miri/shims/
os_str.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
use std::borrow::Cow;
use std::ffi::{OsStr, OsString};
#[cfg(unix)]
use std::os::unix::ffi::{OsStrExt, OsStringExt};
#[cfg(windows)]
use std::os::windows::ffi::{OsStrExt, OsStringExt};
use std::path::{Path, PathBuf};

use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::LayoutOf;

use crate::*;

/// Represent how path separator conversion should be done.
pub enum PathConversion {
    HostToTarget,
    TargetToHost,
}

#[cfg(unix)]
pub fn bytes_to_os_str<'tcx>(bytes: &[u8]) -> InterpResult<'tcx, &OsStr> {
    interp_ok(OsStr::from_bytes(bytes))
}
#[cfg(not(unix))]
pub fn bytes_to_os_str<'tcx>(bytes: &[u8]) -> InterpResult<'tcx, &OsStr> {
    // We cannot use `from_encoded_bytes_unchecked` here since we can't trust `bytes`.
    let s = std::str::from_utf8(bytes)
        .map_err(|_| err_unsup_format!("{:?} is not a valid utf-8 string", bytes))?;
    interp_ok(OsStr::new(s))
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    /// Helper function to read an OsString from a null-terminated sequence of bytes, which is what
    /// the Unix APIs usually handle.
    fn read_os_str_from_c_str<'a>(&'a self, ptr: Pointer) -> InterpResult<'tcx, &'a OsStr>
    where
        'tcx: 'a,
    {
        let this = self.eval_context_ref();
        let bytes = this.read_c_str(ptr)?;
        bytes_to_os_str(bytes)
    }

    /// Helper function to read an OsString from a 0x0000-terminated sequence of u16,
    /// which is what the Windows APIs usually handle.
    fn read_os_str_from_wide_str<'a>(&'a self, ptr: Pointer) -> InterpResult<'tcx, OsString>
    where
        'tcx: 'a,
    {
        #[cfg(windows)]
        pub fn u16vec_to_osstring<'tcx>(u16_vec: Vec<u16>) -> InterpResult<'tcx, OsString> {
            interp_ok(OsString::from_wide(&u16_vec[..]))
        }
        #[cfg(not(windows))]
        pub fn u16vec_to_osstring<'tcx>(u16_vec: Vec<u16>) -> InterpResult<'tcx, OsString> {
            let s = String::from_utf16(&u16_vec[..])
                .map_err(|_| err_unsup_format!("{:?} is not a valid utf-16 string", u16_vec))?;
            interp_ok(s.into())
        }

        let u16_vec = self.eval_context_ref().read_wide_str(ptr)?;
        u16vec_to_osstring(u16_vec)
    }

    /// Helper function to write an OsStr as a null-terminated sequence of bytes, which is what the
    /// Unix APIs usually handle. Returns `(success, full_len)`, where length includes the null
    /// terminator. On failure, nothing is written.
    fn write_os_str_to_c_str(
        &mut self,
        os_str: &OsStr,
        ptr: Pointer,
        size: u64,
    ) -> InterpResult<'tcx, (bool, u64)> {
        let bytes = os_str.as_encoded_bytes();
        self.eval_context_mut().write_c_str(bytes, ptr, size)
    }

    /// Internal helper to share code between `write_os_str_to_wide_str` and
    /// `write_os_str_to_wide_str_truncated`.
    fn write_os_str_to_wide_str_helper(
        &mut self,
        os_str: &OsStr,
        ptr: Pointer,
        size: u64,
        truncate: bool,
    ) -> InterpResult<'tcx, (bool, u64)> {
        #[cfg(windows)]
        fn os_str_to_u16vec<'tcx>(os_str: &OsStr) -> InterpResult<'tcx, Vec<u16>> {
            interp_ok(os_str.encode_wide().collect())
        }
        #[cfg(not(windows))]
        fn os_str_to_u16vec<'tcx>(os_str: &OsStr) -> InterpResult<'tcx, Vec<u16>> {
            // On non-Windows platforms the best we can do to transform Vec<u16> from/to OS strings is to do the
            // intermediate transformation into strings. Which invalidates non-utf8 paths that are actually
            // valid.
            os_str
                .to_str()
                .map(|s| s.encode_utf16().collect())
                .ok_or_else(|| err_unsup_format!("{:?} is not a valid utf-8 string", os_str))
                .into()
        }

        let u16_vec = os_str_to_u16vec(os_str)?;
        let (written, size_needed) = self.eval_context_mut().write_wide_str(&u16_vec, ptr, size)?;
        if truncate && !written && size > 0 {
            // Write the truncated part that fits.
            let truncated_data = &u16_vec[..size.saturating_sub(1).try_into().unwrap()];
            let (written, written_len) =
                self.eval_context_mut().write_wide_str(truncated_data, ptr, size)?;
            assert!(written && written_len == size);
        }
        interp_ok((written, size_needed))
    }

    /// Helper function to write an OsStr as a 0x0000-terminated u16-sequence, which is what the
    /// Windows APIs usually handle. Returns `(success, full_len)`, where length is measured
    /// in units of `u16` and includes the null terminator. On failure, nothing is written.
    fn write_os_str_to_wide_str(
        &mut self,
        os_str: &OsStr,
        ptr: Pointer,
        size: u64,
    ) -> InterpResult<'tcx, (bool, u64)> {
        self.write_os_str_to_wide_str_helper(os_str, ptr, size, /*truncate*/ false)
    }

    /// Like `write_os_str_to_wide_str`, but on failure as much as possible is written into
    /// the buffer (always with a null terminator).
    fn write_os_str_to_wide_str_truncated(
        &mut self,
        os_str: &OsStr,
        ptr: Pointer,
        size: u64,
    ) -> InterpResult<'tcx, (bool, u64)> {
        self.write_os_str_to_wide_str_helper(os_str, ptr, size, /*truncate*/ true)
    }

    /// Allocate enough memory to store the given `OsStr` as a null-terminated sequence of bytes.
    fn alloc_os_str_as_c_str(
        &mut self,
        os_str: &OsStr,
        memkind: MemoryKind,
    ) -> InterpResult<'tcx, Pointer> {
        let size = u64::try_from(os_str.len()).unwrap().strict_add(1); // Make space for `0` terminator.
        let this = self.eval_context_mut();

        let arg_type = Ty::new_array(this.tcx.tcx, this.tcx.types.u8, size);
        let arg_place = this.allocate(this.layout_of(arg_type).unwrap(), memkind)?;
        let (written, _) = self.write_os_str_to_c_str(os_str, arg_place.ptr(), size).unwrap();
        assert!(written);
        interp_ok(arg_place.ptr())
    }

    /// Allocate enough memory to store the given `OsStr` as a null-terminated sequence of `u16`.
    fn alloc_os_str_as_wide_str(
        &mut self,
        os_str: &OsStr,
        memkind: MemoryKind,
    ) -> InterpResult<'tcx, Pointer> {
        let size = u64::try_from(os_str.len()).unwrap().strict_add(1); // Make space for `0x0000` terminator.
        let this = self.eval_context_mut();

        let arg_type = Ty::new_array(this.tcx.tcx, this.tcx.types.u16, size);
        let arg_place = this.allocate(this.layout_of(arg_type).unwrap(), memkind)?;
        let (written, _) = self.write_os_str_to_wide_str(os_str, arg_place.ptr(), size).unwrap();
        assert!(written);
        interp_ok(arg_place.ptr())
    }

    /// Read a null-terminated sequence of bytes, and perform path separator conversion if needed.
    fn read_path_from_c_str<'a>(&'a self, ptr: Pointer) -> InterpResult<'tcx, Cow<'a, Path>>
    where
        'tcx: 'a,
    {
        let this = self.eval_context_ref();
        let os_str = this.read_os_str_from_c_str(ptr)?;

        interp_ok(match this.convert_path(Cow::Borrowed(os_str), PathConversion::TargetToHost) {
            Cow::Borrowed(x) => Cow::Borrowed(Path::new(x)),
            Cow::Owned(y) => Cow::Owned(PathBuf::from(y)),
        })
    }

    /// Read a null-terminated sequence of `u16`s, and perform path separator conversion if needed.
    fn read_path_from_wide_str(&self, ptr: Pointer) -> InterpResult<'tcx, PathBuf> {
        let this = self.eval_context_ref();
        let os_str = this.read_os_str_from_wide_str(ptr)?;

        interp_ok(
            this.convert_path(Cow::Owned(os_str), PathConversion::TargetToHost).into_owned().into(),
        )
    }

    /// Write a Path to the machine memory (as a null-terminated sequence of bytes),
    /// adjusting path separators if needed.
    fn write_path_to_c_str(
        &mut self,
        path: &Path,
        ptr: Pointer,
        size: u64,
    ) -> InterpResult<'tcx, (bool, u64)> {
        let this = self.eval_context_mut();
        let os_str =
            this.convert_path(Cow::Borrowed(path.as_os_str()), PathConversion::HostToTarget);
        this.write_os_str_to_c_str(&os_str, ptr, size)
    }

    /// Write a Path to the machine memory (as a null-terminated sequence of `u16`s),
    /// adjusting path separators if needed.
    fn write_path_to_wide_str(
        &mut self,
        path: &Path,
        ptr: Pointer,
        size: u64,
    ) -> InterpResult<'tcx, (bool, u64)> {
        let this = self.eval_context_mut();
        let os_str =
            this.convert_path(Cow::Borrowed(path.as_os_str()), PathConversion::HostToTarget);
        this.write_os_str_to_wide_str(&os_str, ptr, size)
    }

    /// Write a Path to the machine memory (as a null-terminated sequence of `u16`s),
    /// adjusting path separators if needed.
    fn write_path_to_wide_str_truncated(
        &mut self,
        path: &Path,
        ptr: Pointer,
        size: u64,
    ) -> InterpResult<'tcx, (bool, u64)> {
        let this = self.eval_context_mut();
        let os_str =
            this.convert_path(Cow::Borrowed(path.as_os_str()), PathConversion::HostToTarget);
        this.write_os_str_to_wide_str_truncated(&os_str, ptr, size)
    }

    /// Allocate enough memory to store a Path as a null-terminated sequence of bytes,
    /// adjusting path separators if needed.
    fn alloc_path_as_c_str(
        &mut self,
        path: &Path,
        memkind: MemoryKind,
    ) -> InterpResult<'tcx, Pointer> {
        let this = self.eval_context_mut();
        let os_str =
            this.convert_path(Cow::Borrowed(path.as_os_str()), PathConversion::HostToTarget);
        this.alloc_os_str_as_c_str(&os_str, memkind)
    }

    /// Allocate enough memory to store a Path as a null-terminated sequence of `u16`s,
    /// adjusting path separators if needed.
    fn alloc_path_as_wide_str(
        &mut self,
        path: &Path,
        memkind: MemoryKind,
    ) -> InterpResult<'tcx, Pointer> {
        let this = self.eval_context_mut();
        let os_str =
            this.convert_path(Cow::Borrowed(path.as_os_str()), PathConversion::HostToTarget);
        this.alloc_os_str_as_wide_str(&os_str, memkind)
    }

    fn convert_path<'a>(
        &self,
        os_str: Cow<'a, OsStr>,
        direction: PathConversion,
    ) -> Cow<'a, OsStr> {
        let this = self.eval_context_ref();
        let target_os = &this.tcx.sess.target.os;

        /// Adjust a Windows path to Unix conventions such that it un-does everything that
        /// `unix_to_windows` did, and such that if the Windows input path was absolute, then the
        /// Unix output path is absolute.
        fn windows_to_unix<T>(path: &mut Vec<T>)
        where
            T: From<u8> + Copy + Eq,
        {
            let sep = T::from(b'/');
            // Make sure all path separators are `/`.
            for c in path.iter_mut() {
                if *c == b'\\'.into() {
                    *c = sep;
                }
            }
            // If this starts with `//?/`, it was probably produced by `unix_to_windows`` and we
            // remove the `//?` that got added to get the Unix path back out.
            if path.get(0..4) == Some(&[sep, sep, b'?'.into(), sep]) {
                // Remove first 3 characters. It still starts with `/` so it is absolute on Unix.
                path.splice(0..3, std::iter::empty());
            }
            // If it starts with a drive letter (`X:/`), convert it to an absolute Unix path.
            else if path.get(1..3) == Some(&[b':'.into(), sep]) {
                // We add a `/` at the beginning, to store the absolute Windows
                // path in something that looks like an absolute Unix path.
                path.insert(0, sep);
            }
        }

        /// Adjust a Unix path to Windows conventions such that it un-does everything that
        /// `windows_to_unix` did, and such that if the Unix input path was absolute, then the
        /// Windows output path is absolute.
        fn unix_to_windows<T>(path: &mut Vec<T>)
        where
            T: From<u8> + Copy + Eq,
        {
            let sep = T::from(b'\\');
            // Make sure all path separators are `\`.
            for c in path.iter_mut() {
                if *c == b'/'.into() {
                    *c = sep;
                }
            }
            // If the path is `\X:\`, the leading separator was probably added by `windows_to_unix`
            // and we should get rid of it again.
            if path.get(2..4) == Some(&[b':'.into(), sep]) && path[0] == sep {
                // The new path is still absolute on Windows.
                path.remove(0);
            }
            // If this starts withs a `\` but not a `\\`, then this was absolute on Unix but is
            // relative on Windows (relative to "the root of the current directory", e.g. the
            // drive letter).
            else if path.first() == Some(&sep) && path.get(1) != Some(&sep) {
                // We add `\\?` so it starts with `\\?\` which is some magic path on Windows
                // that *is* considered absolute. This way we store the absolute Unix path
                // in something that looks like an absolute Windows path.
                path.splice(0..0, [sep, sep, b'?'.into()]);
            }
        }

        // Below we assume that everything non-Windows works like Unix, at least
        // when it comes to file system path conventions.
        #[cfg(windows)]
        return if target_os == "windows" {
            // Windows-on-Windows, all fine.
            os_str
        } else {
            // Unix target, Windows host.
            let mut path: Vec<u16> = os_str.encode_wide().collect();
            match direction {
                PathConversion::HostToTarget => {
                    windows_to_unix(&mut path);
                }
                PathConversion::TargetToHost => {
                    unix_to_windows(&mut path);
                }
            }
            Cow::Owned(OsString::from_wide(&path))
        };
        #[cfg(unix)]
        return if target_os == "windows" {
            // Windows target, Unix host.
            let mut path: Vec<u8> = os_str.into_owned().into_encoded_bytes();
            match direction {
                PathConversion::HostToTarget => {
                    unix_to_windows(&mut path);
                }
                PathConversion::TargetToHost => {
                    windows_to_unix(&mut path);
                }
            }
            Cow::Owned(OsString::from_vec(path))
        } else {
            // Unix-on-Unix, all is fine.
            os_str
        };
    }
}