rustc_const_eval/interpret/
step.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
//! This module contains the `InterpCx` methods for executing a single step of the interpreter.
//!
//! The main entry point is the `step` method.

use either::Either;
use rustc_abi::{FIRST_VARIANT, FieldIdx};
use rustc_index::IndexSlice;
use rustc_middle::ty::layout::FnAbiOf;
use rustc_middle::ty::{self, Instance, Ty};
use rustc_middle::{bug, mir, span_bug};
use rustc_span::source_map::Spanned;
use rustc_span::{DesugaringKind, Span};
use rustc_target::callconv::FnAbi;
use tracing::{info, instrument, trace};

use super::{
    FnArg, FnVal, ImmTy, Immediate, InterpCx, InterpResult, Machine, MemPlaceMeta, PlaceTy,
    Projectable, Scalar, interp_ok, throw_ub,
};
use crate::util;

struct EvaluatedCalleeAndArgs<'tcx, M: Machine<'tcx>> {
    callee: FnVal<'tcx, M::ExtraFnVal>,
    args: Vec<FnArg<'tcx, M::Provenance>>,
    fn_sig: ty::FnSig<'tcx>,
    fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
    /// True if the function is marked as `#[track_caller]` ([`ty::InstanceKind::requires_caller_location`])
    with_caller_location: bool,
}

impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
    /// Returns `true` as long as there are more things to do.
    ///
    /// This is used by [priroda](https://github.com/oli-obk/priroda)
    ///
    /// This is marked `#inline(always)` to work around adversarial codegen when `opt-level = 3`
    #[inline(always)]
    pub fn step(&mut self) -> InterpResult<'tcx, bool> {
        if self.stack().is_empty() {
            return interp_ok(false);
        }

        let Either::Left(loc) = self.frame().loc else {
            // We are unwinding and this fn has no cleanup code.
            // Just go on unwinding.
            trace!("unwinding: skipping frame");
            self.return_from_current_stack_frame(/* unwinding */ true)?;
            return interp_ok(true);
        };
        let basic_block = &self.body().basic_blocks[loc.block];

        if let Some(stmt) = basic_block.statements.get(loc.statement_index) {
            let old_frames = self.frame_idx();
            self.eval_statement(stmt)?;
            // Make sure we are not updating `statement_index` of the wrong frame.
            assert_eq!(old_frames, self.frame_idx());
            // Advance the program counter.
            self.frame_mut().loc.as_mut().left().unwrap().statement_index += 1;
            return interp_ok(true);
        }

        M::before_terminator(self)?;

        let terminator = basic_block.terminator();
        self.eval_terminator(terminator)?;
        if !self.stack().is_empty() {
            if let Either::Left(loc) = self.frame().loc {
                info!("// executing {:?}", loc.block);
            }
        }
        interp_ok(true)
    }

    /// Runs the interpretation logic for the given `mir::Statement` at the current frame and
    /// statement counter.
    ///
    /// This does NOT move the statement counter forward, the caller has to do that!
    pub fn eval_statement(&mut self, stmt: &mir::Statement<'tcx>) -> InterpResult<'tcx> {
        info!("{:?}", stmt);

        use rustc_middle::mir::StatementKind::*;

        match &stmt.kind {
            Assign(box (place, rvalue)) => {
                self.eval_rvalue_into_place(rvalue, *place, stmt.source_info.span)?
            }

            SetDiscriminant { place, variant_index } => {
                let dest = self.eval_place(**place)?;
                self.write_discriminant(*variant_index, &dest)?;
            }

            Deinit(place) => {
                let dest = self.eval_place(**place)?;
                self.write_uninit(&dest)?;
            }

            // Mark locals as alive
            StorageLive(local) => {
                self.storage_live(*local)?;
            }

            // Mark locals as dead
            StorageDead(local) => {
                self.storage_dead(*local)?;
            }

            // No dynamic semantics attached to `FakeRead`; MIR
            // interpreter is solely intended for borrowck'ed code.
            FakeRead(..) => {}

            // Stacked Borrows.
            Retag(kind, place) => {
                let dest = self.eval_place(**place)?;
                M::retag_place_contents(self, *kind, &dest)?;
            }

            Intrinsic(box intrinsic) => self.eval_nondiverging_intrinsic(intrinsic)?,

            // Evaluate the place expression, without reading from it.
            PlaceMention(box place) => {
                let _ = self.eval_place(*place)?;
            }

            // This exists purely to guide borrowck lifetime inference, and does not have
            // an operational effect.
            AscribeUserType(..) => {}

            // Currently, Miri discards Coverage statements. Coverage statements are only injected
            // via an optional compile time MIR pass and have no side effects. Since Coverage
            // statements don't exist at the source level, it is safe for Miri to ignore them, even
            // for undefined behavior (UB) checks.
            //
            // A coverage counter inside a const expression (for example, a counter injected in a
            // const function) is discarded when the const is evaluated at compile time. Whether
            // this should change, and/or how to implement a const eval counter, is a subject of the
            // following issue:
            //
            // FIXME(#73156): Handle source code coverage in const eval
            Coverage(..) => {}

            ConstEvalCounter => {
                M::increment_const_eval_counter(self)?;
            }

            // Defined to do nothing. These are added by optimization passes, to avoid changing the
            // size of MIR constantly.
            Nop => {}

            // Only used for temporary lifetime lints
            BackwardIncompatibleDropHint { .. } => {}
        }

        interp_ok(())
    }

    /// Evaluate an assignment statement.
    ///
    /// There is no separate `eval_rvalue` function. Instead, the code for handling each rvalue
    /// type writes its results directly into the memory specified by the place.
    pub fn eval_rvalue_into_place(
        &mut self,
        rvalue: &mir::Rvalue<'tcx>,
        place: mir::Place<'tcx>,
        span: Span,
    ) -> InterpResult<'tcx> {
        let dest = self.eval_place(place)?;
        // FIXME: ensure some kind of non-aliasing between LHS and RHS?
        // Also see https://github.com/rust-lang/rust/issues/68364.

        use rustc_middle::mir::Rvalue::*;
        match *rvalue {
            ThreadLocalRef(did) => {
                let ptr = M::thread_local_static_pointer(self, did)?;
                self.write_pointer(ptr, &dest)?;
            }

            Use(ref operand) => {
                // Avoid recomputing the layout
                let op = self.eval_operand(operand, Some(dest.layout))?;
                self.copy_op(&op, &dest)?;
            }

            CopyForDeref(place) => {
                let op = self.eval_place_to_op(place, Some(dest.layout))?;
                self.copy_op(&op, &dest)?;
            }

            BinaryOp(bin_op, box (ref left, ref right)) => {
                let layout = util::binop_left_homogeneous(bin_op).then_some(dest.layout);
                let left = self.read_immediate(&self.eval_operand(left, layout)?)?;
                let layout = util::binop_right_homogeneous(bin_op).then_some(left.layout);
                let right = self.read_immediate(&self.eval_operand(right, layout)?)?;
                let result = self.binary_op(bin_op, &left, &right)?;
                assert_eq!(result.layout, dest.layout, "layout mismatch for result of {bin_op:?}");
                self.write_immediate(*result, &dest)?;
            }

            UnaryOp(un_op, ref operand) => {
                // The operand always has the same type as the result.
                let val = self.read_immediate(&self.eval_operand(operand, Some(dest.layout))?)?;
                let result = self.unary_op(un_op, &val)?;
                assert_eq!(result.layout, dest.layout, "layout mismatch for result of {un_op:?}");
                self.write_immediate(*result, &dest)?;
            }

            NullaryOp(null_op, ty) => {
                let ty = self.instantiate_from_current_frame_and_normalize_erasing_regions(ty)?;
                let val = self.nullary_op(null_op, ty)?;
                self.write_immediate(*val, &dest)?;
            }

            Aggregate(box ref kind, ref operands) => {
                self.write_aggregate(kind, operands, &dest)?;
            }

            Repeat(ref operand, _) => {
                self.write_repeat(operand, &dest)?;
            }

            Len(place) => {
                let src = self.eval_place(place)?;
                let len = src.len(self)?;
                self.write_scalar(Scalar::from_target_usize(len, self), &dest)?;
            }

            Ref(_, borrow_kind, place) => {
                let src = self.eval_place(place)?;
                let place = self.force_allocation(&src)?;
                let val = ImmTy::from_immediate(place.to_ref(self), dest.layout);
                // A fresh reference was created, make sure it gets retagged.
                let val = M::retag_ptr_value(
                    self,
                    if borrow_kind.allows_two_phase_borrow() {
                        mir::RetagKind::TwoPhase
                    } else {
                        mir::RetagKind::Default
                    },
                    &val,
                )?;
                self.write_immediate(*val, &dest)?;
            }

            RawPtr(_, place) => {
                // Figure out whether this is an addr_of of an already raw place.
                let place_base_raw = if place.is_indirect_first_projection() {
                    let ty = self.frame().body.local_decls[place.local].ty;
                    ty.is_unsafe_ptr()
                } else {
                    // Not a deref, and thus not raw.
                    false
                };

                let src = self.eval_place(place)?;
                let place = self.force_allocation(&src)?;
                let mut val = ImmTy::from_immediate(place.to_ref(self), dest.layout);
                if !place_base_raw
                    && span.desugaring_kind() != Some(DesugaringKind::IndexBoundsCheckReborrow)
                {
                    // If this was not already raw, it needs retagging.
                    // As a special hack, we exclude the desugared `PtrMetadata(&raw const *_n)`
                    // from indexing. (Really we should not do any retag on `&raw` but that does not
                    // currently work with Stacked Borrows.)
                    val = M::retag_ptr_value(self, mir::RetagKind::Raw, &val)?;
                }
                self.write_immediate(*val, &dest)?;
            }

            ShallowInitBox(ref operand, _) => {
                let src = self.eval_operand(operand, None)?;
                let v = self.read_immediate(&src)?;
                self.write_immediate(*v, &dest)?;
            }

            Cast(cast_kind, ref operand, cast_ty) => {
                let src = self.eval_operand(operand, None)?;
                let cast_ty =
                    self.instantiate_from_current_frame_and_normalize_erasing_regions(cast_ty)?;
                self.cast(&src, cast_kind, cast_ty, &dest)?;
            }

            Discriminant(place) => {
                let op = self.eval_place_to_op(place, None)?;
                let variant = self.read_discriminant(&op)?;
                let discr = self.discriminant_for_variant(op.layout.ty, variant)?;
                self.write_immediate(*discr, &dest)?;
            }
        }

        trace!("{:?}", self.dump_place(&dest));

        interp_ok(())
    }

    /// Writes the aggregate to the destination.
    #[instrument(skip(self), level = "trace")]
    fn write_aggregate(
        &mut self,
        kind: &mir::AggregateKind<'tcx>,
        operands: &IndexSlice<FieldIdx, mir::Operand<'tcx>>,
        dest: &PlaceTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx> {
        self.write_uninit(dest)?; // make sure all the padding ends up as uninit
        let (variant_index, variant_dest, active_field_index) = match *kind {
            mir::AggregateKind::Adt(_, variant_index, _, _, active_field_index) => {
                let variant_dest = self.project_downcast(dest, variant_index)?;
                (variant_index, variant_dest, active_field_index)
            }
            mir::AggregateKind::RawPtr(..) => {
                // Pointers don't have "fields" in the normal sense, so the
                // projection-based code below would either fail in projection
                // or in type mismatches. Instead, build an `Immediate` from
                // the parts and write that to the destination.
                let [data, meta] = &operands.raw else {
                    bug!("{kind:?} should have 2 operands, had {operands:?}");
                };
                let data = self.eval_operand(data, None)?;
                let data = self.read_pointer(&data)?;
                let meta = self.eval_operand(meta, None)?;
                let meta = if meta.layout.is_zst() {
                    MemPlaceMeta::None
                } else {
                    MemPlaceMeta::Meta(self.read_scalar(&meta)?)
                };
                let ptr_imm = Immediate::new_pointer_with_meta(data, meta, self);
                let ptr = ImmTy::from_immediate(ptr_imm, dest.layout);
                self.copy_op(&ptr, dest)?;
                return interp_ok(());
            }
            _ => (FIRST_VARIANT, dest.clone(), None),
        };
        if active_field_index.is_some() {
            assert_eq!(operands.len(), 1);
        }
        for (field_index, operand) in operands.iter_enumerated() {
            let field_index = active_field_index.unwrap_or(field_index);
            let field_dest = self.project_field(&variant_dest, field_index.as_usize())?;
            let op = self.eval_operand(operand, Some(field_dest.layout))?;
            self.copy_op(&op, &field_dest)?;
        }
        self.write_discriminant(variant_index, dest)
    }

    /// Repeats `operand` into the destination. `dest` must have array type, and that type
    /// determines how often `operand` is repeated.
    fn write_repeat(
        &mut self,
        operand: &mir::Operand<'tcx>,
        dest: &PlaceTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx> {
        let src = self.eval_operand(operand, None)?;
        assert!(src.layout.is_sized());
        let dest = self.force_allocation(&dest)?;
        let length = dest.len(self)?;

        if length == 0 {
            // Nothing to copy... but let's still make sure that `dest` as a place is valid.
            self.get_place_alloc_mut(&dest)?;
        } else {
            // Write the src to the first element.
            let first = self.project_index(&dest, 0)?;
            self.copy_op(&src, &first)?;

            // This is performance-sensitive code for big static/const arrays! So we
            // avoid writing each operand individually and instead just make many copies
            // of the first element.
            let elem_size = first.layout.size;
            let first_ptr = first.ptr();
            let rest_ptr = first_ptr.wrapping_offset(elem_size, self);
            // No alignment requirement since `copy_op` above already checked it.
            self.mem_copy_repeatedly(
                first_ptr,
                rest_ptr,
                elem_size,
                length - 1,
                /*nonoverlapping:*/ true,
            )?;
        }

        interp_ok(())
    }

    /// Evaluate the arguments of a function call
    fn eval_fn_call_argument(
        &self,
        op: &mir::Operand<'tcx>,
    ) -> InterpResult<'tcx, FnArg<'tcx, M::Provenance>> {
        interp_ok(match op {
            mir::Operand::Copy(_) | mir::Operand::Constant(_) => {
                // Make a regular copy.
                let op = self.eval_operand(op, None)?;
                FnArg::Copy(op)
            }
            mir::Operand::Move(place) => {
                // If this place lives in memory, preserve its location.
                // We call `place_to_op` which will be an `MPlaceTy` whenever there exists
                // an mplace for this place. (This is in contrast to `PlaceTy::as_mplace_or_local`
                // which can return a local even if that has an mplace.)
                let place = self.eval_place(*place)?;
                let op = self.place_to_op(&place)?;

                match op.as_mplace_or_imm() {
                    Either::Left(mplace) => FnArg::InPlace(mplace),
                    Either::Right(_imm) => {
                        // This argument doesn't live in memory, so there's no place
                        // to make inaccessible during the call.
                        // We rely on there not being any stray `PlaceTy` that would let the
                        // caller directly access this local!
                        // This is also crucial for tail calls, where we want the `FnArg` to
                        // stay valid when the old stack frame gets popped.
                        FnArg::Copy(op)
                    }
                }
            }
        })
    }

    /// Shared part of `Call` and `TailCall` implementation — finding and evaluating all the
    /// necessary information about callee and arguments to make a call.
    fn eval_callee_and_args(
        &self,
        terminator: &mir::Terminator<'tcx>,
        func: &mir::Operand<'tcx>,
        args: &[Spanned<mir::Operand<'tcx>>],
    ) -> InterpResult<'tcx, EvaluatedCalleeAndArgs<'tcx, M>> {
        let func = self.eval_operand(func, None)?;
        let args = args
            .iter()
            .map(|arg| self.eval_fn_call_argument(&arg.node))
            .collect::<InterpResult<'tcx, Vec<_>>>()?;

        let fn_sig_binder = func.layout.ty.fn_sig(*self.tcx);
        let fn_sig = self.tcx.normalize_erasing_late_bound_regions(self.typing_env, fn_sig_binder);
        let extra_args = &args[fn_sig.inputs().len()..];
        let extra_args =
            self.tcx.mk_type_list_from_iter(extra_args.iter().map(|arg| arg.layout().ty));

        let (callee, fn_abi, with_caller_location) = match *func.layout.ty.kind() {
            ty::FnPtr(..) => {
                let fn_ptr = self.read_pointer(&func)?;
                let fn_val = self.get_ptr_fn(fn_ptr)?;
                (fn_val, self.fn_abi_of_fn_ptr(fn_sig_binder, extra_args)?, false)
            }
            ty::FnDef(def_id, args) => {
                let instance = self.resolve(def_id, args)?;
                (
                    FnVal::Instance(instance),
                    self.fn_abi_of_instance(instance, extra_args)?,
                    instance.def.requires_caller_location(*self.tcx),
                )
            }
            _ => {
                span_bug!(terminator.source_info.span, "invalid callee of type {}", func.layout.ty)
            }
        };

        interp_ok(EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location })
    }

    fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> InterpResult<'tcx> {
        info!("{:?}", terminator.kind);

        use rustc_middle::mir::TerminatorKind::*;
        match terminator.kind {
            Return => {
                self.return_from_current_stack_frame(/* unwinding */ false)?
            }

            Goto { target } => self.go_to_block(target),

            SwitchInt { ref discr, ref targets } => {
                let discr = self.read_immediate(&self.eval_operand(discr, None)?)?;
                trace!("SwitchInt({:?})", *discr);

                // Branch to the `otherwise` case by default, if no match is found.
                let mut target_block = targets.otherwise();

                for (const_int, target) in targets.iter() {
                    // Compare using MIR BinOp::Eq, to also support pointer values.
                    // (Avoiding `self.binary_op` as that does some redundant layout computation.)
                    let res = self.binary_op(
                        mir::BinOp::Eq,
                        &discr,
                        &ImmTy::from_uint(const_int, discr.layout),
                    )?;
                    if res.to_scalar().to_bool()? {
                        target_block = target;
                        break;
                    }
                }

                self.go_to_block(target_block);
            }

            Call {
                ref func,
                ref args,
                destination,
                target,
                unwind,
                call_source: _,
                fn_span: _,
            } => {
                let old_stack = self.frame_idx();
                let old_loc = self.frame().loc;

                let EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location } =
                    self.eval_callee_and_args(terminator, func, args)?;

                let destination = self.force_allocation(&self.eval_place(destination)?)?;
                self.init_fn_call(
                    callee,
                    (fn_sig.abi, fn_abi),
                    &args,
                    with_caller_location,
                    &destination,
                    target,
                    if fn_abi.can_unwind { unwind } else { mir::UnwindAction::Unreachable },
                )?;
                // Sanity-check that `eval_fn_call` either pushed a new frame or
                // did a jump to another block.
                if self.frame_idx() == old_stack && self.frame().loc == old_loc {
                    span_bug!(terminator.source_info.span, "evaluating this call made no progress");
                }
            }

            TailCall { ref func, ref args, fn_span: _ } => {
                let old_frame_idx = self.frame_idx();

                let EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location } =
                    self.eval_callee_and_args(terminator, func, args)?;

                self.init_fn_tail_call(callee, (fn_sig.abi, fn_abi), &args, with_caller_location)?;

                if self.frame_idx() != old_frame_idx {
                    span_bug!(
                        terminator.source_info.span,
                        "evaluating this tail call pushed a new stack frame"
                    );
                }
            }

            Drop { place, target, unwind, replace: _ } => {
                let place = self.eval_place(place)?;
                let instance = Instance::resolve_drop_in_place(*self.tcx, place.layout.ty);
                if let ty::InstanceKind::DropGlue(_, None) = instance.def {
                    // This is the branch we enter if and only if the dropped type has no drop glue
                    // whatsoever. This can happen as a result of monomorphizing a drop of a
                    // generic. In order to make sure that generic and non-generic code behaves
                    // roughly the same (and in keeping with Mir semantics) we do nothing here.
                    self.go_to_block(target);
                    return interp_ok(());
                }
                trace!("TerminatorKind::drop: {:?}, type {}", place, place.layout.ty);
                self.init_drop_in_place_call(&place, instance, target, unwind)?;
            }

            Assert { ref cond, expected, ref msg, target, unwind } => {
                let ignored =
                    M::ignore_optional_overflow_checks(self) && msg.is_optional_overflow_check();
                let cond_val = self.read_scalar(&self.eval_operand(cond, None)?)?.to_bool()?;
                if ignored || expected == cond_val {
                    self.go_to_block(target);
                } else {
                    M::assert_panic(self, msg, unwind)?;
                }
            }

            UnwindTerminate(reason) => {
                M::unwind_terminate(self, reason)?;
            }

            // When we encounter Resume, we've finished unwinding
            // cleanup for the current stack frame. We pop it in order
            // to continue unwinding the next frame
            UnwindResume => {
                trace!("unwinding: resuming from cleanup");
                // By definition, a Resume terminator means
                // that we're unwinding
                self.return_from_current_stack_frame(/* unwinding */ true)?;
                return interp_ok(());
            }

            // It is UB to ever encounter this.
            Unreachable => throw_ub!(Unreachable),

            // These should never occur for MIR we actually run.
            FalseEdge { .. } | FalseUnwind { .. } | Yield { .. } | CoroutineDrop => span_bug!(
                terminator.source_info.span,
                "{:#?} should have been eliminated by MIR pass",
                terminator.kind
            ),

            InlineAsm { template, ref operands, options, ref targets, .. } => {
                M::eval_inline_asm(self, template, operands, options, targets)?;
            }
        }

        interp_ok(())
    }
}