cargo/ops/cargo_compile/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
//! The entry point for starting the compilation process for commands like
//! `build`, `test`, `doc`, `rustc`, etc.
//!
//! The [`compile`] function will do all the work to compile a workspace. A
//! rough outline is:
//!
//! 1. Resolve the dependency graph (see [`ops::resolve`]).
//! 2. Download any packages needed (see [`PackageSet`]).
//! 3. Generate a list of top-level "units" of work for the targets the user
//! requested on the command-line. Each [`Unit`] corresponds to a compiler
//! invocation. This is done in this module ([`UnitGenerator::generate_root_units`]).
//! 4. Starting from the root [`Unit`]s, generate the [`UnitGraph`] by walking the dependency graph
//! from the resolver. See also [`unit_dependencies`].
//! 5. Construct the [`BuildContext`] with all of the information collected so
//! far. This is the end of the "front end" of compilation.
//! 6. Create a [`BuildRunner`] which coordinates the compilation process
//! and will perform the following steps:
//! 1. Prepare the `target` directory (see [`Layout`]).
//! 2. Create a [`JobQueue`]. The queue checks the
//! fingerprint of each `Unit` to determine if it should run or be
//! skipped.
//! 3. Execute the queue via [`drain_the_queue`]. Each leaf in the queue's dependency graph is
//! executed, and then removed from the graph when finished. This repeats until the queue is
//! empty. Note that this is the only point in cargo that currently uses threads.
//! 7. The result of the compilation is stored in the [`Compilation`] struct. This can be used for
//! various things, such as running tests after the compilation has finished.
//!
//! **Note**: "target" inside this module generally refers to ["Cargo Target"],
//! which corresponds to artifact that will be built in a package. Not to be
//! confused with target-triple or target architecture.
//!
//! [`unit_dependencies`]: crate::core::compiler::unit_dependencies
//! [`Layout`]: crate::core::compiler::Layout
//! [`JobQueue`]: crate::core::compiler::job_queue
//! [`drain_the_queue`]: crate::core::compiler::job_queue
//! ["Cargo Target"]: https://doc.rust-lang.org/nightly/cargo/reference/cargo-targets.html
use std::collections::{HashMap, HashSet};
use std::hash::{Hash, Hasher};
use std::sync::Arc;
use crate::core::compiler::unit_dependencies::build_unit_dependencies;
use crate::core::compiler::unit_graph::{self, UnitDep, UnitGraph};
use crate::core::compiler::{standard_lib, CrateType, TargetInfo};
use crate::core::compiler::{BuildConfig, BuildContext, BuildRunner, Compilation};
use crate::core::compiler::{CompileKind, CompileMode, CompileTarget, RustcTargetData, Unit};
use crate::core::compiler::{DefaultExecutor, Executor, UnitInterner};
use crate::core::profiles::Profiles;
use crate::core::resolver::features::{self, CliFeatures, FeaturesFor};
use crate::core::resolver::{HasDevUnits, Resolve};
use crate::core::{PackageId, PackageSet, SourceId, TargetKind, Workspace};
use crate::drop_println;
use crate::ops;
use crate::ops::resolve::WorkspaceResolve;
use crate::util::context::{GlobalContext, WarningHandling};
use crate::util::interning::InternedString;
use crate::util::{CargoResult, StableHasher};
mod compile_filter;
pub use compile_filter::{CompileFilter, FilterRule, LibRule};
mod unit_generator;
use unit_generator::UnitGenerator;
mod packages;
pub use packages::Packages;
/// Contains information about how a package should be compiled.
///
/// Note on distinction between `CompileOptions` and [`BuildConfig`]:
/// `BuildConfig` contains values that need to be retained after
/// [`BuildContext`] is created. The other fields are no longer necessary. Think
/// of it as `CompileOptions` are high-level settings requested on the
/// command-line, and `BuildConfig` are low-level settings for actually
/// driving `rustc`.
#[derive(Debug, Clone)]
pub struct CompileOptions {
/// Configuration information for a rustc build
pub build_config: BuildConfig,
/// Feature flags requested by the user.
pub cli_features: CliFeatures,
/// A set of packages to build.
pub spec: Packages,
/// Filter to apply to the root package to select which targets will be
/// built.
pub filter: CompileFilter,
/// Extra arguments to be passed to rustdoc (single target only)
pub target_rustdoc_args: Option<Vec<String>>,
/// The specified target will be compiled with all the available arguments,
/// note that this only accounts for the *final* invocation of rustc
pub target_rustc_args: Option<Vec<String>>,
/// Crate types to be passed to rustc (single target only)
pub target_rustc_crate_types: Option<Vec<String>>,
/// Whether the `--document-private-items` flags was specified and should
/// be forwarded to `rustdoc`.
pub rustdoc_document_private_items: bool,
/// Whether the build process should check the minimum Rust version
/// defined in the cargo metadata for a crate.
pub honor_rust_version: Option<bool>,
}
impl CompileOptions {
pub fn new(gctx: &GlobalContext, mode: CompileMode) -> CargoResult<CompileOptions> {
let jobs = None;
let keep_going = false;
Ok(CompileOptions {
build_config: BuildConfig::new(gctx, jobs, keep_going, &[], mode)?,
cli_features: CliFeatures::new_all(false),
spec: ops::Packages::Packages(Vec::new()),
filter: CompileFilter::Default {
required_features_filterable: false,
},
target_rustdoc_args: None,
target_rustc_args: None,
target_rustc_crate_types: None,
rustdoc_document_private_items: false,
honor_rust_version: None,
})
}
}
/// Compiles!
///
/// This uses the [`DefaultExecutor`]. To use a custom [`Executor`], see [`compile_with_exec`].
pub fn compile<'a>(ws: &Workspace<'a>, options: &CompileOptions) -> CargoResult<Compilation<'a>> {
let exec: Arc<dyn Executor> = Arc::new(DefaultExecutor);
compile_with_exec(ws, options, &exec)
}
/// Like [`compile`] but allows specifying a custom [`Executor`]
/// that will be able to intercept build calls and add custom logic.
///
/// [`compile`] uses [`DefaultExecutor`] which just passes calls through.
pub fn compile_with_exec<'a>(
ws: &Workspace<'a>,
options: &CompileOptions,
exec: &Arc<dyn Executor>,
) -> CargoResult<Compilation<'a>> {
ws.emit_warnings()?;
let compilation = compile_ws(ws, options, exec)?;
if ws.gctx().warning_handling()? == WarningHandling::Deny && compilation.warning_count > 0 {
anyhow::bail!("warnings are denied by `build.warnings` configuration")
}
Ok(compilation)
}
/// Like [`compile_with_exec`] but without warnings from manifest parsing.
#[tracing::instrument(skip_all)]
pub fn compile_ws<'a>(
ws: &Workspace<'a>,
options: &CompileOptions,
exec: &Arc<dyn Executor>,
) -> CargoResult<Compilation<'a>> {
let interner = UnitInterner::new();
let bcx = create_bcx(ws, options, &interner)?;
if options.build_config.unit_graph {
unit_graph::emit_serialized_unit_graph(&bcx.roots, &bcx.unit_graph, ws.gctx())?;
return Compilation::new(&bcx);
}
crate::core::gc::auto_gc(bcx.gctx);
let build_runner = BuildRunner::new(&bcx)?;
if options.build_config.dry_run {
build_runner.dry_run()
} else {
build_runner.compile(exec)
}
}
/// Executes `rustc --print <VALUE>`.
///
/// * `print_opt_value` is the VALUE passed through.
pub fn print<'a>(
ws: &Workspace<'a>,
options: &CompileOptions,
print_opt_value: &str,
) -> CargoResult<()> {
let CompileOptions {
ref build_config,
ref target_rustc_args,
..
} = *options;
let gctx = ws.gctx();
let rustc = gctx.load_global_rustc(Some(ws))?;
for (index, kind) in build_config.requested_kinds.iter().enumerate() {
if index != 0 {
drop_println!(gctx);
}
let target_info = TargetInfo::new(gctx, &build_config.requested_kinds, &rustc, *kind)?;
let mut process = rustc.process();
process.args(&target_info.rustflags);
if let Some(args) = target_rustc_args {
process.args(args);
}
if let CompileKind::Target(t) = kind {
process.arg("--target").arg(t.rustc_target());
}
process.arg("--print").arg(print_opt_value);
process.exec()?;
}
Ok(())
}
/// Prepares all required information for the actual compilation.
///
/// For how it works and what data it collects,
/// please see the [module-level documentation](self).
#[tracing::instrument(skip_all)]
pub fn create_bcx<'a, 'gctx>(
ws: &'a Workspace<'gctx>,
options: &'a CompileOptions,
interner: &'a UnitInterner,
) -> CargoResult<BuildContext<'a, 'gctx>> {
let CompileOptions {
ref build_config,
ref spec,
ref cli_features,
ref filter,
ref target_rustdoc_args,
ref target_rustc_args,
ref target_rustc_crate_types,
rustdoc_document_private_items,
honor_rust_version,
} = *options;
let gctx = ws.gctx();
// Perform some pre-flight validation.
match build_config.mode {
CompileMode::Test
| CompileMode::Build
| CompileMode::Check { .. }
| CompileMode::Bench
| CompileMode::RunCustomBuild => {
if ws.gctx().get_env("RUST_FLAGS").is_ok() {
gctx.shell().warn(
"Cargo does not read `RUST_FLAGS` environment variable. Did you mean `RUSTFLAGS`?",
)?;
}
}
CompileMode::Doc { .. } | CompileMode::Doctest | CompileMode::Docscrape => {
if ws.gctx().get_env("RUSTDOC_FLAGS").is_ok() {
gctx.shell().warn(
"Cargo does not read `RUSTDOC_FLAGS` environment variable. Did you mean `RUSTDOCFLAGS`?"
)?;
}
}
}
gctx.validate_term_config()?;
let mut target_data = RustcTargetData::new(ws, &build_config.requested_kinds)?;
let specs = spec.to_package_id_specs(ws)?;
let has_dev_units = {
// Rustdoc itself doesn't need dev-dependencies. But to scrape examples from packages in the
// workspace, if any of those packages need dev-dependencies, then we need include dev-dependencies
// to scrape those packages.
let any_pkg_has_scrape_enabled = ws
.members_with_features(&specs, cli_features)?
.iter()
.any(|(pkg, _)| {
pkg.targets()
.iter()
.any(|target| target.is_example() && target.doc_scrape_examples().is_enabled())
});
if filter.need_dev_deps(build_config.mode)
|| (build_config.mode.is_doc() && any_pkg_has_scrape_enabled)
{
HasDevUnits::Yes
} else {
HasDevUnits::No
}
};
let dry_run = false;
let resolve = ops::resolve_ws_with_opts(
ws,
&mut target_data,
&build_config.requested_kinds,
cli_features,
&specs,
has_dev_units,
crate::core::resolver::features::ForceAllTargets::No,
dry_run,
)?;
let WorkspaceResolve {
mut pkg_set,
workspace_resolve,
targeted_resolve: resolve,
resolved_features,
} = resolve;
let std_resolve_features = if let Some(crates) = &gctx.cli_unstable().build_std {
let (std_package_set, std_resolve, std_features) = standard_lib::resolve_std(
ws,
&mut target_data,
&build_config,
crates,
&build_config.requested_kinds,
)?;
pkg_set.add_set(std_package_set);
Some((std_resolve, std_features))
} else {
None
};
// Find the packages in the resolver that the user wants to build (those
// passed in with `-p` or the defaults from the workspace), and convert
// Vec<PackageIdSpec> to a Vec<PackageId>.
let to_build_ids = resolve.specs_to_ids(&specs)?;
// Now get the `Package` for each `PackageId`. This may trigger a download
// if the user specified `-p` for a dependency that is not downloaded.
// Dependencies will be downloaded during build_unit_dependencies.
let mut to_builds = pkg_set.get_many(to_build_ids)?;
// The ordering here affects some error messages coming out of cargo, so
// let's be test and CLI friendly by always printing in the same order if
// there's an error.
to_builds.sort_by_key(|p| p.package_id());
for pkg in to_builds.iter() {
pkg.manifest().print_teapot(gctx);
if build_config.mode.is_any_test()
&& !ws.is_member(pkg)
&& pkg.dependencies().iter().any(|dep| !dep.is_transitive())
{
anyhow::bail!(
"package `{}` cannot be tested because it requires dev-dependencies \
and is not a member of the workspace",
pkg.name()
);
}
}
let (extra_args, extra_args_name) = match (target_rustc_args, target_rustdoc_args) {
(Some(args), _) => (Some(args.clone()), "rustc"),
(_, Some(args)) => (Some(args.clone()), "rustdoc"),
_ => (None, ""),
};
if extra_args.is_some() && to_builds.len() != 1 {
panic!(
"`{}` should not accept multiple `-p` flags",
extra_args_name
);
}
let profiles = Profiles::new(ws, build_config.requested_profile)?;
profiles.validate_packages(
ws.profiles(),
&mut gctx.shell(),
workspace_resolve.as_ref().unwrap_or(&resolve),
)?;
// If `--target` has not been specified, then the unit graph is built
// assuming `--target $HOST` was specified. See
// `rebuild_unit_graph_shared` for more on why this is done.
let explicit_host_kind = CompileKind::Target(CompileTarget::new(&target_data.rustc.host)?);
let explicit_host_kinds: Vec<_> = build_config
.requested_kinds
.iter()
.map(|kind| match kind {
CompileKind::Host => explicit_host_kind,
CompileKind::Target(t) => CompileKind::Target(*t),
})
.collect();
// Passing `build_config.requested_kinds` instead of
// `explicit_host_kinds` here so that `generate_root_units` can do
// its own special handling of `CompileKind::Host`. It will
// internally replace the host kind by the `explicit_host_kind`
// before setting as a unit.
let generator = UnitGenerator {
ws,
packages: &to_builds,
target_data: &target_data,
filter,
requested_kinds: &build_config.requested_kinds,
explicit_host_kind,
mode: build_config.mode,
resolve: &resolve,
workspace_resolve: &workspace_resolve,
resolved_features: &resolved_features,
package_set: &pkg_set,
profiles: &profiles,
interner,
has_dev_units,
};
let mut units = generator.generate_root_units()?;
if let Some(args) = target_rustc_crate_types {
override_rustc_crate_types(&mut units, args, interner)?;
}
let should_scrape = build_config.mode.is_doc() && gctx.cli_unstable().rustdoc_scrape_examples;
let mut scrape_units = if should_scrape {
UnitGenerator {
mode: CompileMode::Docscrape,
..generator
}
.generate_scrape_units(&units)?
} else {
Vec::new()
};
let std_roots = if let Some(crates) = gctx.cli_unstable().build_std.as_ref() {
let (std_resolve, std_features) = std_resolve_features.as_ref().unwrap();
standard_lib::generate_std_roots(
&crates,
&units,
std_resolve,
std_features,
&explicit_host_kinds,
&pkg_set,
interner,
&profiles,
&target_data,
)?
} else {
Default::default()
};
let mut unit_graph = build_unit_dependencies(
ws,
&pkg_set,
&resolve,
&resolved_features,
std_resolve_features.as_ref(),
&units,
&scrape_units,
&std_roots,
build_config.mode,
&target_data,
&profiles,
interner,
)?;
// TODO: In theory, Cargo should also dedupe the roots, but I'm uncertain
// what heuristics to use in that case.
if matches!(build_config.mode, CompileMode::Doc { deps: true, .. }) {
remove_duplicate_doc(build_config, &units, &mut unit_graph);
}
let host_kind_requested = build_config
.requested_kinds
.iter()
.any(CompileKind::is_host);
// Rebuild the unit graph, replacing the explicit host targets with
// CompileKind::Host, removing `artifact_target_for_features` and merging any dependencies
// shared with build and artifact dependencies.
(units, scrape_units, unit_graph) = rebuild_unit_graph_shared(
interner,
unit_graph,
&units,
&scrape_units,
host_kind_requested.then_some(explicit_host_kind),
);
let mut extra_compiler_args = HashMap::new();
if let Some(args) = extra_args {
if units.len() != 1 {
anyhow::bail!(
"extra arguments to `{}` can only be passed to one \
target, consider filtering\nthe package by passing, \
e.g., `--lib` or `--bin NAME` to specify a single target",
extra_args_name
);
}
extra_compiler_args.insert(units[0].clone(), args);
}
for unit in units
.iter()
.filter(|unit| unit.mode.is_doc() || unit.mode.is_doc_test())
.filter(|unit| rustdoc_document_private_items || unit.target.is_bin())
{
// Add `--document-private-items` rustdoc flag if requested or if
// the target is a binary. Binary crates get their private items
// documented by default.
let mut args = vec!["--document-private-items".into()];
if unit.target.is_bin() {
// This warning only makes sense if it's possible to document private items
// sometimes and ignore them at other times. But cargo consistently passes
// `--document-private-items`, so the warning isn't useful.
args.push("-Arustdoc::private-intra-doc-links".into());
}
extra_compiler_args
.entry(unit.clone())
.or_default()
.extend(args);
}
if honor_rust_version.unwrap_or(true) {
let rustc_version = target_data.rustc.version.clone().into();
let mut incompatible = Vec::new();
let mut local_incompatible = false;
for unit in unit_graph.keys() {
let Some(pkg_msrv) = unit.pkg.rust_version() else {
continue;
};
if pkg_msrv.is_compatible_with(&rustc_version) {
continue;
}
local_incompatible |= unit.is_local();
incompatible.push((unit, pkg_msrv));
}
if !incompatible.is_empty() {
use std::fmt::Write as _;
let plural = if incompatible.len() == 1 { "" } else { "s" };
let mut message = format!(
"rustc {rustc_version} is not supported by the following package{plural}:\n"
);
incompatible.sort_by_key(|(unit, _)| (unit.pkg.name(), unit.pkg.version()));
for (unit, msrv) in incompatible {
let name = &unit.pkg.name();
let version = &unit.pkg.version();
writeln!(&mut message, " {name}@{version} requires rustc {msrv}").unwrap();
}
if ws.is_ephemeral() {
if ws.ignore_lock() {
writeln!(
&mut message,
"Try re-running `cargo install` with `--locked`"
)
.unwrap();
}
} else if !local_incompatible {
writeln!(
&mut message,
"Either upgrade rustc or select compatible dependency versions with
`cargo update <name>@<current-ver> --precise <compatible-ver>`
where `<compatible-ver>` is the latest version supporting rustc {rustc_version}",
)
.unwrap();
}
return Err(anyhow::Error::msg(message));
}
}
let bcx = BuildContext::new(
ws,
pkg_set,
build_config,
profiles,
extra_compiler_args,
target_data,
units,
unit_graph,
scrape_units,
)?;
Ok(bcx)
}
/// This is used to rebuild the unit graph, sharing host dependencies if possible,
/// and applying other unit adjustments based on the whole graph.
///
/// This will translate any unit's `CompileKind::Target(host)` to
/// `CompileKind::Host` if `to_host` is not `None` and the kind is equal to `to_host`.
/// This also handles generating the unit `dep_hash`, and merging shared units if possible.
///
/// This is necessary because if normal dependencies used `CompileKind::Host`,
/// there would be no way to distinguish those units from build-dependency
/// units or artifact dependency units.
/// This can cause a problem if a shared normal/build/artifact dependency needs
/// to link to another dependency whose features differ based on whether or
/// not it is a normal, build or artifact dependency. If all units used
/// `CompileKind::Host`, then they would end up being identical, causing a
/// collision in the `UnitGraph`, and Cargo would end up randomly choosing one
/// value or the other.
///
/// The solution is to keep normal, build and artifact dependencies separate when
/// building the unit graph, and then run this second pass which will try to
/// combine shared dependencies safely. By adding a hash of the dependencies
/// to the `Unit`, this allows the `CompileKind` to be changed back to `Host`
/// and `artifact_target_for_features` to be removed without fear of an unwanted
/// collision for build or artifact dependencies.
///
/// This is also responsible for adjusting the `strip` profile option to
/// opportunistically strip if debug is 0 for all dependencies. This helps
/// remove debuginfo added by the standard library.
///
/// This is also responsible for adjusting the `debug` setting for host
/// dependencies, turning off debug if the user has not explicitly enabled it,
/// and the unit is not shared with a target unit.
fn rebuild_unit_graph_shared(
interner: &UnitInterner,
unit_graph: UnitGraph,
roots: &[Unit],
scrape_units: &[Unit],
to_host: Option<CompileKind>,
) -> (Vec<Unit>, Vec<Unit>, UnitGraph) {
let mut result = UnitGraph::new();
// Map of the old unit to the new unit, used to avoid recursing into units
// that have already been computed to improve performance.
let mut memo = HashMap::new();
let new_roots = roots
.iter()
.map(|root| {
traverse_and_share(
interner,
&mut memo,
&mut result,
&unit_graph,
root,
false,
to_host,
)
})
.collect();
// If no unit in the unit graph ended up having scrape units attached as dependencies,
// then they won't have been discovered in traverse_and_share and hence won't be in
// memo. So we filter out missing scrape units.
let new_scrape_units = scrape_units
.iter()
.map(|unit| memo.get(unit).unwrap().clone())
.collect();
(new_roots, new_scrape_units, result)
}
/// Recursive function for rebuilding the graph.
///
/// This walks `unit_graph`, starting at the given `unit`. It inserts the new
/// units into `new_graph`, and returns a new updated version of the given
/// unit (`dep_hash` is filled in, and `kind` switched if necessary).
fn traverse_and_share(
interner: &UnitInterner,
memo: &mut HashMap<Unit, Unit>,
new_graph: &mut UnitGraph,
unit_graph: &UnitGraph,
unit: &Unit,
unit_is_for_host: bool,
to_host: Option<CompileKind>,
) -> Unit {
if let Some(new_unit) = memo.get(unit) {
// Already computed, no need to recompute.
return new_unit.clone();
}
let mut dep_hash = StableHasher::new();
let new_deps: Vec<_> = unit_graph[unit]
.iter()
.map(|dep| {
let new_dep_unit = traverse_and_share(
interner,
memo,
new_graph,
unit_graph,
&dep.unit,
dep.unit_for.is_for_host(),
to_host,
);
new_dep_unit.hash(&mut dep_hash);
UnitDep {
unit: new_dep_unit,
..dep.clone()
}
})
.collect();
// Here, we have recursively traversed this unit's dependencies, and hashed them: we can
// finalize the dep hash.
let new_dep_hash = Hasher::finish(&dep_hash);
// This is the key part of the sharing process: if the unit is a runtime dependency, whose
// target is the same as the host, we canonicalize the compile kind to `CompileKind::Host`.
// A possible host dependency counterpart to this unit would have that kind, and if such a unit
// exists in the current `unit_graph`, they will unify in the new unit graph map `new_graph`.
// The resulting unit graph will be optimized with less units, thanks to sharing these host
// dependencies.
let canonical_kind = match to_host {
Some(to_host) if to_host == unit.kind => CompileKind::Host,
_ => unit.kind,
};
let mut profile = unit.profile.clone();
if profile.strip.is_deferred() {
// If strip was not manually set, and all dependencies of this unit together
// with this unit have debuginfo turned off, we enable debuginfo stripping.
// This will remove pre-existing debug symbols coming from the standard library.
if !profile.debuginfo.is_turned_on()
&& new_deps
.iter()
.all(|dep| !dep.unit.profile.debuginfo.is_turned_on())
{
profile.strip = profile.strip.strip_debuginfo();
}
}
// If this is a build dependency, and it's not shared with runtime dependencies, we can weaken
// its debuginfo level to optimize build times. We do nothing if it's an artifact dependency,
// as it and its debuginfo may end up embedded in the main program.
if unit_is_for_host
&& to_host.is_some()
&& profile.debuginfo.is_deferred()
&& !unit.artifact.is_true()
{
// We create a "probe" test to see if a unit with the same explicit debuginfo level exists
// in the graph. This is the level we'd expect if it was set manually or the default value
// set by a profile for a runtime dependency: its canonical value.
let canonical_debuginfo = profile.debuginfo.finalize();
let mut canonical_profile = profile.clone();
canonical_profile.debuginfo = canonical_debuginfo;
let unit_probe = interner.intern(
&unit.pkg,
&unit.target,
canonical_profile,
to_host.unwrap(),
unit.mode,
unit.features.clone(),
unit.rustflags.clone(),
unit.rustdocflags.clone(),
unit.links_overrides.clone(),
unit.is_std,
unit.dep_hash,
unit.artifact,
unit.artifact_target_for_features,
);
// We can now turn the deferred value into its actual final value.
profile.debuginfo = if unit_graph.contains_key(&unit_probe) {
// The unit is present in both build time and runtime subgraphs: we canonicalize its
// level to the other unit's, thus ensuring reuse between the two to optimize build times.
canonical_debuginfo
} else {
// The unit is only present in the build time subgraph, we can weaken its debuginfo
// level to optimize build times.
canonical_debuginfo.weaken()
}
}
let new_unit = interner.intern(
&unit.pkg,
&unit.target,
profile,
canonical_kind,
unit.mode,
unit.features.clone(),
unit.rustflags.clone(),
unit.rustdocflags.clone(),
unit.links_overrides.clone(),
unit.is_std,
new_dep_hash,
unit.artifact,
// Since `dep_hash` is now filled in, there's no need to specify the artifact target
// for target-dependent feature resolution
None,
);
assert!(memo.insert(unit.clone(), new_unit.clone()).is_none());
new_graph.entry(new_unit.clone()).or_insert(new_deps);
new_unit
}
/// Removes duplicate `CompileMode::Doc` units that would cause problems with
/// filename collisions.
///
/// Rustdoc only separates units by crate name in the file directory
/// structure. If any two units with the same crate name exist, this would
/// cause a filename collision, causing different rustdoc invocations to stomp
/// on one another's files.
///
/// Unfortunately this does not remove all duplicates, as some of them are
/// either user error, or difficult to remove. Cases that I can think of:
///
/// - Same target name in different packages. See the `collision_doc` test.
/// - Different sources. See `collision_doc_sources` test.
///
/// Ideally this would not be necessary.
fn remove_duplicate_doc(
build_config: &BuildConfig,
root_units: &[Unit],
unit_graph: &mut UnitGraph,
) {
// First, create a mapping of crate_name -> Unit so we can see where the
// duplicates are.
let mut all_docs: HashMap<String, Vec<Unit>> = HashMap::new();
for unit in unit_graph.keys() {
if unit.mode.is_doc() {
all_docs
.entry(unit.target.crate_name())
.or_default()
.push(unit.clone());
}
}
// Keep track of units to remove so that they can be efficiently removed
// from the unit_deps.
let mut removed_units: HashSet<Unit> = HashSet::new();
let mut remove = |units: Vec<Unit>, reason: &str, cb: &dyn Fn(&Unit) -> bool| -> Vec<Unit> {
let (to_remove, remaining_units): (Vec<Unit>, Vec<Unit>) = units
.into_iter()
.partition(|unit| cb(unit) && !root_units.contains(unit));
for unit in to_remove {
tracing::debug!(
"removing duplicate doc due to {} for package {} target `{}`",
reason,
unit.pkg,
unit.target.name()
);
unit_graph.remove(&unit);
removed_units.insert(unit);
}
remaining_units
};
// Iterate over the duplicates and try to remove them from unit_graph.
for (_crate_name, mut units) in all_docs {
if units.len() == 1 {
continue;
}
// Prefer target over host if --target was not specified.
if build_config
.requested_kinds
.iter()
.all(CompileKind::is_host)
{
// Note these duplicates may not be real duplicates, since they
// might get merged in rebuild_unit_graph_shared. Either way, it
// shouldn't hurt to remove them early (although the report in the
// log might be confusing).
units = remove(units, "host/target merger", &|unit| unit.kind.is_host());
if units.len() == 1 {
continue;
}
}
// Prefer newer versions over older.
let mut source_map: HashMap<(InternedString, SourceId, CompileKind), Vec<Unit>> =
HashMap::new();
for unit in units {
let pkg_id = unit.pkg.package_id();
// Note, this does not detect duplicates from different sources.
source_map
.entry((pkg_id.name(), pkg_id.source_id(), unit.kind))
.or_default()
.push(unit);
}
let mut remaining_units = Vec::new();
for (_key, mut units) in source_map {
if units.len() > 1 {
units.sort_by(|a, b| a.pkg.version().partial_cmp(b.pkg.version()).unwrap());
// Remove any entries with version < newest.
let newest_version = units.last().unwrap().pkg.version().clone();
let keep_units = remove(units, "older version", &|unit| {
unit.pkg.version() < &newest_version
});
remaining_units.extend(keep_units);
} else {
remaining_units.extend(units);
}
}
if remaining_units.len() == 1 {
continue;
}
// Are there other heuristics to remove duplicates that would make
// sense? Maybe prefer path sources over all others?
}
// Also remove units from the unit_deps so there aren't any dangling edges.
for unit_deps in unit_graph.values_mut() {
unit_deps.retain(|unit_dep| !removed_units.contains(&unit_dep.unit));
}
// Remove any orphan units that were detached from the graph.
let mut visited = HashSet::new();
fn visit(unit: &Unit, graph: &UnitGraph, visited: &mut HashSet<Unit>) {
if !visited.insert(unit.clone()) {
return;
}
for dep in &graph[unit] {
visit(&dep.unit, graph, visited);
}
}
for unit in root_units {
visit(unit, unit_graph, &mut visited);
}
unit_graph.retain(|unit, _| visited.contains(unit));
}
/// Override crate types for given units.
///
/// This is primarily used by `cargo rustc --crate-type`.
fn override_rustc_crate_types(
units: &mut [Unit],
args: &[String],
interner: &UnitInterner,
) -> CargoResult<()> {
if units.len() != 1 {
anyhow::bail!(
"crate types to rustc can only be passed to one \
target, consider filtering\nthe package by passing, \
e.g., `--lib` or `--example` to specify a single target"
);
}
let unit = &units[0];
let override_unit = |f: fn(Vec<CrateType>) -> TargetKind| {
let crate_types = args.iter().map(|s| s.into()).collect();
let mut target = unit.target.clone();
target.set_kind(f(crate_types));
interner.intern(
&unit.pkg,
&target,
unit.profile.clone(),
unit.kind,
unit.mode,
unit.features.clone(),
unit.rustflags.clone(),
unit.rustdocflags.clone(),
unit.links_overrides.clone(),
unit.is_std,
unit.dep_hash,
unit.artifact,
unit.artifact_target_for_features,
)
};
units[0] = match unit.target.kind() {
TargetKind::Lib(_) => override_unit(TargetKind::Lib),
TargetKind::ExampleLib(_) => override_unit(TargetKind::ExampleLib),
_ => {
anyhow::bail!(
"crate types can only be specified for libraries and example libraries.\n\
Binaries, tests, and benchmarks are always the `bin` crate type"
);
}
};
Ok(())
}
/// Gets all of the features enabled for a package, plus its dependencies'
/// features.
///
/// Dependencies are added as `dep_name/feat_name` because `required-features`
/// wants to support that syntax.
pub fn resolve_all_features(
resolve_with_overrides: &Resolve,
resolved_features: &features::ResolvedFeatures,
package_set: &PackageSet<'_>,
package_id: PackageId,
) -> HashSet<String> {
let mut features: HashSet<String> = resolved_features
.activated_features(package_id, FeaturesFor::NormalOrDev)
.iter()
.map(|s| s.to_string())
.collect();
// Include features enabled for use by dependencies so targets can also use them with the
// required-features field when deciding whether to be built or skipped.
for (dep_id, deps) in resolve_with_overrides.deps(package_id) {
let is_proc_macro = package_set
.get_one(dep_id)
.expect("packages downloaded")
.proc_macro();
for dep in deps {
let features_for = FeaturesFor::from_for_host(is_proc_macro || dep.is_build());
for feature in resolved_features
.activated_features_unverified(dep_id, features_for)
.unwrap_or_default()
{
features.insert(format!("{}/{}", dep.name_in_toml(), feature));
}
}
}
features
}