                        .unwrap();
616                    Some(ImmTy::from_uint(len_usize, layout).into())
617                }
618            },
619            &mut |place, op| {
620                if let Some(imm) = self.ecx.borrow().read_immediate_raw(op).discard_err()
621                    && let Some(imm) = imm.right()
622                {
623                    let elem = self.wrap_immediate(*imm);
624                    state.insert_value_idx(place, elem, &self.map);
625                }
626            },
627        );
628    }
629
630    fn binary_op(
631        &self,
632        state: &mut State<FlatSet<Scalar>>,
633        op: BinOp,
634        left: &Operand<'tcx>,
635        right: &Operand<'tcx>,
636    ) -> (FlatSet<Scalar>, FlatSet<Scalar>) {
637        let left = self.eval_operand(left, state);
638        let right = self.eval_operand(right, state);
639
640        match (left, right) {
641            (FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom),
642            // Both sides are known, do the actual computation.
643            (FlatSet::Elem(left), FlatSet::Elem(right)) => {
644                match self.ecx.borrow().binary_op(op, &left, &right).discard_err() {
645                    // Ideally this would return an Immediate, since it's sometimes
646                    // a pair and sometimes not. But as a hack we always return a pair
647                    // and just make the 2nd component `Bottom` when it does not exist.
648                    Some(val) => {
649                        if matches!(val.layout.backend_repr, BackendRepr::ScalarPair(..)) {
650                            let (val, overflow) = val.to_scalar_pair();
651                            (FlatSet::Elem(val), FlatSet::Elem(overflow))
652                        } else {
653                            (FlatSet::Elem(val.to_scalar()), FlatSet::Bottom)
654                        }
655                    }
656                    _ => (FlatSet::Top, FlatSet::Top),
657                }
658            }
659            // Exactly one side is known, attempt some algebraic simplifications.
660            (FlatSet::Elem(const_arg), _) | (_, FlatSet::Elem(const_arg)) => {
661                let layout = const_arg.layout;
662                if !matches!(layout.backend_repr, rustc_abi::BackendRepr::Scalar(..)) {
663                    return (FlatSet::Top, FlatSet::Top);
664                }
665
666                let arg_scalar = const_arg.to_scalar();
667                let Some(arg_value) = arg_scalar.to_bits(layout.size).discard_err() else {
668                    return (FlatSet::Top, FlatSet::Top);
669                };
670
671                match op {
672                    BinOp::BitAnd if arg_value == 0 => (FlatSet::Elem(arg_scalar), FlatSet::Bottom),
673                    BinOp::BitOr
674                        if arg_value == layout.size.truncate(u128::MAX)
675                            || (layout.ty.is_bool() && arg_value == 1) =>
676                    {
677                        (FlatSet::Elem(arg_scalar), FlatSet::Bottom)
678                    }
679                    BinOp::Mul if layout.ty.is_integral() && arg_value == 0 => {
680                        (FlatSet::Elem(arg_scalar), FlatSet::Elem(Scalar::from_bool(false)))
681                    }
682                    _ => (FlatSet::Top, FlatSet::Top),
683                }
684            }
685            (FlatSet::Top, FlatSet::Top) => (FlatSet::Top, FlatSet::Top),
686        }
687    }
688
689    fn eval_operand(
690        &self,
691        op: &Operand<'tcx>,
692        state: &mut State<FlatSet<Scalar>>,
693    ) -> FlatSet<ImmTy<'tcx>> {
694        let value = match self.handle_operand(op, state) {
695            ValueOrPlace::Value(value) => value,
696            ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
697        };
698        match value {
699            FlatSet::Top => FlatSet::Top,
700            FlatSet::Elem(scalar) => {
701                let ty = op.ty(self.local_decls, self.tcx);
702                self.tcx
703                    .layout_of(self.typing_env.as_query_input(ty))
704                    .map_or(FlatSet::Top, |layout| {
705                        FlatSet::Elem(ImmTy::from_scalar(scalar, layout))
706                    })
707            }
708            FlatSet::Bottom => FlatSet::Bottom,
709        }
710    }
711
712    fn eval_discriminant(&self, enum_ty: Ty<'tcx>, variant_index: VariantIdx) -> Option<Scalar> {
713        if !enum_ty.is_enum() {
714            return None;
715        }
716        let enum_ty_layout = self.tcx.layout_of(self.typing_env.as_query_input(enum_ty)).ok()?;
717        let discr_value = self
718            .ecx
719            .borrow()
720            .discriminant_for_variant(enum_ty_layout.ty, variant_index)
721            .discard_err()?;
722        Some(discr_value.to_scalar())
723    }
724
725    fn wrap_immediate(&self, imm: Immediate) -> FlatSet<Scalar> {
726        match imm {
727            Immediate::Scalar(scalar) => FlatSet::Elem(scalar),
728            Immediate::Uninit => FlatSet::Bottom,
729            _ => FlatSet::Top,
730        }
731    }
732}
733
734/// This is used to visualize the dataflow analysis.
735impl<'tcx> DebugWithContext<ConstAnalysis<'_, 'tcx>> for State<FlatSet<Scalar>> {
736    fn fmt_with(&self, ctxt: &ConstAnalysis<'_, 'tcx>, f: &mut Formatter<'_>) -> std::fmt::Result {
737        match self {
738            State::Reachable(values) => debug_with_context(values, None, &ctxt.map, f),
739            State::Unreachable => write!(f, "unreachable"),
740        }
741    }
742
743    fn fmt_diff_with(
744        &self,
745        old: &Self,
746        ctxt: &ConstAnalysis<'_, 'tcx>,
747        f: &mut Formatter<'_>,
748    ) -> std::fmt::Result {
749        match (self, old) {
750            (State::Reachable(this), State::Reachable(old)) => {
751                debug_with_context(this, Some(old), &ctxt.map, f)
752            }
753            _ => Ok(()), // Consider printing something here.
754        }
755    }
756}
757
758struct Patch<'tcx> {
759    tcx: TyCtxt<'tcx>,
760
761    /// For a given MIR location, this stores the values of the operands used by that location. In
762    /// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are
763    /// properly captured. (This may become UB soon, but it is currently emitted even by safe code.)
764    before_effect: FxHashMap<(Location, Place<'tcx>), Const<'tcx>>,
765
766    /// Stores the assigned values for assignments where the Rvalue is constant.
767    assignments: FxHashMap<Location, Const<'tcx>>,
768}
769
770impl<'tcx> Patch<'tcx> {
771    pub(crate) fn new(tcx: TyCtxt<'tcx>) -> Self {
772        Self { tcx, before_effect: FxHashMap::default(), assignments: FxHashMap::default() }
773    }
774
775    fn make_operand(&self, const_: Const<'tcx>) -> Operand<'tcx> {
776        Operand::Constant(Box::new(ConstOperand { span: DUMMY_SP, user_ty: None, const_ }))
777    }
778}
779
780struct Collector<'a, 'tcx> {
781    patch: Patch<'tcx>,
782    local_decls: &'a LocalDecls<'tcx>,
783}
784
785impl<'a, 'tcx> Collector<'a, 'tcx> {
786    pub(crate) fn new(tcx: TyCtxt<'tcx>, local_decls: &'a LocalDecls<'tcx>) -> Self {
787        Self { patch: Patch::new(tcx), local_decls }
788    }
789
790    #[instrument(level = "trace", skip(self, ecx, map), ret)]
791    fn try_make_constant(
792        &self,
793        ecx: &mut InterpCx<'tcx, DummyMachine>,
794        place: Place<'tcx>,
795        state: &State<FlatSet<Scalar>>,
796        map: &Map<'tcx>,
797    ) -> Option<Const<'tcx>> {
798        let ty = place.ty(self.local_decls, self.patch.tcx).ty;
799        let layout = ecx.layout_of(ty).ok()?;
800
801        if layout.is_zst() {
802            return Some(Const::zero_sized(ty));
803        }
804
805        if layout.is_unsized() {
806            return None;
807        }
808
809        let place = map.find(place.as_ref())?;
810        if layout.backend_repr.is_scalar()
811            && let Some(value) = propagatable_scalar(place, state, map)
812        {
813            return Some(Const::Val(ConstValue::Scalar(value), ty));
814        }
815
816        if matches!(layout.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) {
817            let alloc_id = ecx
818                .intern_with_temp_alloc(layout, |ecx, dest| {
819                    try_write_constant(ecx, dest, place, ty, state, map)
820                })
821                .discard_err()?;
822            return Some(Const::Val(ConstValue::Indirect { alloc_id, offset: Size::ZERO }, ty));
823        }
824
825        None
826    }
827}
828
829#[instrument(level = "trace", skip(map), ret)]
830fn propagatable_scalar(
831    place: PlaceIndex,
832    state: &State<FlatSet<Scalar>>,
833    map: &Map<'_>,
834) -> Option<Scalar> {
835    if let FlatSet::Elem(value) = state.get_idx(place, map)
836        && value.try_to_scalar_int().is_ok()
837    {
838        // Do not attempt to propagate pointers, as we may fail to preserve their identity.
839        Some(value)
840    } else {
841        None
842    }
843}
844
845#[instrument(level = "trace", skip(ecx, state, map), ret)]
846fn try_write_constant<'tcx>(
847    ecx: &mut InterpCx<'tcx, DummyMachine>,
848    dest: &PlaceTy<'tcx>,
849    place: PlaceIndex,
850    ty: Ty<'tcx>,
851    state: &State<FlatSet<Scalar>>,
852    map: &Map<'tcx>,
853) -> InterpResult<'tcx> {
854    let layout = ecx.layout_of(ty)?;
855
856    // Fast path for ZSTs.
857    if layout.is_zst() {
858        return interp_ok(());
859    }
860
861    // Fast path for scalars.
862    if layout.backend_repr.is_scalar()
863        && let Some(value) = propagatable_scalar(place, state, map)
864    {
865        return ecx.write_immediate(Immediate::Scalar(value), dest);
866    }
867
868    match ty.kind() {
869        // ZSTs. Nothing to do.
870        ty::FnDef(..) => {}
871
872        // Those are scalars, must be handled above.
873        ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char =>
874            throw_machine_stop_str!("primitive type with provenance"),
875
876        ty::Tuple(elem_tys) => {
877            for (i, elem) in elem_tys.iter().enumerate() {
878                let i = FieldIdx::from_usize(i);
879                let Some(field) = map.apply(place, TrackElem::Field(i)) else {
880                    throw_machine_stop_str!("missing field in tuple")
881                };
882                let field_dest = ecx.project_field(dest, i)?;
883                try_write_constant(ecx, &field_dest, field, elem, state, map)?;
884            }
885        }
886
887        ty::Adt(def, args) => {
888            if def.is_union() {
889                throw_machine_stop_str!("cannot propagate unions")
890            }
891
892            let (variant_idx, variant_def, variant_place, variant_dest) = if def.is_enum() {
893                let Some(discr) = map.apply(place, TrackElem::Discriminant) else {
894                    throw_machine_stop_str!("missing discriminant for enum")
895                };
896                let FlatSet::Elem(Scalar::Int(discr)) = state.get_idx(discr, map) else {
897                    throw_machine_stop_str!("discriminant with provenance")
898                };
899                let discr_bits = discr.to_bits(discr.size());
900                let Some((variant, _)) = def.discriminants(*ecx.tcx).find(|(_, var)| discr_bits == var.val) else {
901                    throw_machine_stop_str!("illegal discriminant for enum")
902                };
903                let Some(variant_place) = map.apply(place, TrackElem::Variant(variant)) else {
904                    throw_machine_stop_str!("missing variant for enum")
905                };
906                let variant_dest = ecx.project_downcast(dest, variant)?;
907                (variant, def.variant(variant), variant_place, variant_dest)
908            } else {
909                (FIRST_VARIANT, def.non_enum_variant(), place, dest.clone())
910            };
911
912            for (i, field) in variant_def.fields.iter_enumerated() {
913                let ty = field.ty(*ecx.tcx, args);
914                let Some(field) = map.apply(variant_place, TrackElem::Field(i)) else {
915                    throw_machine_stop_str!("missing field in ADT")
916                };
917                let field_dest = ecx.project_field(&variant_dest, i)?;
918                try_write_constant(ecx, &field_dest, field, ty, state, map)?;
919            }
920            ecx.write_discriminant(variant_idx, dest)?;
921        }
922
923        // Unsupported for now.
924        ty::Array(_, _)
925        | ty::Pat(_, _)
926
927        // Do not attempt to support indirection in constants.
928        | ty::Ref(..) | ty::RawPtr(..) | ty::FnPtr(..) | ty::Str | ty::Slice(_)
929
930        | ty::Never
931        | ty::Foreign(..)
932        | ty::Alias(..)
933        | ty::Param(_)
934        | ty::Bound(..)
935        | ty::Placeholder(..)
936        | ty::Closure(..)
937        | ty::CoroutineClosure(..)
938        | ty::Coroutine(..)
939        | ty::Dynamic(..)
940        | ty::UnsafeBinder(_) => throw_machine_stop_str!("unsupported type"),
941
942        ty::Error(_) | ty::Infer(..) | ty::CoroutineWitness(..) => bug!(),
943    }
944
945    interp_ok(())
946}
947
948impl<'tcx> ResultsVisitor<'tcx, ConstAnalysis<'_, 'tcx>> for Collector<'_, 'tcx> {
949    #[instrument(level = "trace", skip(self, analysis, statement))]
950    fn visit_after_early_statement_effect(
951        &mut self,
952        analysis: &ConstAnalysis<'_, 'tcx>,
953        state: &State<FlatSet<Scalar>>,
954        statement: &Statement<'tcx>,
955        location: Location,
956    ) {
957        match &statement.kind {
958            StatementKind::Assign(box (_, rvalue)) => {
959                OperandCollector {
960                    state,
961                    visitor: self,
962                    ecx: &mut analysis.ecx.borrow_mut(),
963                    map: &analysis.map,
964                }
965                .visit_rvalue(rvalue, location);
966            }
967            _ => (),
968        }
969    }
970
971    #[instrument(level = "trace", skip(self, analysis, statement))]
972    fn visit_after_primary_statement_effect(
973        &mut self,
974        analysis: &ConstAnalysis<'_, 'tcx>,
975        state: &State<FlatSet<Scalar>>,
976        statement: &Statement<'tcx>,
977        location: Location,
978    ) {
979        match statement.kind {
980            StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => {
981                // Don't overwrite the assignment if it already uses a constant (to keep the span).
982            }
983            StatementKind::Assign(box (place, _)) => {
984                if let Some(value) = self.try_make_constant(
985                    &mut analysis.ecx.borrow_mut(),
986                    place,
987                    state,
988                    &analysis.map,
989                ) {
990                    self.patch.assignments.insert(location, value);
991                }
992            }
993            _ => (),
994        }
995    }
996
997    fn visit_after_early_terminator_effect(
998        &mut self,
999        analysis: &ConstAnalysis<'_, 'tcx>,
1000        state: &State<FlatSet<Scalar>>,
1001        terminator: &Terminator<'tcx>,
1002        location: Location,
1003    ) {
1004        OperandCollector {
1005            state,
1006            visitor: self,
1007            ecx: &mut analysis.ecx.borrow_mut(),
1008            map: &analysis.map,
1009        }
1010        .visit_terminator(terminator, location);
1011    }
1012}
1013
1014impl<'tcx> MutVisitor<'tcx> for Patch<'tcx> {
1015    fn tcx(&self) -> TyCtxt<'tcx> {
1016        self.tcx
1017    }
1018
1019    fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
1020        if let Some(value) = self.assignments.get(&location) {
1021            match &mut statement.kind {
1022                StatementKind::Assign(box (_, rvalue)) => {
1023                    *rvalue = Rvalue::Use(self.make_operand(*value));
1024                }
1025                _ => bug!("found assignment info for non-assign statement"),
1026            }
1027        } else {
1028            self.super_statement(statement, location);
1029        }
1030    }
1031
1032    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
1033        match operand {
1034            Operand::Copy(place) | Operand::Move(place) => {
1035                if let Some(value) = self.before_effect.get(&(location, *place)) {
1036                    *operand = self.make_operand(*value);
1037                } else if !place.projection.is_empty() {
1038                    self.super_operand(operand, location)
1039                }
1040            }
1041            Operand::Constant(_) | Operand::RuntimeChecks(_) => {}
1042        }
1043    }
1044
1045    fn process_projection_elem(
1046        &mut self,
1047        elem: PlaceElem<'tcx>,
1048        location: Location,
1049    ) -> Option<PlaceElem<'tcx>> {
1050        if let PlaceElem::Index(local) = elem {
1051            let offset = self.before_effect.get(&(location, local.into()))?;
1052            let offset = offset.try_to_scalar()?;
1053            let offset = offset.to_target_usize(&self.tcx).discard_err()?;
1054            let min_length = offset.checked_add(1)?;
1055            Some(PlaceElem::ConstantIndex { offset, min_length, from_end: false })
1056        } else {
1057            None
1058        }
1059    }
1060}
1061
1062struct OperandCollector<'a, 'b, 'tcx> {
1063    state: &'a State<FlatSet<Scalar>>,
1064    visitor: &'a mut Collector<'b, 'tcx>,
1065    ecx: &'a mut InterpCx<'tcx, DummyMachine>,
1066    map: &'a Map<'tcx>,
1067}
1068
1069impl<'tcx> Visitor<'tcx> for OperandCollector<'_, '_, 'tcx> {
1070    fn visit_projection_elem(
1071        &mut self,
1072        _: PlaceRef<'tcx>,
1073        elem: PlaceElem<'tcx>,
1074        _: PlaceContext,
1075        location: Location,
1076    ) {
1077        if let PlaceElem::Index(local) = elem
1078            && let Some(value) =
1079                self.visitor.try_make_constant(self.ecx, local.into(), self.state, self.map)
1080        {
1081            self.visitor.patch.before_effect.insert((location, local.into()), value);
1082        }
1083    }
1084
1085    fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
1086        if let Some(place) = operand.place() {
1087            if let Some(value) =
1088                self.visitor.try_make_constant(self.ecx, place, self.state, self.map)
1089            {
1090                self.visitor.patch.before_effect.insert((location, place), value);
1091            } else if !place.projection.is_empty() {
1092                // Try to propagate into `Index` projections.
1093                self.super_operand(operand, location)
1094            }
1095        }
1096    }
1097}