rustc_codegen_ssa/target_features.rs
1use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
2use rustc_data_structures::unord::{UnordMap, UnordSet};
3use rustc_hir::attrs::InstructionSetAttr;
4use rustc_hir::def::DefKind;
5use rustc_hir::def_id::{DefId, LOCAL_CRATE, LocalDefId};
6use rustc_middle::middle::codegen_fn_attrs::{TargetFeature, TargetFeatureKind};
7use rustc_middle::query::Providers;
8use rustc_middle::ty::TyCtxt;
9use rustc_session::Session;
10use rustc_session::lint::builtin::AARCH64_SOFTFLOAT_NEON;
11use rustc_session::parse::feature_err;
12use rustc_span::{Span, Symbol, sym};
13use rustc_target::target_features::{RUSTC_SPECIFIC_FEATURES, Stability};
14use smallvec::SmallVec;
15
16use crate::errors::FeatureNotValid;
17use crate::{errors, target_features};
18
19/// Compute the enabled target features from the `#[target_feature]` function attribute.
20/// Enabled target features are added to `target_features`.
21pub(crate) fn from_target_feature_attr(
22 tcx: TyCtxt<'_>,
23 did: LocalDefId,
24 features: &[(Symbol, Span)],
25 was_forced: bool,
26 rust_target_features: &UnordMap<String, target_features::Stability>,
27 target_features: &mut Vec<TargetFeature>,
28) {
29 let rust_features = tcx.features();
30 let abi_feature_constraints = tcx.sess.target.abi_required_features();
31 for &(feature, feature_span) in features {
32 let feature_str = feature.as_str();
33 let Some(stability) = rust_target_features.get(feature_str) else {
34 let plus_hint = feature_str
35 .strip_prefix('+')
36 .is_some_and(|stripped| rust_target_features.contains_key(stripped));
37 tcx.dcx().emit_err(FeatureNotValid {
38 feature: feature_str,
39 span: feature_span,
40 plus_hint,
41 });
42 continue;
43 };
44
45 // Only allow target features whose feature gates have been enabled
46 // and which are permitted to be toggled.
47 if let Err(reason) = stability.toggle_allowed() {
48 tcx.dcx().emit_err(errors::ForbiddenTargetFeatureAttr {
49 span: feature_span,
50 feature: feature_str,
51 reason,
52 });
53 } else if let Some(nightly_feature) = stability.requires_nightly()
54 && !rust_features.enabled(nightly_feature)
55 {
56 feature_err(
57 &tcx.sess,
58 nightly_feature,
59 feature_span,
60 format!("the target feature `{feature}` is currently unstable"),
61 )
62 .emit();
63 } else {
64 // Add this and the implied features.
65 for &name in tcx.implied_target_features(feature) {
66 // But ensure the ABI does not forbid enabling this.
67 // Here we do assume that the backend doesn't add even more implied features
68 // we don't know about, at least no features that would have ABI effects!
69 // We skip this logic in rustdoc, where we want to allow all target features of
70 // all targets, so we can't check their ABI compatibility and anyway we are not
71 // generating code so "it's fine".
72 if !tcx.sess.opts.actually_rustdoc {
73 if abi_feature_constraints.incompatible.contains(&name.as_str()) {
74 // For "neon" specifically, we emit an FCW instead of a hard error.
75 // See <https://github.com/rust-lang/rust/issues/134375>.
76 if tcx.sess.target.arch == "aarch64" && name.as_str() == "neon" {
77 tcx.emit_node_span_lint(
78 AARCH64_SOFTFLOAT_NEON,
79 tcx.local_def_id_to_hir_id(did),
80 feature_span,
81 errors::Aarch64SoftfloatNeon,
82 );
83 } else {
84 tcx.dcx().emit_err(errors::ForbiddenTargetFeatureAttr {
85 span: feature_span,
86 feature: name.as_str(),
87 reason: "this feature is incompatible with the target ABI",
88 });
89 }
90 }
91 }
92 let kind = if name != feature {
93 TargetFeatureKind::Implied
94 } else if was_forced {
95 TargetFeatureKind::Forced
96 } else {
97 TargetFeatureKind::Enabled
98 };
99 target_features.push(TargetFeature { name, kind })
100 }
101 }
102 }
103}
104
105/// Computes the set of target features used in a function for the purposes of
106/// inline assembly.
107fn asm_target_features(tcx: TyCtxt<'_>, did: DefId) -> &FxIndexSet<Symbol> {
108 let mut target_features = tcx.sess.unstable_target_features.clone();
109 if tcx.def_kind(did).has_codegen_attrs() {
110 let attrs = tcx.codegen_fn_attrs(did);
111 target_features.extend(attrs.target_features.iter().map(|feature| feature.name));
112 match attrs.instruction_set {
113 None => {}
114 Some(InstructionSetAttr::ArmA32) => {
115 // FIXME(#120456) - is `swap_remove` correct?
116 target_features.swap_remove(&sym::thumb_mode);
117 }
118 Some(InstructionSetAttr::ArmT32) => {
119 target_features.insert(sym::thumb_mode);
120 }
121 }
122 }
123
124 tcx.arena.alloc(target_features)
125}
126
127/// Checks the function annotated with `#[target_feature]` is not a safe
128/// trait method implementation, reporting an error if it is.
129pub(crate) fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
130 if let DefKind::AssocFn = tcx.def_kind(id) {
131 let parent_id = tcx.local_parent(id);
132 if let DefKind::Trait | DefKind::Impl { of_trait: true } = tcx.def_kind(parent_id) {
133 tcx.dcx().emit_err(errors::TargetFeatureSafeTrait {
134 span: attr_span,
135 def: tcx.def_span(id),
136 });
137 }
138 }
139}
140
141/// Parse the value of `-Ctarget-feature`, also expanding implied features,
142/// and call the closure for each (expanded) Rust feature. If the list contains
143/// a syntactically invalid item (not starting with `+`/`-`), the error callback is invoked.
144fn parse_rust_feature_flag<'a>(
145 sess: &'a Session,
146 err_callback: impl Fn(&'a str),
147 mut callback: impl FnMut(
148 /* base_feature */ &'a str,
149 /* with_implied */ FxHashSet<&'a str>,
150 /* enable */ bool,
151 ),
152) {
153 // A cache for the backwards implication map.
154 let mut inverse_implied_features: Option<FxHashMap<&str, FxHashSet<&str>>> = None;
155
156 for feature in sess.opts.cg.target_feature.split(',') {
157 if let Some(base_feature) = feature.strip_prefix('+') {
158 // Skip features that are not target features, but rustc features.
159 if RUSTC_SPECIFIC_FEATURES.contains(&base_feature) {
160 continue;
161 }
162
163 callback(base_feature, sess.target.implied_target_features(base_feature), true)
164 } else if let Some(base_feature) = feature.strip_prefix('-') {
165 // Skip features that are not target features, but rustc features.
166 if RUSTC_SPECIFIC_FEATURES.contains(&base_feature) {
167 continue;
168 }
169
170 // If `f1` implies `f2`, then `!f2` implies `!f1` -- this is standard logical
171 // contraposition. So we have to find all the reverse implications of `base_feature` and
172 // disable them, too.
173
174 let inverse_implied_features = inverse_implied_features.get_or_insert_with(|| {
175 let mut set: FxHashMap<&str, FxHashSet<&str>> = FxHashMap::default();
176 for (f, _, is) in sess.target.rust_target_features() {
177 for i in is.iter() {
178 set.entry(i).or_default().insert(f);
179 }
180 }
181 set
182 });
183
184 // Inverse implied target features have their own inverse implied target features, so we
185 // traverse the map until there are no more features to add.
186 let mut features = FxHashSet::default();
187 let mut new_features = vec![base_feature];
188 while let Some(new_feature) = new_features.pop() {
189 if features.insert(new_feature) {
190 if let Some(implied_features) = inverse_implied_features.get(&new_feature) {
191 #[allow(rustc::potential_query_instability)]
192 new_features.extend(implied_features)
193 }
194 }
195 }
196
197 callback(base_feature, features, false)
198 } else if !feature.is_empty() {
199 err_callback(feature)
200 }
201 }
202}
203
204/// Utility function for a codegen backend to compute `cfg(target_feature)`, or more specifically,
205/// to populate `sess.unstable_target_features` and `sess.target_features` (these are the first and
206/// 2nd component of the return value, respectively).
207///
208/// `target_base_has_feature` should check whether the given feature (a Rust feature name!) is
209/// enabled in the "base" target machine, i.e., without applying `-Ctarget-feature`. Note that LLVM
210/// may consider features to be implied that we do not and vice-versa. We want `cfg` to be entirely
211/// consistent with Rust feature implications, and thus only consult LLVM to expand the target CPU
212/// to target features.
213///
214/// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled elsewhere.
215pub fn cfg_target_feature(
216 sess: &Session,
217 mut target_base_has_feature: impl FnMut(&str) -> bool,
218) -> (Vec<Symbol>, Vec<Symbol>) {
219 // Compute which of the known target features are enabled in the 'base' target machine. We only
220 // consider "supported" features; "forbidden" features are not reflected in `cfg` as of now.
221 let mut features: UnordSet<Symbol> = sess
222 .target
223 .rust_target_features()
224 .iter()
225 .filter(|(feature, _, _)| target_base_has_feature(feature))
226 .flat_map(|(base_feature, _, _)| {
227 // Expand the direct base feature into all transitively-implied features. Note that we
228 // cannot simply use the `implied` field of the tuple since that only contains
229 // directly-implied features.
230 //
231 // Iteration order is irrelevant because we're collecting into an `UnordSet`.
232 #[allow(rustc::potential_query_instability)]
233 sess.target.implied_target_features(base_feature).into_iter().map(|f| Symbol::intern(f))
234 })
235 .collect();
236
237 // Add enabled and remove disabled features.
238 parse_rust_feature_flag(
239 sess,
240 /* err_callback */
241 |_| {
242 // Errors are already emitted in `flag_to_backend_features`; avoid duplicates.
243 },
244 |_base_feature, new_features, enabled| {
245 // Iteration order is irrelevant since this only influences an `UnordSet`.
246 #[allow(rustc::potential_query_instability)]
247 if enabled {
248 features.extend(new_features.into_iter().map(|f| Symbol::intern(f)));
249 } else {
250 // Remove `new_features` from `features`.
251 for new in new_features {
252 features.remove(&Symbol::intern(new));
253 }
254 }
255 },
256 );
257
258 // Filter enabled features based on feature gates.
259 let f = |allow_unstable| {
260 sess.target
261 .rust_target_features()
262 .iter()
263 .filter_map(|(feature, gate, _)| {
264 // The `allow_unstable` set is used by rustc internally to determine which target
265 // features are truly available, so we want to return even perma-unstable
266 // "forbidden" features.
267 if allow_unstable
268 || (gate.in_cfg()
269 && (sess.is_nightly_build() || gate.requires_nightly().is_none()))
270 {
271 Some(Symbol::intern(feature))
272 } else {
273 None
274 }
275 })
276 .filter(|feature| features.contains(&feature))
277 .collect()
278 };
279
280 (f(true), f(false))
281}
282
283/// Given a map from target_features to whether they are enabled or disabled, ensure only valid
284/// combinations are allowed.
285pub fn check_tied_features(
286 sess: &Session,
287 features: &FxHashMap<&str, bool>,
288) -> Option<&'static [&'static str]> {
289 if !features.is_empty() {
290 for tied in sess.target.tied_target_features() {
291 // Tied features must be set to the same value, or not set at all
292 let mut tied_iter = tied.iter();
293 let enabled = features.get(tied_iter.next().unwrap());
294 if tied_iter.any(|f| enabled != features.get(f)) {
295 return Some(tied);
296 }
297 }
298 }
299 None
300}
301
302/// Translates the `-Ctarget-feature` flag into a backend target feature list.
303///
304/// `to_backend_features` converts a Rust feature name into a list of backend feature names; this is
305/// used for diagnostic purposes only.
306///
307/// `extend_backend_features` extends the set of backend features (assumed to be in mutable state
308/// accessible by that closure) to enable/disable the given Rust feature name.
309pub fn flag_to_backend_features<'a, const N: usize>(
310 sess: &'a Session,
311 diagnostics: bool,
312 to_backend_features: impl Fn(&'a str) -> SmallVec<[&'a str; N]>,
313 mut extend_backend_features: impl FnMut(&'a str, /* enable */ bool),
314) {
315 let known_features = sess.target.rust_target_features();
316
317 // Compute implied features
318 let mut rust_features = vec![];
319 parse_rust_feature_flag(
320 sess,
321 /* err_callback */
322 |feature| {
323 if diagnostics {
324 sess.dcx().emit_warn(errors::UnknownCTargetFeaturePrefix { feature });
325 }
326 },
327 |base_feature, new_features, enable| {
328 rust_features.extend(
329 UnordSet::from(new_features).to_sorted_stable_ord().iter().map(|&&s| (enable, s)),
330 );
331 // Check feature validity.
332 if diagnostics {
333 let feature_state = known_features.iter().find(|&&(v, _, _)| v == base_feature);
334 match feature_state {
335 None => {
336 // This is definitely not a valid Rust feature name. Maybe it is a backend
337 // feature name? If so, give a better error message.
338 let rust_feature =
339 known_features.iter().find_map(|&(rust_feature, _, _)| {
340 let backend_features = to_backend_features(rust_feature);
341 if backend_features.contains(&base_feature)
342 && !backend_features.contains(&rust_feature)
343 {
344 Some(rust_feature)
345 } else {
346 None
347 }
348 });
349 let unknown_feature = if let Some(rust_feature) = rust_feature {
350 errors::UnknownCTargetFeature {
351 feature: base_feature,
352 rust_feature: errors::PossibleFeature::Some { rust_feature },
353 }
354 } else {
355 errors::UnknownCTargetFeature {
356 feature: base_feature,
357 rust_feature: errors::PossibleFeature::None,
358 }
359 };
360 sess.dcx().emit_warn(unknown_feature);
361 }
362 Some((_, stability, _)) => {
363 if let Err(reason) = stability.toggle_allowed() {
364 sess.dcx().emit_warn(errors::ForbiddenCTargetFeature {
365 feature: base_feature,
366 enabled: if enable { "enabled" } else { "disabled" },
367 reason,
368 });
369 } else if stability.requires_nightly().is_some() {
370 // An unstable feature. Warn about using it. It makes little sense
371 // to hard-error here since we just warn about fully unknown
372 // features above.
373 sess.dcx().emit_warn(errors::UnstableCTargetFeature {
374 feature: base_feature,
375 });
376 }
377 }
378 }
379 }
380 },
381 );
382
383 if diagnostics {
384 // FIXME(nagisa): figure out how to not allocate a full hashmap here.
385 if let Some(f) = check_tied_features(
386 sess,
387 &FxHashMap::from_iter(rust_features.iter().map(|&(enable, feature)| (feature, enable))),
388 ) {
389 sess.dcx().emit_err(errors::TargetFeatureDisableOrEnable {
390 features: f,
391 span: None,
392 missing_features: None,
393 });
394 }
395 }
396
397 // Add this to the backend features.
398 for (enable, feature) in rust_features {
399 extend_backend_features(feature, enable);
400 }
401}
402
403/// Computes the backend target features to be added to account for retpoline flags.
404/// Used by both LLVM and GCC since their target features are, conveniently, the same.
405pub fn retpoline_features_by_flags(sess: &Session, features: &mut Vec<String>) {
406 // -Zretpoline without -Zretpoline-external-thunk enables
407 // retpoline-indirect-branches and retpoline-indirect-calls target features
408 let unstable_opts = &sess.opts.unstable_opts;
409 if unstable_opts.retpoline && !unstable_opts.retpoline_external_thunk {
410 features.push("+retpoline-indirect-branches".into());
411 features.push("+retpoline-indirect-calls".into());
412 }
413 // -Zretpoline-external-thunk (maybe, with -Zretpoline too) enables
414 // retpoline-external-thunk, retpoline-indirect-branches and
415 // retpoline-indirect-calls target features
416 if unstable_opts.retpoline_external_thunk {
417 features.push("+retpoline-external-thunk".into());
418 features.push("+retpoline-indirect-branches".into());
419 features.push("+retpoline-indirect-calls".into());
420 }
421}
422
423pub(crate) fn provide(providers: &mut Providers) {
424 *providers = Providers {
425 rust_target_features: |tcx, cnum| {
426 assert_eq!(cnum, LOCAL_CRATE);
427 if tcx.sess.opts.actually_rustdoc {
428 // HACK: rustdoc would like to pretend that we have all the target features, so we
429 // have to merge all the lists into one. To ensure an unstable target never prevents
430 // a stable one from working, we merge the stability info of all instances of the
431 // same target feature name, with the "most stable" taking precedence. And then we
432 // hope that this doesn't cause issues anywhere else in the compiler...
433 let mut result: UnordMap<String, Stability> = Default::default();
434 for (name, stability) in rustc_target::target_features::all_rust_features() {
435 use std::collections::hash_map::Entry;
436 match result.entry(name.to_owned()) {
437 Entry::Vacant(vacant_entry) => {
438 vacant_entry.insert(stability);
439 }
440 Entry::Occupied(mut occupied_entry) => {
441 // Merge the two stabilities, "more stable" taking precedence.
442 match (occupied_entry.get(), stability) {
443 (Stability::Stable, _)
444 | (
445 Stability::Unstable { .. },
446 Stability::Unstable { .. } | Stability::Forbidden { .. },
447 )
448 | (Stability::Forbidden { .. }, Stability::Forbidden { .. }) => {
449 // The stability in the entry is at least as good as the new
450 // one, just keep it.
451 }
452 _ => {
453 // Overwrite stability.
454 occupied_entry.insert(stability);
455 }
456 }
457 }
458 }
459 }
460 result
461 } else {
462 tcx.sess
463 .target
464 .rust_target_features()
465 .iter()
466 .map(|(a, b, _)| (a.to_string(), *b))
467 .collect()
468 }
469 },
470 implied_target_features: |tcx, feature: Symbol| {
471 let feature = feature.as_str();
472 UnordSet::from(tcx.sess.target.implied_target_features(feature))
473 .into_sorted_stable_ord()
474 .into_iter()
475 .map(|s| Symbol::intern(s))
476 .collect()
477 },
478 asm_target_features,
479 ..*providers
480 }
481}