rustc_borrowck/dataflow.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
use std::fmt;
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::graph;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::{
self, BasicBlock, Body, CallReturnPlaces, Location, Place, TerminatorEdges,
};
use rustc_middle::ty::{RegionVid, TyCtxt};
use rustc_mir_dataflow::fmt::DebugWithContext;
use rustc_mir_dataflow::impls::{EverInitializedPlaces, MaybeUninitializedPlaces};
use rustc_mir_dataflow::{Analysis, GenKill, JoinSemiLattice, SwitchIntEdgeEffects};
use tracing::debug;
use crate::{BorrowSet, PlaceConflictBias, PlaceExt, RegionInferenceContext, places_conflict};
// This analysis is different to most others. Its results aren't computed with
// `iterate_to_fixpoint`, but are instead composed from the results of three sub-analyses that are
// computed individually with `iterate_to_fixpoint`.
pub(crate) struct Borrowck<'a, 'tcx> {
pub(crate) borrows: Borrows<'a, 'tcx>,
pub(crate) uninits: MaybeUninitializedPlaces<'a, 'tcx>,
pub(crate) ever_inits: EverInitializedPlaces<'a, 'tcx>,
}
impl<'a, 'tcx> Analysis<'tcx> for Borrowck<'a, 'tcx> {
type Domain = BorrowckDomain<'a, 'tcx>;
const NAME: &'static str = "borrowck";
fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain {
BorrowckDomain {
borrows: self.borrows.bottom_value(body),
uninits: self.uninits.bottom_value(body),
ever_inits: self.ever_inits.bottom_value(body),
}
}
fn initialize_start_block(&self, _body: &mir::Body<'tcx>, _state: &mut Self::Domain) {
// This is only reachable from `iterate_to_fixpoint`, which this analysis doesn't use.
unreachable!();
}
fn apply_before_statement_effect(
&mut self,
state: &mut Self::Domain,
stmt: &mir::Statement<'tcx>,
loc: Location,
) {
self.borrows.apply_before_statement_effect(&mut state.borrows, stmt, loc);
self.uninits.apply_before_statement_effect(&mut state.uninits, stmt, loc);
self.ever_inits.apply_before_statement_effect(&mut state.ever_inits, stmt, loc);
}
fn apply_statement_effect(
&mut self,
state: &mut Self::Domain,
stmt: &mir::Statement<'tcx>,
loc: Location,
) {
self.borrows.apply_statement_effect(&mut state.borrows, stmt, loc);
self.uninits.apply_statement_effect(&mut state.uninits, stmt, loc);
self.ever_inits.apply_statement_effect(&mut state.ever_inits, stmt, loc);
}
fn apply_before_terminator_effect(
&mut self,
state: &mut Self::Domain,
term: &mir::Terminator<'tcx>,
loc: Location,
) {
self.borrows.apply_before_terminator_effect(&mut state.borrows, term, loc);
self.uninits.apply_before_terminator_effect(&mut state.uninits, term, loc);
self.ever_inits.apply_before_terminator_effect(&mut state.ever_inits, term, loc);
}
fn apply_terminator_effect<'mir>(
&mut self,
state: &mut Self::Domain,
term: &'mir mir::Terminator<'tcx>,
loc: Location,
) -> TerminatorEdges<'mir, 'tcx> {
self.borrows.apply_terminator_effect(&mut state.borrows, term, loc);
self.uninits.apply_terminator_effect(&mut state.uninits, term, loc);
self.ever_inits.apply_terminator_effect(&mut state.ever_inits, term, loc);
// This return value doesn't matter. It's only used by `iterate_to_fixpoint`, which this
// analysis doesn't use.
TerminatorEdges::None
}
fn apply_call_return_effect(
&mut self,
_state: &mut Self::Domain,
_block: BasicBlock,
_return_places: CallReturnPlaces<'_, 'tcx>,
) {
// This is only reachable from `iterate_to_fixpoint`, which this analysis doesn't use.
unreachable!();
}
fn apply_switch_int_edge_effects(
&mut self,
_block: BasicBlock,
_discr: &mir::Operand<'tcx>,
_apply_edge_effects: &mut impl SwitchIntEdgeEffects<Self::Domain>,
) {
// This is only reachable from `iterate_to_fixpoint`, which this analysis doesn't use.
unreachable!();
}
}
impl JoinSemiLattice for BorrowckDomain<'_, '_> {
fn join(&mut self, _other: &Self) -> bool {
// This is only reachable from `iterate_to_fixpoint`, which this analysis doesn't use.
unreachable!();
}
}
impl<'tcx, C> DebugWithContext<C> for BorrowckDomain<'_, 'tcx>
where
C: rustc_mir_dataflow::move_paths::HasMoveData<'tcx>,
{
fn fmt_with(&self, ctxt: &C, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("borrows: ")?;
self.borrows.fmt_with(ctxt, f)?;
f.write_str(" uninits: ")?;
self.uninits.fmt_with(ctxt, f)?;
f.write_str(" ever_inits: ")?;
self.ever_inits.fmt_with(ctxt, f)?;
Ok(())
}
fn fmt_diff_with(&self, old: &Self, ctxt: &C, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self == old {
return Ok(());
}
if self.borrows != old.borrows {
f.write_str("borrows: ")?;
self.borrows.fmt_diff_with(&old.borrows, ctxt, f)?;
f.write_str("\n")?;
}
if self.uninits != old.uninits {
f.write_str("uninits: ")?;
self.uninits.fmt_diff_with(&old.uninits, ctxt, f)?;
f.write_str("\n")?;
}
if self.ever_inits != old.ever_inits {
f.write_str("ever_inits: ")?;
self.ever_inits.fmt_diff_with(&old.ever_inits, ctxt, f)?;
f.write_str("\n")?;
}
Ok(())
}
}
/// The transient state of the dataflow analyses used by the borrow checker.
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct BorrowckDomain<'a, 'tcx> {
pub(crate) borrows: <Borrows<'a, 'tcx> as Analysis<'tcx>>::Domain,
pub(crate) uninits: <MaybeUninitializedPlaces<'a, 'tcx> as Analysis<'tcx>>::Domain,
pub(crate) ever_inits: <EverInitializedPlaces<'a, 'tcx> as Analysis<'tcx>>::Domain,
}
rustc_index::newtype_index! {
#[orderable]
#[debug_format = "bw{}"]
pub struct BorrowIndex {}
}
/// `Borrows` stores the data used in the analyses that track the flow
/// of borrows.
///
/// It uniquely identifies every borrow (`Rvalue::Ref`) by a
/// `BorrowIndex`, and maps each such index to a `BorrowData`
/// describing the borrow. These indexes are used for representing the
/// borrows in compact bitvectors.
pub struct Borrows<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
body: &'a Body<'tcx>,
borrow_set: &'a BorrowSet<'tcx>,
borrows_out_of_scope_at_location: FxIndexMap<Location, Vec<BorrowIndex>>,
}
struct OutOfScopePrecomputer<'a, 'tcx> {
visited: BitSet<mir::BasicBlock>,
visit_stack: Vec<mir::BasicBlock>,
body: &'a Body<'tcx>,
regioncx: &'a RegionInferenceContext<'tcx>,
borrows_out_of_scope_at_location: FxIndexMap<Location, Vec<BorrowIndex>>,
}
impl<'a, 'tcx> OutOfScopePrecomputer<'a, 'tcx> {
fn new(body: &'a Body<'tcx>, regioncx: &'a RegionInferenceContext<'tcx>) -> Self {
OutOfScopePrecomputer {
visited: BitSet::new_empty(body.basic_blocks.len()),
visit_stack: vec![],
body,
regioncx,
borrows_out_of_scope_at_location: FxIndexMap::default(),
}
}
}
impl<'tcx> OutOfScopePrecomputer<'_, 'tcx> {
fn precompute_borrows_out_of_scope(
&mut self,
borrow_index: BorrowIndex,
borrow_region: RegionVid,
first_location: Location,
) {
let first_block = first_location.block;
let first_bb_data = &self.body.basic_blocks[first_block];
// This is the first block, we only want to visit it from the creation of the borrow at
// `first_location`.
let first_lo = first_location.statement_index;
let first_hi = first_bb_data.statements.len();
if let Some(kill_stmt) = self.regioncx.first_non_contained_inclusive(
borrow_region,
first_block,
first_lo,
first_hi,
) {
let kill_location = Location { block: first_block, statement_index: kill_stmt };
// If region does not contain a point at the location, then add to list and skip
// successor locations.
debug!("borrow {:?} gets killed at {:?}", borrow_index, kill_location);
self.borrows_out_of_scope_at_location
.entry(kill_location)
.or_default()
.push(borrow_index);
// The borrow is already dead, there is no need to visit other blocks.
return;
}
// The borrow is not dead. Add successor BBs to the work list, if necessary.
for succ_bb in first_bb_data.terminator().successors() {
if self.visited.insert(succ_bb) {
self.visit_stack.push(succ_bb);
}
}
// We may end up visiting `first_block` again. This is not an issue: we know at this point
// that it does not kill the borrow in the `first_lo..=first_hi` range, so checking the
// `0..first_lo` range and the `0..first_hi` range give the same result.
while let Some(block) = self.visit_stack.pop() {
let bb_data = &self.body[block];
let num_stmts = bb_data.statements.len();
if let Some(kill_stmt) =
self.regioncx.first_non_contained_inclusive(borrow_region, block, 0, num_stmts)
{
let kill_location = Location { block, statement_index: kill_stmt };
// If region does not contain a point at the location, then add to list and skip
// successor locations.
debug!("borrow {:?} gets killed at {:?}", borrow_index, kill_location);
self.borrows_out_of_scope_at_location
.entry(kill_location)
.or_default()
.push(borrow_index);
// We killed the borrow, so we do not visit this block's successors.
continue;
}
// Add successor BBs to the work list, if necessary.
for succ_bb in bb_data.terminator().successors() {
if self.visited.insert(succ_bb) {
self.visit_stack.push(succ_bb);
}
}
}
self.visited.clear();
}
}
// This is `pub` because it's used by unstable external borrowck data users, see `consumers.rs`.
pub fn calculate_borrows_out_of_scope_at_location<'tcx>(
body: &Body<'tcx>,
regioncx: &RegionInferenceContext<'tcx>,
borrow_set: &BorrowSet<'tcx>,
) -> FxIndexMap<Location, Vec<BorrowIndex>> {
let mut prec = OutOfScopePrecomputer::new(body, regioncx);
for (borrow_index, borrow_data) in borrow_set.iter_enumerated() {
let borrow_region = borrow_data.region;
let location = borrow_data.reserve_location;
prec.precompute_borrows_out_of_scope(borrow_index, borrow_region, location);
}
prec.borrows_out_of_scope_at_location
}
struct PoloniusOutOfScopePrecomputer<'a, 'tcx> {
visited: BitSet<mir::BasicBlock>,
visit_stack: Vec<mir::BasicBlock>,
body: &'a Body<'tcx>,
regioncx: &'a RegionInferenceContext<'tcx>,
loans_out_of_scope_at_location: FxIndexMap<Location, Vec<BorrowIndex>>,
}
impl<'a, 'tcx> PoloniusOutOfScopePrecomputer<'a, 'tcx> {
fn new(body: &'a Body<'tcx>, regioncx: &'a RegionInferenceContext<'tcx>) -> Self {
Self {
visited: BitSet::new_empty(body.basic_blocks.len()),
visit_stack: vec![],
body,
regioncx,
loans_out_of_scope_at_location: FxIndexMap::default(),
}
}
}
impl<'tcx> PoloniusOutOfScopePrecomputer<'_, 'tcx> {
/// Loans are in scope while they are live: whether they are contained within any live region.
/// In the location-insensitive analysis, a loan will be contained in a region if the issuing
/// region can reach it in the subset graph. So this is a reachability problem.
fn precompute_loans_out_of_scope(
&mut self,
loan_idx: BorrowIndex,
issuing_region: RegionVid,
loan_issued_at: Location,
) {
let sccs = self.regioncx.constraint_sccs();
let universal_regions = self.regioncx.universal_regions();
// We first handle the cases where the loan doesn't go out of scope, depending on the
// issuing region's successors.
for successor in graph::depth_first_search(&self.regioncx.region_graph(), issuing_region) {
// 1. Via applied member constraints
//
// The issuing region can flow into the choice regions, and they are either:
// - placeholders or free regions themselves,
// - or also transitively outlive a free region.
//
// That is to say, if there are applied member constraints here, the loan escapes the
// function and cannot go out of scope. We could early return here.
//
// For additional insurance via fuzzing and crater, we verify that the constraint's min
// choice indeed escapes the function. In the future, we could e.g. turn this check into
// a debug assert and early return as an optimization.
let scc = sccs.scc(successor);
for constraint in self.regioncx.applied_member_constraints(scc) {
if universal_regions.is_universal_region(constraint.min_choice) {
return;
}
}
// 2. Via regions that are live at all points: placeholders and free regions.
//
// If the issuing region outlives such a region, its loan escapes the function and
// cannot go out of scope. We can early return.
if self.regioncx.is_region_live_at_all_points(successor) {
return;
}
}
let first_block = loan_issued_at.block;
let first_bb_data = &self.body.basic_blocks[first_block];
// The first block we visit is the one where the loan is issued, starting from the statement
// where the loan is issued: at `loan_issued_at`.
let first_lo = loan_issued_at.statement_index;
let first_hi = first_bb_data.statements.len();
if let Some(kill_location) =
self.loan_kill_location(loan_idx, loan_issued_at, first_block, first_lo, first_hi)
{
debug!("loan {:?} gets killed at {:?}", loan_idx, kill_location);
self.loans_out_of_scope_at_location.entry(kill_location).or_default().push(loan_idx);
// The loan dies within the first block, we're done and can early return.
return;
}
// The loan is not dead. Add successor BBs to the work list, if necessary.
for succ_bb in first_bb_data.terminator().successors() {
if self.visited.insert(succ_bb) {
self.visit_stack.push(succ_bb);
}
}
// We may end up visiting `first_block` again. This is not an issue: we know at this point
// that the loan is not killed in the `first_lo..=first_hi` range, so checking the
// `0..first_lo` range and the `0..first_hi` range gives the same result.
while let Some(block) = self.visit_stack.pop() {
let bb_data = &self.body[block];
let num_stmts = bb_data.statements.len();
if let Some(kill_location) =
self.loan_kill_location(loan_idx, loan_issued_at, block, 0, num_stmts)
{
debug!("loan {:?} gets killed at {:?}", loan_idx, kill_location);
self.loans_out_of_scope_at_location
.entry(kill_location)
.or_default()
.push(loan_idx);
// The loan dies within this block, so we don't need to visit its successors.
continue;
}
// Add successor BBs to the work list, if necessary.
for succ_bb in bb_data.terminator().successors() {
if self.visited.insert(succ_bb) {
self.visit_stack.push(succ_bb);
}
}
}
self.visited.clear();
assert!(self.visit_stack.is_empty(), "visit stack should be empty");
}
/// Returns the lowest statement in `start..=end`, where the loan goes out of scope, if any.
/// This is the statement where the issuing region can't reach any of the regions that are live
/// at this point.
fn loan_kill_location(
&self,
loan_idx: BorrowIndex,
loan_issued_at: Location,
block: BasicBlock,
start: usize,
end: usize,
) -> Option<Location> {
for statement_index in start..=end {
let location = Location { block, statement_index };
// Check whether the issuing region can reach local regions that are live at this point:
// - a loan is always live at its issuing location because it can reach the issuing
// region, which is always live at this location.
if location == loan_issued_at {
continue;
}
// - the loan goes out of scope at `location` if it's not contained within any regions
// live at this point.
//
// FIXME: if the issuing region `i` can reach a live region `r` at point `p`, and `r` is
// live at point `q`, then it's guaranteed that `i` would reach `r` at point `q`.
// Reachability is location-insensitive, and we could take advantage of that, by jumping
// to a further point than just the next statement: we can jump to the furthest point
// within the block where `r` is live.
if self.regioncx.is_loan_live_at(loan_idx, location) {
continue;
}
// No live region is reachable from the issuing region: the loan is killed at this
// point.
return Some(location);
}
None
}
}
impl<'a, 'tcx> Borrows<'a, 'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
body: &'a Body<'tcx>,
regioncx: &RegionInferenceContext<'tcx>,
borrow_set: &'a BorrowSet<'tcx>,
) -> Self {
let mut borrows_out_of_scope_at_location =
calculate_borrows_out_of_scope_at_location(body, regioncx, borrow_set);
// The in-tree polonius analysis computes loans going out of scope using the set-of-loans
// model, and makes sure they're identical to the existing computation of the set-of-points
// model.
if tcx.sess.opts.unstable_opts.polonius.is_next_enabled() {
let mut polonius_prec = PoloniusOutOfScopePrecomputer::new(body, regioncx);
for (loan_idx, loan_data) in borrow_set.iter_enumerated() {
let issuing_region = loan_data.region;
let loan_issued_at = loan_data.reserve_location;
polonius_prec.precompute_loans_out_of_scope(
loan_idx,
issuing_region,
loan_issued_at,
);
}
assert_eq!(
borrows_out_of_scope_at_location, polonius_prec.loans_out_of_scope_at_location,
"polonius loan scopes differ from NLL borrow scopes, for body {:?}",
body.span,
);
borrows_out_of_scope_at_location = polonius_prec.loans_out_of_scope_at_location;
}
Borrows { tcx, body, borrow_set, borrows_out_of_scope_at_location }
}
/// Add all borrows to the kill set, if those borrows are out of scope at `location`.
/// That means they went out of a nonlexical scope
fn kill_loans_out_of_scope_at_location(
&self,
trans: &mut <Self as Analysis<'tcx>>::Domain,
location: Location,
) {
// NOTE: The state associated with a given `location`
// reflects the dataflow on entry to the statement.
// Iterate over each of the borrows that we've precomputed
// to have went out of scope at this location and kill them.
//
// We are careful always to call this function *before* we
// set up the gen-bits for the statement or
// terminator. That way, if the effect of the statement or
// terminator *does* introduce a new loan of the same
// region, then setting that gen-bit will override any
// potential kill introduced here.
if let Some(indices) = self.borrows_out_of_scope_at_location.get(&location) {
trans.kill_all(indices.iter().copied());
}
}
/// Kill any borrows that conflict with `place`.
fn kill_borrows_on_place(
&self,
trans: &mut <Self as Analysis<'tcx>>::Domain,
place: Place<'tcx>,
) {
debug!("kill_borrows_on_place: place={:?}", place);
let other_borrows_of_local = self
.borrow_set
.local_map
.get(&place.local)
.into_iter()
.flat_map(|bs| bs.iter())
.copied();
// If the borrowed place is a local with no projections, all other borrows of this
// local must conflict. This is purely an optimization so we don't have to call
// `places_conflict` for every borrow.
if place.projection.is_empty() {
if !self.body.local_decls[place.local].is_ref_to_static() {
trans.kill_all(other_borrows_of_local);
}
return;
}
// By passing `PlaceConflictBias::NoOverlap`, we conservatively assume that any given
// pair of array indices are not equal, so that when `places_conflict` returns true, we
// will be assured that two places being compared definitely denotes the same sets of
// locations.
let definitely_conflicting_borrows = other_borrows_of_local.filter(|&i| {
places_conflict(
self.tcx,
self.body,
self.borrow_set[i].borrowed_place,
place,
PlaceConflictBias::NoOverlap,
)
});
trans.kill_all(definitely_conflicting_borrows);
}
}
/// Forward dataflow computation of the set of borrows that are in scope at a particular location.
/// - we gen the introduced loans
/// - we kill loans on locals going out of (regular) scope
/// - we kill the loans going out of their region's NLL scope: in NLL terms, the frontier where a
/// region stops containing the CFG points reachable from the issuing location.
/// - we also kill loans of conflicting places when overwriting a shared path: e.g. borrows of
/// `a.b.c` when `a` is overwritten.
impl<'tcx> rustc_mir_dataflow::Analysis<'tcx> for Borrows<'_, 'tcx> {
type Domain = BitSet<BorrowIndex>;
const NAME: &'static str = "borrows";
fn bottom_value(&self, _: &mir::Body<'tcx>) -> Self::Domain {
// bottom = nothing is reserved or activated yet;
BitSet::new_empty(self.borrow_set.len())
}
fn initialize_start_block(&self, _: &mir::Body<'tcx>, _: &mut Self::Domain) {
// no borrows of code region_scopes have been taken prior to
// function execution, so this method has no effect.
}
fn apply_before_statement_effect(
&mut self,
trans: &mut Self::Domain,
_statement: &mir::Statement<'tcx>,
location: Location,
) {
self.kill_loans_out_of_scope_at_location(trans, location);
}
fn apply_statement_effect(
&mut self,
trans: &mut Self::Domain,
stmt: &mir::Statement<'tcx>,
location: Location,
) {
match &stmt.kind {
mir::StatementKind::Assign(box (lhs, rhs)) => {
if let mir::Rvalue::Ref(_, _, place) = rhs {
if place.ignore_borrow(
self.tcx,
self.body,
&self.borrow_set.locals_state_at_exit,
) {
return;
}
let index = self.borrow_set.get_index_of(&location).unwrap_or_else(|| {
panic!("could not find BorrowIndex for location {location:?}");
});
trans.gen_(index);
}
// Make sure there are no remaining borrows for variables
// that are assigned over.
self.kill_borrows_on_place(trans, *lhs);
}
mir::StatementKind::StorageDead(local) => {
// Make sure there are no remaining borrows for locals that
// are gone out of scope.
self.kill_borrows_on_place(trans, Place::from(*local));
}
mir::StatementKind::FakeRead(..)
| mir::StatementKind::SetDiscriminant { .. }
| mir::StatementKind::Deinit(..)
| mir::StatementKind::StorageLive(..)
| mir::StatementKind::Retag { .. }
| mir::StatementKind::PlaceMention(..)
| mir::StatementKind::AscribeUserType(..)
| mir::StatementKind::Coverage(..)
| mir::StatementKind::Intrinsic(..)
| mir::StatementKind::ConstEvalCounter
| mir::StatementKind::BackwardIncompatibleDropHint { .. }
| mir::StatementKind::Nop => {}
}
}
fn apply_before_terminator_effect(
&mut self,
trans: &mut Self::Domain,
_terminator: &mir::Terminator<'tcx>,
location: Location,
) {
self.kill_loans_out_of_scope_at_location(trans, location);
}
fn apply_terminator_effect<'mir>(
&mut self,
trans: &mut Self::Domain,
terminator: &'mir mir::Terminator<'tcx>,
_location: Location,
) -> TerminatorEdges<'mir, 'tcx> {
if let mir::TerminatorKind::InlineAsm { operands, .. } = &terminator.kind {
for op in operands {
if let mir::InlineAsmOperand::Out { place: Some(place), .. }
| mir::InlineAsmOperand::InOut { out_place: Some(place), .. } = *op
{
self.kill_borrows_on_place(trans, place);
}
}
}
terminator.edges()
}
}
impl<C> DebugWithContext<C> for BorrowIndex {}