rustc_borrowck/diagnostics/
region_name.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
#![allow(rustc::diagnostic_outside_of_impl)]
#![allow(rustc::untranslatable_diagnostic)]

use std::fmt::{self, Display};
use std::iter;

use rustc_data_structures::fx::IndexEntry;
use rustc_errors::Diag;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_middle::ty::print::RegionHighlightMode;
use rustc_middle::ty::{self, GenericArgKind, GenericArgsRef, RegionVid, Ty};
use rustc_middle::{bug, span_bug};
use rustc_span::{DUMMY_SP, Span, Symbol, kw, sym};
use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
use tracing::{debug, instrument};

use crate::MirBorrowckCtxt;
use crate::universal_regions::DefiningTy;

/// A name for a particular region used in emitting diagnostics. This name could be a generated
/// name like `'1`, a name used by the user like `'a`, or a name like `'static`.
#[derive(Debug, Clone, Copy)]
pub(crate) struct RegionName {
    /// The name of the region (interned).
    pub(crate) name: Symbol,
    /// Where the region comes from.
    pub(crate) source: RegionNameSource,
}

/// Denotes the source of a region that is named by a `RegionName`. For example, a free region that
/// was named by the user would get `NamedLateParamRegion` and `'static` lifetime would get
/// `Static`. This helps to print the right kinds of diagnostics.
#[derive(Debug, Clone, Copy)]
pub(crate) enum RegionNameSource {
    /// A bound (not free) region that was instantiated at the def site (not an HRTB).
    NamedEarlyParamRegion(Span),
    /// A free region that the user has a name (`'a`) for.
    NamedLateParamRegion(Span),
    /// The `'static` region.
    Static,
    /// The free region corresponding to the environment of a closure.
    SynthesizedFreeEnvRegion(Span, &'static str),
    /// The region corresponding to an argument.
    AnonRegionFromArgument(RegionNameHighlight),
    /// The region corresponding to a closure upvar.
    AnonRegionFromUpvar(Span, Symbol),
    /// The region corresponding to the return type of a closure.
    AnonRegionFromOutput(RegionNameHighlight, &'static str),
    /// The region from a type yielded by a coroutine.
    AnonRegionFromYieldTy(Span, Symbol),
    /// An anonymous region from an async fn.
    AnonRegionFromAsyncFn(Span),
    /// An anonymous region from an impl self type or trait
    AnonRegionFromImplSignature(Span, &'static str),
}

/// Describes what to highlight to explain to the user that we're giving an anonymous region a
/// synthesized name, and how to highlight it.
#[derive(Debug, Clone, Copy)]
pub(crate) enum RegionNameHighlight {
    /// The anonymous region corresponds to a reference that was found by traversing the type in the HIR.
    MatchedHirTy(Span),
    /// The anonymous region corresponds to a `'_` in the generics list of a struct/enum/union.
    MatchedAdtAndSegment(Span),
    /// The anonymous region corresponds to a region where the type annotation is completely missing
    /// from the code, e.g. in a closure arguments `|x| { ... }`, where `x` is a reference.
    CannotMatchHirTy(Span, Symbol),
    /// The anonymous region corresponds to a region where the type annotation is completely missing
    /// from the code, and *even if* we print out the full name of the type, the region name won't
    /// be included. This currently occurs for opaque types like `impl Future`.
    Occluded(Span, Symbol),
}

impl RegionName {
    pub(crate) fn was_named(&self) -> bool {
        match self.source {
            RegionNameSource::NamedEarlyParamRegion(..)
            | RegionNameSource::NamedLateParamRegion(..)
            | RegionNameSource::Static => true,
            RegionNameSource::SynthesizedFreeEnvRegion(..)
            | RegionNameSource::AnonRegionFromArgument(..)
            | RegionNameSource::AnonRegionFromUpvar(..)
            | RegionNameSource::AnonRegionFromOutput(..)
            | RegionNameSource::AnonRegionFromYieldTy(..)
            | RegionNameSource::AnonRegionFromAsyncFn(..)
            | RegionNameSource::AnonRegionFromImplSignature(..) => false,
        }
    }

    pub(crate) fn span(&self) -> Option<Span> {
        match self.source {
            RegionNameSource::Static => None,
            RegionNameSource::NamedEarlyParamRegion(span)
            | RegionNameSource::NamedLateParamRegion(span)
            | RegionNameSource::SynthesizedFreeEnvRegion(span, _)
            | RegionNameSource::AnonRegionFromUpvar(span, _)
            | RegionNameSource::AnonRegionFromYieldTy(span, _)
            | RegionNameSource::AnonRegionFromAsyncFn(span)
            | RegionNameSource::AnonRegionFromImplSignature(span, _) => Some(span),
            RegionNameSource::AnonRegionFromArgument(ref highlight)
            | RegionNameSource::AnonRegionFromOutput(ref highlight, _) => match *highlight {
                RegionNameHighlight::MatchedHirTy(span)
                | RegionNameHighlight::MatchedAdtAndSegment(span)
                | RegionNameHighlight::CannotMatchHirTy(span, _)
                | RegionNameHighlight::Occluded(span, _) => Some(span),
            },
        }
    }

    pub(crate) fn highlight_region_name(&self, diag: &mut Diag<'_>) {
        match &self.source {
            RegionNameSource::NamedLateParamRegion(span)
            | RegionNameSource::NamedEarlyParamRegion(span) => {
                diag.span_label(*span, format!("lifetime `{self}` defined here"));
            }
            RegionNameSource::SynthesizedFreeEnvRegion(span, note) => {
                diag.span_label(*span, format!("lifetime `{self}` represents this closure's body"));
                diag.note(*note);
            }
            RegionNameSource::AnonRegionFromArgument(RegionNameHighlight::CannotMatchHirTy(
                span,
                type_name,
            )) => {
                diag.span_label(*span, format!("has type `{type_name}`"));
            }
            RegionNameSource::AnonRegionFromArgument(RegionNameHighlight::MatchedHirTy(span))
            | RegionNameSource::AnonRegionFromOutput(RegionNameHighlight::MatchedHirTy(span), _)
            | RegionNameSource::AnonRegionFromAsyncFn(span) => {
                diag.span_label(
                    *span,
                    format!("let's call the lifetime of this reference `{self}`"),
                );
            }
            RegionNameSource::AnonRegionFromArgument(
                RegionNameHighlight::MatchedAdtAndSegment(span),
            )
            | RegionNameSource::AnonRegionFromOutput(
                RegionNameHighlight::MatchedAdtAndSegment(span),
                _,
            ) => {
                diag.span_label(*span, format!("let's call this `{self}`"));
            }
            RegionNameSource::AnonRegionFromArgument(RegionNameHighlight::Occluded(
                span,
                type_name,
            )) => {
                diag.span_label(
                    *span,
                    format!("lifetime `{self}` appears in the type {type_name}"),
                );
            }
            RegionNameSource::AnonRegionFromOutput(
                RegionNameHighlight::Occluded(span, type_name),
                mir_description,
            ) => {
                diag.span_label(
                    *span,
                    format!(
                        "return type{mir_description} `{type_name}` contains a lifetime `{self}`"
                    ),
                );
            }
            RegionNameSource::AnonRegionFromUpvar(span, upvar_name) => {
                diag.span_label(
                    *span,
                    format!("lifetime `{self}` appears in the type of `{upvar_name}`"),
                );
            }
            RegionNameSource::AnonRegionFromOutput(
                RegionNameHighlight::CannotMatchHirTy(span, type_name),
                mir_description,
            ) => {
                diag.span_label(*span, format!("return type{mir_description} is {type_name}"));
            }
            RegionNameSource::AnonRegionFromYieldTy(span, type_name) => {
                diag.span_label(*span, format!("yield type is {type_name}"));
            }
            RegionNameSource::AnonRegionFromImplSignature(span, location) => {
                diag.span_label(
                    *span,
                    format!("lifetime `{self}` appears in the `impl`'s {location}"),
                );
            }
            RegionNameSource::Static => {}
        }
    }
}

impl Display for RegionName {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.name)
    }
}

impl rustc_errors::IntoDiagArg for RegionName {
    fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
        self.to_string().into_diag_arg()
    }
}

impl<'tcx> MirBorrowckCtxt<'_, '_, 'tcx> {
    pub(crate) fn mir_def_id(&self) -> hir::def_id::LocalDefId {
        self.body.source.def_id().expect_local()
    }

    pub(crate) fn mir_hir_id(&self) -> hir::HirId {
        self.infcx.tcx.local_def_id_to_hir_id(self.mir_def_id())
    }

    /// Generate a synthetic region named `'N`, where `N` is the next value of the counter. Then,
    /// increment the counter.
    ///
    /// This is _not_ idempotent. Call `give_region_a_name` when possible.
    pub(crate) fn synthesize_region_name(&self) -> Symbol {
        let c = self.next_region_name.replace_with(|counter| *counter + 1);
        Symbol::intern(&format!("'{c:?}"))
    }

    /// Maps from an internal MIR region vid to something that we can
    /// report to the user. In some cases, the region vids will map
    /// directly to lifetimes that the user has a name for (e.g.,
    /// `'static`). But frequently they will not, in which case we
    /// have to find some way to identify the lifetime to the user. To
    /// that end, this function takes a "diagnostic" so that it can
    /// create auxiliary notes as needed.
    ///
    /// The names are memoized, so this is both cheap to recompute and idempotent.
    ///
    /// Example (function arguments):
    ///
    /// Suppose we are trying to give a name to the lifetime of the
    /// reference `x`:
    ///
    /// ```ignore (pseudo-rust)
    /// fn foo(x: &u32) { .. }
    /// ```
    ///
    /// This function would create a label like this:
    ///
    /// ```text
    ///  | fn foo(x: &u32) { .. }
    ///           ------- fully elaborated type of `x` is `&'1 u32`
    /// ```
    ///
    /// and then return the name `'1` for us to use.
    pub(crate) fn give_region_a_name(&self, fr: RegionVid) -> Option<RegionName> {
        debug!(
            "give_region_a_name(fr={:?}, counter={:?})",
            fr,
            self.next_region_name.try_borrow().unwrap()
        );

        assert!(self.regioncx.universal_regions().is_universal_region(fr));

        match self.region_names.borrow_mut().entry(fr) {
            IndexEntry::Occupied(precomputed_name) => Some(*precomputed_name.get()),
            IndexEntry::Vacant(slot) => {
                let new_name = self
                    .give_name_from_error_region(fr)
                    .or_else(|| self.give_name_if_anonymous_region_appears_in_arguments(fr))
                    .or_else(|| self.give_name_if_anonymous_region_appears_in_upvars(fr))
                    .or_else(|| self.give_name_if_anonymous_region_appears_in_output(fr))
                    .or_else(|| self.give_name_if_anonymous_region_appears_in_yield_ty(fr))
                    .or_else(|| self.give_name_if_anonymous_region_appears_in_impl_signature(fr))
                    .or_else(|| {
                        self.give_name_if_anonymous_region_appears_in_arg_position_impl_trait(fr)
                    });

                if let Some(new_name) = new_name {
                    slot.insert(new_name);
                }
                debug!("give_region_a_name: gave name {:?}", new_name);

                new_name
            }
        }
    }

    /// Checks for the case where `fr` maps to something that the
    /// *user* has a name for. In that case, we'll be able to map
    /// `fr` to a `Region<'tcx>`, and that region will be one of
    /// named variants.
    #[instrument(level = "trace", skip(self))]
    fn give_name_from_error_region(&self, fr: RegionVid) -> Option<RegionName> {
        let error_region = self.to_error_region(fr)?;

        let tcx = self.infcx.tcx;

        debug!("give_region_a_name: error_region = {:?}", error_region);
        match *error_region {
            ty::ReEarlyParam(ebr) => ebr.has_name().then(|| {
                let def_id = tcx.generics_of(self.mir_def_id()).region_param(ebr, tcx).def_id;
                let span = tcx.hir().span_if_local(def_id).unwrap_or(DUMMY_SP);
                RegionName { name: ebr.name, source: RegionNameSource::NamedEarlyParamRegion(span) }
            }),

            ty::ReStatic => {
                Some(RegionName { name: kw::StaticLifetime, source: RegionNameSource::Static })
            }

            ty::ReLateParam(late_param) => match late_param.kind {
                ty::LateParamRegionKind::Named(region_def_id, name) => {
                    // Get the span to point to, even if we don't use the name.
                    let span = tcx.hir().span_if_local(region_def_id).unwrap_or(DUMMY_SP);
                    debug!(
                        "bound region named: {:?}, is_named: {:?}",
                        name,
                        late_param.kind.is_named()
                    );

                    if late_param.kind.is_named() {
                        // A named region that is actually named.
                        Some(RegionName {
                            name,
                            source: RegionNameSource::NamedLateParamRegion(span),
                        })
                    } else if tcx.asyncness(self.mir_hir_id().owner).is_async() {
                        // If we spuriously thought that the region is named, we should let the
                        // system generate a true name for error messages. Currently this can
                        // happen if we have an elided name in an async fn for example: the
                        // compiler will generate a region named `'_`, but reporting such a name is
                        // not actually useful, so we synthesize a name for it instead.
                        let name = self.synthesize_region_name();
                        Some(RegionName {
                            name,
                            source: RegionNameSource::AnonRegionFromAsyncFn(span),
                        })
                    } else {
                        None
                    }
                }

                ty::LateParamRegionKind::ClosureEnv => {
                    let def_ty = self.regioncx.universal_regions().defining_ty;

                    let closure_kind = match def_ty {
                        DefiningTy::Closure(_, args) => args.as_closure().kind(),
                        DefiningTy::CoroutineClosure(_, args) => args.as_coroutine_closure().kind(),
                        _ => {
                            // Can't have BrEnv in functions, constants or coroutines.
                            bug!("BrEnv outside of closure.");
                        }
                    };
                    let hir::ExprKind::Closure(&hir::Closure { fn_decl_span, .. }) =
                        tcx.hir().expect_expr(self.mir_hir_id()).kind
                    else {
                        bug!("Closure is not defined by a closure expr");
                    };
                    let region_name = self.synthesize_region_name();
                    let note = match closure_kind {
                        ty::ClosureKind::Fn => {
                            "closure implements `Fn`, so references to captured variables \
                             can't escape the closure"
                        }
                        ty::ClosureKind::FnMut => {
                            "closure implements `FnMut`, so references to captured variables \
                             can't escape the closure"
                        }
                        ty::ClosureKind::FnOnce => {
                            bug!("BrEnv in a `FnOnce` closure");
                        }
                    };

                    Some(RegionName {
                        name: region_name,
                        source: RegionNameSource::SynthesizedFreeEnvRegion(fn_decl_span, note),
                    })
                }

                ty::LateParamRegionKind::Anon(_) => None,
            },

            ty::ReBound(..)
            | ty::ReVar(..)
            | ty::RePlaceholder(..)
            | ty::ReErased
            | ty::ReError(_) => None,
        }
    }

    /// Finds an argument that contains `fr` and label it with a fully
    /// elaborated type, returning something like `'1`. Result looks
    /// like:
    ///
    /// ```text
    ///  | fn foo(x: &u32) { .. }
    ///           ------- fully elaborated type of `x` is `&'1 u32`
    /// ```
    #[instrument(level = "trace", skip(self))]
    fn give_name_if_anonymous_region_appears_in_arguments(
        &self,
        fr: RegionVid,
    ) -> Option<RegionName> {
        let implicit_inputs = self.regioncx.universal_regions().defining_ty.implicit_inputs();
        let argument_index = self.regioncx.get_argument_index_for_region(self.infcx.tcx, fr)?;

        let arg_ty = self.regioncx.universal_regions().unnormalized_input_tys
            [implicit_inputs + argument_index];
        let (_, span) = self.regioncx.get_argument_name_and_span_for_region(
            self.body,
            &self.local_names,
            argument_index,
        );

        let highlight = self
            .get_argument_hir_ty_for_highlighting(argument_index)
            .and_then(|arg_hir_ty| self.highlight_if_we_can_match_hir_ty(fr, arg_ty, arg_hir_ty))
            .unwrap_or_else(|| {
                // `highlight_if_we_cannot_match_hir_ty` needs to know the number we will give to
                // the anonymous region. If it succeeds, the `synthesize_region_name` call below
                // will increment the counter, "reserving" the number we just used.
                let counter = *self.next_region_name.try_borrow().unwrap();
                self.highlight_if_we_cannot_match_hir_ty(fr, arg_ty, span, counter)
            });

        Some(RegionName {
            name: self.synthesize_region_name(),
            source: RegionNameSource::AnonRegionFromArgument(highlight),
        })
    }

    fn get_argument_hir_ty_for_highlighting(
        &self,
        argument_index: usize,
    ) -> Option<&hir::Ty<'tcx>> {
        let fn_decl = self.infcx.tcx.hir().fn_decl_by_hir_id(self.mir_hir_id())?;
        let argument_hir_ty: &hir::Ty<'_> = fn_decl.inputs.get(argument_index)?;
        match argument_hir_ty.kind {
            // This indicates a variable with no type annotation, like
            // `|x|`... in that case, we can't highlight the type but
            // must highlight the variable.
            // NOTE(eddyb) this is handled in/by the sole caller
            // (`give_name_if_anonymous_region_appears_in_arguments`).
            hir::TyKind::Infer => None,

            _ => Some(argument_hir_ty),
        }
    }

    /// Attempts to highlight the specific part of a type in an argument
    /// that has no type annotation.
    /// For example, we might produce an annotation like this:
    ///
    /// ```text
    ///  |     foo(|a, b| b)
    ///  |          -  -
    ///  |          |  |
    ///  |          |  has type `&'1 u32`
    ///  |          has type `&'2 u32`
    /// ```
    fn highlight_if_we_cannot_match_hir_ty(
        &self,
        needle_fr: RegionVid,
        ty: Ty<'tcx>,
        span: Span,
        counter: usize,
    ) -> RegionNameHighlight {
        let mut highlight = RegionHighlightMode::default();
        highlight.highlighting_region_vid(self.infcx.tcx, needle_fr, counter);
        let type_name =
            self.infcx.err_ctxt().extract_inference_diagnostics_data(ty.into(), highlight).name;

        debug!(
            "highlight_if_we_cannot_match_hir_ty: type_name={:?} needle_fr={:?}",
            type_name, needle_fr
        );
        if type_name.contains(&format!("'{counter}")) {
            // Only add a label if we can confirm that a region was labelled.
            RegionNameHighlight::CannotMatchHirTy(span, Symbol::intern(&type_name))
        } else {
            RegionNameHighlight::Occluded(span, Symbol::intern(&type_name))
        }
    }

    /// Attempts to highlight the specific part of a type annotation
    /// that contains the anonymous reference we want to give a name
    /// to. For example, we might produce an annotation like this:
    ///
    /// ```text
    ///  | fn a<T>(items: &[T]) -> Box<dyn Iterator<Item = &T>> {
    ///  |                - let's call the lifetime of this reference `'1`
    /// ```
    ///
    /// the way this works is that we match up `ty`, which is
    /// a `Ty<'tcx>` (the internal form of the type) with
    /// `hir_ty`, a `hir::Ty` (the syntax of the type
    /// annotation). We are descending through the types stepwise,
    /// looking in to find the region `needle_fr` in the internal
    /// type. Once we find that, we can use the span of the `hir::Ty`
    /// to add the highlight.
    ///
    /// This is a somewhat imperfect process, so along the way we also
    /// keep track of the **closest** type we've found. If we fail to
    /// find the exact `&` or `'_` to highlight, then we may fall back
    /// to highlighting that closest type instead.
    fn highlight_if_we_can_match_hir_ty(
        &self,
        needle_fr: RegionVid,
        ty: Ty<'tcx>,
        hir_ty: &hir::Ty<'_>,
    ) -> Option<RegionNameHighlight> {
        let search_stack: &mut Vec<(Ty<'tcx>, &hir::Ty<'_>)> = &mut vec![(ty, hir_ty)];

        while let Some((ty, hir_ty)) = search_stack.pop() {
            match (ty.kind(), &hir_ty.kind) {
                // Check if the `ty` is `&'X ..` where `'X`
                // is the region we are looking for -- if so, and we have a `&T`
                // on the RHS, then we want to highlight the `&` like so:
                //
                //     &
                //     - let's call the lifetime of this reference `'1`
                (ty::Ref(region, referent_ty, _), hir::TyKind::Ref(_lifetime, referent_hir_ty)) => {
                    if region.as_var() == needle_fr {
                        // Just grab the first character, the `&`.
                        let source_map = self.infcx.tcx.sess.source_map();
                        let ampersand_span = source_map.start_point(hir_ty.span);

                        return Some(RegionNameHighlight::MatchedHirTy(ampersand_span));
                    }

                    // Otherwise, let's descend into the referent types.
                    search_stack.push((*referent_ty, referent_hir_ty.ty));
                }

                // Match up something like `Foo<'1>`
                (ty::Adt(_adt_def, args), hir::TyKind::Path(hir::QPath::Resolved(None, path))) => {
                    match path.res {
                        // Type parameters of the type alias have no reason to
                        // be the same as those of the ADT.
                        // FIXME: We should be able to do something similar to
                        // match_adt_and_segment in this case.
                        Res::Def(DefKind::TyAlias, _) => (),
                        _ => {
                            if let Some(last_segment) = path.segments.last() {
                                if let Some(highlight) = self.match_adt_and_segment(
                                    args,
                                    needle_fr,
                                    last_segment,
                                    search_stack,
                                ) {
                                    return Some(highlight);
                                }
                            }
                        }
                    }
                }

                // The following cases don't have lifetimes, so we
                // just worry about trying to match up the rustc type
                // with the HIR types:
                (&ty::Tuple(elem_tys), hir::TyKind::Tup(elem_hir_tys)) => {
                    search_stack.extend(iter::zip(elem_tys, *elem_hir_tys));
                }

                (ty::Slice(elem_ty), hir::TyKind::Slice(elem_hir_ty))
                | (ty::Array(elem_ty, _), hir::TyKind::Array(elem_hir_ty, _)) => {
                    search_stack.push((*elem_ty, elem_hir_ty));
                }

                (ty::RawPtr(mut_ty, _), hir::TyKind::Ptr(mut_hir_ty)) => {
                    search_stack.push((*mut_ty, mut_hir_ty.ty));
                }

                _ => {
                    // FIXME there are other cases that we could trace
                }
            }
        }

        None
    }

    /// We've found an enum/struct/union type with the generic args
    /// `args` and -- in the HIR -- a path type with the final
    /// segment `last_segment`. Try to find a `'_` to highlight in
    /// the generic args (or, if not, to produce new zipped pairs of
    /// types+hir to search through).
    fn match_adt_and_segment<'hir>(
        &self,
        args: GenericArgsRef<'tcx>,
        needle_fr: RegionVid,
        last_segment: &'hir hir::PathSegment<'hir>,
        search_stack: &mut Vec<(Ty<'tcx>, &'hir hir::Ty<'hir>)>,
    ) -> Option<RegionNameHighlight> {
        // Did the user give explicit arguments? (e.g., `Foo<..>`)
        let explicit_args = last_segment.args.as_ref()?;
        let lifetime =
            self.try_match_adt_and_generic_args(args, needle_fr, explicit_args, search_stack)?;
        if lifetime.is_anonymous() {
            None
        } else {
            Some(RegionNameHighlight::MatchedAdtAndSegment(lifetime.ident.span))
        }
    }

    /// We've found an enum/struct/union type with the generic args
    /// `args` and -- in the HIR -- a path with the generic
    /// arguments `hir_args`. If `needle_fr` appears in the args, return
    /// the `hir::Lifetime` that corresponds to it. If not, push onto
    /// `search_stack` the types+hir to search through.
    fn try_match_adt_and_generic_args<'hir>(
        &self,
        args: GenericArgsRef<'tcx>,
        needle_fr: RegionVid,
        hir_args: &'hir hir::GenericArgs<'hir>,
        search_stack: &mut Vec<(Ty<'tcx>, &'hir hir::Ty<'hir>)>,
    ) -> Option<&'hir hir::Lifetime> {
        for (kind, hir_arg) in iter::zip(args, hir_args.args) {
            match (kind.unpack(), hir_arg) {
                (GenericArgKind::Lifetime(r), hir::GenericArg::Lifetime(lt)) => {
                    if r.as_var() == needle_fr {
                        return Some(lt);
                    }
                }

                (GenericArgKind::Type(ty), hir::GenericArg::Type(hir_ty)) => {
                    search_stack.push((ty, hir_ty));
                }

                (GenericArgKind::Const(_ct), hir::GenericArg::Const(_hir_ct)) => {
                    // Lifetimes cannot be found in consts, so we don't need
                    // to search anything here.
                }

                (
                    GenericArgKind::Lifetime(_)
                    | GenericArgKind::Type(_)
                    | GenericArgKind::Const(_),
                    _,
                ) => {
                    self.dcx().span_delayed_bug(
                        hir_arg.span(),
                        format!("unmatched arg and hir arg: found {kind:?} vs {hir_arg:?}"),
                    );
                }
            }
        }

        None
    }

    /// Finds a closure upvar that contains `fr` and label it with a
    /// fully elaborated type, returning something like `'1`. Result
    /// looks like:
    ///
    /// ```text
    ///  | let x = Some(&22);
    ///        - fully elaborated type of `x` is `Option<&'1 u32>`
    /// ```
    #[instrument(level = "trace", skip(self))]
    fn give_name_if_anonymous_region_appears_in_upvars(&self, fr: RegionVid) -> Option<RegionName> {
        let upvar_index = self.regioncx.get_upvar_index_for_region(self.infcx.tcx, fr)?;
        let (upvar_name, upvar_span) = self.regioncx.get_upvar_name_and_span_for_region(
            self.infcx.tcx,
            self.upvars,
            upvar_index,
        );
        let region_name = self.synthesize_region_name();

        Some(RegionName {
            name: region_name,
            source: RegionNameSource::AnonRegionFromUpvar(upvar_span, upvar_name),
        })
    }

    /// Checks for arguments appearing in the (closure) return type. It
    /// must be a closure since, in a free fn, such an argument would
    /// have to either also appear in an argument (if using elision)
    /// or be early bound (named, not in argument).
    #[instrument(level = "trace", skip(self))]
    fn give_name_if_anonymous_region_appears_in_output(&self, fr: RegionVid) -> Option<RegionName> {
        let tcx = self.infcx.tcx;
        let hir = tcx.hir();

        let return_ty = self.regioncx.universal_regions().unnormalized_output_ty;
        debug!("give_name_if_anonymous_region_appears_in_output: return_ty = {:?}", return_ty);
        if !tcx.any_free_region_meets(&return_ty, |r| r.as_var() == fr) {
            return None;
        }

        let mir_hir_id = self.mir_hir_id();

        let (return_span, mir_description, hir_ty) = match tcx.hir_node(mir_hir_id) {
            hir::Node::Expr(hir::Expr {
                kind: hir::ExprKind::Closure(&hir::Closure { fn_decl, kind, fn_decl_span, .. }),
                ..
            }) => {
                let (mut span, mut hir_ty) = match fn_decl.output {
                    hir::FnRetTy::DefaultReturn(_) => {
                        (tcx.sess.source_map().end_point(fn_decl_span), None)
                    }
                    hir::FnRetTy::Return(hir_ty) => (fn_decl.output.span(), Some(hir_ty)),
                };
                let mir_description = match kind {
                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                        hir::CoroutineDesugaring::Async,
                        hir::CoroutineSource::Block,
                    )) => " of async block",

                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                        hir::CoroutineDesugaring::Async,
                        hir::CoroutineSource::Closure,
                    ))
                    | hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async) => {
                        " of async closure"
                    }

                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                        hir::CoroutineDesugaring::Async,
                        hir::CoroutineSource::Fn,
                    )) => {
                        let parent_item =
                            tcx.hir_node_by_def_id(hir.get_parent_item(mir_hir_id).def_id);
                        let output = &parent_item
                            .fn_decl()
                            .expect("coroutine lowered from async fn should be in fn")
                            .output;
                        span = output.span();
                        if let hir::FnRetTy::Return(ret) = output {
                            hir_ty = Some(self.get_future_inner_return_ty(ret));
                        }
                        " of async function"
                    }

                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                        hir::CoroutineDesugaring::Gen,
                        hir::CoroutineSource::Block,
                    )) => " of gen block",

                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                        hir::CoroutineDesugaring::Gen,
                        hir::CoroutineSource::Closure,
                    ))
                    | hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Gen) => {
                        " of gen closure"
                    }

                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                        hir::CoroutineDesugaring::Gen,
                        hir::CoroutineSource::Fn,
                    )) => {
                        let parent_item =
                            tcx.hir_node_by_def_id(hir.get_parent_item(mir_hir_id).def_id);
                        let output = &parent_item
                            .fn_decl()
                            .expect("coroutine lowered from gen fn should be in fn")
                            .output;
                        span = output.span();
                        " of gen function"
                    }

                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                        hir::CoroutineDesugaring::AsyncGen,
                        hir::CoroutineSource::Block,
                    )) => " of async gen block",

                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                        hir::CoroutineDesugaring::AsyncGen,
                        hir::CoroutineSource::Closure,
                    ))
                    | hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::AsyncGen) => {
                        " of async gen closure"
                    }

                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                        hir::CoroutineDesugaring::AsyncGen,
                        hir::CoroutineSource::Fn,
                    )) => {
                        let parent_item =
                            tcx.hir_node_by_def_id(hir.get_parent_item(mir_hir_id).def_id);
                        let output = &parent_item
                            .fn_decl()
                            .expect("coroutine lowered from async gen fn should be in fn")
                            .output;
                        span = output.span();
                        " of async gen function"
                    }

                    hir::ClosureKind::Coroutine(hir::CoroutineKind::Coroutine(_)) => {
                        " of coroutine"
                    }
                    hir::ClosureKind::Closure => " of closure",
                };
                (span, mir_description, hir_ty)
            }
            node => match node.fn_decl() {
                Some(fn_decl) => {
                    let hir_ty = match fn_decl.output {
                        hir::FnRetTy::DefaultReturn(_) => None,
                        hir::FnRetTy::Return(ty) => Some(ty),
                    };
                    (fn_decl.output.span(), "", hir_ty)
                }
                None => (self.body.span, "", None),
            },
        };

        let highlight = hir_ty
            .and_then(|hir_ty| self.highlight_if_we_can_match_hir_ty(fr, return_ty, hir_ty))
            .unwrap_or_else(|| {
                // `highlight_if_we_cannot_match_hir_ty` needs to know the number we will give to
                // the anonymous region. If it succeeds, the `synthesize_region_name` call below
                // will increment the counter, "reserving" the number we just used.
                let counter = *self.next_region_name.try_borrow().unwrap();
                self.highlight_if_we_cannot_match_hir_ty(fr, return_ty, return_span, counter)
            });

        Some(RegionName {
            name: self.synthesize_region_name(),
            source: RegionNameSource::AnonRegionFromOutput(highlight, mir_description),
        })
    }

    /// From the [`hir::Ty`] of an async function's lowered return type,
    /// retrieve the `hir::Ty` representing the type the user originally wrote.
    ///
    /// e.g. given the function:
    ///
    /// ```
    /// async fn foo() -> i32 { 2 }
    /// ```
    ///
    /// this function, given the lowered return type of `foo`, an [`OpaqueDef`] that implements
    /// `Future<Output=i32>`, returns the `i32`.
    ///
    /// [`OpaqueDef`]: hir::TyKind::OpaqueDef
    fn get_future_inner_return_ty(&self, hir_ty: &'tcx hir::Ty<'tcx>) -> &'tcx hir::Ty<'tcx> {
        let hir::TyKind::OpaqueDef(opaque_ty) = hir_ty.kind else {
            span_bug!(
                hir_ty.span,
                "lowered return type of async fn is not OpaqueDef: {:?}",
                hir_ty
            );
        };
        if let hir::OpaqueTy { bounds: [hir::GenericBound::Trait(trait_ref)], .. } = opaque_ty
            && let Some(segment) = trait_ref.trait_ref.path.segments.last()
            && let Some(args) = segment.args
            && let [constraint] = args.constraints
            && constraint.ident.name == sym::Output
            && let Some(ty) = constraint.ty()
        {
            ty
        } else {
            span_bug!(
                hir_ty.span,
                "bounds from lowered return type of async fn did not match expected format: {opaque_ty:?}",
            );
        }
    }

    #[instrument(level = "trace", skip(self))]
    fn give_name_if_anonymous_region_appears_in_yield_ty(
        &self,
        fr: RegionVid,
    ) -> Option<RegionName> {
        // Note: coroutines from `async fn` yield `()`, so we don't have to
        // worry about them here.
        let yield_ty = self.regioncx.universal_regions().yield_ty?;
        debug!("give_name_if_anonymous_region_appears_in_yield_ty: yield_ty = {:?}", yield_ty);

        let tcx = self.infcx.tcx;

        if !tcx.any_free_region_meets(&yield_ty, |r| r.as_var() == fr) {
            return None;
        }

        let mut highlight = RegionHighlightMode::default();
        highlight.highlighting_region_vid(tcx, fr, *self.next_region_name.try_borrow().unwrap());
        let type_name = self
            .infcx
            .err_ctxt()
            .extract_inference_diagnostics_data(yield_ty.into(), highlight)
            .name;

        let yield_span = match tcx.hir_node(self.mir_hir_id()) {
            hir::Node::Expr(hir::Expr {
                kind: hir::ExprKind::Closure(&hir::Closure { fn_decl_span, .. }),
                ..
            }) => tcx.sess.source_map().end_point(fn_decl_span),
            _ => self.body.span,
        };

        debug!(
            "give_name_if_anonymous_region_appears_in_yield_ty: \
             type_name = {:?}, yield_span = {:?}",
            yield_span, type_name,
        );

        Some(RegionName {
            name: self.synthesize_region_name(),
            source: RegionNameSource::AnonRegionFromYieldTy(yield_span, Symbol::intern(&type_name)),
        })
    }

    fn give_name_if_anonymous_region_appears_in_impl_signature(
        &self,
        fr: RegionVid,
    ) -> Option<RegionName> {
        let ty::ReEarlyParam(region) = *self.to_error_region(fr)? else {
            return None;
        };
        if region.has_name() {
            return None;
        };

        let tcx = self.infcx.tcx;
        let region_def = tcx.generics_of(self.mir_def_id()).region_param(region, tcx).def_id;
        let region_parent = tcx.parent(region_def);
        let DefKind::Impl { .. } = tcx.def_kind(region_parent) else {
            return None;
        };

        let found = tcx
            .any_free_region_meets(&tcx.type_of(region_parent).instantiate_identity(), |r| {
                *r == ty::ReEarlyParam(region)
            });

        Some(RegionName {
            name: self.synthesize_region_name(),
            source: RegionNameSource::AnonRegionFromImplSignature(
                tcx.def_span(region_def),
                // FIXME(compiler-errors): Does this ever actually show up
                // anywhere other than the self type? I couldn't create an
                // example of a `'_` in the impl's trait being referenceable.
                if found { "self type" } else { "header" },
            ),
        })
    }

    fn give_name_if_anonymous_region_appears_in_arg_position_impl_trait(
        &self,
        fr: RegionVid,
    ) -> Option<RegionName> {
        let ty::ReEarlyParam(region) = *self.to_error_region(fr)? else {
            return None;
        };
        if region.has_name() {
            return None;
        };

        let predicates = self
            .infcx
            .tcx
            .predicates_of(self.body.source.def_id())
            .instantiate_identity(self.infcx.tcx)
            .predicates;

        if let Some(upvar_index) = self
            .regioncx
            .universal_regions()
            .defining_ty
            .upvar_tys()
            .iter()
            .position(|ty| self.any_param_predicate_mentions(&predicates, ty, region))
        {
            let (upvar_name, upvar_span) = self.regioncx.get_upvar_name_and_span_for_region(
                self.infcx.tcx,
                self.upvars,
                upvar_index,
            );
            let region_name = self.synthesize_region_name();

            Some(RegionName {
                name: region_name,
                source: RegionNameSource::AnonRegionFromUpvar(upvar_span, upvar_name),
            })
        } else if let Some(arg_index) = self
            .regioncx
            .universal_regions()
            .unnormalized_input_tys
            .iter()
            .position(|ty| self.any_param_predicate_mentions(&predicates, *ty, region))
        {
            let (arg_name, arg_span) = self.regioncx.get_argument_name_and_span_for_region(
                self.body,
                &self.local_names,
                arg_index,
            );
            let region_name = self.synthesize_region_name();

            Some(RegionName {
                name: region_name,
                source: RegionNameSource::AnonRegionFromArgument(
                    RegionNameHighlight::CannotMatchHirTy(arg_span, arg_name?),
                ),
            })
        } else {
            None
        }
    }

    fn any_param_predicate_mentions(
        &self,
        clauses: &[ty::Clause<'tcx>],
        ty: Ty<'tcx>,
        region: ty::EarlyParamRegion,
    ) -> bool {
        let tcx = self.infcx.tcx;
        ty.walk().any(|arg| {
            if let ty::GenericArgKind::Type(ty) = arg.unpack()
                && let ty::Param(_) = ty.kind()
            {
                clauses.iter().any(|pred| {
                    match pred.kind().skip_binder() {
                        ty::ClauseKind::Trait(data) if data.self_ty() == ty => {}
                        ty::ClauseKind::Projection(data)
                            if data.projection_term.self_ty() == ty => {}
                        _ => return false,
                    }
                    tcx.any_free_region_meets(pred, |r| *r == ty::ReEarlyParam(region))
                })
            } else {
                false
            }
        })
    }
}