rustc_mir_transform/coverage/spans.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
use std::collections::VecDeque;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::mir;
use rustc_span::{DesugaringKind, ExpnKind, MacroKind, Span};
use tracing::{debug, debug_span, instrument};
use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph};
use crate::coverage::spans::from_mir::{
ExtractedCovspans, Hole, SpanFromMir, extract_covspans_from_mir,
};
use crate::coverage::{ExtractedHirInfo, mappings};
mod from_mir;
pub(super) fn extract_refined_covspans(
mir_body: &mir::Body<'_>,
hir_info: &ExtractedHirInfo,
basic_coverage_blocks: &CoverageGraph,
code_mappings: &mut impl Extend<mappings::CodeMapping>,
) {
let ExtractedCovspans { mut covspans } =
extract_covspans_from_mir(mir_body, hir_info, basic_coverage_blocks);
// First, perform the passes that need macro information.
covspans.sort_by(|a, b| basic_coverage_blocks.cmp_in_dominator_order(a.bcb, b.bcb));
remove_unwanted_expansion_spans(&mut covspans);
split_visible_macro_spans(&mut covspans);
// We no longer need the extra information in `SpanFromMir`, so convert to `Covspan`.
let mut covspans = covspans.into_iter().map(SpanFromMir::into_covspan).collect::<Vec<_>>();
let compare_covspans = |a: &Covspan, b: &Covspan| {
compare_spans(a.span, b.span)
// After deduplication, we want to keep only the most-dominated BCB.
.then_with(|| basic_coverage_blocks.cmp_in_dominator_order(a.bcb, b.bcb).reverse())
};
covspans.sort_by(compare_covspans);
// Among covspans with the same span, keep only one,
// preferring the one with the most-dominated BCB.
// (Ideally we should try to preserve _all_ non-dominating BCBs, but that
// requires a lot more complexity in the span refiner, for little benefit.)
covspans.dedup_by(|b, a| a.span.source_equal(b.span));
// Sort the holes, and merge overlapping/adjacent holes.
let mut holes = hir_info.hole_spans.iter().map(|&span| Hole { span }).collect::<Vec<_>>();
holes.sort_by(|a, b| compare_spans(a.span, b.span));
holes.dedup_by(|b, a| a.merge_if_overlapping_or_adjacent(b));
// Split the covspans into separate buckets that don't overlap any holes.
let buckets = divide_spans_into_buckets(covspans, &holes);
for mut covspans in buckets {
// Make sure each individual bucket is internally sorted.
covspans.sort_by(compare_covspans);
let _span = debug_span!("processing bucket", ?covspans).entered();
let mut covspans = remove_unwanted_overlapping_spans(covspans);
debug!(?covspans, "after removing overlaps");
// Do one last merge pass, to simplify the output.
covspans.dedup_by(|b, a| a.merge_if_eligible(b));
debug!(?covspans, "after merge");
code_mappings.extend(covspans.into_iter().map(|Covspan { span, bcb }| {
// Each span produced by the refiner represents an ordinary code region.
mappings::CodeMapping { span, bcb }
}));
}
}
/// Macros that expand into branches (e.g. `assert!`, `trace!`) tend to generate
/// multiple condition/consequent blocks that have the span of the whole macro
/// invocation, which is unhelpful. Keeping only the first such span seems to
/// give better mappings, so remove the others.
///
/// Similarly, `await` expands to a branch on the discriminant of `Poll`, which
/// leads to incorrect coverage if the `Future` is immediately ready (#98712).
///
/// (The input spans should be sorted in BCB dominator order, so that the
/// retained "first" span is likely to dominate the others.)
fn remove_unwanted_expansion_spans(covspans: &mut Vec<SpanFromMir>) {
let mut deduplicated_spans = FxHashSet::default();
covspans.retain(|covspan| {
match covspan.expn_kind {
// Retain only the first await-related or macro-expanded covspan with this span.
Some(ExpnKind::Desugaring(DesugaringKind::Await)) => {
deduplicated_spans.insert(covspan.span)
}
Some(ExpnKind::Macro(MacroKind::Bang, _)) => deduplicated_spans.insert(covspan.span),
// Ignore (retain) other spans.
_ => true,
}
});
}
/// When a span corresponds to a macro invocation that is visible from the
/// function body, split it into two parts. The first part covers just the
/// macro name plus `!`, and the second part covers the rest of the macro
/// invocation. This seems to give better results for code that uses macros.
fn split_visible_macro_spans(covspans: &mut Vec<SpanFromMir>) {
let mut extra_spans = vec![];
covspans.retain(|covspan| {
let Some(ExpnKind::Macro(MacroKind::Bang, visible_macro)) = covspan.expn_kind else {
return true;
};
let split_len = visible_macro.as_str().len() as u32 + 1;
let (before, after) = covspan.span.split_at(split_len);
if !covspan.span.contains(before) || !covspan.span.contains(after) {
// Something is unexpectedly wrong with the split point.
// The debug assertion in `split_at` will have already caught this,
// but in release builds it's safer to do nothing and maybe get a
// bug report for unexpected coverage, rather than risk an ICE.
return true;
}
extra_spans.push(SpanFromMir::new(before, covspan.expn_kind.clone(), covspan.bcb));
extra_spans.push(SpanFromMir::new(after, covspan.expn_kind.clone(), covspan.bcb));
false // Discard the original covspan that we just split.
});
// The newly-split spans are added at the end, so any previous sorting
// is not preserved.
covspans.extend(extra_spans);
}
/// Uses the holes to divide the given covspans into buckets, such that:
/// - No span in any hole overlaps a bucket (truncating the spans if necessary).
/// - The spans in each bucket are strictly after all spans in previous buckets,
/// and strictly before all spans in subsequent buckets.
///
/// The resulting buckets are sorted relative to each other, but might not be
/// internally sorted.
#[instrument(level = "debug")]
fn divide_spans_into_buckets(input_covspans: Vec<Covspan>, holes: &[Hole]) -> Vec<Vec<Covspan>> {
debug_assert!(input_covspans.is_sorted_by(|a, b| compare_spans(a.span, b.span).is_le()));
debug_assert!(holes.is_sorted_by(|a, b| compare_spans(a.span, b.span).is_le()));
// Now we're ready to start carving holes out of the initial coverage spans,
// and grouping them in buckets separated by the holes.
let mut input_covspans = VecDeque::from(input_covspans);
let mut fragments = vec![];
// For each hole:
// - Identify the spans that are entirely or partly before the hole.
// - Put those spans in a corresponding bucket, truncated to the start of the hole.
// - If one of those spans also extends after the hole, put the rest of it
// in a "fragments" vector that is processed by the next hole.
let mut buckets = (0..holes.len()).map(|_| vec![]).collect::<Vec<_>>();
for (hole, bucket) in holes.iter().zip(&mut buckets) {
let fragments_from_prev = std::mem::take(&mut fragments);
// Only inspect spans that precede or overlap this hole,
// leaving the rest to be inspected by later holes.
// (This relies on the spans and holes both being sorted.)
let relevant_input_covspans =
drain_front_while(&mut input_covspans, |c| c.span.lo() < hole.span.hi());
for covspan in fragments_from_prev.into_iter().chain(relevant_input_covspans) {
let (before, after) = covspan.split_around_hole_span(hole.span);
bucket.extend(before);
fragments.extend(after);
}
}
// After finding the spans before each hole, any remaining fragments/spans
// form their own final bucket, after the final hole.
// (If there were no holes, this will just be all of the initial spans.)
fragments.extend(input_covspans);
buckets.push(fragments);
buckets
}
/// Similar to `.drain(..)`, but stops just before it would remove an item not
/// satisfying the predicate.
fn drain_front_while<'a, T>(
queue: &'a mut VecDeque<T>,
mut pred_fn: impl FnMut(&T) -> bool,
) -> impl Iterator<Item = T> + Captures<'a> {
std::iter::from_fn(move || if pred_fn(queue.front()?) { queue.pop_front() } else { None })
}
/// Takes one of the buckets of (sorted) spans extracted from MIR, and "refines"
/// those spans by removing spans that overlap in unwanted ways.
#[instrument(level = "debug")]
fn remove_unwanted_overlapping_spans(sorted_spans: Vec<Covspan>) -> Vec<Covspan> {
debug_assert!(sorted_spans.is_sorted_by(|a, b| compare_spans(a.span, b.span).is_le()));
// Holds spans that have been read from the input vector, but haven't yet
// been committed to the output vector.
let mut pending = vec![];
let mut refined = vec![];
for curr in sorted_spans {
pending.retain(|prev: &Covspan| {
if prev.span.hi() <= curr.span.lo() {
// There's no overlap between the previous/current covspans,
// so move the previous one into the refined list.
refined.push(prev.clone());
false
} else {
// Otherwise, retain the previous covspan only if it has the
// same BCB. This tends to discard long outer spans that enclose
// smaller inner spans with different control flow.
prev.bcb == curr.bcb
}
});
pending.push(curr);
}
// Drain the rest of the pending list into the refined list.
refined.extend(pending);
refined
}
#[derive(Clone, Debug)]
struct Covspan {
span: Span,
bcb: BasicCoverageBlock,
}
impl Covspan {
/// Splits this covspan into 0-2 parts:
/// - The part that is strictly before the hole span, if any.
/// - The part that is strictly after the hole span, if any.
fn split_around_hole_span(&self, hole_span: Span) -> (Option<Self>, Option<Self>) {
let before = try {
let span = self.span.trim_end(hole_span)?;
Self { span, ..*self }
};
let after = try {
let span = self.span.trim_start(hole_span)?;
Self { span, ..*self }
};
(before, after)
}
/// If `self` and `other` can be merged (i.e. they have the same BCB),
/// mutates `self.span` to also include `other.span` and returns true.
///
/// Note that compatible covspans can be merged even if their underlying
/// spans are not overlapping/adjacent; any space between them will also be
/// part of the merged covspan.
fn merge_if_eligible(&mut self, other: &Self) -> bool {
if self.bcb != other.bcb {
return false;
}
self.span = self.span.to(other.span);
true
}
}
/// Compares two spans in (lo ascending, hi descending) order.
fn compare_spans(a: Span, b: Span) -> std::cmp::Ordering {
// First sort by span start.
Ord::cmp(&a.lo(), &b.lo())
// If span starts are the same, sort by span end in reverse order.
// This ensures that if spans A and B are adjacent in the list,
// and they overlap but are not equal, then either:
// - Span A extends further left, or
// - Both have the same start and span A extends further right
.then_with(|| Ord::cmp(&a.hi(), &b.hi()).reverse())
}