1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
use std::collections::VecDeque;

use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::mir;
use rustc_span::{DesugaringKind, ExpnKind, MacroKind, Span};
use tracing::{debug, debug_span, instrument};

use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph};
use crate::coverage::spans::from_mir::{
    extract_covspans_from_mir, ExtractedCovspans, Hole, SpanFromMir,
};
use crate::coverage::{mappings, ExtractedHirInfo};

mod from_mir;

pub(super) fn extract_refined_covspans(
    mir_body: &mir::Body<'_>,
    hir_info: &ExtractedHirInfo,
    basic_coverage_blocks: &CoverageGraph,
    code_mappings: &mut impl Extend<mappings::CodeMapping>,
) {
    let ExtractedCovspans { mut covspans } =
        extract_covspans_from_mir(mir_body, hir_info, basic_coverage_blocks);

    // First, perform the passes that need macro information.
    covspans.sort_by(|a, b| basic_coverage_blocks.cmp_in_dominator_order(a.bcb, b.bcb));
    remove_unwanted_expansion_spans(&mut covspans);
    split_visible_macro_spans(&mut covspans);

    // We no longer need the extra information in `SpanFromMir`, so convert to `Covspan`.
    let mut covspans = covspans.into_iter().map(SpanFromMir::into_covspan).collect::<Vec<_>>();

    let compare_covspans = |a: &Covspan, b: &Covspan| {
        compare_spans(a.span, b.span)
            // After deduplication, we want to keep only the most-dominated BCB.
            .then_with(|| basic_coverage_blocks.cmp_in_dominator_order(a.bcb, b.bcb).reverse())
    };
    covspans.sort_by(compare_covspans);

    // Among covspans with the same span, keep only one,
    // preferring the one with the most-dominated BCB.
    // (Ideally we should try to preserve _all_ non-dominating BCBs, but that
    // requires a lot more complexity in the span refiner, for little benefit.)
    covspans.dedup_by(|b, a| a.span.source_equal(b.span));

    // Sort the holes, and merge overlapping/adjacent holes.
    let mut holes = hir_info.hole_spans.iter().map(|&span| Hole { span }).collect::<Vec<_>>();
    holes.sort_by(|a, b| compare_spans(a.span, b.span));
    holes.dedup_by(|b, a| a.merge_if_overlapping_or_adjacent(b));

    // Split the covspans into separate buckets that don't overlap any holes.
    let buckets = divide_spans_into_buckets(covspans, &holes);

    for mut covspans in buckets {
        // Make sure each individual bucket is internally sorted.
        covspans.sort_by(compare_covspans);
        let _span = debug_span!("processing bucket", ?covspans).entered();

        let mut covspans = remove_unwanted_overlapping_spans(covspans);
        debug!(?covspans, "after removing overlaps");

        // Do one last merge pass, to simplify the output.
        covspans.dedup_by(|b, a| a.merge_if_eligible(b));
        debug!(?covspans, "after merge");

        code_mappings.extend(covspans.into_iter().map(|Covspan { span, bcb }| {
            // Each span produced by the refiner represents an ordinary code region.
            mappings::CodeMapping { span, bcb }
        }));
    }
}

/// Macros that expand into branches (e.g. `assert!`, `trace!`) tend to generate
/// multiple condition/consequent blocks that have the span of the whole macro
/// invocation, which is unhelpful. Keeping only the first such span seems to
/// give better mappings, so remove the others.
///
/// Similarly, `await` expands to a branch on the discriminant of `Poll`, which
/// leads to incorrect coverage if the `Future` is immediately ready (#98712).
///
/// (The input spans should be sorted in BCB dominator order, so that the
/// retained "first" span is likely to dominate the others.)
fn remove_unwanted_expansion_spans(covspans: &mut Vec<SpanFromMir>) {
    let mut deduplicated_spans = FxHashSet::default();

    covspans.retain(|covspan| {
        match covspan.expn_kind {
            // Retain only the first await-related or macro-expanded covspan with this span.
            Some(ExpnKind::Desugaring(kind)) if kind == DesugaringKind::Await => {
                deduplicated_spans.insert(covspan.span)
            }
            Some(ExpnKind::Macro(MacroKind::Bang, _)) => deduplicated_spans.insert(covspan.span),
            // Ignore (retain) other spans.
            _ => true,
        }
    });
}

/// When a span corresponds to a macro invocation that is visible from the
/// function body, split it into two parts. The first part covers just the
/// macro name plus `!`, and the second part covers the rest of the macro
/// invocation. This seems to give better results for code that uses macros.
fn split_visible_macro_spans(covspans: &mut Vec<SpanFromMir>) {
    let mut extra_spans = vec![];

    covspans.retain(|covspan| {
        let Some(ExpnKind::Macro(MacroKind::Bang, visible_macro)) = covspan.expn_kind else {
            return true;
        };

        let split_len = visible_macro.as_str().len() as u32 + 1;
        let (before, after) = covspan.span.split_at(split_len);
        if !covspan.span.contains(before) || !covspan.span.contains(after) {
            // Something is unexpectedly wrong with the split point.
            // The debug assertion in `split_at` will have already caught this,
            // but in release builds it's safer to do nothing and maybe get a
            // bug report for unexpected coverage, rather than risk an ICE.
            return true;
        }

        extra_spans.push(SpanFromMir::new(before, covspan.expn_kind.clone(), covspan.bcb));
        extra_spans.push(SpanFromMir::new(after, covspan.expn_kind.clone(), covspan.bcb));
        false // Discard the original covspan that we just split.
    });

    // The newly-split spans are added at the end, so any previous sorting
    // is not preserved.
    covspans.extend(extra_spans);
}

/// Uses the holes to divide the given covspans into buckets, such that:
/// - No span in any hole overlaps a bucket (truncating the spans if necessary).
/// - The spans in each bucket are strictly after all spans in previous buckets,
///   and strictly before all spans in subsequent buckets.
///
/// The resulting buckets are sorted relative to each other, but might not be
/// internally sorted.
#[instrument(level = "debug")]
fn divide_spans_into_buckets(input_covspans: Vec<Covspan>, holes: &[Hole]) -> Vec<Vec<Covspan>> {
    debug_assert!(input_covspans.is_sorted_by(|a, b| compare_spans(a.span, b.span).is_le()));
    debug_assert!(holes.is_sorted_by(|a, b| compare_spans(a.span, b.span).is_le()));

    // Now we're ready to start carving holes out of the initial coverage spans,
    // and grouping them in buckets separated by the holes.

    let mut input_covspans = VecDeque::from(input_covspans);
    let mut fragments = vec![];

    // For each hole:
    // - Identify the spans that are entirely or partly before the hole.
    // - Put those spans in a corresponding bucket, truncated to the start of the hole.
    // - If one of those spans also extends after the hole, put the rest of it
    //   in a "fragments" vector that is processed by the next hole.
    let mut buckets = (0..holes.len()).map(|_| vec![]).collect::<Vec<_>>();
    for (hole, bucket) in holes.iter().zip(&mut buckets) {
        let fragments_from_prev = std::mem::take(&mut fragments);

        // Only inspect spans that precede or overlap this hole,
        // leaving the rest to be inspected by later holes.
        // (This relies on the spans and holes both being sorted.)
        let relevant_input_covspans =
            drain_front_while(&mut input_covspans, |c| c.span.lo() < hole.span.hi());

        for covspan in fragments_from_prev.into_iter().chain(relevant_input_covspans) {
            let (before, after) = covspan.split_around_hole_span(hole.span);
            bucket.extend(before);
            fragments.extend(after);
        }
    }

    // After finding the spans before each hole, any remaining fragments/spans
    // form their own final bucket, after the final hole.
    // (If there were no holes, this will just be all of the initial spans.)
    fragments.extend(input_covspans);
    buckets.push(fragments);

    buckets
}

/// Similar to `.drain(..)`, but stops just before it would remove an item not
/// satisfying the predicate.
fn drain_front_while<'a, T>(
    queue: &'a mut VecDeque<T>,
    mut pred_fn: impl FnMut(&T) -> bool,
) -> impl Iterator<Item = T> + Captures<'a> {
    std::iter::from_fn(move || if pred_fn(queue.front()?) { queue.pop_front() } else { None })
}

/// Takes one of the buckets of (sorted) spans extracted from MIR, and "refines"
/// those spans by removing spans that overlap in unwanted ways.
#[instrument(level = "debug")]
fn remove_unwanted_overlapping_spans(sorted_spans: Vec<Covspan>) -> Vec<Covspan> {
    debug_assert!(sorted_spans.is_sorted_by(|a, b| compare_spans(a.span, b.span).is_le()));

    // Holds spans that have been read from the input vector, but haven't yet
    // been committed to the output vector.
    let mut pending = vec![];
    let mut refined = vec![];

    for curr in sorted_spans {
        pending.retain(|prev: &Covspan| {
            if prev.span.hi() <= curr.span.lo() {
                // There's no overlap between the previous/current covspans,
                // so move the previous one into the refined list.
                refined.push(prev.clone());
                false
            } else {
                // Otherwise, retain the previous covspan only if it has the
                // same BCB. This tends to discard long outer spans that enclose
                // smaller inner spans with different control flow.
                prev.bcb == curr.bcb
            }
        });
        pending.push(curr);
    }

    // Drain the rest of the pending list into the refined list.
    refined.extend(pending);
    refined
}

#[derive(Clone, Debug)]
struct Covspan {
    span: Span,
    bcb: BasicCoverageBlock,
}

impl Covspan {
    /// Splits this covspan into 0-2 parts:
    /// - The part that is strictly before the hole span, if any.
    /// - The part that is strictly after the hole span, if any.
    fn split_around_hole_span(&self, hole_span: Span) -> (Option<Self>, Option<Self>) {
        let before = try {
            let span = self.span.trim_end(hole_span)?;
            Self { span, ..*self }
        };
        let after = try {
            let span = self.span.trim_start(hole_span)?;
            Self { span, ..*self }
        };

        (before, after)
    }

    /// If `self` and `other` can be merged (i.e. they have the same BCB),
    /// mutates `self.span` to also include `other.span` and returns true.
    ///
    /// Note that compatible covspans can be merged even if their underlying
    /// spans are not overlapping/adjacent; any space between them will also be
    /// part of the merged covspan.
    fn merge_if_eligible(&mut self, other: &Self) -> bool {
        if self.bcb != other.bcb {
            return false;
        }

        self.span = self.span.to(other.span);
        true
    }
}

/// Compares two spans in (lo ascending, hi descending) order.
fn compare_spans(a: Span, b: Span) -> std::cmp::Ordering {
    // First sort by span start.
    Ord::cmp(&a.lo(), &b.lo())
        // If span starts are the same, sort by span end in reverse order.
        // This ensures that if spans A and B are adjacent in the list,
        // and they overlap but are not equal, then either:
        // - Span A extends further left, or
        // - Both have the same start and span A extends further right
        .then_with(|| Ord::cmp(&a.hi(), &b.hi()).reverse())
}