rustc_middle/mir/interpret/
error.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
use std::any::Any;
use std::backtrace::Backtrace;
use std::borrow::Cow;
use std::{convert, fmt, mem, ops};

use either::Either;
use rustc_abi::{Align, Size, VariantIdx, WrappingRange};
use rustc_ast_ir::Mutability;
use rustc_data_structures::sync::Lock;
use rustc_errors::{DiagArgName, DiagArgValue, DiagMessage, ErrorGuaranteed, IntoDiagArg};
use rustc_macros::{HashStable, TyDecodable, TyEncodable};
use rustc_session::CtfeBacktrace;
use rustc_span::def_id::DefId;
use rustc_span::{DUMMY_SP, Span, Symbol};

use super::{AllocId, AllocRange, ConstAllocation, Pointer, Scalar};
use crate::error;
use crate::mir::{ConstAlloc, ConstValue};
use crate::ty::{self, Ty, TyCtxt, ValTree, layout, tls};

#[derive(Debug, Copy, Clone, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
pub enum ErrorHandled {
    /// Already reported an error for this evaluation, and the compilation is
    /// *guaranteed* to fail. Warnings/lints *must not* produce `Reported`.
    Reported(ReportedErrorInfo, Span),
    /// Don't emit an error, the evaluation failed because the MIR was generic
    /// and the args didn't fully monomorphize it.
    TooGeneric(Span),
}

impl From<ReportedErrorInfo> for ErrorHandled {
    #[inline]
    fn from(error: ReportedErrorInfo) -> ErrorHandled {
        ErrorHandled::Reported(error, DUMMY_SP)
    }
}

impl ErrorHandled {
    pub fn with_span(self, span: Span) -> Self {
        match self {
            ErrorHandled::Reported(err, _span) => ErrorHandled::Reported(err, span),
            ErrorHandled::TooGeneric(_span) => ErrorHandled::TooGeneric(span),
        }
    }

    pub fn emit_note(&self, tcx: TyCtxt<'_>) {
        match self {
            &ErrorHandled::Reported(err, span) => {
                if !err.allowed_in_infallible && !span.is_dummy() {
                    tcx.dcx().emit_note(error::ErroneousConstant { span });
                }
            }
            &ErrorHandled::TooGeneric(_) => {}
        }
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
pub struct ReportedErrorInfo {
    error: ErrorGuaranteed,
    /// Whether this error is allowed to show up even in otherwise "infallible" promoteds.
    /// This is for things like overflows during size computation or resource exhaustion.
    allowed_in_infallible: bool,
}

impl ReportedErrorInfo {
    #[inline]
    pub fn const_eval_error(error: ErrorGuaranteed) -> ReportedErrorInfo {
        ReportedErrorInfo { allowed_in_infallible: false, error }
    }

    /// Use this when the error that led to this is *not* a const-eval error
    /// (e.g., a layout or type checking error).
    #[inline]
    pub fn non_const_eval_error(error: ErrorGuaranteed) -> ReportedErrorInfo {
        ReportedErrorInfo { allowed_in_infallible: true, error }
    }

    /// Use this when the error that led to this *is* a const-eval error, but
    /// we do allow it to occur in infallible constants (e.g., resource exhaustion).
    #[inline]
    pub fn allowed_in_infallible(error: ErrorGuaranteed) -> ReportedErrorInfo {
        ReportedErrorInfo { allowed_in_infallible: true, error }
    }

    pub fn is_allowed_in_infallible(&self) -> bool {
        self.allowed_in_infallible
    }
}

impl Into<ErrorGuaranteed> for ReportedErrorInfo {
    #[inline]
    fn into(self) -> ErrorGuaranteed {
        self.error
    }
}

TrivialTypeTraversalImpls! { ErrorHandled }

pub type EvalToAllocationRawResult<'tcx> = Result<ConstAlloc<'tcx>, ErrorHandled>;
pub type EvalStaticInitializerRawResult<'tcx> = Result<ConstAllocation<'tcx>, ErrorHandled>;
pub type EvalToConstValueResult<'tcx> = Result<ConstValue<'tcx>, ErrorHandled>;
/// `Ok(Err(ty))` indicates the constant was fine, but the valtree couldn't be constructed
/// because the value contains something of type `ty` that is not valtree-compatible.
/// The caller can then show an appropriate error; the query does not have the
/// necessary context to give good user-facing errors for this case.
pub type EvalToValTreeResult<'tcx> = Result<Result<ValTree<'tcx>, Ty<'tcx>>, ErrorHandled>;

#[cfg(target_pointer_width = "64")]
rustc_data_structures::static_assert_size!(InterpErrorInfo<'_>, 8);

/// Packages the kind of error we got from the const code interpreter
/// up with a Rust-level backtrace of where the error occurred.
/// These should always be constructed by calling `.into()` on
/// an `InterpError`. In `rustc_mir::interpret`, we have `throw_err_*`
/// macros for this.
///
/// Interpreter errors must *not* be silently discarded (that will lead to a panic). Instead,
/// explicitly call `discard_err` if this is really the right thing to do. Note that if
/// this happens during const-eval or in Miri, it could lead to a UB error being lost!
#[derive(Debug)]
pub struct InterpErrorInfo<'tcx>(Box<InterpErrorInfoInner<'tcx>>);

#[derive(Debug)]
struct InterpErrorInfoInner<'tcx> {
    kind: InterpErrorKind<'tcx>,
    backtrace: InterpErrorBacktrace,
}

#[derive(Debug)]
pub struct InterpErrorBacktrace {
    backtrace: Option<Box<Backtrace>>,
}

impl InterpErrorBacktrace {
    pub fn new() -> InterpErrorBacktrace {
        let capture_backtrace = tls::with_opt(|tcx| {
            if let Some(tcx) = tcx {
                *Lock::borrow(&tcx.sess.ctfe_backtrace)
            } else {
                CtfeBacktrace::Disabled
            }
        });

        let backtrace = match capture_backtrace {
            CtfeBacktrace::Disabled => None,
            CtfeBacktrace::Capture => Some(Box::new(Backtrace::force_capture())),
            CtfeBacktrace::Immediate => {
                // Print it now.
                let backtrace = Backtrace::force_capture();
                print_backtrace(&backtrace);
                None
            }
        };

        InterpErrorBacktrace { backtrace }
    }

    pub fn print_backtrace(&self) {
        if let Some(backtrace) = self.backtrace.as_ref() {
            print_backtrace(backtrace);
        }
    }
}

impl<'tcx> InterpErrorInfo<'tcx> {
    pub fn into_parts(self) -> (InterpErrorKind<'tcx>, InterpErrorBacktrace) {
        let InterpErrorInfo(box InterpErrorInfoInner { kind, backtrace }) = self;
        (kind, backtrace)
    }

    pub fn into_kind(self) -> InterpErrorKind<'tcx> {
        self.0.kind
    }

    pub fn from_parts(kind: InterpErrorKind<'tcx>, backtrace: InterpErrorBacktrace) -> Self {
        Self(Box::new(InterpErrorInfoInner { kind, backtrace }))
    }

    #[inline]
    pub fn kind(&self) -> &InterpErrorKind<'tcx> {
        &self.0.kind
    }
}

fn print_backtrace(backtrace: &Backtrace) {
    eprintln!("\n\nAn error occurred in the MIR interpreter:\n{backtrace}");
}

impl From<ErrorHandled> for InterpErrorInfo<'_> {
    fn from(err: ErrorHandled) -> Self {
        InterpErrorKind::InvalidProgram(match err {
            ErrorHandled::Reported(r, _span) => InvalidProgramInfo::AlreadyReported(r),
            ErrorHandled::TooGeneric(_span) => InvalidProgramInfo::TooGeneric,
        })
        .into()
    }
}

impl<'tcx> From<InterpErrorKind<'tcx>> for InterpErrorInfo<'tcx> {
    fn from(kind: InterpErrorKind<'tcx>) -> Self {
        InterpErrorInfo(Box::new(InterpErrorInfoInner {
            kind,
            backtrace: InterpErrorBacktrace::new(),
        }))
    }
}

/// Error information for when the program we executed turned out not to actually be a valid
/// program. This cannot happen in stand-alone Miri (except for layout errors that are only detect
/// during monomorphization), but it can happen during CTFE/ConstProp where we work on generic code
/// or execution does not have all information available.
#[derive(Debug)]
pub enum InvalidProgramInfo<'tcx> {
    /// Resolution can fail if we are in a too generic context.
    TooGeneric,
    /// Abort in case errors are already reported.
    AlreadyReported(ReportedErrorInfo),
    /// An error occurred during layout computation.
    Layout(layout::LayoutError<'tcx>),
    /// An error occurred during FnAbi computation: the passed --target lacks FFI support
    /// (which unfortunately typeck does not reject).
    /// Not using `FnAbiError` as that contains a nested `LayoutError`.
    FnAbiAdjustForForeignAbi(rustc_target::callconv::AdjustForForeignAbiError),
}

/// Details of why a pointer had to be in-bounds.
#[derive(Debug, Copy, Clone)]
pub enum CheckInAllocMsg {
    /// We are access memory.
    MemoryAccessTest,
    /// We are doing pointer arithmetic.
    PointerArithmeticTest,
    /// We are doing pointer offset_from.
    OffsetFromTest,
    /// None of the above -- generic/unspecific inbounds test.
    InboundsTest,
}

/// Details of which pointer is not aligned.
#[derive(Debug, Copy, Clone)]
pub enum CheckAlignMsg {
    /// The accessed pointer did not have proper alignment.
    AccessedPtr,
    /// The access occurred with a place that was based on a misaligned pointer.
    BasedOn,
}

#[derive(Debug, Copy, Clone)]
pub enum InvalidMetaKind {
    /// Size of a `[T]` is too big
    SliceTooBig,
    /// Size of a DST is too big
    TooBig,
}

impl IntoDiagArg for InvalidMetaKind {
    fn into_diag_arg(self) -> DiagArgValue {
        DiagArgValue::Str(Cow::Borrowed(match self {
            InvalidMetaKind::SliceTooBig => "slice_too_big",
            InvalidMetaKind::TooBig => "too_big",
        }))
    }
}

/// Details of an access to uninitialized bytes / bad pointer bytes where it is not allowed.
#[derive(Debug, Clone, Copy)]
pub struct BadBytesAccess {
    /// Range of the original memory access.
    pub access: AllocRange,
    /// Range of the bad memory that was encountered. (Might not be maximal.)
    pub bad: AllocRange,
}

/// Information about a size mismatch.
#[derive(Debug)]
pub struct ScalarSizeMismatch {
    pub target_size: u64,
    pub data_size: u64,
}

/// Information about a misaligned pointer.
#[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
pub struct Misalignment {
    pub has: Align,
    pub required: Align,
}

macro_rules! impl_into_diag_arg_through_debug {
    ($($ty:ty),*$(,)?) => {$(
        impl IntoDiagArg for $ty {
            fn into_diag_arg(self) -> DiagArgValue {
                DiagArgValue::Str(Cow::Owned(format!("{self:?}")))
            }
        }
    )*}
}

// These types have nice `Debug` output so we can just use them in diagnostics.
impl_into_diag_arg_through_debug! {
    AllocId,
    Pointer<AllocId>,
    AllocRange,
}

/// Error information for when the program caused Undefined Behavior.
#[derive(Debug)]
pub enum UndefinedBehaviorInfo<'tcx> {
    /// Free-form case. Only for errors that are never caught! Used by miri
    Ub(String),
    // FIXME(fee1-dead) these should all be actual variants of the enum instead of dynamically
    // dispatched
    /// A custom (free-form) fluent-translated error, created by `err_ub_custom!`.
    Custom(crate::error::CustomSubdiagnostic<'tcx>),
    /// Validation error.
    ValidationError(ValidationErrorInfo<'tcx>),

    /// Unreachable code was executed.
    Unreachable,
    /// A slice/array index projection went out-of-bounds.
    BoundsCheckFailed { len: u64, index: u64 },
    /// Something was divided by 0 (x / 0).
    DivisionByZero,
    /// Something was "remainded" by 0 (x % 0).
    RemainderByZero,
    /// Signed division overflowed (INT_MIN / -1).
    DivisionOverflow,
    /// Signed remainder overflowed (INT_MIN % -1).
    RemainderOverflow,
    /// Overflowing inbounds pointer arithmetic.
    PointerArithOverflow,
    /// Overflow in arithmetic that may not overflow.
    ArithOverflow { intrinsic: Symbol },
    /// Shift by too much.
    ShiftOverflow { intrinsic: Symbol, shift_amount: Either<u128, i128> },
    /// Invalid metadata in a wide pointer
    InvalidMeta(InvalidMetaKind),
    /// Reading a C string that does not end within its allocation.
    UnterminatedCString(Pointer<AllocId>),
    /// Using a pointer after it got freed.
    PointerUseAfterFree(AllocId, CheckInAllocMsg),
    /// Used a pointer outside the bounds it is valid for.
    PointerOutOfBounds {
        alloc_id: AllocId,
        alloc_size: Size,
        ptr_offset: i64,
        /// The size of the memory range that was expected to be in-bounds.
        inbounds_size: i64,
        msg: CheckInAllocMsg,
    },
    /// Using an integer as a pointer in the wrong way.
    DanglingIntPointer {
        addr: u64,
        /// The size of the memory range that was expected to be in-bounds (or 0 if we need an
        /// allocation but not any actual memory there, e.g. for function pointers).
        inbounds_size: i64,
        msg: CheckInAllocMsg,
    },
    /// Used a pointer with bad alignment.
    AlignmentCheckFailed(Misalignment, CheckAlignMsg),
    /// Writing to read-only memory.
    WriteToReadOnly(AllocId),
    /// Trying to access the data behind a function pointer.
    DerefFunctionPointer(AllocId),
    /// Trying to access the data behind a vtable pointer.
    DerefVTablePointer(AllocId),
    /// Using a non-boolean `u8` as bool.
    InvalidBool(u8),
    /// Using a non-character `u32` as character.
    InvalidChar(u32),
    /// The tag of an enum does not encode an actual discriminant.
    InvalidTag(Scalar<AllocId>),
    /// Using a pointer-not-to-a-function as function pointer.
    InvalidFunctionPointer(Pointer<AllocId>),
    /// Using a pointer-not-to-a-vtable as vtable pointer.
    InvalidVTablePointer(Pointer<AllocId>),
    /// Using a vtable for the wrong trait.
    InvalidVTableTrait {
        /// The vtable that was actually referenced by the wide pointer metadata.
        vtable_dyn_type: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
        /// The vtable that was expected at the point in MIR that it was accessed.
        expected_dyn_type: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
    },
    /// Using a string that is not valid UTF-8,
    InvalidStr(std::str::Utf8Error),
    /// Using uninitialized data where it is not allowed.
    InvalidUninitBytes(Option<(AllocId, BadBytesAccess)>),
    /// Working with a local that is not currently live.
    DeadLocal,
    /// Data size is not equal to target size.
    ScalarSizeMismatch(ScalarSizeMismatch),
    /// A discriminant of an uninhabited enum variant is written.
    UninhabitedEnumVariantWritten(VariantIdx),
    /// An uninhabited enum variant is projected.
    UninhabitedEnumVariantRead(Option<VariantIdx>),
    /// Trying to set discriminant to the niched variant, but the value does not match.
    InvalidNichedEnumVariantWritten { enum_ty: Ty<'tcx> },
    /// ABI-incompatible argument types.
    AbiMismatchArgument { caller_ty: Ty<'tcx>, callee_ty: Ty<'tcx> },
    /// ABI-incompatible return types.
    AbiMismatchReturn { caller_ty: Ty<'tcx>, callee_ty: Ty<'tcx> },
}

#[derive(Debug, Clone, Copy)]
pub enum PointerKind {
    Ref(Mutability),
    Box,
}

impl IntoDiagArg for PointerKind {
    fn into_diag_arg(self) -> DiagArgValue {
        DiagArgValue::Str(
            match self {
                Self::Ref(_) => "ref",
                Self::Box => "box",
            }
            .into(),
        )
    }
}

#[derive(Debug)]
pub struct ValidationErrorInfo<'tcx> {
    pub path: Option<String>,
    pub kind: ValidationErrorKind<'tcx>,
}

#[derive(Debug)]
pub enum ExpectedKind {
    Reference,
    Box,
    RawPtr,
    InitScalar,
    Bool,
    Char,
    Float,
    Int,
    FnPtr,
    EnumTag,
    Str,
}

impl From<PointerKind> for ExpectedKind {
    fn from(x: PointerKind) -> ExpectedKind {
        match x {
            PointerKind::Box => ExpectedKind::Box,
            PointerKind::Ref(_) => ExpectedKind::Reference,
        }
    }
}

#[derive(Debug)]
pub enum ValidationErrorKind<'tcx> {
    PointerAsInt {
        expected: ExpectedKind,
    },
    PartialPointer,
    PtrToUninhabited {
        ptr_kind: PointerKind,
        ty: Ty<'tcx>,
    },
    ConstRefToMutable,
    ConstRefToExtern,
    MutableRefToImmutable,
    UnsafeCellInImmutable,
    NullFnPtr,
    NeverVal,
    NullablePtrOutOfRange {
        range: WrappingRange,
        max_value: u128,
    },
    PtrOutOfRange {
        range: WrappingRange,
        max_value: u128,
    },
    OutOfRange {
        value: String,
        range: WrappingRange,
        max_value: u128,
    },
    UninhabitedVal {
        ty: Ty<'tcx>,
    },
    InvalidEnumTag {
        value: String,
    },
    UninhabitedEnumVariant,
    Uninit {
        expected: ExpectedKind,
    },
    InvalidVTablePtr {
        value: String,
    },
    InvalidMetaWrongTrait {
        /// The vtable that was actually referenced by the wide pointer metadata.
        vtable_dyn_type: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
        /// The vtable that was expected at the point in MIR that it was accessed.
        expected_dyn_type: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
    },
    InvalidMetaSliceTooLarge {
        ptr_kind: PointerKind,
    },
    InvalidMetaTooLarge {
        ptr_kind: PointerKind,
    },
    UnalignedPtr {
        ptr_kind: PointerKind,
        required_bytes: u64,
        found_bytes: u64,
    },
    NullPtr {
        ptr_kind: PointerKind,
    },
    DanglingPtrNoProvenance {
        ptr_kind: PointerKind,
        pointer: String,
    },
    DanglingPtrOutOfBounds {
        ptr_kind: PointerKind,
    },
    DanglingPtrUseAfterFree {
        ptr_kind: PointerKind,
    },
    InvalidBool {
        value: String,
    },
    InvalidChar {
        value: String,
    },
    InvalidFnPtr {
        value: String,
    },
}

/// Error information for when the program did something that might (or might not) be correct
/// to do according to the Rust spec, but due to limitations in the interpreter, the
/// operation could not be carried out. These limitations can differ between CTFE and the
/// Miri engine, e.g., CTFE does not support dereferencing pointers at integral addresses.
#[derive(Debug)]
pub enum UnsupportedOpInfo {
    /// Free-form case. Only for errors that are never caught! Used by Miri.
    // FIXME still use translatable diagnostics
    Unsupported(String),
    /// Unsized local variables.
    UnsizedLocal,
    /// Extern type field with an indeterminate offset.
    ExternTypeField,
    //
    // The variants below are only reachable from CTFE/const prop, miri will never emit them.
    //
    /// Overwriting parts of a pointer; without knowing absolute addresses, the resulting state
    /// cannot be represented by the CTFE interpreter.
    OverwritePartialPointer(Pointer<AllocId>),
    /// Attempting to read or copy parts of a pointer to somewhere else; without knowing absolute
    /// addresses, the resulting state cannot be represented by the CTFE interpreter.
    ReadPartialPointer(Pointer<AllocId>),
    /// Encountered a pointer where we needed an integer.
    ReadPointerAsInt(Option<(AllocId, BadBytesAccess)>),
    /// Accessing thread local statics
    ThreadLocalStatic(DefId),
    /// Accessing an unsupported extern static.
    ExternStatic(DefId),
}

/// Error information for when the program exhausted the resources granted to it
/// by the interpreter.
#[derive(Debug)]
pub enum ResourceExhaustionInfo {
    /// The stack grew too big.
    StackFrameLimitReached,
    /// There is not enough memory (on the host) to perform an allocation.
    MemoryExhausted,
    /// The address space (of the target) is full.
    AddressSpaceFull,
    /// The compiler got an interrupt signal (a user ran out of patience).
    Interrupted,
}

/// A trait for machine-specific errors (or other "machine stop" conditions).
pub trait MachineStopType: Any + fmt::Debug + Send {
    /// The diagnostic message for this error
    fn diagnostic_message(&self) -> DiagMessage;
    /// Add diagnostic arguments by passing name and value pairs to `adder`, which are passed to
    /// fluent for formatting the translated diagnostic message.
    fn add_args(self: Box<Self>, adder: &mut dyn FnMut(DiagArgName, DiagArgValue));
}

impl dyn MachineStopType {
    #[inline(always)]
    pub fn downcast_ref<T: Any>(&self) -> Option<&T> {
        let x: &dyn Any = self;
        x.downcast_ref()
    }
}

#[derive(Debug)]
pub enum InterpErrorKind<'tcx> {
    /// The program caused undefined behavior.
    UndefinedBehavior(UndefinedBehaviorInfo<'tcx>),
    /// The program did something the interpreter does not support (some of these *might* be UB
    /// but the interpreter is not sure).
    Unsupported(UnsupportedOpInfo),
    /// The program was invalid (ill-typed, bad MIR, not sufficiently monomorphized, ...).
    InvalidProgram(InvalidProgramInfo<'tcx>),
    /// The program exhausted the interpreter's resources (stack/heap too big,
    /// execution takes too long, ...).
    ResourceExhaustion(ResourceExhaustionInfo),
    /// Stop execution for a machine-controlled reason. This is never raised by
    /// the core engine itself.
    MachineStop(Box<dyn MachineStopType>),
}

impl InterpErrorKind<'_> {
    /// Some errors do string formatting even if the error is never printed.
    /// To avoid performance issues, there are places where we want to be sure to never raise these formatting errors,
    /// so this method lets us detect them and `bug!` on unexpected errors.
    pub fn formatted_string(&self) -> bool {
        matches!(
            self,
            InterpErrorKind::Unsupported(UnsupportedOpInfo::Unsupported(_))
                | InterpErrorKind::UndefinedBehavior(UndefinedBehaviorInfo::ValidationError { .. })
                | InterpErrorKind::UndefinedBehavior(UndefinedBehaviorInfo::Ub(_))
        )
    }
}

// Macros for constructing / throwing `InterpErrorKind`
#[macro_export]
macro_rules! err_unsup {
    ($($tt:tt)*) => {
        $crate::mir::interpret::InterpErrorKind::Unsupported(
            $crate::mir::interpret::UnsupportedOpInfo::$($tt)*
        )
    };
}

#[macro_export]
macro_rules! err_unsup_format {
    ($($tt:tt)*) => { $crate::err_unsup!(Unsupported(format!($($tt)*))) };
}

#[macro_export]
macro_rules! err_inval {
    ($($tt:tt)*) => {
        $crate::mir::interpret::InterpErrorKind::InvalidProgram(
            $crate::mir::interpret::InvalidProgramInfo::$($tt)*
        )
    };
}

#[macro_export]
macro_rules! err_ub {
    ($($tt:tt)*) => {
        $crate::mir::interpret::InterpErrorKind::UndefinedBehavior(
            $crate::mir::interpret::UndefinedBehaviorInfo::$($tt)*
        )
    };
}

#[macro_export]
macro_rules! err_ub_format {
    ($($tt:tt)*) => { $crate::err_ub!(Ub(format!($($tt)*))) };
}

#[macro_export]
macro_rules! err_ub_custom {
    ($msg:expr $(, $($name:ident = $value:expr),* $(,)?)?) => {{
        $(
            let ($($name,)*) = ($($value,)*);
        )?
        $crate::err_ub!(Custom(
            $crate::error::CustomSubdiagnostic {
                msg: || $msg,
                add_args: Box::new(move |mut set_arg| {
                    $($(
                        set_arg(stringify!($name).into(), rustc_errors::IntoDiagArg::into_diag_arg($name));
                    )*)?
                })
            }
        ))
    }};
}

#[macro_export]
macro_rules! err_exhaust {
    ($($tt:tt)*) => {
        $crate::mir::interpret::InterpErrorKind::ResourceExhaustion(
            $crate::mir::interpret::ResourceExhaustionInfo::$($tt)*
        )
    };
}

#[macro_export]
macro_rules! err_machine_stop {
    ($($tt:tt)*) => {
        $crate::mir::interpret::InterpErrorKind::MachineStop(Box::new($($tt)*))
    };
}

// In the `throw_*` macros, avoid `return` to make them work with `try {}`.
#[macro_export]
macro_rules! throw_unsup {
    ($($tt:tt)*) => { do yeet $crate::err_unsup!($($tt)*) };
}

#[macro_export]
macro_rules! throw_unsup_format {
    ($($tt:tt)*) => { do yeet $crate::err_unsup_format!($($tt)*) };
}

#[macro_export]
macro_rules! throw_inval {
    ($($tt:tt)*) => { do yeet $crate::err_inval!($($tt)*) };
}

#[macro_export]
macro_rules! throw_ub {
    ($($tt:tt)*) => { do yeet $crate::err_ub!($($tt)*) };
}

#[macro_export]
macro_rules! throw_ub_format {
    ($($tt:tt)*) => { do yeet $crate::err_ub_format!($($tt)*) };
}

#[macro_export]
macro_rules! throw_ub_custom {
    ($($tt:tt)*) => { do yeet $crate::err_ub_custom!($($tt)*) };
}

#[macro_export]
macro_rules! throw_exhaust {
    ($($tt:tt)*) => { do yeet $crate::err_exhaust!($($tt)*) };
}

#[macro_export]
macro_rules! throw_machine_stop {
    ($($tt:tt)*) => { do yeet $crate::err_machine_stop!($($tt)*) };
}

/// Guard type that panics on drop.
#[derive(Debug)]
struct Guard;

impl Drop for Guard {
    fn drop(&mut self) {
        // We silence the guard if we are already panicking, to avoid double-panics.
        if !std::thread::panicking() {
            panic!(
                "an interpreter error got improperly discarded; use `discard_err()` if this is intentional"
            );
        }
    }
}

/// The result type used by the interpreter. This is a newtype around `Result`
/// to block access to operations like `ok()` that discard UB errors.
///
/// We also make things panic if this type is ever implicitly dropped.
#[derive(Debug)]
#[must_use]
pub struct InterpResult_<'tcx, T> {
    res: Result<T, InterpErrorInfo<'tcx>>,
    guard: Guard,
}

// Type alias to be able to set a default type argument.
pub type InterpResult<'tcx, T = ()> = InterpResult_<'tcx, T>;

impl<'tcx, T> ops::Try for InterpResult_<'tcx, T> {
    type Output = T;
    type Residual = InterpResult_<'tcx, convert::Infallible>;

    #[inline]
    fn from_output(output: Self::Output) -> Self {
        InterpResult_::new(Ok(output))
    }

    #[inline]
    fn branch(self) -> ops::ControlFlow<Self::Residual, Self::Output> {
        match self.disarm() {
            Ok(v) => ops::ControlFlow::Continue(v),
            Err(e) => ops::ControlFlow::Break(InterpResult_::new(Err(e))),
        }
    }
}

impl<'tcx, T> ops::FromResidual for InterpResult_<'tcx, T> {
    #[inline]
    #[track_caller]
    fn from_residual(residual: InterpResult_<'tcx, convert::Infallible>) -> Self {
        match residual.disarm() {
            Err(e) => Self::new(Err(e)),
        }
    }
}

// Allow `yeet`ing `InterpError` in functions returning `InterpResult_`.
impl<'tcx, T> ops::FromResidual<ops::Yeet<InterpErrorKind<'tcx>>> for InterpResult_<'tcx, T> {
    #[inline]
    fn from_residual(ops::Yeet(e): ops::Yeet<InterpErrorKind<'tcx>>) -> Self {
        Self::new(Err(e.into()))
    }
}

// Allow `?` on `Result<_, InterpError>` in functions returning `InterpResult_`.
// This is useful e.g. for `option.ok_or_else(|| err_ub!(...))`.
impl<'tcx, T, E: Into<InterpErrorInfo<'tcx>>> ops::FromResidual<Result<convert::Infallible, E>>
    for InterpResult_<'tcx, T>
{
    #[inline]
    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
        match residual {
            Err(e) => Self::new(Err(e.into())),
        }
    }
}

impl<'tcx, T, E: Into<InterpErrorInfo<'tcx>>> From<Result<T, E>> for InterpResult<'tcx, T> {
    #[inline]
    fn from(value: Result<T, E>) -> Self {
        Self::new(value.map_err(|e| e.into()))
    }
}

impl<'tcx, T, V: FromIterator<T>> FromIterator<InterpResult<'tcx, T>> for InterpResult<'tcx, V> {
    fn from_iter<I: IntoIterator<Item = InterpResult<'tcx, T>>>(iter: I) -> Self {
        Self::new(iter.into_iter().map(|x| x.disarm()).collect())
    }
}

impl<'tcx, T> InterpResult_<'tcx, T> {
    #[inline(always)]
    fn new(res: Result<T, InterpErrorInfo<'tcx>>) -> Self {
        Self { res, guard: Guard }
    }

    #[inline(always)]
    fn disarm(self) -> Result<T, InterpErrorInfo<'tcx>> {
        mem::forget(self.guard);
        self.res
    }

    /// Discard the error information in this result. Only use this if ignoring Undefined Behavior is okay!
    #[inline]
    pub fn discard_err(self) -> Option<T> {
        self.disarm().ok()
    }

    /// Look at the `Result` wrapped inside of this.
    /// Must only be used to report the error!
    #[inline]
    pub fn report_err(self) -> Result<T, InterpErrorInfo<'tcx>> {
        self.disarm()
    }

    #[inline]
    pub fn map<U>(self, f: impl FnOnce(T) -> U) -> InterpResult<'tcx, U> {
        InterpResult_::new(self.disarm().map(f))
    }

    #[inline]
    pub fn map_err_info(
        self,
        f: impl FnOnce(InterpErrorInfo<'tcx>) -> InterpErrorInfo<'tcx>,
    ) -> InterpResult<'tcx, T> {
        InterpResult_::new(self.disarm().map_err(f))
    }

    #[inline]
    pub fn map_err_kind(
        self,
        f: impl FnOnce(InterpErrorKind<'tcx>) -> InterpErrorKind<'tcx>,
    ) -> InterpResult<'tcx, T> {
        InterpResult_::new(self.disarm().map_err(|mut e| {
            e.0.kind = f(e.0.kind);
            e
        }))
    }

    #[inline]
    pub fn inspect_err_kind(self, f: impl FnOnce(&InterpErrorKind<'tcx>)) -> InterpResult<'tcx, T> {
        InterpResult_::new(self.disarm().inspect_err(|e| f(&e.0.kind)))
    }

    #[inline]
    #[track_caller]
    pub fn unwrap(self) -> T {
        self.disarm().unwrap()
    }

    #[inline]
    #[track_caller]
    pub fn unwrap_or_else(self, f: impl FnOnce(InterpErrorInfo<'tcx>) -> T) -> T {
        self.disarm().unwrap_or_else(f)
    }

    #[inline]
    #[track_caller]
    pub fn expect(self, msg: &str) -> T {
        self.disarm().expect(msg)
    }

    #[inline]
    pub fn and_then<U>(self, f: impl FnOnce(T) -> InterpResult<'tcx, U>) -> InterpResult<'tcx, U> {
        InterpResult_::new(self.disarm().and_then(|t| f(t).disarm()))
    }

    /// Returns success if both `self` and `other` succeed, while ensuring we don't
    /// accidentally drop an error.
    ///
    /// If both are an error, `self` will be reported.
    #[inline]
    pub fn and<U>(self, other: InterpResult<'tcx, U>) -> InterpResult<'tcx, (T, U)> {
        match self.disarm() {
            Ok(t) => interp_ok((t, other?)),
            Err(e) => {
                // Discard the other error.
                drop(other.disarm());
                // Return `self`.
                InterpResult_::new(Err(e))
            }
        }
    }
}

#[inline(always)]
pub fn interp_ok<'tcx, T>(x: T) -> InterpResult<'tcx, T> {
    InterpResult_::new(Ok(x))
}