rustc_borrowck/
dataflow.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
use std::fmt;

use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::graph;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::{
    self, BasicBlock, Body, CallReturnPlaces, Location, Place, TerminatorEdges,
};
use rustc_middle::ty::{RegionVid, TyCtxt};
use rustc_mir_dataflow::fmt::DebugWithContext;
use rustc_mir_dataflow::impls::{EverInitializedPlaces, MaybeUninitializedPlaces};
use rustc_mir_dataflow::{Analysis, GenKill, JoinSemiLattice, SwitchIntEdgeEffects};
use tracing::debug;

use crate::{BorrowSet, PlaceConflictBias, PlaceExt, RegionInferenceContext, places_conflict};

// This analysis is different to most others. Its results aren't computed with
// `iterate_to_fixpoint`, but are instead composed from the results of three sub-analyses that are
// computed individually with `iterate_to_fixpoint`.
pub(crate) struct Borrowck<'a, 'tcx> {
    pub(crate) borrows: Borrows<'a, 'tcx>,
    pub(crate) uninits: MaybeUninitializedPlaces<'a, 'tcx>,
    pub(crate) ever_inits: EverInitializedPlaces<'a, 'tcx>,
}

impl<'a, 'tcx> Analysis<'tcx> for Borrowck<'a, 'tcx> {
    type Domain = BorrowckDomain<'a, 'tcx>;

    const NAME: &'static str = "borrowck";

    fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain {
        BorrowckDomain {
            borrows: self.borrows.bottom_value(body),
            uninits: self.uninits.bottom_value(body),
            ever_inits: self.ever_inits.bottom_value(body),
        }
    }

    fn initialize_start_block(&self, _body: &mir::Body<'tcx>, _state: &mut Self::Domain) {
        // This is only reachable from `iterate_to_fixpoint`, which this analysis doesn't use.
        unreachable!();
    }

    fn apply_before_statement_effect(
        &mut self,
        state: &mut Self::Domain,
        stmt: &mir::Statement<'tcx>,
        loc: Location,
    ) {
        self.borrows.apply_before_statement_effect(&mut state.borrows, stmt, loc);
        self.uninits.apply_before_statement_effect(&mut state.uninits, stmt, loc);
        self.ever_inits.apply_before_statement_effect(&mut state.ever_inits, stmt, loc);
    }

    fn apply_statement_effect(
        &mut self,
        state: &mut Self::Domain,
        stmt: &mir::Statement<'tcx>,
        loc: Location,
    ) {
        self.borrows.apply_statement_effect(&mut state.borrows, stmt, loc);
        self.uninits.apply_statement_effect(&mut state.uninits, stmt, loc);
        self.ever_inits.apply_statement_effect(&mut state.ever_inits, stmt, loc);
    }

    fn apply_before_terminator_effect(
        &mut self,
        state: &mut Self::Domain,
        term: &mir::Terminator<'tcx>,
        loc: Location,
    ) {
        self.borrows.apply_before_terminator_effect(&mut state.borrows, term, loc);
        self.uninits.apply_before_terminator_effect(&mut state.uninits, term, loc);
        self.ever_inits.apply_before_terminator_effect(&mut state.ever_inits, term, loc);
    }

    fn apply_terminator_effect<'mir>(
        &mut self,
        state: &mut Self::Domain,
        term: &'mir mir::Terminator<'tcx>,
        loc: Location,
    ) -> TerminatorEdges<'mir, 'tcx> {
        self.borrows.apply_terminator_effect(&mut state.borrows, term, loc);
        self.uninits.apply_terminator_effect(&mut state.uninits, term, loc);
        self.ever_inits.apply_terminator_effect(&mut state.ever_inits, term, loc);

        // This return value doesn't matter. It's only used by `iterate_to_fixpoint`, which this
        // analysis doesn't use.
        TerminatorEdges::None
    }

    fn apply_call_return_effect(
        &mut self,
        _state: &mut Self::Domain,
        _block: BasicBlock,
        _return_places: CallReturnPlaces<'_, 'tcx>,
    ) {
        // This is only reachable from `iterate_to_fixpoint`, which this analysis doesn't use.
        unreachable!();
    }

    fn apply_switch_int_edge_effects(
        &mut self,
        _block: BasicBlock,
        _discr: &mir::Operand<'tcx>,
        _apply_edge_effects: &mut impl SwitchIntEdgeEffects<Self::Domain>,
    ) {
        // This is only reachable from `iterate_to_fixpoint`, which this analysis doesn't use.
        unreachable!();
    }
}

impl JoinSemiLattice for BorrowckDomain<'_, '_> {
    fn join(&mut self, _other: &Self) -> bool {
        // This is only reachable from `iterate_to_fixpoint`, which this analysis doesn't use.
        unreachable!();
    }
}

impl<'tcx, C> DebugWithContext<C> for BorrowckDomain<'_, 'tcx>
where
    C: rustc_mir_dataflow::move_paths::HasMoveData<'tcx>,
{
    fn fmt_with(&self, ctxt: &C, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("borrows: ")?;
        self.borrows.fmt_with(ctxt, f)?;
        f.write_str(" uninits: ")?;
        self.uninits.fmt_with(ctxt, f)?;
        f.write_str(" ever_inits: ")?;
        self.ever_inits.fmt_with(ctxt, f)?;
        Ok(())
    }

    fn fmt_diff_with(&self, old: &Self, ctxt: &C, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self == old {
            return Ok(());
        }

        if self.borrows != old.borrows {
            f.write_str("borrows: ")?;
            self.borrows.fmt_diff_with(&old.borrows, ctxt, f)?;
            f.write_str("\n")?;
        }

        if self.uninits != old.uninits {
            f.write_str("uninits: ")?;
            self.uninits.fmt_diff_with(&old.uninits, ctxt, f)?;
            f.write_str("\n")?;
        }

        if self.ever_inits != old.ever_inits {
            f.write_str("ever_inits: ")?;
            self.ever_inits.fmt_diff_with(&old.ever_inits, ctxt, f)?;
            f.write_str("\n")?;
        }

        Ok(())
    }
}

/// The transient state of the dataflow analyses used by the borrow checker.
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct BorrowckDomain<'a, 'tcx> {
    pub(crate) borrows: <Borrows<'a, 'tcx> as Analysis<'tcx>>::Domain,
    pub(crate) uninits: <MaybeUninitializedPlaces<'a, 'tcx> as Analysis<'tcx>>::Domain,
    pub(crate) ever_inits: <EverInitializedPlaces<'a, 'tcx> as Analysis<'tcx>>::Domain,
}

rustc_index::newtype_index! {
    #[orderable]
    #[debug_format = "bw{}"]
    pub struct BorrowIndex {}
}

/// `Borrows` stores the data used in the analyses that track the flow
/// of borrows.
///
/// It uniquely identifies every borrow (`Rvalue::Ref`) by a
/// `BorrowIndex`, and maps each such index to a `BorrowData`
/// describing the borrow. These indexes are used for representing the
/// borrows in compact bitvectors.
pub struct Borrows<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    body: &'a Body<'tcx>,
    borrow_set: &'a BorrowSet<'tcx>,
    borrows_out_of_scope_at_location: FxIndexMap<Location, Vec<BorrowIndex>>,
}

struct OutOfScopePrecomputer<'a, 'tcx> {
    visited: BitSet<mir::BasicBlock>,
    visit_stack: Vec<mir::BasicBlock>,
    body: &'a Body<'tcx>,
    regioncx: &'a RegionInferenceContext<'tcx>,
    borrows_out_of_scope_at_location: FxIndexMap<Location, Vec<BorrowIndex>>,
}

impl<'a, 'tcx> OutOfScopePrecomputer<'a, 'tcx> {
    fn new(body: &'a Body<'tcx>, regioncx: &'a RegionInferenceContext<'tcx>) -> Self {
        OutOfScopePrecomputer {
            visited: BitSet::new_empty(body.basic_blocks.len()),
            visit_stack: vec![],
            body,
            regioncx,
            borrows_out_of_scope_at_location: FxIndexMap::default(),
        }
    }
}

impl<'tcx> OutOfScopePrecomputer<'_, 'tcx> {
    fn precompute_borrows_out_of_scope(
        &mut self,
        borrow_index: BorrowIndex,
        borrow_region: RegionVid,
        first_location: Location,
    ) {
        let first_block = first_location.block;
        let first_bb_data = &self.body.basic_blocks[first_block];

        // This is the first block, we only want to visit it from the creation of the borrow at
        // `first_location`.
        let first_lo = first_location.statement_index;
        let first_hi = first_bb_data.statements.len();

        if let Some(kill_stmt) = self.regioncx.first_non_contained_inclusive(
            borrow_region,
            first_block,
            first_lo,
            first_hi,
        ) {
            let kill_location = Location { block: first_block, statement_index: kill_stmt };
            // If region does not contain a point at the location, then add to list and skip
            // successor locations.
            debug!("borrow {:?} gets killed at {:?}", borrow_index, kill_location);
            self.borrows_out_of_scope_at_location
                .entry(kill_location)
                .or_default()
                .push(borrow_index);

            // The borrow is already dead, there is no need to visit other blocks.
            return;
        }

        // The borrow is not dead. Add successor BBs to the work list, if necessary.
        for succ_bb in first_bb_data.terminator().successors() {
            if self.visited.insert(succ_bb) {
                self.visit_stack.push(succ_bb);
            }
        }

        // We may end up visiting `first_block` again. This is not an issue: we know at this point
        // that it does not kill the borrow in the `first_lo..=first_hi` range, so checking the
        // `0..first_lo` range and the `0..first_hi` range give the same result.
        while let Some(block) = self.visit_stack.pop() {
            let bb_data = &self.body[block];
            let num_stmts = bb_data.statements.len();
            if let Some(kill_stmt) =
                self.regioncx.first_non_contained_inclusive(borrow_region, block, 0, num_stmts)
            {
                let kill_location = Location { block, statement_index: kill_stmt };
                // If region does not contain a point at the location, then add to list and skip
                // successor locations.
                debug!("borrow {:?} gets killed at {:?}", borrow_index, kill_location);
                self.borrows_out_of_scope_at_location
                    .entry(kill_location)
                    .or_default()
                    .push(borrow_index);

                // We killed the borrow, so we do not visit this block's successors.
                continue;
            }

            // Add successor BBs to the work list, if necessary.
            for succ_bb in bb_data.terminator().successors() {
                if self.visited.insert(succ_bb) {
                    self.visit_stack.push(succ_bb);
                }
            }
        }

        self.visited.clear();
    }
}

// This is `pub` because it's used by unstable external borrowck data users, see `consumers.rs`.
pub fn calculate_borrows_out_of_scope_at_location<'tcx>(
    body: &Body<'tcx>,
    regioncx: &RegionInferenceContext<'tcx>,
    borrow_set: &BorrowSet<'tcx>,
) -> FxIndexMap<Location, Vec<BorrowIndex>> {
    let mut prec = OutOfScopePrecomputer::new(body, regioncx);
    for (borrow_index, borrow_data) in borrow_set.iter_enumerated() {
        let borrow_region = borrow_data.region;
        let location = borrow_data.reserve_location;

        prec.precompute_borrows_out_of_scope(borrow_index, borrow_region, location);
    }

    prec.borrows_out_of_scope_at_location
}

struct PoloniusOutOfScopePrecomputer<'a, 'tcx> {
    visited: BitSet<mir::BasicBlock>,
    visit_stack: Vec<mir::BasicBlock>,
    body: &'a Body<'tcx>,
    regioncx: &'a RegionInferenceContext<'tcx>,

    loans_out_of_scope_at_location: FxIndexMap<Location, Vec<BorrowIndex>>,
}

impl<'a, 'tcx> PoloniusOutOfScopePrecomputer<'a, 'tcx> {
    fn new(body: &'a Body<'tcx>, regioncx: &'a RegionInferenceContext<'tcx>) -> Self {
        Self {
            visited: BitSet::new_empty(body.basic_blocks.len()),
            visit_stack: vec![],
            body,
            regioncx,
            loans_out_of_scope_at_location: FxIndexMap::default(),
        }
    }
}

impl<'tcx> PoloniusOutOfScopePrecomputer<'_, 'tcx> {
    /// Loans are in scope while they are live: whether they are contained within any live region.
    /// In the location-insensitive analysis, a loan will be contained in a region if the issuing
    /// region can reach it in the subset graph. So this is a reachability problem.
    fn precompute_loans_out_of_scope(
        &mut self,
        loan_idx: BorrowIndex,
        issuing_region: RegionVid,
        loan_issued_at: Location,
    ) {
        let sccs = self.regioncx.constraint_sccs();
        let universal_regions = self.regioncx.universal_regions();

        // We first handle the cases where the loan doesn't go out of scope, depending on the
        // issuing region's successors.
        for successor in graph::depth_first_search(&self.regioncx.region_graph(), issuing_region) {
            // 1. Via applied member constraints
            //
            // The issuing region can flow into the choice regions, and they are either:
            // - placeholders or free regions themselves,
            // - or also transitively outlive a free region.
            //
            // That is to say, if there are applied member constraints here, the loan escapes the
            // function and cannot go out of scope. We could early return here.
            //
            // For additional insurance via fuzzing and crater, we verify that the constraint's min
            // choice indeed escapes the function. In the future, we could e.g. turn this check into
            // a debug assert and early return as an optimization.
            let scc = sccs.scc(successor);
            for constraint in self.regioncx.applied_member_constraints(scc) {
                if universal_regions.is_universal_region(constraint.min_choice) {
                    return;
                }
            }

            // 2. Via regions that are live at all points: placeholders and free regions.
            //
            // If the issuing region outlives such a region, its loan escapes the function and
            // cannot go out of scope. We can early return.
            if self.regioncx.is_region_live_at_all_points(successor) {
                return;
            }
        }

        let first_block = loan_issued_at.block;
        let first_bb_data = &self.body.basic_blocks[first_block];

        // The first block we visit is the one where the loan is issued, starting from the statement
        // where the loan is issued: at `loan_issued_at`.
        let first_lo = loan_issued_at.statement_index;
        let first_hi = first_bb_data.statements.len();

        if let Some(kill_location) =
            self.loan_kill_location(loan_idx, loan_issued_at, first_block, first_lo, first_hi)
        {
            debug!("loan {:?} gets killed at {:?}", loan_idx, kill_location);
            self.loans_out_of_scope_at_location.entry(kill_location).or_default().push(loan_idx);

            // The loan dies within the first block, we're done and can early return.
            return;
        }

        // The loan is not dead. Add successor BBs to the work list, if necessary.
        for succ_bb in first_bb_data.terminator().successors() {
            if self.visited.insert(succ_bb) {
                self.visit_stack.push(succ_bb);
            }
        }

        // We may end up visiting `first_block` again. This is not an issue: we know at this point
        // that the loan is not killed in the `first_lo..=first_hi` range, so checking the
        // `0..first_lo` range and the `0..first_hi` range gives the same result.
        while let Some(block) = self.visit_stack.pop() {
            let bb_data = &self.body[block];
            let num_stmts = bb_data.statements.len();
            if let Some(kill_location) =
                self.loan_kill_location(loan_idx, loan_issued_at, block, 0, num_stmts)
            {
                debug!("loan {:?} gets killed at {:?}", loan_idx, kill_location);
                self.loans_out_of_scope_at_location
                    .entry(kill_location)
                    .or_default()
                    .push(loan_idx);

                // The loan dies within this block, so we don't need to visit its successors.
                continue;
            }

            // Add successor BBs to the work list, if necessary.
            for succ_bb in bb_data.terminator().successors() {
                if self.visited.insert(succ_bb) {
                    self.visit_stack.push(succ_bb);
                }
            }
        }

        self.visited.clear();
        assert!(self.visit_stack.is_empty(), "visit stack should be empty");
    }

    /// Returns the lowest statement in `start..=end`, where the loan goes out of scope, if any.
    /// This is the statement where the issuing region can't reach any of the regions that are live
    /// at this point.
    fn loan_kill_location(
        &self,
        loan_idx: BorrowIndex,
        loan_issued_at: Location,
        block: BasicBlock,
        start: usize,
        end: usize,
    ) -> Option<Location> {
        for statement_index in start..=end {
            let location = Location { block, statement_index };

            // Check whether the issuing region can reach local regions that are live at this point:
            // - a loan is always live at its issuing location because it can reach the issuing
            // region, which is always live at this location.
            if location == loan_issued_at {
                continue;
            }

            // - the loan goes out of scope at `location` if it's not contained within any regions
            // live at this point.
            //
            // FIXME: if the issuing region `i` can reach a live region `r` at point `p`, and `r` is
            // live at point `q`, then it's guaranteed that `i` would reach `r` at point `q`.
            // Reachability is location-insensitive, and we could take advantage of that, by jumping
            // to a further point than just the next statement: we can jump to the furthest point
            // within the block where `r` is live.
            if self.regioncx.is_loan_live_at(loan_idx, location) {
                continue;
            }

            // No live region is reachable from the issuing region: the loan is killed at this
            // point.
            return Some(location);
        }

        None
    }
}

impl<'a, 'tcx> Borrows<'a, 'tcx> {
    pub fn new(
        tcx: TyCtxt<'tcx>,
        body: &'a Body<'tcx>,
        regioncx: &RegionInferenceContext<'tcx>,
        borrow_set: &'a BorrowSet<'tcx>,
    ) -> Self {
        let mut borrows_out_of_scope_at_location =
            calculate_borrows_out_of_scope_at_location(body, regioncx, borrow_set);

        // The in-tree polonius analysis computes loans going out of scope using the set-of-loans
        // model, and makes sure they're identical to the existing computation of the set-of-points
        // model.
        if tcx.sess.opts.unstable_opts.polonius.is_next_enabled() {
            let mut polonius_prec = PoloniusOutOfScopePrecomputer::new(body, regioncx);
            for (loan_idx, loan_data) in borrow_set.iter_enumerated() {
                let issuing_region = loan_data.region;
                let loan_issued_at = loan_data.reserve_location;

                polonius_prec.precompute_loans_out_of_scope(
                    loan_idx,
                    issuing_region,
                    loan_issued_at,
                );
            }

            assert_eq!(
                borrows_out_of_scope_at_location, polonius_prec.loans_out_of_scope_at_location,
                "polonius loan scopes differ from NLL borrow scopes, for body {:?}",
                body.span,
            );

            borrows_out_of_scope_at_location = polonius_prec.loans_out_of_scope_at_location;
        }

        Borrows { tcx, body, borrow_set, borrows_out_of_scope_at_location }
    }

    /// Add all borrows to the kill set, if those borrows are out of scope at `location`.
    /// That means they went out of a nonlexical scope
    fn kill_loans_out_of_scope_at_location(
        &self,
        trans: &mut <Self as Analysis<'tcx>>::Domain,
        location: Location,
    ) {
        // NOTE: The state associated with a given `location`
        // reflects the dataflow on entry to the statement.
        // Iterate over each of the borrows that we've precomputed
        // to have went out of scope at this location and kill them.
        //
        // We are careful always to call this function *before* we
        // set up the gen-bits for the statement or
        // terminator. That way, if the effect of the statement or
        // terminator *does* introduce a new loan of the same
        // region, then setting that gen-bit will override any
        // potential kill introduced here.
        if let Some(indices) = self.borrows_out_of_scope_at_location.get(&location) {
            trans.kill_all(indices.iter().copied());
        }
    }

    /// Kill any borrows that conflict with `place`.
    fn kill_borrows_on_place(
        &self,
        trans: &mut <Self as Analysis<'tcx>>::Domain,
        place: Place<'tcx>,
    ) {
        debug!("kill_borrows_on_place: place={:?}", place);

        let other_borrows_of_local = self
            .borrow_set
            .local_map
            .get(&place.local)
            .into_iter()
            .flat_map(|bs| bs.iter())
            .copied();

        // If the borrowed place is a local with no projections, all other borrows of this
        // local must conflict. This is purely an optimization so we don't have to call
        // `places_conflict` for every borrow.
        if place.projection.is_empty() {
            if !self.body.local_decls[place.local].is_ref_to_static() {
                trans.kill_all(other_borrows_of_local);
            }
            return;
        }

        // By passing `PlaceConflictBias::NoOverlap`, we conservatively assume that any given
        // pair of array indices are not equal, so that when `places_conflict` returns true, we
        // will be assured that two places being compared definitely denotes the same sets of
        // locations.
        let definitely_conflicting_borrows = other_borrows_of_local.filter(|&i| {
            places_conflict(
                self.tcx,
                self.body,
                self.borrow_set[i].borrowed_place,
                place,
                PlaceConflictBias::NoOverlap,
            )
        });

        trans.kill_all(definitely_conflicting_borrows);
    }
}

/// Forward dataflow computation of the set of borrows that are in scope at a particular location.
/// - we gen the introduced loans
/// - we kill loans on locals going out of (regular) scope
/// - we kill the loans going out of their region's NLL scope: in NLL terms, the frontier where a
///   region stops containing the CFG points reachable from the issuing location.
/// - we also kill loans of conflicting places when overwriting a shared path: e.g. borrows of
///   `a.b.c` when `a` is overwritten.
impl<'tcx> rustc_mir_dataflow::Analysis<'tcx> for Borrows<'_, 'tcx> {
    type Domain = BitSet<BorrowIndex>;

    const NAME: &'static str = "borrows";

    fn bottom_value(&self, _: &mir::Body<'tcx>) -> Self::Domain {
        // bottom = nothing is reserved or activated yet;
        BitSet::new_empty(self.borrow_set.len())
    }

    fn initialize_start_block(&self, _: &mir::Body<'tcx>, _: &mut Self::Domain) {
        // no borrows of code region_scopes have been taken prior to
        // function execution, so this method has no effect.
    }

    fn apply_before_statement_effect(
        &mut self,
        trans: &mut Self::Domain,
        _statement: &mir::Statement<'tcx>,
        location: Location,
    ) {
        self.kill_loans_out_of_scope_at_location(trans, location);
    }

    fn apply_statement_effect(
        &mut self,
        trans: &mut Self::Domain,
        stmt: &mir::Statement<'tcx>,
        location: Location,
    ) {
        match &stmt.kind {
            mir::StatementKind::Assign(box (lhs, rhs)) => {
                if let mir::Rvalue::Ref(_, _, place) = rhs {
                    if place.ignore_borrow(
                        self.tcx,
                        self.body,
                        &self.borrow_set.locals_state_at_exit,
                    ) {
                        return;
                    }
                    let index = self.borrow_set.get_index_of(&location).unwrap_or_else(|| {
                        panic!("could not find BorrowIndex for location {location:?}");
                    });

                    trans.gen_(index);
                }

                // Make sure there are no remaining borrows for variables
                // that are assigned over.
                self.kill_borrows_on_place(trans, *lhs);
            }

            mir::StatementKind::StorageDead(local) => {
                // Make sure there are no remaining borrows for locals that
                // are gone out of scope.
                self.kill_borrows_on_place(trans, Place::from(*local));
            }

            mir::StatementKind::FakeRead(..)
            | mir::StatementKind::SetDiscriminant { .. }
            | mir::StatementKind::Deinit(..)
            | mir::StatementKind::StorageLive(..)
            | mir::StatementKind::Retag { .. }
            | mir::StatementKind::PlaceMention(..)
            | mir::StatementKind::AscribeUserType(..)
            | mir::StatementKind::Coverage(..)
            | mir::StatementKind::Intrinsic(..)
            | mir::StatementKind::ConstEvalCounter
            | mir::StatementKind::BackwardIncompatibleDropHint { .. }
            | mir::StatementKind::Nop => {}
        }
    }

    fn apply_before_terminator_effect(
        &mut self,
        trans: &mut Self::Domain,
        _terminator: &mir::Terminator<'tcx>,
        location: Location,
    ) {
        self.kill_loans_out_of_scope_at_location(trans, location);
    }

    fn apply_terminator_effect<'mir>(
        &mut self,
        trans: &mut Self::Domain,
        terminator: &'mir mir::Terminator<'tcx>,
        _location: Location,
    ) -> TerminatorEdges<'mir, 'tcx> {
        if let mir::TerminatorKind::InlineAsm { operands, .. } = &terminator.kind {
            for op in operands {
                if let mir::InlineAsmOperand::Out { place: Some(place), .. }
                | mir::InlineAsmOperand::InOut { out_place: Some(place), .. } = *op
                {
                    self.kill_borrows_on_place(trans, place);
                }
            }
        }
        terminator.edges()
    }
}

impl<C> DebugWithContext<C> for BorrowIndex {}