1use super::*;
23#[cfg(test)]
4mod tests;
56/// Finds all newlines, multi-byte characters, and non-narrow characters in a
7/// SourceFile.
8///
9/// This function will use an SSE2 enhanced implementation if hardware support
10/// is detected at runtime.
11pub(crate) fn analyze_source_file(src: &str) -> (Vec<RelativeBytePos>, Vec<MultiByteChar>) {
12let mut lines = vec![RelativeBytePos::from_u32(0)];
13let mut multi_byte_chars = vec![];
1415// Calls the right implementation, depending on hardware support available.
16analyze_source_file_dispatch(src, &mut lines, &mut multi_byte_chars);
1718// The code above optimistically registers a new line *after* each \n
19 // it encounters. If that point is already outside the source_file, remove
20 // it again.
21if let Some(&last_line_start) = lines.last() {
22let source_file_end = RelativeBytePos::from_usize(src.len());
23assert!(source_file_end >= last_line_start);
24if last_line_start == source_file_end {
25lines.pop();
26 }
27 }
2829 (lines, multi_byte_chars)
30}
3132cfg_match! {
33 any(target_arch = "x86", target_arch = "x86_64") => {
34fn analyze_source_file_dispatch(
35 src: &str,
36 lines: &mut Vec<RelativeBytePos>,
37 multi_byte_chars: &mut Vec<MultiByteChar>,
38 ) {
39if is_x86_feature_detected!("sse2") {
40unsafe {
41analyze_source_file_sse2(src, lines, multi_byte_chars);
42 }
43 } else {
44analyze_source_file_generic(
45src,
46src.len(),
47RelativeBytePos::from_u32(0),
48lines,
49multi_byte_chars,
50 );
51 }
52 }
5354/// Checks 16 byte chunks of text at a time. If the chunk contains
55 /// something other than printable ASCII characters and newlines, the
56 /// function falls back to the generic implementation. Otherwise it uses
57 /// SSE2 intrinsics to quickly find all newlines.
58#[target_feature(enable = "sse2")]
59unsafe fn analyze_source_file_sse2(
60 src: &str,
61 lines: &mut Vec<RelativeBytePos>,
62 multi_byte_chars: &mut Vec<MultiByteChar>,
63 ) {
64#[cfg(target_arch = "x86")]
65use std::arch::x86::*;
66#[cfg(target_arch = "x86_64")]
67use std::arch::x86_64::*;
6869const CHUNK_SIZE: usize = 16;
7071let (chunks, tail) = src.as_bytes().as_chunks::<CHUNK_SIZE>();
7273// This variable keeps track of where we should start decoding a
74 // chunk. If a multi-byte character spans across chunk boundaries,
75 // we need to skip that part in the next chunk because we already
76 // handled it.
77let mut intra_chunk_offset = 0;
7879for (chunk_index, chunk) in chunks.iter().enumerate() {
80// We don't know if the pointer is aligned to 16 bytes, so we
81 // use `loadu`, which supports unaligned loading.
82let chunk = unsafe { _mm_loadu_si128(chunk.as_ptr() as *const __m128i) };
8384// For character in the chunk, see if its byte value is < 0, which
85 // indicates that it's part of a UTF-8 char.
86let multibyte_test = _mm_cmplt_epi8(chunk, _mm_set1_epi8(0));
87// Create a bit mask from the comparison results.
88let multibyte_mask = _mm_movemask_epi8(multibyte_test);
8990// If the bit mask is all zero, we only have ASCII chars here:
91if multibyte_mask == 0 {
92assert!(intra_chunk_offset == 0);
9394// Check for newlines in the chunk
95let newlines_test = _mm_cmpeq_epi8(chunk, _mm_set1_epi8(b'\n' as i8));
96let mut newlines_mask = _mm_movemask_epi8(newlines_test);
9798let output_offset = RelativeBytePos::from_usize(chunk_index * CHUNK_SIZE + 1);
99100while newlines_mask != 0 {
101let index = newlines_mask.trailing_zeros();
102103 lines.push(RelativeBytePos(index) + output_offset);
104105// Clear the bit, so we can find the next one.
106newlines_mask &= newlines_mask - 1;
107 }
108 } else {
109// The slow path.
110 // There are multibyte chars in here, fallback to generic decoding.
111let scan_start = chunk_index * CHUNK_SIZE + intra_chunk_offset;
112 intra_chunk_offset = analyze_source_file_generic(
113&src[scan_start..],
114 CHUNK_SIZE - intra_chunk_offset,
115 RelativeBytePos::from_usize(scan_start),
116 lines,
117 multi_byte_chars,
118 );
119 }
120 }
121122// There might still be a tail left to analyze
123let tail_start = src.len() - tail.len() + intra_chunk_offset;
124if tail_start < src.len() {
125analyze_source_file_generic(
126&src[tail_start..],
127src.len() - tail_start,
128RelativeBytePos::from_usize(tail_start),
129lines,
130multi_byte_chars,
131 );
132 }
133 }
134 }
135_ => {
136// The target (or compiler version) does not support SSE2 ...
137fn analyze_source_file_dispatch(
138 src: &str,
139 lines: &mut Vec<RelativeBytePos>,
140 multi_byte_chars: &mut Vec<MultiByteChar>,
141 ) {
142 analyze_source_file_generic(
143 src,
144 src.len(),
145 RelativeBytePos::from_u32(0),
146 lines,
147 multi_byte_chars,
148 );
149 }
150 }
151}
152153// `scan_len` determines the number of bytes in `src` to scan. Note that the
154// function can read past `scan_len` if a multi-byte character start within the
155// range but extends past it. The overflow is returned by the function.
156fn analyze_source_file_generic(
157 src: &str,
158 scan_len: usize,
159 output_offset: RelativeBytePos,
160 lines: &mut Vec<RelativeBytePos>,
161 multi_byte_chars: &mut Vec<MultiByteChar>,
162) -> usize {
163assert!(src.len() >= scan_len);
164let mut i = 0;
165let src_bytes = src.as_bytes();
166167while i < scan_len {
168let byte = unsafe {
169// We verified that i < scan_len <= src.len()
170*src_bytes.get_unchecked(i)
171 };
172173// How much to advance in order to get to the next UTF-8 char in the
174 // string.
175let mut char_len = 1;
176177if byte == b'\n' {
178let pos = RelativeBytePos::from_usize(i) + output_offset;
179 lines.push(pos + RelativeBytePos(1));
180 } else if byte >= 128 {
181// This is the beginning of a multibyte char. Just decode to `char`.
182let c = src[i..].chars().next().unwrap();
183 char_len = c.len_utf8();
184185let pos = RelativeBytePos::from_usize(i) + output_offset;
186assert!((2..=4).contains(&char_len));
187let mbc = MultiByteChar { pos, bytes: char_len as u8 };
188 multi_byte_chars.push(mbc);
189 }
190191 i += char_len;
192 }
193194i - scan_len195}