rustc_type_ir/relate/solver_relating.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
pub use rustc_type_ir::relate::*;
use rustc_type_ir::solve::Goal;
use rustc_type_ir::{self as ty, InferCtxtLike, Interner};
use tracing::{debug, instrument};
use self::combine::{PredicateEmittingRelation, super_combine_consts, super_combine_tys};
use crate::data_structures::DelayedSet;
pub trait RelateExt: InferCtxtLike {
fn relate<T: Relate<Self::Interner>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
variance: ty::Variance,
rhs: T,
) -> Result<
Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>,
TypeError<Self::Interner>,
>;
fn eq_structurally_relating_aliases<T: Relate<Self::Interner>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
rhs: T,
) -> Result<
Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>,
TypeError<Self::Interner>,
>;
}
impl<Infcx: InferCtxtLike> RelateExt for Infcx {
fn relate<T: Relate<Self::Interner>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
variance: ty::Variance,
rhs: T,
) -> Result<
Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>,
TypeError<Self::Interner>,
> {
let mut relate =
SolverRelating::new(self, StructurallyRelateAliases::No, variance, param_env);
relate.relate(lhs, rhs)?;
Ok(relate.goals)
}
fn eq_structurally_relating_aliases<T: Relate<Self::Interner>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
rhs: T,
) -> Result<
Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>,
TypeError<Self::Interner>,
> {
let mut relate =
SolverRelating::new(self, StructurallyRelateAliases::Yes, ty::Invariant, param_env);
relate.relate(lhs, rhs)?;
Ok(relate.goals)
}
}
/// Enforce that `a` is equal to or a subtype of `b`.
pub struct SolverRelating<'infcx, Infcx, I: Interner> {
infcx: &'infcx Infcx,
// Immutable fields.
structurally_relate_aliases: StructurallyRelateAliases,
param_env: I::ParamEnv,
// Mutable fields.
ambient_variance: ty::Variance,
goals: Vec<Goal<I, I::Predicate>>,
/// The cache only tracks the `ambient_variance` as it's the
/// only field which is mutable and which meaningfully changes
/// the result when relating types.
///
/// The cache does not track whether the state of the
/// `Infcx` has been changed or whether we've added any
/// goals to `self.goals`. Whether a goal is added once or multiple
/// times is not really meaningful.
///
/// Changes in the inference state may delay some type inference to
/// the next fulfillment loop. Given that this loop is already
/// necessary, this is also not a meaningful change. Consider
/// the following three relations:
/// ```text
/// Vec<?0> sub Vec<?1>
/// ?0 eq u32
/// Vec<?0> sub Vec<?1>
/// ```
/// Without a cache, the second `Vec<?0> sub Vec<?1>` would eagerly
/// constrain `?1` to `u32`. When using the cache entry from the
/// first time we've related these types, this only happens when
/// later proving the `Subtype(?0, ?1)` goal from the first relation.
cache: DelayedSet<(ty::Variance, I::Ty, I::Ty)>,
}
impl<'infcx, Infcx, I> SolverRelating<'infcx, Infcx, I>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
{
pub fn new(
infcx: &'infcx Infcx,
structurally_relate_aliases: StructurallyRelateAliases,
ambient_variance: ty::Variance,
param_env: I::ParamEnv,
) -> Self {
SolverRelating {
infcx,
structurally_relate_aliases,
ambient_variance,
param_env,
goals: vec![],
cache: Default::default(),
}
}
}
impl<Infcx, I> TypeRelation<I> for SolverRelating<'_, Infcx, I>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
{
fn cx(&self) -> I {
self.infcx.cx()
}
fn relate_item_args(
&mut self,
item_def_id: I::DefId,
a_arg: I::GenericArgs,
b_arg: I::GenericArgs,
) -> RelateResult<I, I::GenericArgs> {
if self.ambient_variance == ty::Invariant {
// Avoid fetching the variance if we are in an invariant
// context; no need, and it can induce dependency cycles
// (e.g., #41849).
relate_args_invariantly(self, a_arg, b_arg)
} else {
let tcx = self.cx();
let opt_variances = tcx.variances_of(item_def_id);
relate_args_with_variances(self, item_def_id, opt_variances, a_arg, b_arg, false)
}
}
fn relate_with_variance<T: Relate<I>>(
&mut self,
variance: ty::Variance,
_info: VarianceDiagInfo<I>,
a: T,
b: T,
) -> RelateResult<I, T> {
let old_ambient_variance = self.ambient_variance;
self.ambient_variance = self.ambient_variance.xform(variance);
debug!(?self.ambient_variance, "new ambient variance");
let r = if self.ambient_variance == ty::Bivariant { Ok(a) } else { self.relate(a, b) };
self.ambient_variance = old_ambient_variance;
r
}
#[instrument(skip(self), level = "trace")]
fn tys(&mut self, a: I::Ty, b: I::Ty) -> RelateResult<I, I::Ty> {
if a == b {
return Ok(a);
}
let infcx = self.infcx;
let a = infcx.shallow_resolve(a);
let b = infcx.shallow_resolve(b);
if self.cache.contains(&(self.ambient_variance, a, b)) {
return Ok(a);
}
match (a.kind(), b.kind()) {
(ty::Infer(ty::TyVar(a_id)), ty::Infer(ty::TyVar(b_id))) => {
match self.ambient_variance {
ty::Covariant => {
// can't make progress on `A <: B` if both A and B are
// type variables, so record an obligation.
self.goals.push(Goal::new(
self.cx(),
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Subtype(ty::SubtypePredicate {
a_is_expected: true,
a,
b,
})),
));
}
ty::Contravariant => {
// can't make progress on `B <: A` if both A and B are
// type variables, so record an obligation.
self.goals.push(Goal::new(
self.cx(),
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Subtype(ty::SubtypePredicate {
a_is_expected: false,
a: b,
b: a,
})),
));
}
ty::Invariant => {
infcx.equate_ty_vids_raw(a_id, b_id);
}
ty::Bivariant => {
unreachable!("Expected bivariance to be handled in relate_with_variance")
}
}
}
(ty::Infer(ty::TyVar(a_vid)), _) => {
infcx.instantiate_ty_var_raw(self, true, a_vid, self.ambient_variance, b)?;
}
(_, ty::Infer(ty::TyVar(b_vid))) => {
infcx.instantiate_ty_var_raw(
self,
false,
b_vid,
self.ambient_variance.xform(ty::Contravariant),
a,
)?;
}
_ => {
super_combine_tys(self.infcx, self, a, b)?;
}
}
assert!(self.cache.insert((self.ambient_variance, a, b)));
Ok(a)
}
#[instrument(skip(self), level = "trace")]
fn regions(&mut self, a: I::Region, b: I::Region) -> RelateResult<I, I::Region> {
match self.ambient_variance {
// Subtype(&'a u8, &'b u8) => Outlives('a: 'b) => SubRegion('b, 'a)
ty::Covariant => self.infcx.sub_regions(b, a),
// Suptype(&'a u8, &'b u8) => Outlives('b: 'a) => SubRegion('a, 'b)
ty::Contravariant => self.infcx.sub_regions(a, b),
ty::Invariant => self.infcx.equate_regions(a, b),
ty::Bivariant => {
unreachable!("Expected bivariance to be handled in relate_with_variance")
}
}
Ok(a)
}
#[instrument(skip(self), level = "trace")]
fn consts(&mut self, a: I::Const, b: I::Const) -> RelateResult<I, I::Const> {
super_combine_consts(self.infcx, self, a, b)
}
fn binders<T>(
&mut self,
a: ty::Binder<I, T>,
b: ty::Binder<I, T>,
) -> RelateResult<I, ty::Binder<I, T>>
where
T: Relate<I>,
{
// If they're equal, then short-circuit.
if a == b {
return Ok(a);
}
// If they have no bound vars, relate normally.
if let Some(a_inner) = a.no_bound_vars() {
if let Some(b_inner) = b.no_bound_vars() {
self.relate(a_inner, b_inner)?;
return Ok(a);
}
};
match self.ambient_variance {
// Checks whether `for<..> sub <: for<..> sup` holds.
//
// For this to hold, **all** instantiations of the super type
// have to be a super type of **at least one** instantiation of
// the subtype.
//
// This is implemented by first entering a new universe.
// We then replace all bound variables in `sup` with placeholders,
// and all bound variables in `sub` with inference vars.
// We can then just relate the two resulting types as normal.
//
// Note: this is a subtle algorithm. For a full explanation, please see
// the [rustc dev guide][rd]
//
// [rd]: https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html
ty::Covariant => {
self.infcx.enter_forall(b, |b| {
let a = self.infcx.instantiate_binder_with_infer(a);
self.relate(a, b)
})?;
}
ty::Contravariant => {
self.infcx.enter_forall(a, |a| {
let b = self.infcx.instantiate_binder_with_infer(b);
self.relate(a, b)
})?;
}
// When **equating** binders, we check that there is a 1-to-1
// correspondence between the bound vars in both types.
//
// We do so by separately instantiating one of the binders with
// placeholders and the other with inference variables and then
// equating the instantiated types.
//
// We want `for<..> A == for<..> B` -- therefore we want
// `exists<..> A == for<..> B` and `exists<..> B == for<..> A`.
// Check if `exists<..> A == for<..> B`
ty::Invariant => {
self.infcx.enter_forall(b, |b| {
let a = self.infcx.instantiate_binder_with_infer(a);
self.relate(a, b)
})?;
// Check if `exists<..> B == for<..> A`.
self.infcx.enter_forall(a, |a| {
let b = self.infcx.instantiate_binder_with_infer(b);
self.relate(a, b)
})?;
}
ty::Bivariant => {
unreachable!("Expected bivariance to be handled in relate_with_variance")
}
}
Ok(a)
}
}
impl<Infcx, I> PredicateEmittingRelation<Infcx> for SolverRelating<'_, Infcx, I>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
{
fn span(&self) -> I::Span {
Span::dummy()
}
fn param_env(&self) -> I::ParamEnv {
self.param_env
}
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
self.structurally_relate_aliases
}
fn register_predicates(
&mut self,
obligations: impl IntoIterator<Item: ty::Upcast<I, I::Predicate>>,
) {
self.goals.extend(
obligations.into_iter().map(|pred| Goal::new(self.infcx.cx(), self.param_env, pred)),
);
}
fn register_goals(&mut self, obligations: impl IntoIterator<Item = Goal<I, I::Predicate>>) {
self.goals.extend(obligations);
}
fn register_alias_relate_predicate(&mut self, a: I::Ty, b: I::Ty) {
self.register_predicates([ty::Binder::dummy(match self.ambient_variance {
ty::Covariant => ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Subtype,
),
// a :> b is b <: a
ty::Contravariant => ty::PredicateKind::AliasRelate(
b.into(),
a.into(),
ty::AliasRelationDirection::Subtype,
),
ty::Invariant => ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Equate,
),
ty::Bivariant => {
unreachable!("Expected bivariance to be handled in relate_with_variance")
}
})]);
}
}