rustc_codegen_ssa/mir/
mod.rs

1use std::iter;
2
3use rustc_index::IndexVec;
4use rustc_index::bit_set::DenseBitSet;
5use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
6use rustc_middle::mir::{Body, Local, UnwindTerminateReason, traversal};
7use rustc_middle::ty::layout::{FnAbiOf, HasTyCtxt, HasTypingEnv, TyAndLayout};
8use rustc_middle::ty::{self, Instance, Ty, TyCtxt, TypeFoldable, TypeVisitableExt};
9use rustc_middle::{bug, mir, span_bug};
10use rustc_target::callconv::{FnAbi, PassMode};
11use tracing::{debug, instrument};
12
13use crate::base;
14use crate::traits::*;
15
16mod analyze;
17mod block;
18mod constant;
19mod coverageinfo;
20pub mod debuginfo;
21mod intrinsic;
22mod locals;
23pub mod naked_asm;
24pub mod operand;
25pub mod place;
26mod rvalue;
27mod statement;
28
29pub use self::block::store_cast;
30use self::debuginfo::{FunctionDebugContext, PerLocalVarDebugInfo};
31use self::operand::{OperandRef, OperandValue};
32use self::place::PlaceRef;
33
34// Used for tracking the state of generated basic blocks.
35enum CachedLlbb<T> {
36    /// Nothing created yet.
37    None,
38
39    /// Has been created.
40    Some(T),
41
42    /// Nothing created yet, and nothing should be.
43    Skip,
44}
45
46type PerLocalVarDebugInfoIndexVec<'tcx, V> =
47    IndexVec<mir::Local, Vec<PerLocalVarDebugInfo<'tcx, V>>>;
48
49/// Master context for codegenning from MIR.
50pub struct FunctionCx<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> {
51    instance: Instance<'tcx>,
52
53    mir: &'tcx mir::Body<'tcx>,
54
55    debug_context: Option<FunctionDebugContext<'tcx, Bx::DIScope, Bx::DILocation>>,
56
57    llfn: Bx::Function,
58
59    cx: &'a Bx::CodegenCx,
60
61    fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
62
63    /// When unwinding is initiated, we have to store this personality
64    /// value somewhere so that we can load it and re-use it in the
65    /// resume instruction. The personality is (afaik) some kind of
66    /// value used for C++ unwinding, which must filter by type: we
67    /// don't really care about it very much. Anyway, this value
68    /// contains an alloca into which the personality is stored and
69    /// then later loaded when generating the DIVERGE_BLOCK.
70    personality_slot: Option<PlaceRef<'tcx, Bx::Value>>,
71
72    /// A backend `BasicBlock` for each MIR `BasicBlock`, created lazily
73    /// as-needed (e.g. RPO reaching it or another block branching to it).
74    // FIXME(eddyb) rename `llbbs` and other `ll`-prefixed things to use a
75    // more backend-agnostic prefix such as `cg` (i.e. this would be `cgbbs`).
76    cached_llbbs: IndexVec<mir::BasicBlock, CachedLlbb<Bx::BasicBlock>>,
77
78    /// The funclet status of each basic block
79    cleanup_kinds: Option<IndexVec<mir::BasicBlock, analyze::CleanupKind>>,
80
81    /// When targeting MSVC, this stores the cleanup info for each funclet BB.
82    /// This is initialized at the same time as the `landing_pads` entry for the
83    /// funclets' head block, i.e. when needed by an unwind / `cleanup_ret` edge.
84    funclets: IndexVec<mir::BasicBlock, Option<Bx::Funclet>>,
85
86    /// This stores the cached landing/cleanup pad block for a given BB.
87    // FIXME(eddyb) rename this to `eh_pads`.
88    landing_pads: IndexVec<mir::BasicBlock, Option<Bx::BasicBlock>>,
89
90    /// Cached unreachable block
91    unreachable_block: Option<Bx::BasicBlock>,
92
93    /// Cached terminate upon unwinding block and its reason
94    terminate_block: Option<(Bx::BasicBlock, UnwindTerminateReason)>,
95
96    /// A bool flag for each basic block indicating whether it is a cold block.
97    /// A cold block is a block that is unlikely to be executed at runtime.
98    cold_blocks: IndexVec<mir::BasicBlock, bool>,
99
100    /// The location where each MIR arg/var/tmp/ret is stored. This is
101    /// usually an `PlaceRef` representing an alloca, but not always:
102    /// sometimes we can skip the alloca and just store the value
103    /// directly using an `OperandRef`, which makes for tighter LLVM
104    /// IR. The conditions for using an `OperandRef` are as follows:
105    ///
106    /// - the type of the local must be judged "immediate" by `is_llvm_immediate`
107    /// - the operand must never be referenced indirectly
108    ///     - we should not take its address using the `&` operator
109    ///     - nor should it appear in a place path like `tmp.a`
110    /// - the operand must be defined by an rvalue that can generate immediate
111    ///   values
112    ///
113    /// Avoiding allocs can also be important for certain intrinsics,
114    /// notably `expect`.
115    locals: locals::Locals<'tcx, Bx::Value>,
116
117    /// All `VarDebugInfo` from the MIR body, partitioned by `Local`.
118    /// This is `None` if no variable debuginfo/names are needed.
119    per_local_var_debug_info: Option<PerLocalVarDebugInfoIndexVec<'tcx, Bx::DIVariable>>,
120
121    /// Caller location propagated if this function has `#[track_caller]`.
122    caller_location: Option<OperandRef<'tcx, Bx::Value>>,
123}
124
125impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
126    pub fn monomorphize<T>(&self, value: T) -> T
127    where
128        T: Copy + TypeFoldable<TyCtxt<'tcx>>,
129    {
130        debug!("monomorphize: self.instance={:?}", self.instance);
131        self.instance.instantiate_mir_and_normalize_erasing_regions(
132            self.cx.tcx(),
133            self.cx.typing_env(),
134            ty::EarlyBinder::bind(value),
135        )
136    }
137}
138
139enum LocalRef<'tcx, V> {
140    Place(PlaceRef<'tcx, V>),
141    /// `UnsizedPlace(p)`: `p` itself is a thin pointer (indirect place).
142    /// `*p` is the wide pointer that references the actual unsized place.
143    ///
144    /// MIR only supports unsized args, not dynamically-sized locals, so
145    /// new unsized temps don't exist and we must reuse the referred-to place.
146    ///
147    /// FIXME: Since the removal of unsized locals in <https://github.com/rust-lang/rust/pull/142911>,
148    /// can we maybe use `Place` here? Or refactor it in another way? There are quite a few
149    /// `UnsizedPlace => bug` branches now.
150    UnsizedPlace(PlaceRef<'tcx, V>),
151    /// The backend [`OperandValue`] has already been generated.
152    Operand(OperandRef<'tcx, V>),
153    /// Will be a `Self::Operand` once we get to its definition.
154    PendingOperand,
155}
156
157impl<'tcx, V: CodegenObject> LocalRef<'tcx, V> {
158    fn new_operand(layout: TyAndLayout<'tcx>) -> LocalRef<'tcx, V> {
159        if layout.is_zst() {
160            // Zero-size temporaries aren't always initialized, which
161            // doesn't matter because they don't contain data, but
162            // we need something sufficiently aligned in the operand.
163            LocalRef::Operand(OperandRef::zero_sized(layout))
164        } else {
165            LocalRef::PendingOperand
166        }
167    }
168}
169
170///////////////////////////////////////////////////////////////////////////
171
172#[instrument(level = "debug", skip(cx))]
173pub fn codegen_mir<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
174    cx: &'a Bx::CodegenCx,
175    instance: Instance<'tcx>,
176) {
177    assert!(!instance.args.has_infer());
178
179    let tcx = cx.tcx();
180    let llfn = cx.get_fn(instance);
181
182    let mut mir = tcx.instance_mir(instance.def);
183    // Note that the ABI logic has deduced facts about the functions' parameters based on the MIR we
184    // got here (`deduce_param_attrs`). That means we can *not* apply arbitrary further MIR
185    // transforms as that may invalidate those deduced facts!
186
187    let fn_abi = cx.fn_abi_of_instance(instance, ty::List::empty());
188    debug!("fn_abi: {:?}", fn_abi);
189
190    if tcx.features().ergonomic_clones() {
191        let monomorphized_mir = instance.instantiate_mir_and_normalize_erasing_regions(
192            tcx,
193            ty::TypingEnv::fully_monomorphized(),
194            ty::EarlyBinder::bind(mir.clone()),
195        );
196        mir = tcx.arena.alloc(optimize_use_clone::<Bx>(cx, monomorphized_mir));
197    }
198
199    let debug_context = cx.create_function_debug_context(instance, fn_abi, llfn, &mir);
200
201    let start_llbb = Bx::append_block(cx, llfn, "start");
202    let mut start_bx = Bx::build(cx, start_llbb);
203
204    if mir.basic_blocks.iter().any(|bb| {
205        bb.is_cleanup || matches!(bb.terminator().unwind(), Some(mir::UnwindAction::Terminate(_)))
206    }) {
207        start_bx.set_personality_fn(cx.eh_personality());
208    }
209
210    let cleanup_kinds =
211        base::wants_new_eh_instructions(tcx.sess).then(|| analyze::cleanup_kinds(&mir));
212
213    let cached_llbbs: IndexVec<mir::BasicBlock, CachedLlbb<Bx::BasicBlock>> =
214        mir.basic_blocks
215            .indices()
216            .map(|bb| {
217                if bb == mir::START_BLOCK { CachedLlbb::Some(start_llbb) } else { CachedLlbb::None }
218            })
219            .collect();
220
221    let mut fx = FunctionCx {
222        instance,
223        mir,
224        llfn,
225        fn_abi,
226        cx,
227        personality_slot: None,
228        cached_llbbs,
229        unreachable_block: None,
230        terminate_block: None,
231        cleanup_kinds,
232        landing_pads: IndexVec::from_elem(None, &mir.basic_blocks),
233        funclets: IndexVec::from_fn_n(|_| None, mir.basic_blocks.len()),
234        cold_blocks: find_cold_blocks(tcx, mir),
235        locals: locals::Locals::empty(),
236        debug_context,
237        per_local_var_debug_info: None,
238        caller_location: None,
239    };
240
241    // It may seem like we should iterate over `required_consts` to ensure they all successfully
242    // evaluate; however, the `MirUsedCollector` already did that during the collection phase of
243    // monomorphization, and if there is an error during collection then codegen never starts -- so
244    // we don't have to do it again.
245
246    let (per_local_var_debug_info, consts_debug_info) =
247        fx.compute_per_local_var_debug_info(&mut start_bx).unzip();
248    fx.per_local_var_debug_info = per_local_var_debug_info;
249
250    let traversal_order = traversal::mono_reachable_reverse_postorder(mir, tcx, instance);
251    let memory_locals = analyze::non_ssa_locals(&fx, &traversal_order);
252
253    // Allocate variable and temp allocas
254    let local_values = {
255        let args = arg_local_refs(&mut start_bx, &mut fx, &memory_locals);
256
257        let mut allocate_local = |local: Local| {
258            let decl = &mir.local_decls[local];
259            let layout = start_bx.layout_of(fx.monomorphize(decl.ty));
260            assert!(!layout.ty.has_erasable_regions());
261
262            if local == mir::RETURN_PLACE {
263                match fx.fn_abi.ret.mode {
264                    PassMode::Indirect { .. } => {
265                        debug!("alloc: {:?} (return place) -> place", local);
266                        let llretptr = start_bx.get_param(0);
267                        return LocalRef::Place(PlaceRef::new_sized(llretptr, layout));
268                    }
269                    PassMode::Cast { ref cast, .. } => {
270                        debug!("alloc: {:?} (return place) -> place", local);
271                        let size = cast.size(&start_bx).max(layout.size);
272                        return LocalRef::Place(PlaceRef::alloca_size(&mut start_bx, size, layout));
273                    }
274                    _ => {}
275                };
276            }
277
278            if memory_locals.contains(local) {
279                debug!("alloc: {:?} -> place", local);
280                if layout.is_unsized() {
281                    LocalRef::UnsizedPlace(PlaceRef::alloca_unsized_indirect(&mut start_bx, layout))
282                } else {
283                    LocalRef::Place(PlaceRef::alloca(&mut start_bx, layout))
284                }
285            } else {
286                debug!("alloc: {:?} -> operand", local);
287                LocalRef::new_operand(layout)
288            }
289        };
290
291        let retptr = allocate_local(mir::RETURN_PLACE);
292        iter::once(retptr)
293            .chain(args.into_iter())
294            .chain(mir.vars_and_temps_iter().map(allocate_local))
295            .collect()
296    };
297    fx.initialize_locals(local_values);
298
299    // Apply debuginfo to the newly allocated locals.
300    fx.debug_introduce_locals(&mut start_bx, consts_debug_info.unwrap_or_default());
301
302    // The builders will be created separately for each basic block at `codegen_block`.
303    // So drop the builder of `start_llbb` to avoid having two at the same time.
304    drop(start_bx);
305
306    let mut unreached_blocks = DenseBitSet::new_filled(mir.basic_blocks.len());
307    // Codegen the body of each reachable block using our reverse postorder list.
308    for bb in traversal_order {
309        fx.codegen_block(bb);
310        unreached_blocks.remove(bb);
311    }
312
313    // FIXME: These empty unreachable blocks are *mostly* a waste. They are occasionally
314    // targets for a SwitchInt terminator, but the reimplementation of the mono-reachable
315    // simplification in SwitchInt lowering sometimes misses cases that
316    // mono_reachable_reverse_postorder manages to figure out.
317    // The solution is to do something like post-mono GVN. But for now we have this hack.
318    for bb in unreached_blocks.iter() {
319        fx.codegen_block_as_unreachable(bb);
320    }
321}
322
323/// Replace `clone` calls that come from `use` statements with direct copies if possible.
324// FIXME: Move this function to mir::transform when post-mono MIR passes land.
325fn optimize_use_clone<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
326    cx: &'a Bx::CodegenCx,
327    mut mir: Body<'tcx>,
328) -> Body<'tcx> {
329    let tcx = cx.tcx();
330
331    if tcx.features().ergonomic_clones() {
332        for bb in mir.basic_blocks.as_mut() {
333            let mir::TerminatorKind::Call {
334                args,
335                destination,
336                target,
337                call_source: mir::CallSource::Use,
338                ..
339            } = &bb.terminator().kind
340            else {
341                continue;
342            };
343
344            // CallSource::Use calls always use 1 argument.
345            assert_eq!(args.len(), 1);
346            let arg = &args[0];
347
348            // These types are easily available from locals, so check that before
349            // doing DefId lookups to figure out what we're actually calling.
350            let arg_ty = arg.node.ty(&mir.local_decls, tcx);
351
352            let ty::Ref(_region, inner_ty, mir::Mutability::Not) = *arg_ty.kind() else { continue };
353
354            if !tcx.type_is_copy_modulo_regions(cx.typing_env(), inner_ty) {
355                continue;
356            }
357
358            let Some(arg_place) = arg.node.place() else { continue };
359
360            let destination_block = target.unwrap();
361
362            bb.statements.push(mir::Statement::new(
363                bb.terminator().source_info,
364                mir::StatementKind::Assign(Box::new((
365                    *destination,
366                    mir::Rvalue::Use(mir::Operand::Copy(
367                        arg_place.project_deeper(&[mir::ProjectionElem::Deref], tcx),
368                    )),
369                ))),
370            ));
371
372            bb.terminator_mut().kind = mir::TerminatorKind::Goto { target: destination_block };
373        }
374    }
375
376    mir
377}
378
379/// Produces, for each argument, a `Value` pointing at the
380/// argument's value. As arguments are places, these are always
381/// indirect.
382fn arg_local_refs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
383    bx: &mut Bx,
384    fx: &mut FunctionCx<'a, 'tcx, Bx>,
385    memory_locals: &DenseBitSet<mir::Local>,
386) -> Vec<LocalRef<'tcx, Bx::Value>> {
387    let mir = fx.mir;
388    let mut idx = 0;
389    let mut llarg_idx = fx.fn_abi.ret.is_indirect() as usize;
390
391    let mut num_untupled = None;
392
393    let codegen_fn_attrs = bx.tcx().codegen_instance_attrs(fx.instance.def);
394    if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) {
395        return vec![];
396    }
397
398    let args = mir
399        .args_iter()
400        .enumerate()
401        .map(|(arg_index, local)| {
402            let arg_decl = &mir.local_decls[local];
403            let arg_ty = fx.monomorphize(arg_decl.ty);
404
405            if Some(local) == mir.spread_arg {
406                // This argument (e.g., the last argument in the "rust-call" ABI)
407                // is a tuple that was spread at the ABI level and now we have
408                // to reconstruct it into a tuple local variable, from multiple
409                // individual LLVM function arguments.
410                let ty::Tuple(tupled_arg_tys) = arg_ty.kind() else {
411                    bug!("spread argument isn't a tuple?!");
412                };
413
414                let layout = bx.layout_of(arg_ty);
415
416                // FIXME: support unsized params in "rust-call" ABI
417                if layout.is_unsized() {
418                    span_bug!(
419                        arg_decl.source_info.span,
420                        "\"rust-call\" ABI does not support unsized params",
421                    );
422                }
423
424                let place = PlaceRef::alloca(bx, layout);
425                for i in 0..tupled_arg_tys.len() {
426                    let arg = &fx.fn_abi.args[idx];
427                    idx += 1;
428                    if let PassMode::Cast { pad_i32: true, .. } = arg.mode {
429                        llarg_idx += 1;
430                    }
431                    let pr_field = place.project_field(bx, i);
432                    bx.store_fn_arg(arg, &mut llarg_idx, pr_field);
433                }
434                assert_eq!(
435                    None,
436                    num_untupled.replace(tupled_arg_tys.len()),
437                    "Replaced existing num_tupled"
438                );
439
440                return LocalRef::Place(place);
441            }
442
443            if fx.fn_abi.c_variadic && arg_index == fx.fn_abi.args.len() {
444                let va_list = PlaceRef::alloca(bx, bx.layout_of(arg_ty));
445
446                // Explicitly start the lifetime of the `va_list`, improves LLVM codegen.
447                bx.lifetime_start(va_list.val.llval, va_list.layout.size);
448
449                bx.va_start(va_list.val.llval);
450
451                return LocalRef::Place(va_list);
452            }
453
454            let arg = &fx.fn_abi.args[idx];
455            idx += 1;
456            if let PassMode::Cast { pad_i32: true, .. } = arg.mode {
457                llarg_idx += 1;
458            }
459
460            if !memory_locals.contains(local) {
461                // We don't have to cast or keep the argument in the alloca.
462                // FIXME(eddyb): We should figure out how to use llvm.dbg.value instead
463                // of putting everything in allocas just so we can use llvm.dbg.declare.
464                let local = |op| LocalRef::Operand(op);
465                match arg.mode {
466                    PassMode::Ignore => {
467                        return local(OperandRef::zero_sized(arg.layout));
468                    }
469                    PassMode::Direct(_) => {
470                        let llarg = bx.get_param(llarg_idx);
471                        llarg_idx += 1;
472                        return local(OperandRef::from_immediate_or_packed_pair(
473                            bx, llarg, arg.layout,
474                        ));
475                    }
476                    PassMode::Pair(..) => {
477                        let (a, b) = (bx.get_param(llarg_idx), bx.get_param(llarg_idx + 1));
478                        llarg_idx += 2;
479
480                        return local(OperandRef {
481                            val: OperandValue::Pair(a, b),
482                            layout: arg.layout,
483                        });
484                    }
485                    _ => {}
486                }
487            }
488
489            match arg.mode {
490                // Sized indirect arguments
491                PassMode::Indirect { attrs, meta_attrs: None, on_stack: _ } => {
492                    // Don't copy an indirect argument to an alloca, the caller already put it
493                    // in a temporary alloca and gave it up.
494                    // FIXME: lifetimes
495                    if let Some(pointee_align) = attrs.pointee_align
496                        && pointee_align < arg.layout.align.abi
497                    {
498                        // ...unless the argument is underaligned, then we need to copy it to
499                        // a higher-aligned alloca.
500                        let tmp = PlaceRef::alloca(bx, arg.layout);
501                        bx.store_fn_arg(arg, &mut llarg_idx, tmp);
502                        LocalRef::Place(tmp)
503                    } else {
504                        let llarg = bx.get_param(llarg_idx);
505                        llarg_idx += 1;
506                        LocalRef::Place(PlaceRef::new_sized(llarg, arg.layout))
507                    }
508                }
509                // Unsized indirect arguments
510                PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => {
511                    // As the storage for the indirect argument lives during
512                    // the whole function call, we just copy the wide pointer.
513                    let llarg = bx.get_param(llarg_idx);
514                    llarg_idx += 1;
515                    let llextra = bx.get_param(llarg_idx);
516                    llarg_idx += 1;
517                    let indirect_operand = OperandValue::Pair(llarg, llextra);
518
519                    let tmp = PlaceRef::alloca_unsized_indirect(bx, arg.layout);
520                    indirect_operand.store(bx, tmp);
521                    LocalRef::UnsizedPlace(tmp)
522                }
523                _ => {
524                    let tmp = PlaceRef::alloca(bx, arg.layout);
525                    bx.store_fn_arg(arg, &mut llarg_idx, tmp);
526                    LocalRef::Place(tmp)
527                }
528            }
529        })
530        .collect::<Vec<_>>();
531
532    if fx.instance.def.requires_caller_location(bx.tcx()) {
533        let mir_args = if let Some(num_untupled) = num_untupled {
534            // Subtract off the tupled argument that gets 'expanded'
535            args.len() - 1 + num_untupled
536        } else {
537            args.len()
538        };
539        assert_eq!(
540            fx.fn_abi.args.len(),
541            mir_args + 1,
542            "#[track_caller] instance {:?} must have 1 more argument in their ABI than in their MIR",
543            fx.instance
544        );
545
546        let arg = fx.fn_abi.args.last().unwrap();
547        match arg.mode {
548            PassMode::Direct(_) => (),
549            _ => bug!("caller location must be PassMode::Direct, found {:?}", arg.mode),
550        }
551
552        fx.caller_location = Some(OperandRef {
553            val: OperandValue::Immediate(bx.get_param(llarg_idx)),
554            layout: arg.layout,
555        });
556    }
557
558    args
559}
560
561fn find_cold_blocks<'tcx>(
562    tcx: TyCtxt<'tcx>,
563    mir: &mir::Body<'tcx>,
564) -> IndexVec<mir::BasicBlock, bool> {
565    let local_decls = &mir.local_decls;
566
567    let mut cold_blocks: IndexVec<mir::BasicBlock, bool> =
568        IndexVec::from_elem(false, &mir.basic_blocks);
569
570    // Traverse all basic blocks from end of the function to the start.
571    for (bb, bb_data) in traversal::postorder(mir) {
572        let terminator = bb_data.terminator();
573
574        match terminator.kind {
575            // If a BB ends with a call to a cold function, mark it as cold.
576            mir::TerminatorKind::Call { ref func, .. }
577            | mir::TerminatorKind::TailCall { ref func, .. }
578                if let ty::FnDef(def_id, ..) = *func.ty(local_decls, tcx).kind()
579                    && let attrs = tcx.codegen_fn_attrs(def_id)
580                    && attrs.flags.contains(CodegenFnAttrFlags::COLD) =>
581            {
582                cold_blocks[bb] = true;
583                continue;
584            }
585
586            // If a BB ends with an `unreachable`, also mark it as cold.
587            mir::TerminatorKind::Unreachable => {
588                cold_blocks[bb] = true;
589                continue;
590            }
591
592            _ => {}
593        }
594
595        // If all successors of a BB are cold and there's at least one of them, mark this BB as cold
596        let mut succ = terminator.successors();
597        if let Some(first) = succ.next()
598            && cold_blocks[first]
599            && succ.all(|s| cold_blocks[s])
600        {
601            cold_blocks[bb] = true;
602        }
603    }
604
605    cold_blocks
606}