rustc_type_ir/solve/mod.rs
1pub mod inspect;
2
3use std::hash::Hash;
4
5use derive_where::derive_where;
6#[cfg(feature = "nightly")]
7use rustc_macros::{Decodable_NoContext, Encodable_NoContext, HashStable_NoContext};
8use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};
9
10use crate::lang_items::SolverTraitLangItem;
11use crate::search_graph::PathKind;
12use crate::{self as ty, Canonical, CanonicalVarValues, Interner, Upcast};
13
14pub type CanonicalInput<I, T = <I as Interner>::Predicate> =
15 ty::CanonicalQueryInput<I, QueryInput<I, T>>;
16pub type CanonicalResponse<I> = Canonical<I, Response<I>>;
17/// The result of evaluating a canonical query.
18///
19/// FIXME: We use a different type than the existing canonical queries. This is because
20/// we need to add a `Certainty` for `overflow` and may want to restructure this code without
21/// having to worry about changes to currently used code. Once we've made progress on this
22/// solver, merge the two responses again.
23pub type QueryResult<I> = Result<CanonicalResponse<I>, NoSolution>;
24
25#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
26#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
27pub struct NoSolution;
28
29/// A goal is a statement, i.e. `predicate`, we want to prove
30/// given some assumptions, i.e. `param_env`.
31///
32/// Most of the time the `param_env` contains the `where`-bounds of the function
33/// we're currently typechecking while the `predicate` is some trait bound.
34#[derive_where(Clone, Hash, PartialEq, Debug; I: Interner, P)]
35#[derive_where(Copy; I: Interner, P: Copy)]
36#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
37#[cfg_attr(
38 feature = "nightly",
39 derive(Decodable_NoContext, Encodable_NoContext, HashStable_NoContext)
40)]
41pub struct Goal<I: Interner, P> {
42 pub param_env: I::ParamEnv,
43 pub predicate: P,
44}
45
46impl<I: Interner, P: Eq> Eq for Goal<I, P> {}
47
48impl<I: Interner, P> Goal<I, P> {
49 pub fn new(cx: I, param_env: I::ParamEnv, predicate: impl Upcast<I, P>) -> Goal<I, P> {
50 Goal { param_env, predicate: predicate.upcast(cx) }
51 }
52
53 /// Updates the goal to one with a different `predicate` but the same `param_env`.
54 pub fn with<Q>(self, cx: I, predicate: impl Upcast<I, Q>) -> Goal<I, Q> {
55 Goal { param_env: self.param_env, predicate: predicate.upcast(cx) }
56 }
57}
58
59/// Why a specific goal has to be proven.
60///
61/// This is necessary as we treat nested goals different depending on
62/// their source. This is used to decide whether a cycle is coinductive.
63/// See the documentation of `EvalCtxt::step_kind_for_source` for more details
64/// about this.
65///
66/// It is also used by proof tree visitors, e.g. for diagnostics purposes.
67#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
68#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
69pub enum GoalSource {
70 Misc,
71 /// A nested goal required to prove that types are equal/subtypes.
72 /// This is always an unproductive step.
73 ///
74 /// This is also used for all `NormalizesTo` goals as we they are used
75 /// to relate types in `AliasRelate`.
76 TypeRelating,
77 /// We're proving a where-bound of an impl.
78 ImplWhereBound,
79 /// Const conditions that need to hold for `[const]` alias bounds to hold.
80 AliasBoundConstCondition,
81 /// Instantiating a higher-ranked goal and re-proving it.
82 InstantiateHigherRanked,
83 /// Predicate required for an alias projection to be well-formed.
84 /// This is used in three places:
85 /// 1. projecting to an opaque whose hidden type is already registered in
86 /// the opaque type storage,
87 /// 2. for rigid projections's trait goal,
88 /// 3. for GAT where clauses.
89 AliasWellFormed,
90 /// In case normalizing aliases in nested goals cycles, eagerly normalizing these
91 /// aliases in the context of the parent may incorrectly change the cycle kind.
92 /// Normalizing aliases in goals therefore tracks the original path kind for this
93 /// nested goal. See the comment of the `ReplaceAliasWithInfer` visitor for more
94 /// details.
95 NormalizeGoal(PathKind),
96}
97
98#[derive_where(Clone, Hash, PartialEq, Debug; I: Interner, Goal<I, P>)]
99#[derive_where(Copy; I: Interner, Goal<I, P>: Copy)]
100#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
101#[cfg_attr(
102 feature = "nightly",
103 derive(Decodable_NoContext, Encodable_NoContext, HashStable_NoContext)
104)]
105pub struct QueryInput<I: Interner, P> {
106 pub goal: Goal<I, P>,
107 pub predefined_opaques_in_body: I::PredefinedOpaques,
108}
109
110impl<I: Interner, P: Eq> Eq for QueryInput<I, P> {}
111
112/// Opaques that are defined in the inference context before a query is called.
113#[derive_where(Clone, Hash, PartialEq, Debug, Default; I: Interner)]
114#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
115#[cfg_attr(
116 feature = "nightly",
117 derive(Decodable_NoContext, Encodable_NoContext, HashStable_NoContext)
118)]
119pub struct PredefinedOpaquesData<I: Interner> {
120 pub opaque_types: Vec<(ty::OpaqueTypeKey<I>, I::Ty)>,
121}
122
123impl<I: Interner> Eq for PredefinedOpaquesData<I> {}
124
125/// Possible ways the given goal can be proven.
126#[derive_where(Clone, Copy, Hash, PartialEq, Debug; I: Interner)]
127pub enum CandidateSource<I: Interner> {
128 /// A user written impl.
129 ///
130 /// ## Examples
131 ///
132 /// ```rust
133 /// fn main() {
134 /// let x: Vec<u32> = Vec::new();
135 /// // This uses the impl from the standard library to prove `Vec<T>: Clone`.
136 /// let y = x.clone();
137 /// }
138 /// ```
139 Impl(I::ImplId),
140 /// A builtin impl generated by the compiler. When adding a new special
141 /// trait, try to use actual impls whenever possible. Builtin impls should
142 /// only be used in cases where the impl cannot be manually be written.
143 ///
144 /// Notable examples are auto traits, `Sized`, and `DiscriminantKind`.
145 /// For a list of all traits with builtin impls, check out the
146 /// `EvalCtxt::assemble_builtin_impl_candidates` method.
147 BuiltinImpl(BuiltinImplSource),
148 /// An assumption from the environment. Stores a [`ParamEnvSource`], since we
149 /// prefer non-global param-env candidates in candidate assembly.
150 ///
151 /// ## Examples
152 ///
153 /// ```rust
154 /// fn is_clone<T: Clone>(x: T) -> (T, T) {
155 /// // This uses the assumption `T: Clone` from the `where`-bounds
156 /// // to prove `T: Clone`.
157 /// (x.clone(), x)
158 /// }
159 /// ```
160 ParamEnv(ParamEnvSource),
161 /// If the self type is an alias type, e.g. an opaque type or a projection,
162 /// we know the bounds on that alias to hold even without knowing its concrete
163 /// underlying type.
164 ///
165 /// More precisely this candidate is using the `n-th` bound in the `item_bounds` of
166 /// the self type.
167 ///
168 /// ## Examples
169 ///
170 /// ```rust
171 /// trait Trait {
172 /// type Assoc: Clone;
173 /// }
174 ///
175 /// fn foo<T: Trait>(x: <T as Trait>::Assoc) {
176 /// // We prove `<T as Trait>::Assoc` by looking at the bounds on `Assoc` in
177 /// // in the trait definition.
178 /// let _y = x.clone();
179 /// }
180 /// ```
181 AliasBound,
182 /// A candidate that is registered only during coherence to represent some
183 /// yet-unknown impl that could be produced downstream without violating orphan
184 /// rules.
185 // FIXME: Merge this with the forced ambiguity candidates, so those don't use `Misc`.
186 CoherenceUnknowable,
187}
188
189impl<I: Interner> Eq for CandidateSource<I> {}
190
191#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
192pub enum ParamEnvSource {
193 /// Preferred eagerly.
194 NonGlobal,
195 // Not considered unless there are non-global param-env candidates too.
196 Global,
197}
198
199#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
200#[cfg_attr(
201 feature = "nightly",
202 derive(HashStable_NoContext, Encodable_NoContext, Decodable_NoContext)
203)]
204pub enum BuiltinImplSource {
205 /// A built-in impl that is considered trivial, without any nested requirements. They
206 /// are preferred over where-clauses, and we want to track them explicitly.
207 Trivial,
208 /// Some built-in impl we don't need to differentiate. This should be used
209 /// unless more specific information is necessary.
210 Misc,
211 /// A built-in impl for trait objects. The index is only used in winnowing.
212 Object(usize),
213 /// A built-in implementation of `Upcast` for trait objects to other trait objects.
214 ///
215 /// The index is only used for winnowing.
216 TraitUpcasting(usize),
217}
218
219#[derive_where(Clone, Copy, Hash, PartialEq, Debug; I: Interner)]
220#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
221#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
222pub struct Response<I: Interner> {
223 pub certainty: Certainty,
224 pub var_values: CanonicalVarValues<I>,
225 /// Additional constraints returned by this query.
226 pub external_constraints: I::ExternalConstraints,
227}
228
229impl<I: Interner> Eq for Response<I> {}
230
231/// Additional constraints returned on success.
232#[derive_where(Clone, Hash, PartialEq, Debug, Default; I: Interner)]
233#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
234#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
235pub struct ExternalConstraintsData<I: Interner> {
236 pub region_constraints: Vec<ty::OutlivesPredicate<I, I::GenericArg>>,
237 pub opaque_types: Vec<(ty::OpaqueTypeKey<I>, I::Ty)>,
238 pub normalization_nested_goals: NestedNormalizationGoals<I>,
239}
240
241impl<I: Interner> Eq for ExternalConstraintsData<I> {}
242
243impl<I: Interner> ExternalConstraintsData<I> {
244 pub fn is_empty(&self) -> bool {
245 self.region_constraints.is_empty()
246 && self.opaque_types.is_empty()
247 && self.normalization_nested_goals.is_empty()
248 }
249}
250
251#[derive_where(Clone, Hash, PartialEq, Debug, Default; I: Interner)]
252#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
253#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
254pub struct NestedNormalizationGoals<I: Interner>(pub Vec<(GoalSource, Goal<I, I::Predicate>)>);
255
256impl<I: Interner> Eq for NestedNormalizationGoals<I> {}
257
258impl<I: Interner> NestedNormalizationGoals<I> {
259 pub fn empty() -> Self {
260 NestedNormalizationGoals(vec![])
261 }
262
263 pub fn is_empty(&self) -> bool {
264 self.0.is_empty()
265 }
266}
267
268#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
269#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
270pub enum Certainty {
271 Yes,
272 Maybe { cause: MaybeCause, opaque_types_jank: OpaqueTypesJank },
273}
274
275/// Supporting not-yet-defined opaque types in HIR typeck is somewhat
276/// challenging. Ideally we'd normalize them to a new inference variable
277/// and just defer type inference which relies on the opaque until we've
278/// constrained the hidden type.
279///
280/// This doesn't work for method and function calls as we need to guide type
281/// inference for the function arguments. We treat not-yet-defined opaque types
282/// as if they were rigid instead in these places.
283///
284/// When we encounter a `?hidden_type_of_opaque: Trait<?var>` goal, we use the
285/// item bounds and blanket impls to guide inference by constraining other type
286/// variables, see `EvalCtxt::try_assemble_bounds_via_registered_opaques`. We
287/// always keep the certainty as `Maybe` so that we properly prove these goals
288/// once the hidden type has been constrained.
289///
290/// If we fail to prove the trait goal via item bounds or blanket impls, the
291/// goal would have errored if the opaque type were rigid. In this case, we
292/// set `OpaqueTypesJank::ErrorIfRigidSelfTy` in the [Certainty].
293///
294/// Places in HIR typeck where we want to treat not-yet-defined opaque types as if
295/// they were kind of rigid then use `fn root_goal_may_hold_opaque_types_jank` which
296/// returns `false` if the goal doesn't hold or if `OpaqueTypesJank::ErrorIfRigidSelfTy`
297/// is set (i.e. proving it required relies on some `?hidden_ty: NotInItemBounds` goal).
298///
299/// This is subtly different from actually treating not-yet-defined opaque types as
300/// rigid, e.g. it allows constraining opaque types if they are not the self-type of
301/// a goal. It is good enough for now and only matters for very rare type inference
302/// edge cases. We can improve this later on if necessary.
303#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
304#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
305pub enum OpaqueTypesJank {
306 AllGood,
307 ErrorIfRigidSelfTy,
308}
309impl OpaqueTypesJank {
310 fn and(self, other: OpaqueTypesJank) -> OpaqueTypesJank {
311 match (self, other) {
312 (OpaqueTypesJank::AllGood, OpaqueTypesJank::AllGood) => OpaqueTypesJank::AllGood,
313 (OpaqueTypesJank::ErrorIfRigidSelfTy, _) | (_, OpaqueTypesJank::ErrorIfRigidSelfTy) => {
314 OpaqueTypesJank::ErrorIfRigidSelfTy
315 }
316 }
317 }
318
319 pub fn or(self, other: OpaqueTypesJank) -> OpaqueTypesJank {
320 match (self, other) {
321 (OpaqueTypesJank::ErrorIfRigidSelfTy, OpaqueTypesJank::ErrorIfRigidSelfTy) => {
322 OpaqueTypesJank::ErrorIfRigidSelfTy
323 }
324 (OpaqueTypesJank::AllGood, _) | (_, OpaqueTypesJank::AllGood) => {
325 OpaqueTypesJank::AllGood
326 }
327 }
328 }
329}
330
331impl Certainty {
332 pub const AMBIGUOUS: Certainty = Certainty::Maybe {
333 cause: MaybeCause::Ambiguity,
334 opaque_types_jank: OpaqueTypesJank::AllGood,
335 };
336
337 /// Use this function to merge the certainty of multiple nested subgoals.
338 ///
339 /// Given an impl like `impl<T: Foo + Bar> Baz for T {}`, we have 2 nested
340 /// subgoals whenever we use the impl as a candidate: `T: Foo` and `T: Bar`.
341 /// If evaluating `T: Foo` results in ambiguity and `T: Bar` results in
342 /// success, we merge these two responses. This results in ambiguity.
343 ///
344 /// If we unify ambiguity with overflow, we return overflow. This doesn't matter
345 /// inside of the solver as we do not distinguish ambiguity from overflow. It does
346 /// however matter for diagnostics. If `T: Foo` resulted in overflow and `T: Bar`
347 /// in ambiguity without changing the inference state, we still want to tell the
348 /// user that `T: Baz` results in overflow.
349 pub fn and(self, other: Certainty) -> Certainty {
350 match (self, other) {
351 (Certainty::Yes, Certainty::Yes) => Certainty::Yes,
352 (Certainty::Yes, Certainty::Maybe { .. }) => other,
353 (Certainty::Maybe { .. }, Certainty::Yes) => self,
354 (
355 Certainty::Maybe { cause: a_cause, opaque_types_jank: a_jank },
356 Certainty::Maybe { cause: b_cause, opaque_types_jank: b_jank },
357 ) => Certainty::Maybe {
358 cause: a_cause.and(b_cause),
359 opaque_types_jank: a_jank.and(b_jank),
360 },
361 }
362 }
363
364 pub const fn overflow(suggest_increasing_limit: bool) -> Certainty {
365 Certainty::Maybe {
366 cause: MaybeCause::Overflow { suggest_increasing_limit, keep_constraints: false },
367 opaque_types_jank: OpaqueTypesJank::AllGood,
368 }
369 }
370}
371
372/// Why we failed to evaluate a goal.
373#[derive(Clone, Copy, Hash, PartialEq, Eq, Debug)]
374#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
375pub enum MaybeCause {
376 /// We failed due to ambiguity. This ambiguity can either
377 /// be a true ambiguity, i.e. there are multiple different answers,
378 /// or we hit a case where we just don't bother, e.g. `?x: Trait` goals.
379 Ambiguity,
380 /// We gave up due to an overflow, most often by hitting the recursion limit.
381 Overflow { suggest_increasing_limit: bool, keep_constraints: bool },
382}
383
384impl MaybeCause {
385 fn and(self, other: MaybeCause) -> MaybeCause {
386 match (self, other) {
387 (MaybeCause::Ambiguity, MaybeCause::Ambiguity) => MaybeCause::Ambiguity,
388 (MaybeCause::Ambiguity, MaybeCause::Overflow { .. }) => other,
389 (MaybeCause::Overflow { .. }, MaybeCause::Ambiguity) => self,
390 (
391 MaybeCause::Overflow {
392 suggest_increasing_limit: limit_a,
393 keep_constraints: keep_a,
394 },
395 MaybeCause::Overflow {
396 suggest_increasing_limit: limit_b,
397 keep_constraints: keep_b,
398 },
399 ) => MaybeCause::Overflow {
400 suggest_increasing_limit: limit_a && limit_b,
401 keep_constraints: keep_a && keep_b,
402 },
403 }
404 }
405
406 pub fn or(self, other: MaybeCause) -> MaybeCause {
407 match (self, other) {
408 (MaybeCause::Ambiguity, MaybeCause::Ambiguity) => MaybeCause::Ambiguity,
409
410 // When combining ambiguity + overflow, we can keep constraints.
411 (
412 MaybeCause::Ambiguity,
413 MaybeCause::Overflow { suggest_increasing_limit, keep_constraints: _ },
414 ) => MaybeCause::Overflow { suggest_increasing_limit, keep_constraints: true },
415 (
416 MaybeCause::Overflow { suggest_increasing_limit, keep_constraints: _ },
417 MaybeCause::Ambiguity,
418 ) => MaybeCause::Overflow { suggest_increasing_limit, keep_constraints: true },
419
420 (
421 MaybeCause::Overflow {
422 suggest_increasing_limit: limit_a,
423 keep_constraints: keep_a,
424 },
425 MaybeCause::Overflow {
426 suggest_increasing_limit: limit_b,
427 keep_constraints: keep_b,
428 },
429 ) => MaybeCause::Overflow {
430 suggest_increasing_limit: limit_a || limit_b,
431 keep_constraints: keep_a || keep_b,
432 },
433 }
434 }
435}
436
437/// Indicates that a `impl Drop for Adt` is `const` or not.
438#[derive(Debug)]
439pub enum AdtDestructorKind {
440 NotConst,
441 Const,
442}
443
444/// Which sizedness trait - `Sized`, `MetaSized`? `PointeeSized` is omitted as it is removed during
445/// lowering.
446#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
447#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
448pub enum SizedTraitKind {
449 /// `Sized` trait
450 Sized,
451 /// `MetaSized` trait
452 MetaSized,
453}
454
455impl SizedTraitKind {
456 /// Returns `DefId` of corresponding language item.
457 pub fn require_lang_item<I: Interner>(self, cx: I) -> I::TraitId {
458 cx.require_trait_lang_item(match self {
459 SizedTraitKind::Sized => SolverTraitLangItem::Sized,
460 SizedTraitKind::MetaSized => SolverTraitLangItem::MetaSized,
461 })
462 }
463}