rustc_const_eval/interpret/
memory.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
//! The memory subsystem.
//!
//! Generally, we use `Pointer` to denote memory addresses. However, some operations
//! have a "size"-like parameter, and they take `Scalar` for the address because
//! if the size is 0, then the pointer can also be a (properly aligned, non-null)
//! integer. It is crucial that these operations call `check_align` *before*
//! short-circuiting the empty case!

use std::assert_matches::assert_matches;
use std::borrow::{Borrow, Cow};
use std::collections::VecDeque;
use std::{fmt, mem, ptr};

use rustc_abi::{Align, HasDataLayout, Size};
use rustc_ast::Mutability;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
use rustc_middle::bug;
use rustc_middle::mir::display_allocation;
use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
use tracing::{debug, instrument, trace};

use super::{
    AllocBytes, AllocId, AllocMap, AllocRange, Allocation, CheckAlignMsg, CheckInAllocMsg,
    CtfeProvenance, GlobalAlloc, InterpCx, InterpResult, Machine, MayLeak, Misalignment, Pointer,
    PointerArithmetic, Provenance, Scalar, alloc_range, err_ub, err_ub_custom, interp_ok, throw_ub,
    throw_ub_custom, throw_unsup, throw_unsup_format,
};
use crate::fluent_generated as fluent;

#[derive(Debug, PartialEq, Copy, Clone)]
pub enum MemoryKind<T> {
    /// Stack memory. Error if deallocated except during a stack pop.
    Stack,
    /// Memory allocated by `caller_location` intrinsic. Error if ever deallocated.
    CallerLocation,
    /// Additional memory kinds a machine wishes to distinguish from the builtin ones.
    Machine(T),
}

impl<T: MayLeak> MayLeak for MemoryKind<T> {
    #[inline]
    fn may_leak(self) -> bool {
        match self {
            MemoryKind::Stack => false,
            MemoryKind::CallerLocation => true,
            MemoryKind::Machine(k) => k.may_leak(),
        }
    }
}

impl<T: fmt::Display> fmt::Display for MemoryKind<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            MemoryKind::Stack => write!(f, "stack variable"),
            MemoryKind::CallerLocation => write!(f, "caller location"),
            MemoryKind::Machine(m) => write!(f, "{m}"),
        }
    }
}

/// The return value of `get_alloc_info` indicates the "kind" of the allocation.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum AllocKind {
    /// A regular live data allocation.
    LiveData,
    /// A function allocation (that fn ptrs point to).
    Function,
    /// A (symbolic) vtable allocation.
    VTable,
    /// A dead allocation.
    Dead,
}

/// Metadata about an `AllocId`.
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct AllocInfo {
    pub size: Size,
    pub align: Align,
    pub kind: AllocKind,
    pub mutbl: Mutability,
}

impl AllocInfo {
    fn new(size: Size, align: Align, kind: AllocKind, mutbl: Mutability) -> Self {
        Self { size, align, kind, mutbl }
    }
}

/// The value of a function pointer.
#[derive(Debug, Copy, Clone)]
pub enum FnVal<'tcx, Other> {
    Instance(Instance<'tcx>),
    Other(Other),
}

impl<'tcx, Other> FnVal<'tcx, Other> {
    pub fn as_instance(self) -> InterpResult<'tcx, Instance<'tcx>> {
        match self {
            FnVal::Instance(instance) => interp_ok(instance),
            FnVal::Other(_) => {
                throw_unsup_format!("'foreign' function pointers are not supported in this context")
            }
        }
    }
}

// `Memory` has to depend on the `Machine` because some of its operations
// (e.g., `get`) call a `Machine` hook.
pub struct Memory<'tcx, M: Machine<'tcx>> {
    /// Allocations local to this instance of the interpreter. The kind
    /// helps ensure that the same mechanism is used for allocation and
    /// deallocation. When an allocation is not found here, it is a
    /// global and looked up in the `tcx` for read access. Some machines may
    /// have to mutate this map even on a read-only access to a global (because
    /// they do pointer provenance tracking and the allocations in `tcx` have
    /// the wrong type), so we let the machine override this type.
    /// Either way, if the machine allows writing to a global, doing so will
    /// create a copy of the global allocation here.
    // FIXME: this should not be public, but interning currently needs access to it
    pub(super) alloc_map: M::MemoryMap,

    /// Map for "extra" function pointers.
    extra_fn_ptr_map: FxIndexMap<AllocId, M::ExtraFnVal>,

    /// To be able to compare pointers with null, and to check alignment for accesses
    /// to ZSTs (where pointers may dangle), we keep track of the size even for allocations
    /// that do not exist any more.
    // FIXME: this should not be public, but interning currently needs access to it
    pub(super) dead_alloc_map: FxIndexMap<AllocId, (Size, Align)>,

    /// This stores whether we are currently doing reads purely for the purpose of validation.
    /// Those reads do not trigger the machine's hooks for memory reads.
    /// Needless to say, this must only be set with great care!
    validation_in_progress: bool,
}

/// A reference to some allocation that was already bounds-checked for the given region
/// and had the on-access machine hooks run.
#[derive(Copy, Clone)]
pub struct AllocRef<'a, 'tcx, Prov: Provenance, Extra, Bytes: AllocBytes = Box<[u8]>> {
    alloc: &'a Allocation<Prov, Extra, Bytes>,
    range: AllocRange,
    tcx: TyCtxt<'tcx>,
    alloc_id: AllocId,
}
/// A reference to some allocation that was already bounds-checked for the given region
/// and had the on-access machine hooks run.
pub struct AllocRefMut<'a, 'tcx, Prov: Provenance, Extra, Bytes: AllocBytes = Box<[u8]>> {
    alloc: &'a mut Allocation<Prov, Extra, Bytes>,
    range: AllocRange,
    tcx: TyCtxt<'tcx>,
    alloc_id: AllocId,
}

impl<'tcx, M: Machine<'tcx>> Memory<'tcx, M> {
    pub fn new() -> Self {
        Memory {
            alloc_map: M::MemoryMap::default(),
            extra_fn_ptr_map: FxIndexMap::default(),
            dead_alloc_map: FxIndexMap::default(),
            validation_in_progress: false,
        }
    }

    /// This is used by [priroda](https://github.com/oli-obk/priroda)
    pub fn alloc_map(&self) -> &M::MemoryMap {
        &self.alloc_map
    }
}

impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
    /// Call this to turn untagged "global" pointers (obtained via `tcx`) into
    /// the machine pointer to the allocation. Must never be used
    /// for any other pointers, nor for TLS statics.
    ///
    /// Using the resulting pointer represents a *direct* access to that memory
    /// (e.g. by directly using a `static`),
    /// as opposed to access through a pointer that was created by the program.
    ///
    /// This function can fail only if `ptr` points to an `extern static`.
    #[inline]
    pub fn global_root_pointer(
        &self,
        ptr: Pointer<CtfeProvenance>,
    ) -> InterpResult<'tcx, Pointer<M::Provenance>> {
        let alloc_id = ptr.provenance.alloc_id();
        // We need to handle `extern static`.
        match self.tcx.try_get_global_alloc(alloc_id) {
            Some(GlobalAlloc::Static(def_id)) if self.tcx.is_thread_local_static(def_id) => {
                // Thread-local statics do not have a constant address. They *must* be accessed via
                // `ThreadLocalRef`; we can never have a pointer to them as a regular constant value.
                bug!("global memory cannot point to thread-local static")
            }
            Some(GlobalAlloc::Static(def_id)) if self.tcx.is_foreign_item(def_id) => {
                return M::extern_static_pointer(self, def_id);
            }
            None => {
                assert!(
                    self.memory.extra_fn_ptr_map.contains_key(&alloc_id),
                    "{alloc_id:?} is neither global nor a function pointer"
                );
            }
            _ => {}
        }
        // And we need to get the provenance.
        M::adjust_alloc_root_pointer(self, ptr, M::GLOBAL_KIND.map(MemoryKind::Machine))
    }

    pub fn fn_ptr(&mut self, fn_val: FnVal<'tcx, M::ExtraFnVal>) -> Pointer<M::Provenance> {
        let id = match fn_val {
            FnVal::Instance(instance) => {
                let salt = M::get_global_alloc_salt(self, Some(instance));
                self.tcx.reserve_and_set_fn_alloc(instance, salt)
            }
            FnVal::Other(extra) => {
                // FIXME(RalfJung): Should we have a cache here?
                let id = self.tcx.reserve_alloc_id();
                let old = self.memory.extra_fn_ptr_map.insert(id, extra);
                assert!(old.is_none());
                id
            }
        };
        // Functions are global allocations, so make sure we get the right root pointer.
        // We know this is not an `extern static` so this cannot fail.
        self.global_root_pointer(Pointer::from(id)).unwrap()
    }

    pub fn allocate_ptr(
        &mut self,
        size: Size,
        align: Align,
        kind: MemoryKind<M::MemoryKind>,
    ) -> InterpResult<'tcx, Pointer<M::Provenance>> {
        let alloc = if M::PANIC_ON_ALLOC_FAIL {
            Allocation::uninit(size, align)
        } else {
            Allocation::try_uninit(size, align)?
        };
        self.insert_allocation(alloc, kind)
    }

    pub fn allocate_bytes_ptr(
        &mut self,
        bytes: &[u8],
        align: Align,
        kind: MemoryKind<M::MemoryKind>,
        mutability: Mutability,
    ) -> InterpResult<'tcx, Pointer<M::Provenance>> {
        let alloc = Allocation::from_bytes(bytes, align, mutability);
        self.insert_allocation(alloc, kind)
    }

    pub fn insert_allocation(
        &mut self,
        alloc: Allocation<M::Provenance, (), M::Bytes>,
        kind: MemoryKind<M::MemoryKind>,
    ) -> InterpResult<'tcx, Pointer<M::Provenance>> {
        assert!(alloc.size() <= self.max_size_of_val());
        let id = self.tcx.reserve_alloc_id();
        debug_assert_ne!(
            Some(kind),
            M::GLOBAL_KIND.map(MemoryKind::Machine),
            "dynamically allocating global memory"
        );
        // We have set things up so we don't need to call `adjust_from_tcx` here,
        // so we avoid copying the entire allocation contents.
        let extra = M::init_alloc_extra(self, id, kind, alloc.size(), alloc.align)?;
        let alloc = alloc.with_extra(extra);
        self.memory.alloc_map.insert(id, (kind, alloc));
        M::adjust_alloc_root_pointer(self, Pointer::from(id), Some(kind))
    }

    pub fn reallocate_ptr(
        &mut self,
        ptr: Pointer<Option<M::Provenance>>,
        old_size_and_align: Option<(Size, Align)>,
        new_size: Size,
        new_align: Align,
        kind: MemoryKind<M::MemoryKind>,
    ) -> InterpResult<'tcx, Pointer<M::Provenance>> {
        let (alloc_id, offset, _prov) = self.ptr_get_alloc_id(ptr, 0)?;
        if offset.bytes() != 0 {
            throw_ub_custom!(
                fluent::const_eval_realloc_or_alloc_with_offset,
                ptr = format!("{ptr:?}"),
                kind = "realloc"
            );
        }

        // For simplicities' sake, we implement reallocate as "alloc, copy, dealloc".
        // This happens so rarely, the perf advantage is outweighed by the maintenance cost.
        let new_ptr = self.allocate_ptr(new_size, new_align, kind)?;
        let old_size = match old_size_and_align {
            Some((size, _align)) => size,
            None => self.get_alloc_raw(alloc_id)?.size(),
        };
        // This will also call the access hooks.
        self.mem_copy(ptr, new_ptr.into(), old_size.min(new_size), /*nonoverlapping*/ true)?;
        self.deallocate_ptr(ptr, old_size_and_align, kind)?;

        interp_ok(new_ptr)
    }

    #[instrument(skip(self), level = "debug")]
    pub fn deallocate_ptr(
        &mut self,
        ptr: Pointer<Option<M::Provenance>>,
        old_size_and_align: Option<(Size, Align)>,
        kind: MemoryKind<M::MemoryKind>,
    ) -> InterpResult<'tcx> {
        let (alloc_id, offset, prov) = self.ptr_get_alloc_id(ptr, 0)?;
        trace!("deallocating: {alloc_id:?}");

        if offset.bytes() != 0 {
            throw_ub_custom!(
                fluent::const_eval_realloc_or_alloc_with_offset,
                ptr = format!("{ptr:?}"),
                kind = "dealloc",
            );
        }

        let Some((alloc_kind, mut alloc)) = self.memory.alloc_map.remove(&alloc_id) else {
            // Deallocating global memory -- always an error
            return Err(match self.tcx.try_get_global_alloc(alloc_id) {
                Some(GlobalAlloc::Function { .. }) => {
                    err_ub_custom!(
                        fluent::const_eval_invalid_dealloc,
                        alloc_id = alloc_id,
                        kind = "fn",
                    )
                }
                Some(GlobalAlloc::VTable(..)) => {
                    err_ub_custom!(
                        fluent::const_eval_invalid_dealloc,
                        alloc_id = alloc_id,
                        kind = "vtable",
                    )
                }
                Some(GlobalAlloc::Static(..) | GlobalAlloc::Memory(..)) => {
                    err_ub_custom!(
                        fluent::const_eval_invalid_dealloc,
                        alloc_id = alloc_id,
                        kind = "static_mem"
                    )
                }
                None => err_ub!(PointerUseAfterFree(alloc_id, CheckInAllocMsg::MemoryAccessTest)),
            })
            .into();
        };

        if alloc.mutability.is_not() {
            throw_ub_custom!(fluent::const_eval_dealloc_immutable, alloc = alloc_id,);
        }
        if alloc_kind != kind {
            throw_ub_custom!(
                fluent::const_eval_dealloc_kind_mismatch,
                alloc = alloc_id,
                alloc_kind = format!("{alloc_kind}"),
                kind = format!("{kind}"),
            );
        }
        if let Some((size, align)) = old_size_and_align {
            if size != alloc.size() || align != alloc.align {
                throw_ub_custom!(
                    fluent::const_eval_dealloc_incorrect_layout,
                    alloc = alloc_id,
                    size = alloc.size().bytes(),
                    align = alloc.align.bytes(),
                    size_found = size.bytes(),
                    align_found = align.bytes(),
                )
            }
        }

        // Let the machine take some extra action
        let size = alloc.size();
        M::before_memory_deallocation(
            self.tcx,
            &mut self.machine,
            &mut alloc.extra,
            (alloc_id, prov),
            size,
            alloc.align,
            kind,
        )?;

        // Don't forget to remember size and align of this now-dead allocation
        let old = self.memory.dead_alloc_map.insert(alloc_id, (size, alloc.align));
        if old.is_some() {
            bug!("Nothing can be deallocated twice");
        }

        interp_ok(())
    }

    /// Internal helper function to determine the allocation and offset of a pointer (if any).
    #[inline(always)]
    fn get_ptr_access(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
        size: Size,
    ) -> InterpResult<'tcx, Option<(AllocId, Size, M::ProvenanceExtra)>> {
        let size = i64::try_from(size.bytes()).unwrap(); // it would be an error to even ask for more than isize::MAX bytes
        Self::check_and_deref_ptr(
            self,
            ptr,
            size,
            CheckInAllocMsg::MemoryAccessTest,
            |this, alloc_id, offset, prov| {
                let (size, align) = this
                    .get_live_alloc_size_and_align(alloc_id, CheckInAllocMsg::MemoryAccessTest)?;
                interp_ok((size, align, (alloc_id, offset, prov)))
            },
        )
    }

    /// Check if the given pointer points to live memory of the given `size`.
    /// The caller can control the error message for the out-of-bounds case.
    #[inline(always)]
    pub fn check_ptr_access(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
        size: Size,
        msg: CheckInAllocMsg,
    ) -> InterpResult<'tcx> {
        let size = i64::try_from(size.bytes()).unwrap(); // it would be an error to even ask for more than isize::MAX bytes
        Self::check_and_deref_ptr(self, ptr, size, msg, |this, alloc_id, _, _| {
            let (size, align) = this.get_live_alloc_size_and_align(alloc_id, msg)?;
            interp_ok((size, align, ()))
        })?;
        interp_ok(())
    }

    /// Check whether the given pointer points to live memory for a signed amount of bytes.
    /// A negative amounts means that the given range of memory to the left of the pointer
    /// needs to be dereferenceable.
    pub fn check_ptr_access_signed(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
        size: i64,
        msg: CheckInAllocMsg,
    ) -> InterpResult<'tcx> {
        Self::check_and_deref_ptr(self, ptr, size, msg, |this, alloc_id, _, _| {
            let (size, align) = this.get_live_alloc_size_and_align(alloc_id, msg)?;
            interp_ok((size, align, ()))
        })?;
        interp_ok(())
    }

    /// Low-level helper function to check if a ptr is in-bounds and potentially return a reference
    /// to the allocation it points to. Supports both shared and mutable references, as the actual
    /// checking is offloaded to a helper closure. Supports signed sizes for checks "to the left" of
    /// a pointer.
    ///
    /// `alloc_size` will only get called for non-zero-sized accesses.
    ///
    /// Returns `None` if and only if the size is 0.
    fn check_and_deref_ptr<T, R: Borrow<Self>>(
        this: R,
        ptr: Pointer<Option<M::Provenance>>,
        size: i64,
        msg: CheckInAllocMsg,
        alloc_size: impl FnOnce(
            R,
            AllocId,
            Size,
            M::ProvenanceExtra,
        ) -> InterpResult<'tcx, (Size, Align, T)>,
    ) -> InterpResult<'tcx, Option<T>> {
        // Everything is okay with size 0.
        if size == 0 {
            return interp_ok(None);
        }

        interp_ok(match this.borrow().ptr_try_get_alloc_id(ptr, size) {
            Err(addr) => {
                // We couldn't get a proper allocation.
                throw_ub!(DanglingIntPointer { addr, inbounds_size: size, msg });
            }
            Ok((alloc_id, offset, prov)) => {
                let tcx = this.borrow().tcx;
                let (alloc_size, _alloc_align, ret_val) = alloc_size(this, alloc_id, offset, prov)?;
                let offset = offset.bytes();
                // Compute absolute begin and end of the range.
                let (begin, end) = if size >= 0 {
                    (Some(offset), offset.checked_add(size as u64))
                } else {
                    (offset.checked_sub(size.unsigned_abs()), Some(offset))
                };
                // Ensure both are within bounds.
                let in_bounds = begin.is_some() && end.is_some_and(|e| e <= alloc_size.bytes());
                if !in_bounds {
                    throw_ub!(PointerOutOfBounds {
                        alloc_id,
                        alloc_size,
                        ptr_offset: tcx.sign_extend_to_target_isize(offset),
                        inbounds_size: size,
                        msg,
                    })
                }

                Some(ret_val)
            }
        })
    }

    pub(super) fn check_misalign(
        &self,
        misaligned: Option<Misalignment>,
        msg: CheckAlignMsg,
    ) -> InterpResult<'tcx> {
        if let Some(misaligned) = misaligned {
            throw_ub!(AlignmentCheckFailed(misaligned, msg))
        }
        interp_ok(())
    }

    pub(super) fn is_ptr_misaligned(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
        align: Align,
    ) -> Option<Misalignment> {
        if !M::enforce_alignment(self) || align.bytes() == 1 {
            return None;
        }

        #[inline]
        fn is_offset_misaligned(offset: u64, align: Align) -> Option<Misalignment> {
            if offset % align.bytes() == 0 {
                None
            } else {
                // The biggest power of two through which `offset` is divisible.
                let offset_pow2 = 1 << offset.trailing_zeros();
                Some(Misalignment { has: Align::from_bytes(offset_pow2).unwrap(), required: align })
            }
        }

        match self.ptr_try_get_alloc_id(ptr, 0) {
            Err(addr) => is_offset_misaligned(addr, align),
            Ok((alloc_id, offset, _prov)) => {
                let alloc_info = self.get_alloc_info(alloc_id);
                if let Some(misalign) = M::alignment_check(
                    self,
                    alloc_id,
                    alloc_info.align,
                    alloc_info.kind,
                    offset,
                    align,
                ) {
                    Some(misalign)
                } else if M::Provenance::OFFSET_IS_ADDR {
                    is_offset_misaligned(ptr.addr().bytes(), align)
                } else {
                    // Check allocation alignment and offset alignment.
                    if alloc_info.align.bytes() < align.bytes() {
                        Some(Misalignment { has: alloc_info.align, required: align })
                    } else {
                        is_offset_misaligned(offset.bytes(), align)
                    }
                }
            }
        }
    }

    /// Checks a pointer for misalignment.
    ///
    /// The error assumes this is checking the pointer used directly for an access.
    pub fn check_ptr_align(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
        align: Align,
    ) -> InterpResult<'tcx> {
        self.check_misalign(self.is_ptr_misaligned(ptr, align), CheckAlignMsg::AccessedPtr)
    }
}

impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
    /// This function is used by Miri's provenance GC to remove unreachable entries from the dead_alloc_map.
    pub fn remove_unreachable_allocs(&mut self, reachable_allocs: &FxHashSet<AllocId>) {
        // Unlike all the other GC helpers where we check if an `AllocId` is found in the interpreter or
        // is live, here all the IDs in the map are for dead allocations so we don't
        // need to check for liveness.
        #[allow(rustc::potential_query_instability)] // Only used from Miri, not queries.
        self.memory.dead_alloc_map.retain(|id, _| reachable_allocs.contains(id));
    }
}

/// Allocation accessors
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
    /// Helper function to obtain a global (tcx) allocation.
    /// This attempts to return a reference to an existing allocation if
    /// one can be found in `tcx`. That, however, is only possible if `tcx` and
    /// this machine use the same pointer provenance, so it is indirected through
    /// `M::adjust_allocation`.
    fn get_global_alloc(
        &self,
        id: AllocId,
        is_write: bool,
    ) -> InterpResult<'tcx, Cow<'tcx, Allocation<M::Provenance, M::AllocExtra, M::Bytes>>> {
        let (alloc, def_id) = match self.tcx.try_get_global_alloc(id) {
            Some(GlobalAlloc::Memory(mem)) => {
                // Memory of a constant or promoted or anonymous memory referenced by a static.
                (mem, None)
            }
            Some(GlobalAlloc::Function { .. }) => throw_ub!(DerefFunctionPointer(id)),
            Some(GlobalAlloc::VTable(..)) => throw_ub!(DerefVTablePointer(id)),
            None => throw_ub!(PointerUseAfterFree(id, CheckInAllocMsg::MemoryAccessTest)),
            Some(GlobalAlloc::Static(def_id)) => {
                assert!(self.tcx.is_static(def_id));
                // Thread-local statics do not have a constant address. They *must* be accessed via
                // `ThreadLocalRef`; we can never have a pointer to them as a regular constant value.
                assert!(!self.tcx.is_thread_local_static(def_id));
                // Notice that every static has two `AllocId` that will resolve to the same
                // thing here: one maps to `GlobalAlloc::Static`, this is the "lazy" ID,
                // and the other one is maps to `GlobalAlloc::Memory`, this is returned by
                // `eval_static_initializer` and it is the "resolved" ID.
                // The resolved ID is never used by the interpreted program, it is hidden.
                // This is relied upon for soundness of const-patterns; a pointer to the resolved
                // ID would "sidestep" the checks that make sure consts do not point to statics!
                // The `GlobalAlloc::Memory` branch here is still reachable though; when a static
                // contains a reference to memory that was created during its evaluation (i.e., not
                // to another static), those inner references only exist in "resolved" form.
                if self.tcx.is_foreign_item(def_id) {
                    // This is unreachable in Miri, but can happen in CTFE where we actually *do* support
                    // referencing arbitrary (declared) extern statics.
                    throw_unsup!(ExternStatic(def_id));
                }

                // We don't give a span -- statics don't need that, they cannot be generic or associated.
                let val = self.ctfe_query(|tcx| tcx.eval_static_initializer(def_id))?;
                (val, Some(def_id))
            }
        };
        M::before_access_global(self.tcx, &self.machine, id, alloc, def_id, is_write)?;
        // We got tcx memory. Let the machine initialize its "extra" stuff.
        M::adjust_global_allocation(
            self,
            id, // always use the ID we got as input, not the "hidden" one.
            alloc.inner(),
        )
    }

    /// Gives raw access to the `Allocation`, without bounds or alignment checks.
    /// The caller is responsible for calling the access hooks!
    ///
    /// You almost certainly want to use `get_ptr_alloc`/`get_ptr_alloc_mut` instead.
    fn get_alloc_raw(
        &self,
        id: AllocId,
    ) -> InterpResult<'tcx, &Allocation<M::Provenance, M::AllocExtra, M::Bytes>> {
        // The error type of the inner closure here is somewhat funny. We have two
        // ways of "erroring": An actual error, or because we got a reference from
        // `get_global_alloc` that we can actually use directly without inserting anything anywhere.
        // So the error type is `InterpResult<'tcx, &Allocation<M::Provenance>>`.
        let a = self.memory.alloc_map.get_or(id, || {
            // We have to funnel the `InterpErrorInfo` through a `Result` to match the `get_or` API,
            // so we use `report_err` for that.
            let alloc = self.get_global_alloc(id, /*is_write*/ false).report_err().map_err(Err)?;
            match alloc {
                Cow::Borrowed(alloc) => {
                    // We got a ref, cheaply return that as an "error" so that the
                    // map does not get mutated.
                    Err(Ok(alloc))
                }
                Cow::Owned(alloc) => {
                    // Need to put it into the map and return a ref to that
                    let kind = M::GLOBAL_KIND.expect(
                        "I got a global allocation that I have to copy but the machine does \
                            not expect that to happen",
                    );
                    Ok((MemoryKind::Machine(kind), alloc))
                }
            }
        });
        // Now unpack that funny error type
        match a {
            Ok(a) => interp_ok(&a.1),
            Err(a) => a.into(),
        }
    }

    /// Gives raw, immutable access to the `Allocation` address, without bounds or alignment checks.
    /// The caller is responsible for calling the access hooks!
    pub fn get_alloc_bytes_unchecked_raw(&self, id: AllocId) -> InterpResult<'tcx, *const u8> {
        let alloc = self.get_alloc_raw(id)?;
        interp_ok(alloc.get_bytes_unchecked_raw())
    }

    /// Bounds-checked *but not align-checked* allocation access.
    pub fn get_ptr_alloc<'a>(
        &'a self,
        ptr: Pointer<Option<M::Provenance>>,
        size: Size,
    ) -> InterpResult<'tcx, Option<AllocRef<'a, 'tcx, M::Provenance, M::AllocExtra, M::Bytes>>>
    {
        let size_i64 = i64::try_from(size.bytes()).unwrap(); // it would be an error to even ask for more than isize::MAX bytes
        let ptr_and_alloc = Self::check_and_deref_ptr(
            self,
            ptr,
            size_i64,
            CheckInAllocMsg::MemoryAccessTest,
            |this, alloc_id, offset, prov| {
                let alloc = this.get_alloc_raw(alloc_id)?;
                interp_ok((alloc.size(), alloc.align, (alloc_id, offset, prov, alloc)))
            },
        )?;
        // We want to call the hook on *all* accesses that involve an AllocId, including zero-sized
        // accesses. That means we cannot rely on the closure above or the `Some` branch below. We
        // do this after `check_and_deref_ptr` to ensure some basic sanity has already been checked.
        if !self.memory.validation_in_progress {
            if let Ok((alloc_id, ..)) = self.ptr_try_get_alloc_id(ptr, size_i64) {
                M::before_alloc_read(self, alloc_id)?;
            }
        }

        if let Some((alloc_id, offset, prov, alloc)) = ptr_and_alloc {
            let range = alloc_range(offset, size);
            if !self.memory.validation_in_progress {
                M::before_memory_read(
                    self.tcx,
                    &self.machine,
                    &alloc.extra,
                    (alloc_id, prov),
                    range,
                )?;
            }
            interp_ok(Some(AllocRef { alloc, range, tcx: *self.tcx, alloc_id }))
        } else {
            interp_ok(None)
        }
    }

    /// Return the `extra` field of the given allocation.
    pub fn get_alloc_extra<'a>(&'a self, id: AllocId) -> InterpResult<'tcx, &'a M::AllocExtra> {
        interp_ok(&self.get_alloc_raw(id)?.extra)
    }

    /// Return the `mutability` field of the given allocation.
    pub fn get_alloc_mutability<'a>(&'a self, id: AllocId) -> InterpResult<'tcx, Mutability> {
        interp_ok(self.get_alloc_raw(id)?.mutability)
    }

    /// Gives raw mutable access to the `Allocation`, without bounds or alignment checks.
    /// The caller is responsible for calling the access hooks!
    ///
    /// Also returns a ptr to `self.extra` so that the caller can use it in parallel with the
    /// allocation.
    fn get_alloc_raw_mut(
        &mut self,
        id: AllocId,
    ) -> InterpResult<'tcx, (&mut Allocation<M::Provenance, M::AllocExtra, M::Bytes>, &mut M)> {
        // We have "NLL problem case #3" here, which cannot be worked around without loss of
        // efficiency even for the common case where the key is in the map.
        // <https://rust-lang.github.io/rfcs/2094-nll.html#problem-case-3-conditional-control-flow-across-functions>
        // (Cannot use `get_mut_or` since `get_global_alloc` needs `&self`, and that boils down to
        // Miri's `adjust_alloc_root_pointer` needing to look up the size of the allocation.
        // It could be avoided with a totally separate codepath in Miri for handling the absolute address
        // of global allocations, but that's not worth it.)
        if self.memory.alloc_map.get_mut(id).is_none() {
            // Slow path.
            // Allocation not found locally, go look global.
            let alloc = self.get_global_alloc(id, /*is_write*/ true)?;
            let kind = M::GLOBAL_KIND.expect(
                "I got a global allocation that I have to copy but the machine does \
                    not expect that to happen",
            );
            self.memory.alloc_map.insert(id, (MemoryKind::Machine(kind), alloc.into_owned()));
        }

        let (_kind, alloc) = self.memory.alloc_map.get_mut(id).unwrap();
        if alloc.mutability.is_not() {
            throw_ub!(WriteToReadOnly(id))
        }
        interp_ok((alloc, &mut self.machine))
    }

    /// Gives raw, mutable access to the `Allocation` address, without bounds or alignment checks.
    /// The caller is responsible for calling the access hooks!
    pub fn get_alloc_bytes_unchecked_raw_mut(
        &mut self,
        id: AllocId,
    ) -> InterpResult<'tcx, *mut u8> {
        let alloc = self.get_alloc_raw_mut(id)?.0;
        interp_ok(alloc.get_bytes_unchecked_raw_mut())
    }

    /// Bounds-checked *but not align-checked* allocation access.
    pub fn get_ptr_alloc_mut<'a>(
        &'a mut self,
        ptr: Pointer<Option<M::Provenance>>,
        size: Size,
    ) -> InterpResult<'tcx, Option<AllocRefMut<'a, 'tcx, M::Provenance, M::AllocExtra, M::Bytes>>>
    {
        let tcx = self.tcx;
        let validation_in_progress = self.memory.validation_in_progress;

        let size_i64 = i64::try_from(size.bytes()).unwrap(); // it would be an error to even ask for more than isize::MAX bytes
        let ptr_and_alloc = Self::check_and_deref_ptr(
            self,
            ptr,
            size_i64,
            CheckInAllocMsg::MemoryAccessTest,
            |this, alloc_id, offset, prov| {
                let (alloc, machine) = this.get_alloc_raw_mut(alloc_id)?;
                interp_ok((alloc.size(), alloc.align, (alloc_id, offset, prov, alloc, machine)))
            },
        )?;

        if let Some((alloc_id, offset, prov, alloc, machine)) = ptr_and_alloc {
            let range = alloc_range(offset, size);
            if !validation_in_progress {
                M::before_memory_write(tcx, machine, &mut alloc.extra, (alloc_id, prov), range)?;
            }
            interp_ok(Some(AllocRefMut { alloc, range, tcx: *tcx, alloc_id }))
        } else {
            interp_ok(None)
        }
    }

    /// Return the `extra` field of the given allocation.
    pub fn get_alloc_extra_mut<'a>(
        &'a mut self,
        id: AllocId,
    ) -> InterpResult<'tcx, (&'a mut M::AllocExtra, &'a mut M)> {
        let (alloc, machine) = self.get_alloc_raw_mut(id)?;
        interp_ok((&mut alloc.extra, machine))
    }

    /// Check whether an allocation is live. This is faster than calling
    /// [`InterpCx::get_alloc_info`] if all you need to check is whether the kind is
    /// [`AllocKind::Dead`] because it doesn't have to look up the type and layout of statics.
    pub fn is_alloc_live(&self, id: AllocId) -> bool {
        self.tcx.try_get_global_alloc(id).is_some()
            || self.memory.alloc_map.contains_key_ref(&id)
            || self.memory.extra_fn_ptr_map.contains_key(&id)
    }

    /// Obtain the size and alignment of an allocation, even if that allocation has
    /// been deallocated.
    pub fn get_alloc_info(&self, id: AllocId) -> AllocInfo {
        // # Regular allocations
        // Don't use `self.get_raw` here as that will
        // a) cause cycles in case `id` refers to a static
        // b) duplicate a global's allocation in miri
        if let Some((_, alloc)) = self.memory.alloc_map.get(id) {
            return AllocInfo::new(
                alloc.size(),
                alloc.align,
                AllocKind::LiveData,
                alloc.mutability,
            );
        }

        // # Function pointers
        // (both global from `alloc_map` and local from `extra_fn_ptr_map`)
        if self.get_fn_alloc(id).is_some() {
            return AllocInfo::new(Size::ZERO, Align::ONE, AllocKind::Function, Mutability::Not);
        }

        // # Global allocations
        if let Some(global_alloc) = self.tcx.try_get_global_alloc(id) {
            let (size, align) = global_alloc.size_and_align(*self.tcx, self.typing_env);
            let mutbl = global_alloc.mutability(*self.tcx, self.typing_env);
            let kind = match global_alloc {
                GlobalAlloc::Static { .. } | GlobalAlloc::Memory { .. } => AllocKind::LiveData,
                GlobalAlloc::Function { .. } => bug!("We already checked function pointers above"),
                GlobalAlloc::VTable { .. } => AllocKind::VTable,
            };
            return AllocInfo::new(size, align, kind, mutbl);
        }

        // # Dead pointers
        let (size, align) = *self
            .memory
            .dead_alloc_map
            .get(&id)
            .expect("deallocated pointers should all be recorded in `dead_alloc_map`");
        AllocInfo::new(size, align, AllocKind::Dead, Mutability::Not)
    }

    /// Obtain the size and alignment of a *live* allocation.
    fn get_live_alloc_size_and_align(
        &self,
        id: AllocId,
        msg: CheckInAllocMsg,
    ) -> InterpResult<'tcx, (Size, Align)> {
        let info = self.get_alloc_info(id);
        if matches!(info.kind, AllocKind::Dead) {
            throw_ub!(PointerUseAfterFree(id, msg))
        }
        interp_ok((info.size, info.align))
    }

    fn get_fn_alloc(&self, id: AllocId) -> Option<FnVal<'tcx, M::ExtraFnVal>> {
        if let Some(extra) = self.memory.extra_fn_ptr_map.get(&id) {
            Some(FnVal::Other(*extra))
        } else {
            match self.tcx.try_get_global_alloc(id) {
                Some(GlobalAlloc::Function { instance, .. }) => Some(FnVal::Instance(instance)),
                _ => None,
            }
        }
    }

    pub fn get_ptr_fn(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
    ) -> InterpResult<'tcx, FnVal<'tcx, M::ExtraFnVal>> {
        trace!("get_ptr_fn({:?})", ptr);
        let (alloc_id, offset, _prov) = self.ptr_get_alloc_id(ptr, 0)?;
        if offset.bytes() != 0 {
            throw_ub!(InvalidFunctionPointer(Pointer::new(alloc_id, offset)))
        }
        self.get_fn_alloc(alloc_id)
            .ok_or_else(|| err_ub!(InvalidFunctionPointer(Pointer::new(alloc_id, offset))))
            .into()
    }

    /// Get the dynamic type of the given vtable pointer.
    /// If `expected_trait` is `Some`, it must be a vtable for the given trait.
    pub fn get_ptr_vtable_ty(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
        expected_trait: Option<&'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>>,
    ) -> InterpResult<'tcx, Ty<'tcx>> {
        trace!("get_ptr_vtable({:?})", ptr);
        let (alloc_id, offset, _tag) = self.ptr_get_alloc_id(ptr, 0)?;
        if offset.bytes() != 0 {
            throw_ub!(InvalidVTablePointer(Pointer::new(alloc_id, offset)))
        }
        let Some(GlobalAlloc::VTable(ty, vtable_dyn_type)) =
            self.tcx.try_get_global_alloc(alloc_id)
        else {
            throw_ub!(InvalidVTablePointer(Pointer::new(alloc_id, offset)))
        };
        if let Some(expected_dyn_type) = expected_trait {
            self.check_vtable_for_type(vtable_dyn_type, expected_dyn_type)?;
        }
        interp_ok(ty)
    }

    pub fn alloc_mark_immutable(&mut self, id: AllocId) -> InterpResult<'tcx> {
        self.get_alloc_raw_mut(id)?.0.mutability = Mutability::Not;
        interp_ok(())
    }

    /// Handle the effect an FFI call might have on the state of allocations.
    /// This overapproximates the modifications which external code might make to memory:
    /// We set all reachable allocations as initialized, mark all provenances as exposed
    /// and overwrite them with `Provenance::WILDCARD`.
    pub fn prepare_for_native_call(
        &mut self,
        id: AllocId,
        initial_prov: M::Provenance,
    ) -> InterpResult<'tcx> {
        // Expose provenance of the root allocation.
        M::expose_provenance(self, initial_prov)?;

        let mut done = FxHashSet::default();
        let mut todo = vec![id];
        while let Some(id) = todo.pop() {
            if !done.insert(id) {
                // We already saw this allocation before, don't process it again.
                continue;
            }
            let info = self.get_alloc_info(id);

            // If there is no data behind this pointer, skip this.
            if !matches!(info.kind, AllocKind::LiveData) {
                continue;
            }

            // Expose all provenances in this allocation, and add them to `todo`.
            let alloc = self.get_alloc_raw(id)?;
            for prov in alloc.provenance().provenances() {
                M::expose_provenance(self, prov)?;
                if let Some(id) = prov.get_alloc_id() {
                    todo.push(id);
                }
            }

            // Prepare for possible write from native code if mutable.
            if info.mutbl.is_mut() {
                self.get_alloc_raw_mut(id)?
                    .0
                    .prepare_for_native_write()
                    .map_err(|e| e.to_interp_error(id))?;
            }
        }
        interp_ok(())
    }

    /// Create a lazy debug printer that prints the given allocation and all allocations it points
    /// to, recursively.
    #[must_use]
    pub fn dump_alloc<'a>(&'a self, id: AllocId) -> DumpAllocs<'a, 'tcx, M> {
        self.dump_allocs(vec![id])
    }

    /// Create a lazy debug printer for a list of allocations and all allocations they point to,
    /// recursively.
    #[must_use]
    pub fn dump_allocs<'a>(&'a self, mut allocs: Vec<AllocId>) -> DumpAllocs<'a, 'tcx, M> {
        allocs.sort();
        allocs.dedup();
        DumpAllocs { ecx: self, allocs }
    }

    /// Print the allocation's bytes, without any nested allocations.
    pub fn print_alloc_bytes_for_diagnostics(&self, id: AllocId) -> String {
        // Using the "raw" access to avoid the `before_alloc_read` hook, we specifically
        // want to be able to read all memory for diagnostics, even if that is cyclic.
        let alloc = self.get_alloc_raw(id).unwrap();
        let mut bytes = String::new();
        if alloc.size() != Size::ZERO {
            bytes = "\n".into();
            // FIXME(translation) there might be pieces that are translatable.
            rustc_middle::mir::pretty::write_allocation_bytes(*self.tcx, alloc, &mut bytes, "    ")
                .unwrap();
        }
        bytes
    }

    /// Find leaked allocations, remove them from memory and return them. Allocations reachable from
    /// `static_roots` or a `Global` allocation are not considered leaked, as well as leaks whose
    /// kind's `may_leak()` returns true.
    ///
    /// This is highly destructive, no more execution can happen after this!
    pub fn take_leaked_allocations(
        &mut self,
        static_roots: impl FnOnce(&Self) -> &[AllocId],
    ) -> Vec<(AllocId, MemoryKind<M::MemoryKind>, Allocation<M::Provenance, M::AllocExtra, M::Bytes>)>
    {
        // Collect the set of allocations that are *reachable* from `Global` allocations.
        let reachable = {
            let mut reachable = FxHashSet::default();
            let global_kind = M::GLOBAL_KIND.map(MemoryKind::Machine);
            let mut todo: Vec<_> =
                self.memory.alloc_map.filter_map_collect(move |&id, &(kind, _)| {
                    if Some(kind) == global_kind { Some(id) } else { None }
                });
            todo.extend(static_roots(self));
            while let Some(id) = todo.pop() {
                if reachable.insert(id) {
                    // This is a new allocation, add the allocation it points to `todo`.
                    if let Some((_, alloc)) = self.memory.alloc_map.get(id) {
                        todo.extend(
                            alloc.provenance().provenances().filter_map(|prov| prov.get_alloc_id()),
                        );
                    }
                }
            }
            reachable
        };

        // All allocations that are *not* `reachable` and *not* `may_leak` are considered leaking.
        let leaked: Vec<_> = self.memory.alloc_map.filter_map_collect(|&id, &(kind, _)| {
            if kind.may_leak() || reachable.contains(&id) { None } else { Some(id) }
        });
        let mut result = Vec::new();
        for &id in leaked.iter() {
            let (kind, alloc) = self.memory.alloc_map.remove(&id).unwrap();
            result.push((id, kind, alloc));
        }
        result
    }

    /// Runs the closure in "validation" mode, which means the machine's memory read hooks will be
    /// suppressed. Needless to say, this must only be set with great care! Cannot be nested.
    ///
    /// We do this so Miri's allocation access tracking does not show the validation
    /// reads as spurious accesses.
    pub fn run_for_validation<R>(&mut self, f: impl FnOnce(&mut Self) -> R) -> R {
        // This deliberately uses `==` on `bool` to follow the pattern
        // `assert!(val.replace(new) == old)`.
        assert!(
            mem::replace(&mut self.memory.validation_in_progress, true) == false,
            "`validation_in_progress` was already set"
        );
        let res = f(self);
        assert!(
            mem::replace(&mut self.memory.validation_in_progress, false) == true,
            "`validation_in_progress` was unset by someone else"
        );
        res
    }

    pub(super) fn validation_in_progress(&self) -> bool {
        self.memory.validation_in_progress
    }
}

#[doc(hidden)]
/// There's no way to use this directly, it's just a helper struct for the `dump_alloc(s)` methods.
pub struct DumpAllocs<'a, 'tcx, M: Machine<'tcx>> {
    ecx: &'a InterpCx<'tcx, M>,
    allocs: Vec<AllocId>,
}

impl<'a, 'tcx, M: Machine<'tcx>> std::fmt::Debug for DumpAllocs<'a, 'tcx, M> {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // Cannot be a closure because it is generic in `Prov`, `Extra`.
        fn write_allocation_track_relocs<'tcx, Prov: Provenance, Extra, Bytes: AllocBytes>(
            fmt: &mut std::fmt::Formatter<'_>,
            tcx: TyCtxt<'tcx>,
            allocs_to_print: &mut VecDeque<AllocId>,
            alloc: &Allocation<Prov, Extra, Bytes>,
        ) -> std::fmt::Result {
            for alloc_id in alloc.provenance().provenances().filter_map(|prov| prov.get_alloc_id())
            {
                allocs_to_print.push_back(alloc_id);
            }
            write!(fmt, "{}", display_allocation(tcx, alloc))
        }

        let mut allocs_to_print: VecDeque<_> = self.allocs.iter().copied().collect();
        // `allocs_printed` contains all allocations that we have already printed.
        let mut allocs_printed = FxHashSet::default();

        while let Some(id) = allocs_to_print.pop_front() {
            if !allocs_printed.insert(id) {
                // Already printed, so skip this.
                continue;
            }

            write!(fmt, "{id:?}")?;
            match self.ecx.memory.alloc_map.get(id) {
                Some((kind, alloc)) => {
                    // normal alloc
                    write!(fmt, " ({kind}, ")?;
                    write_allocation_track_relocs(
                        &mut *fmt,
                        *self.ecx.tcx,
                        &mut allocs_to_print,
                        alloc,
                    )?;
                }
                None => {
                    // global alloc
                    match self.ecx.tcx.try_get_global_alloc(id) {
                        Some(GlobalAlloc::Memory(alloc)) => {
                            write!(fmt, " (unchanged global, ")?;
                            write_allocation_track_relocs(
                                &mut *fmt,
                                *self.ecx.tcx,
                                &mut allocs_to_print,
                                alloc.inner(),
                            )?;
                        }
                        Some(GlobalAlloc::Function { instance, .. }) => {
                            write!(fmt, " (fn: {instance})")?;
                        }
                        Some(GlobalAlloc::VTable(ty, dyn_ty)) => {
                            write!(fmt, " (vtable: impl {dyn_ty} for {ty})")?;
                        }
                        Some(GlobalAlloc::Static(did)) => {
                            write!(fmt, " (static: {})", self.ecx.tcx.def_path_str(did))?;
                        }
                        None => {
                            write!(fmt, " (deallocated)")?;
                        }
                    }
                }
            }
            writeln!(fmt)?;
        }
        Ok(())
    }
}

/// Reading and writing.
impl<'a, 'tcx, Prov: Provenance, Extra, Bytes: AllocBytes>
    AllocRefMut<'a, 'tcx, Prov, Extra, Bytes>
{
    pub fn as_ref<'b>(&'b self) -> AllocRef<'b, 'tcx, Prov, Extra, Bytes> {
        AllocRef { alloc: self.alloc, range: self.range, tcx: self.tcx, alloc_id: self.alloc_id }
    }

    /// `range` is relative to this allocation reference, not the base of the allocation.
    pub fn write_scalar(&mut self, range: AllocRange, val: Scalar<Prov>) -> InterpResult<'tcx> {
        let range = self.range.subrange(range);
        debug!("write_scalar at {:?}{range:?}: {val:?}", self.alloc_id);

        self.alloc
            .write_scalar(&self.tcx, range, val)
            .map_err(|e| e.to_interp_error(self.alloc_id))
            .into()
    }

    /// `offset` is relative to this allocation reference, not the base of the allocation.
    pub fn write_ptr_sized(&mut self, offset: Size, val: Scalar<Prov>) -> InterpResult<'tcx> {
        self.write_scalar(alloc_range(offset, self.tcx.data_layout().pointer_size), val)
    }

    /// Mark the given sub-range (relative to this allocation reference) as uninitialized.
    pub fn write_uninit(&mut self, range: AllocRange) -> InterpResult<'tcx> {
        let range = self.range.subrange(range);

        self.alloc
            .write_uninit(&self.tcx, range)
            .map_err(|e| e.to_interp_error(self.alloc_id))
            .into()
    }

    /// Mark the entire referenced range as uninitialized
    pub fn write_uninit_full(&mut self) -> InterpResult<'tcx> {
        self.alloc
            .write_uninit(&self.tcx, self.range)
            .map_err(|e| e.to_interp_error(self.alloc_id))
            .into()
    }

    /// Remove all provenance in the reference range.
    pub fn clear_provenance(&mut self) -> InterpResult<'tcx> {
        self.alloc
            .clear_provenance(&self.tcx, self.range)
            .map_err(|e| e.to_interp_error(self.alloc_id))
            .into()
    }
}

impl<'a, 'tcx, Prov: Provenance, Extra, Bytes: AllocBytes> AllocRef<'a, 'tcx, Prov, Extra, Bytes> {
    /// `range` is relative to this allocation reference, not the base of the allocation.
    pub fn read_scalar(
        &self,
        range: AllocRange,
        read_provenance: bool,
    ) -> InterpResult<'tcx, Scalar<Prov>> {
        let range = self.range.subrange(range);
        self.alloc
            .read_scalar(&self.tcx, range, read_provenance)
            .map_err(|e| e.to_interp_error(self.alloc_id))
            .into()
    }

    /// `range` is relative to this allocation reference, not the base of the allocation.
    pub fn read_integer(&self, range: AllocRange) -> InterpResult<'tcx, Scalar<Prov>> {
        self.read_scalar(range, /*read_provenance*/ false)
    }

    /// `offset` is relative to this allocation reference, not the base of the allocation.
    pub fn read_pointer(&self, offset: Size) -> InterpResult<'tcx, Scalar<Prov>> {
        self.read_scalar(
            alloc_range(offset, self.tcx.data_layout().pointer_size),
            /*read_provenance*/ true,
        )
    }

    /// `range` is relative to this allocation reference, not the base of the allocation.
    pub fn get_bytes_strip_provenance<'b>(&'b self) -> InterpResult<'tcx, &'a [u8]> {
        self.alloc
            .get_bytes_strip_provenance(&self.tcx, self.range)
            .map_err(|e| e.to_interp_error(self.alloc_id))
            .into()
    }

    /// Returns whether the allocation has provenance anywhere in the range of the `AllocRef`.
    pub fn has_provenance(&self) -> bool {
        !self.alloc.provenance().range_empty(self.range, &self.tcx)
    }
}

impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
    /// Reads the given number of bytes from memory, and strips their provenance if possible.
    /// Returns them as a slice.
    ///
    /// Performs appropriate bounds checks.
    pub fn read_bytes_ptr_strip_provenance(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
        size: Size,
    ) -> InterpResult<'tcx, &[u8]> {
        let Some(alloc_ref) = self.get_ptr_alloc(ptr, size)? else {
            // zero-sized access
            return interp_ok(&[]);
        };
        // Side-step AllocRef and directly access the underlying bytes more efficiently.
        // (We are staying inside the bounds here so all is good.)
        interp_ok(
            alloc_ref
                .alloc
                .get_bytes_strip_provenance(&alloc_ref.tcx, alloc_ref.range)
                .map_err(|e| e.to_interp_error(alloc_ref.alloc_id))?,
        )
    }

    /// Writes the given stream of bytes into memory.
    ///
    /// Performs appropriate bounds checks.
    pub fn write_bytes_ptr(
        &mut self,
        ptr: Pointer<Option<M::Provenance>>,
        src: impl IntoIterator<Item = u8>,
    ) -> InterpResult<'tcx> {
        let mut src = src.into_iter();
        let (lower, upper) = src.size_hint();
        let len = upper.expect("can only write bounded iterators");
        assert_eq!(lower, len, "can only write iterators with a precise length");

        let size = Size::from_bytes(len);
        let Some(alloc_ref) = self.get_ptr_alloc_mut(ptr, size)? else {
            // zero-sized access
            assert_matches!(src.next(), None, "iterator said it was empty but returned an element");
            return interp_ok(());
        };

        // Side-step AllocRef and directly access the underlying bytes more efficiently.
        // (We are staying inside the bounds here and all bytes do get overwritten so all is good.)
        let alloc_id = alloc_ref.alloc_id;
        let bytes = alloc_ref
            .alloc
            .get_bytes_unchecked_for_overwrite(&alloc_ref.tcx, alloc_ref.range)
            .map_err(move |e| e.to_interp_error(alloc_id))?;
        // `zip` would stop when the first iterator ends; we want to definitely
        // cover all of `bytes`.
        for dest in bytes {
            *dest = src.next().expect("iterator was shorter than it said it would be");
        }
        assert_matches!(src.next(), None, "iterator was longer than it said it would be");
        interp_ok(())
    }

    pub fn mem_copy(
        &mut self,
        src: Pointer<Option<M::Provenance>>,
        dest: Pointer<Option<M::Provenance>>,
        size: Size,
        nonoverlapping: bool,
    ) -> InterpResult<'tcx> {
        self.mem_copy_repeatedly(src, dest, size, 1, nonoverlapping)
    }

    /// Performs `num_copies` many copies of `size` many bytes from `src` to `dest + i*size` (where
    /// `i` is the index of the copy).
    ///
    /// Either `nonoverlapping` must be true or `num_copies` must be 1; doing repeated copies that
    /// may overlap is not supported.
    pub fn mem_copy_repeatedly(
        &mut self,
        src: Pointer<Option<M::Provenance>>,
        dest: Pointer<Option<M::Provenance>>,
        size: Size,
        num_copies: u64,
        nonoverlapping: bool,
    ) -> InterpResult<'tcx> {
        let tcx = self.tcx;
        // We need to do our own bounds-checks.
        let src_parts = self.get_ptr_access(src, size)?;
        let dest_parts = self.get_ptr_access(dest, size * num_copies)?; // `Size` multiplication

        // FIXME: we look up both allocations twice here, once before for the `check_ptr_access`
        // and once below to get the underlying `&[mut] Allocation`.

        // Source alloc preparations and access hooks.
        let Some((src_alloc_id, src_offset, src_prov)) = src_parts else {
            // Zero-sized *source*, that means dest is also zero-sized and we have nothing to do.
            return interp_ok(());
        };
        let src_alloc = self.get_alloc_raw(src_alloc_id)?;
        let src_range = alloc_range(src_offset, size);
        assert!(!self.memory.validation_in_progress, "we can't be copying during validation");
        M::before_memory_read(
            tcx,
            &self.machine,
            &src_alloc.extra,
            (src_alloc_id, src_prov),
            src_range,
        )?;
        // We need the `dest` ptr for the next operation, so we get it now.
        // We already did the source checks and called the hooks so we are good to return early.
        let Some((dest_alloc_id, dest_offset, dest_prov)) = dest_parts else {
            // Zero-sized *destination*.
            return interp_ok(());
        };

        // Prepare getting source provenance.
        let src_bytes = src_alloc.get_bytes_unchecked(src_range).as_ptr(); // raw ptr, so we can also get a ptr to the destination allocation
        // first copy the provenance to a temporary buffer, because
        // `get_bytes_mut` will clear the provenance, which is correct,
        // since we don't want to keep any provenance at the target.
        // This will also error if copying partial provenance is not supported.
        let provenance = src_alloc
            .provenance()
            .prepare_copy(src_range, dest_offset, num_copies, self)
            .map_err(|e| e.to_interp_error(dest_alloc_id))?;
        // Prepare a copy of the initialization mask.
        let init = src_alloc.init_mask().prepare_copy(src_range);

        // Destination alloc preparations and access hooks.
        let (dest_alloc, extra) = self.get_alloc_raw_mut(dest_alloc_id)?;
        let dest_range = alloc_range(dest_offset, size * num_copies);
        M::before_memory_write(
            tcx,
            extra,
            &mut dest_alloc.extra,
            (dest_alloc_id, dest_prov),
            dest_range,
        )?;
        // Yes we do overwrite all bytes in `dest_bytes`.
        let dest_bytes = dest_alloc
            .get_bytes_unchecked_for_overwrite_ptr(&tcx, dest_range)
            .map_err(|e| e.to_interp_error(dest_alloc_id))?
            .as_mut_ptr();

        if init.no_bytes_init() {
            // Fast path: If all bytes are `uninit` then there is nothing to copy. The target range
            // is marked as uninitialized but we otherwise omit changing the byte representation which may
            // be arbitrary for uninitialized bytes.
            // This also avoids writing to the target bytes so that the backing allocation is never
            // touched if the bytes stay uninitialized for the whole interpreter execution. On contemporary
            // operating system this can avoid physically allocating the page.
            dest_alloc
                .write_uninit(&tcx, dest_range)
                .map_err(|e| e.to_interp_error(dest_alloc_id))?;
            // We can forget about the provenance, this is all not initialized anyway.
            return interp_ok(());
        }

        // SAFE: The above indexing would have panicked if there weren't at least `size` bytes
        // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
        // `dest` could possibly overlap.
        // The pointers above remain valid even if the `HashMap` table is moved around because they
        // point into the `Vec` storing the bytes.
        unsafe {
            if src_alloc_id == dest_alloc_id {
                if nonoverlapping {
                    // `Size` additions
                    if (src_offset <= dest_offset && src_offset + size > dest_offset)
                        || (dest_offset <= src_offset && dest_offset + size > src_offset)
                    {
                        throw_ub_custom!(fluent::const_eval_copy_nonoverlapping_overlapping);
                    }
                }
            }
            if num_copies > 1 {
                assert!(nonoverlapping, "multi-copy only supported in non-overlapping mode");
            }

            let size_in_bytes = size.bytes_usize();
            // For particularly large arrays (where this is perf-sensitive) it's common that
            // we're writing a single byte repeatedly. So, optimize that case to a memset.
            if size_in_bytes == 1 {
                debug_assert!(num_copies >= 1); // we already handled the zero-sized cases above.
                // SAFETY: `src_bytes` would be read from anyway by `copy` below (num_copies >= 1).
                let value = *src_bytes;
                dest_bytes.write_bytes(value, (size * num_copies).bytes_usize());
            } else if src_alloc_id == dest_alloc_id {
                let mut dest_ptr = dest_bytes;
                for _ in 0..num_copies {
                    // Here we rely on `src` and `dest` being non-overlapping if there is more than
                    // one copy.
                    ptr::copy(src_bytes, dest_ptr, size_in_bytes);
                    dest_ptr = dest_ptr.add(size_in_bytes);
                }
            } else {
                let mut dest_ptr = dest_bytes;
                for _ in 0..num_copies {
                    ptr::copy_nonoverlapping(src_bytes, dest_ptr, size_in_bytes);
                    dest_ptr = dest_ptr.add(size_in_bytes);
                }
            }
        }

        // now fill in all the "init" data
        dest_alloc.init_mask_apply_copy(
            init,
            alloc_range(dest_offset, size), // just a single copy (i.e., not full `dest_range`)
            num_copies,
        );
        // copy the provenance to the destination
        dest_alloc.provenance_apply_copy(provenance);

        interp_ok(())
    }
}

/// Machine pointer introspection.
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
    /// Test if this value might be null.
    /// If the machine does not support ptr-to-int casts, this is conservative.
    pub fn scalar_may_be_null(&self, scalar: Scalar<M::Provenance>) -> InterpResult<'tcx, bool> {
        interp_ok(match scalar.try_to_scalar_int() {
            Ok(int) => int.is_null(),
            Err(_) => {
                // Can only happen during CTFE.
                let ptr = scalar.to_pointer(self)?;
                match self.ptr_try_get_alloc_id(ptr, 0) {
                    Ok((alloc_id, offset, _)) => {
                        let size = self.get_alloc_info(alloc_id).size;
                        // If the pointer is out-of-bounds, it may be null.
                        // Note that one-past-the-end (offset == size) is still inbounds, and never null.
                        offset > size
                    }
                    Err(_offset) => bug!("a non-int scalar is always a pointer"),
                }
            }
        })
    }

    /// Turning a "maybe pointer" into a proper pointer (and some information
    /// about where it points), or an absolute address.
    ///
    /// `size` says how many bytes of memory are expected at that pointer. This is largely only used
    /// for error messages; however, the *sign* of `size` can be used to disambiguate situations
    /// where a wildcard pointer sits right in between two allocations.
    /// It is almost always okay to just set the size to 0; this will be treated like a positive size
    /// for handling wildcard pointers.
    ///
    /// The result must be used immediately; it is not allowed to convert
    /// the returned data back into a `Pointer` and store that in machine state.
    /// (In fact that's not even possible since `M::ProvenanceExtra` is generic and
    /// we don't have an operation to turn it back into `M::Provenance`.)
    pub fn ptr_try_get_alloc_id(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
        size: i64,
    ) -> Result<(AllocId, Size, M::ProvenanceExtra), u64> {
        match ptr.into_pointer_or_addr() {
            Ok(ptr) => match M::ptr_get_alloc(self, ptr, size) {
                Some((alloc_id, offset, extra)) => Ok((alloc_id, offset, extra)),
                None => {
                    assert!(M::Provenance::OFFSET_IS_ADDR);
                    let (_, addr) = ptr.into_parts();
                    Err(addr.bytes())
                }
            },
            Err(addr) => Err(addr.bytes()),
        }
    }

    /// Turning a "maybe pointer" into a proper pointer (and some information about where it points).
    ///
    /// `size` says how many bytes of memory are expected at that pointer. This is largely only used
    /// for error messages; however, the *sign* of `size` can be used to disambiguate situations
    /// where a wildcard pointer sits right in between two allocations.
    /// It is almost always okay to just set the size to 0; this will be treated like a positive size
    /// for handling wildcard pointers.
    ///
    /// The result must be used immediately; it is not allowed to convert
    /// the returned data back into a `Pointer` and store that in machine state.
    /// (In fact that's not even possible since `M::ProvenanceExtra` is generic and
    /// we don't have an operation to turn it back into `M::Provenance`.)
    #[inline(always)]
    pub fn ptr_get_alloc_id(
        &self,
        ptr: Pointer<Option<M::Provenance>>,
        size: i64,
    ) -> InterpResult<'tcx, (AllocId, Size, M::ProvenanceExtra)> {
        self.ptr_try_get_alloc_id(ptr, size)
            .map_err(|offset| {
                err_ub!(DanglingIntPointer {
                    addr: offset,
                    inbounds_size: size,
                    msg: CheckInAllocMsg::InboundsTest
                })
            })
            .into()
    }
}