rustc_codegen_ssa/mir/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
use std::iter;
use rustc_index::IndexVec;
use rustc_index::bit_set::BitSet;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::mir::{UnwindTerminateReason, traversal};
use rustc_middle::ty::layout::{FnAbiOf, HasTyCtxt, HasTypingEnv, TyAndLayout};
use rustc_middle::ty::{self, Instance, Ty, TyCtxt, TypeFoldable, TypeVisitableExt};
use rustc_middle::{bug, mir, span_bug};
use rustc_target::callconv::{FnAbi, PassMode};
use tracing::{debug, instrument};
use crate::base;
use crate::traits::*;
mod analyze;
mod block;
mod constant;
mod coverageinfo;
pub mod debuginfo;
mod intrinsic;
mod locals;
pub mod operand;
pub mod place;
mod rvalue;
mod statement;
use self::debuginfo::{FunctionDebugContext, PerLocalVarDebugInfo};
use self::operand::{OperandRef, OperandValue};
use self::place::PlaceRef;
// Used for tracking the state of generated basic blocks.
enum CachedLlbb<T> {
/// Nothing created yet.
None,
/// Has been created.
Some(T),
/// Nothing created yet, and nothing should be.
Skip,
}
type PerLocalVarDebugInfoIndexVec<'tcx, V> =
IndexVec<mir::Local, Vec<PerLocalVarDebugInfo<'tcx, V>>>;
/// Master context for codegenning from MIR.
pub struct FunctionCx<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> {
instance: Instance<'tcx>,
mir: &'tcx mir::Body<'tcx>,
debug_context: Option<FunctionDebugContext<'tcx, Bx::DIScope, Bx::DILocation>>,
llfn: Bx::Function,
cx: &'a Bx::CodegenCx,
fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
/// When unwinding is initiated, we have to store this personality
/// value somewhere so that we can load it and re-use it in the
/// resume instruction. The personality is (afaik) some kind of
/// value used for C++ unwinding, which must filter by type: we
/// don't really care about it very much. Anyway, this value
/// contains an alloca into which the personality is stored and
/// then later loaded when generating the DIVERGE_BLOCK.
personality_slot: Option<PlaceRef<'tcx, Bx::Value>>,
/// A backend `BasicBlock` for each MIR `BasicBlock`, created lazily
/// as-needed (e.g. RPO reaching it or another block branching to it).
// FIXME(eddyb) rename `llbbs` and other `ll`-prefixed things to use a
// more backend-agnostic prefix such as `cg` (i.e. this would be `cgbbs`).
cached_llbbs: IndexVec<mir::BasicBlock, CachedLlbb<Bx::BasicBlock>>,
/// The funclet status of each basic block
cleanup_kinds: Option<IndexVec<mir::BasicBlock, analyze::CleanupKind>>,
/// When targeting MSVC, this stores the cleanup info for each funclet BB.
/// This is initialized at the same time as the `landing_pads` entry for the
/// funclets' head block, i.e. when needed by an unwind / `cleanup_ret` edge.
funclets: IndexVec<mir::BasicBlock, Option<Bx::Funclet>>,
/// This stores the cached landing/cleanup pad block for a given BB.
// FIXME(eddyb) rename this to `eh_pads`.
landing_pads: IndexVec<mir::BasicBlock, Option<Bx::BasicBlock>>,
/// Cached unreachable block
unreachable_block: Option<Bx::BasicBlock>,
/// Cached terminate upon unwinding block and its reason
terminate_block: Option<(Bx::BasicBlock, UnwindTerminateReason)>,
/// A bool flag for each basic block indicating whether it is a cold block.
/// A cold block is a block that is unlikely to be executed at runtime.
cold_blocks: IndexVec<mir::BasicBlock, bool>,
/// The location where each MIR arg/var/tmp/ret is stored. This is
/// usually an `PlaceRef` representing an alloca, but not always:
/// sometimes we can skip the alloca and just store the value
/// directly using an `OperandRef`, which makes for tighter LLVM
/// IR. The conditions for using an `OperandRef` are as follows:
///
/// - the type of the local must be judged "immediate" by `is_llvm_immediate`
/// - the operand must never be referenced indirectly
/// - we should not take its address using the `&` operator
/// - nor should it appear in a place path like `tmp.a`
/// - the operand must be defined by an rvalue that can generate immediate
/// values
///
/// Avoiding allocs can also be important for certain intrinsics,
/// notably `expect`.
locals: locals::Locals<'tcx, Bx::Value>,
/// All `VarDebugInfo` from the MIR body, partitioned by `Local`.
/// This is `None` if no variable debuginfo/names are needed.
per_local_var_debug_info: Option<PerLocalVarDebugInfoIndexVec<'tcx, Bx::DIVariable>>,
/// Caller location propagated if this function has `#[track_caller]`.
caller_location: Option<OperandRef<'tcx, Bx::Value>>,
}
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
pub fn monomorphize<T>(&self, value: T) -> T
where
T: Copy + TypeFoldable<TyCtxt<'tcx>>,
{
debug!("monomorphize: self.instance={:?}", self.instance);
self.instance.instantiate_mir_and_normalize_erasing_regions(
self.cx.tcx(),
self.cx.typing_env(),
ty::EarlyBinder::bind(value),
)
}
}
enum LocalRef<'tcx, V> {
Place(PlaceRef<'tcx, V>),
/// `UnsizedPlace(p)`: `p` itself is a thin pointer (indirect place).
/// `*p` is the wide pointer that references the actual unsized place.
/// Every time it is initialized, we have to reallocate the place
/// and update the wide pointer. That's the reason why it is indirect.
UnsizedPlace(PlaceRef<'tcx, V>),
/// The backend [`OperandValue`] has already been generated.
Operand(OperandRef<'tcx, V>),
/// Will be a `Self::Operand` once we get to its definition.
PendingOperand,
}
impl<'tcx, V: CodegenObject> LocalRef<'tcx, V> {
fn new_operand(layout: TyAndLayout<'tcx>) -> LocalRef<'tcx, V> {
if layout.is_zst() {
// Zero-size temporaries aren't always initialized, which
// doesn't matter because they don't contain data, but
// we need something sufficiently aligned in the operand.
LocalRef::Operand(OperandRef::zero_sized(layout))
} else {
LocalRef::PendingOperand
}
}
}
///////////////////////////////////////////////////////////////////////////
#[instrument(level = "debug", skip(cx))]
pub fn codegen_mir<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
cx: &'a Bx::CodegenCx,
instance: Instance<'tcx>,
) {
assert!(!instance.args.has_infer());
let llfn = cx.get_fn(instance);
let mir = cx.tcx().instance_mir(instance.def);
let fn_abi = cx.fn_abi_of_instance(instance, ty::List::empty());
debug!("fn_abi: {:?}", fn_abi);
let debug_context = cx.create_function_debug_context(instance, fn_abi, llfn, mir);
let start_llbb = Bx::append_block(cx, llfn, "start");
let mut start_bx = Bx::build(cx, start_llbb);
if mir.basic_blocks.iter().any(|bb| {
bb.is_cleanup || matches!(bb.terminator().unwind(), Some(mir::UnwindAction::Terminate(_)))
}) {
start_bx.set_personality_fn(cx.eh_personality());
}
let cleanup_kinds =
base::wants_new_eh_instructions(cx.tcx().sess).then(|| analyze::cleanup_kinds(mir));
let cached_llbbs: IndexVec<mir::BasicBlock, CachedLlbb<Bx::BasicBlock>> =
mir.basic_blocks
.indices()
.map(|bb| {
if bb == mir::START_BLOCK { CachedLlbb::Some(start_llbb) } else { CachedLlbb::None }
})
.collect();
let mut fx = FunctionCx {
instance,
mir,
llfn,
fn_abi,
cx,
personality_slot: None,
cached_llbbs,
unreachable_block: None,
terminate_block: None,
cleanup_kinds,
landing_pads: IndexVec::from_elem(None, &mir.basic_blocks),
funclets: IndexVec::from_fn_n(|_| None, mir.basic_blocks.len()),
cold_blocks: find_cold_blocks(cx.tcx(), mir),
locals: locals::Locals::empty(),
debug_context,
per_local_var_debug_info: None,
caller_location: None,
};
// It may seem like we should iterate over `required_consts` to ensure they all successfully
// evaluate; however, the `MirUsedCollector` already did that during the collection phase of
// monomorphization, and if there is an error during collection then codegen never starts -- so
// we don't have to do it again.
let (per_local_var_debug_info, consts_debug_info) =
fx.compute_per_local_var_debug_info(&mut start_bx).unzip();
fx.per_local_var_debug_info = per_local_var_debug_info;
let traversal_order = traversal::mono_reachable_reverse_postorder(mir, cx.tcx(), instance);
let memory_locals = analyze::non_ssa_locals(&fx, &traversal_order);
// Allocate variable and temp allocas
let local_values = {
let args = arg_local_refs(&mut start_bx, &mut fx, &memory_locals);
let mut allocate_local = |local| {
let decl = &mir.local_decls[local];
let layout = start_bx.layout_of(fx.monomorphize(decl.ty));
assert!(!layout.ty.has_erasable_regions());
if local == mir::RETURN_PLACE {
match fx.fn_abi.ret.mode {
PassMode::Indirect { .. } => {
debug!("alloc: {:?} (return place) -> place", local);
let llretptr = start_bx.get_param(0);
return LocalRef::Place(PlaceRef::new_sized(llretptr, layout));
}
PassMode::Cast { ref cast, .. } => {
debug!("alloc: {:?} (return place) -> place", local);
let size = cast.size(&start_bx);
return LocalRef::Place(PlaceRef::alloca_size(&mut start_bx, size, layout));
}
_ => {}
};
}
if memory_locals.contains(local) {
debug!("alloc: {:?} -> place", local);
if layout.is_unsized() {
LocalRef::UnsizedPlace(PlaceRef::alloca_unsized_indirect(&mut start_bx, layout))
} else {
LocalRef::Place(PlaceRef::alloca(&mut start_bx, layout))
}
} else {
debug!("alloc: {:?} -> operand", local);
LocalRef::new_operand(layout)
}
};
let retptr = allocate_local(mir::RETURN_PLACE);
iter::once(retptr)
.chain(args.into_iter())
.chain(mir.vars_and_temps_iter().map(allocate_local))
.collect()
};
fx.initialize_locals(local_values);
// Apply debuginfo to the newly allocated locals.
fx.debug_introduce_locals(&mut start_bx, consts_debug_info.unwrap_or_default());
// If the backend supports coverage, and coverage is enabled for this function,
// do any necessary start-of-function codegen (e.g. locals for MC/DC bitmaps).
start_bx.init_coverage(instance);
// The builders will be created separately for each basic block at `codegen_block`.
// So drop the builder of `start_llbb` to avoid having two at the same time.
drop(start_bx);
let mut unreached_blocks = BitSet::new_filled(mir.basic_blocks.len());
// Codegen the body of each reachable block using our reverse postorder list.
for bb in traversal_order {
fx.codegen_block(bb);
unreached_blocks.remove(bb);
}
// FIXME: These empty unreachable blocks are *mostly* a waste. They are occasionally
// targets for a SwitchInt terminator, but the reimplementation of the mono-reachable
// simplification in SwitchInt lowering sometimes misses cases that
// mono_reachable_reverse_postorder manages to figure out.
// The solution is to do something like post-mono GVN. But for now we have this hack.
for bb in unreached_blocks.iter() {
fx.codegen_block_as_unreachable(bb);
}
}
/// Produces, for each argument, a `Value` pointing at the
/// argument's value. As arguments are places, these are always
/// indirect.
fn arg_local_refs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
fx: &mut FunctionCx<'a, 'tcx, Bx>,
memory_locals: &BitSet<mir::Local>,
) -> Vec<LocalRef<'tcx, Bx::Value>> {
let mir = fx.mir;
let mut idx = 0;
let mut llarg_idx = fx.fn_abi.ret.is_indirect() as usize;
let mut num_untupled = None;
let codegen_fn_attrs = bx.tcx().codegen_fn_attrs(fx.instance.def_id());
let naked = codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED);
if naked {
return vec![];
}
let args = mir
.args_iter()
.enumerate()
.map(|(arg_index, local)| {
let arg_decl = &mir.local_decls[local];
let arg_ty = fx.monomorphize(arg_decl.ty);
if Some(local) == mir.spread_arg {
// This argument (e.g., the last argument in the "rust-call" ABI)
// is a tuple that was spread at the ABI level and now we have
// to reconstruct it into a tuple local variable, from multiple
// individual LLVM function arguments.
let ty::Tuple(tupled_arg_tys) = arg_ty.kind() else {
bug!("spread argument isn't a tuple?!");
};
let layout = bx.layout_of(arg_ty);
// FIXME: support unsized params in "rust-call" ABI
if layout.is_unsized() {
span_bug!(
arg_decl.source_info.span,
"\"rust-call\" ABI does not support unsized params",
);
}
let place = PlaceRef::alloca(bx, layout);
for i in 0..tupled_arg_tys.len() {
let arg = &fx.fn_abi.args[idx];
idx += 1;
if let PassMode::Cast { pad_i32: true, .. } = arg.mode {
llarg_idx += 1;
}
let pr_field = place.project_field(bx, i);
bx.store_fn_arg(arg, &mut llarg_idx, pr_field);
}
assert_eq!(
None,
num_untupled.replace(tupled_arg_tys.len()),
"Replaced existing num_tupled"
);
return LocalRef::Place(place);
}
if fx.fn_abi.c_variadic && arg_index == fx.fn_abi.args.len() {
let va_list = PlaceRef::alloca(bx, bx.layout_of(arg_ty));
bx.va_start(va_list.val.llval);
return LocalRef::Place(va_list);
}
let arg = &fx.fn_abi.args[idx];
idx += 1;
if let PassMode::Cast { pad_i32: true, .. } = arg.mode {
llarg_idx += 1;
}
if !memory_locals.contains(local) {
// We don't have to cast or keep the argument in the alloca.
// FIXME(eddyb): We should figure out how to use llvm.dbg.value instead
// of putting everything in allocas just so we can use llvm.dbg.declare.
let local = |op| LocalRef::Operand(op);
match arg.mode {
PassMode::Ignore => {
return local(OperandRef::zero_sized(arg.layout));
}
PassMode::Direct(_) => {
let llarg = bx.get_param(llarg_idx);
llarg_idx += 1;
return local(OperandRef::from_immediate_or_packed_pair(
bx, llarg, arg.layout,
));
}
PassMode::Pair(..) => {
let (a, b) = (bx.get_param(llarg_idx), bx.get_param(llarg_idx + 1));
llarg_idx += 2;
return local(OperandRef {
val: OperandValue::Pair(a, b),
layout: arg.layout,
});
}
_ => {}
}
}
match arg.mode {
// Sized indirect arguments
PassMode::Indirect { attrs, meta_attrs: None, on_stack: _ } => {
// Don't copy an indirect argument to an alloca, the caller already put it
// in a temporary alloca and gave it up.
// FIXME: lifetimes
if let Some(pointee_align) = attrs.pointee_align
&& pointee_align < arg.layout.align.abi
{
// ...unless the argument is underaligned, then we need to copy it to
// a higher-aligned alloca.
let tmp = PlaceRef::alloca(bx, arg.layout);
bx.store_fn_arg(arg, &mut llarg_idx, tmp);
LocalRef::Place(tmp)
} else {
let llarg = bx.get_param(llarg_idx);
llarg_idx += 1;
LocalRef::Place(PlaceRef::new_sized(llarg, arg.layout))
}
}
// Unsized indirect qrguments
PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => {
// As the storage for the indirect argument lives during
// the whole function call, we just copy the wide pointer.
let llarg = bx.get_param(llarg_idx);
llarg_idx += 1;
let llextra = bx.get_param(llarg_idx);
llarg_idx += 1;
let indirect_operand = OperandValue::Pair(llarg, llextra);
let tmp = PlaceRef::alloca_unsized_indirect(bx, arg.layout);
indirect_operand.store(bx, tmp);
LocalRef::UnsizedPlace(tmp)
}
_ => {
let tmp = PlaceRef::alloca(bx, arg.layout);
bx.store_fn_arg(arg, &mut llarg_idx, tmp);
LocalRef::Place(tmp)
}
}
})
.collect::<Vec<_>>();
if fx.instance.def.requires_caller_location(bx.tcx()) {
let mir_args = if let Some(num_untupled) = num_untupled {
// Subtract off the tupled argument that gets 'expanded'
args.len() - 1 + num_untupled
} else {
args.len()
};
assert_eq!(
fx.fn_abi.args.len(),
mir_args + 1,
"#[track_caller] instance {:?} must have 1 more argument in their ABI than in their MIR",
fx.instance
);
let arg = fx.fn_abi.args.last().unwrap();
match arg.mode {
PassMode::Direct(_) => (),
_ => bug!("caller location must be PassMode::Direct, found {:?}", arg.mode),
}
fx.caller_location = Some(OperandRef {
val: OperandValue::Immediate(bx.get_param(llarg_idx)),
layout: arg.layout,
});
}
args
}
fn find_cold_blocks<'tcx>(
tcx: TyCtxt<'tcx>,
mir: &mir::Body<'tcx>,
) -> IndexVec<mir::BasicBlock, bool> {
let local_decls = &mir.local_decls;
let mut cold_blocks: IndexVec<mir::BasicBlock, bool> =
IndexVec::from_elem(false, &mir.basic_blocks);
// Traverse all basic blocks from end of the function to the start.
for (bb, bb_data) in traversal::postorder(mir) {
let terminator = bb_data.terminator();
// If a BB ends with a call to a cold function, mark it as cold.
if let mir::TerminatorKind::Call { ref func, .. } = terminator.kind
&& let ty::FnDef(def_id, ..) = *func.ty(local_decls, tcx).kind()
&& let attrs = tcx.codegen_fn_attrs(def_id)
&& attrs.flags.contains(CodegenFnAttrFlags::COLD)
{
cold_blocks[bb] = true;
continue;
}
// If all successors of a BB are cold and there's at least one of them, mark this BB as cold
let mut succ = terminator.successors();
if let Some(first) = succ.next()
&& cold_blocks[first]
&& succ.all(|s| cold_blocks[s])
{
cold_blocks[bb] = true;
}
}
cold_blocks
}