rustc_ast/
token.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
use std::borrow::Cow;
use std::fmt;

pub use BinOpToken::*;
pub use LitKind::*;
pub use Nonterminal::*;
pub use NtExprKind::*;
pub use NtPatKind::*;
pub use TokenKind::*;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::Lrc;
use rustc_macros::{Decodable, Encodable, HashStable_Generic};
use rustc_span::edition::Edition;
#[allow(clippy::useless_attribute)] // FIXME: following use of `hidden_glob_reexports` incorrectly triggers `useless_attribute` lint.
#[allow(hidden_glob_reexports)]
use rustc_span::symbol::{Ident, Symbol};
use rustc_span::symbol::{kw, sym};
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span};

use crate::ast;
use crate::ptr::P;
use crate::util::case::Case;

#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum CommentKind {
    Line,
    Block,
}

#[derive(Clone, PartialEq, Encodable, Decodable, Hash, Debug, Copy)]
#[derive(HashStable_Generic)]
pub enum BinOpToken {
    Plus,
    Minus,
    Star,
    Slash,
    Percent,
    Caret,
    And,
    Or,
    Shl,
    Shr,
}

/// Describes how a sequence of token trees is delimited.
/// Cannot use `proc_macro::Delimiter` directly because this
/// structure should implement some additional traits.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[derive(Encodable, Decodable, Hash, HashStable_Generic)]
pub enum Delimiter {
    /// `( ... )`
    Parenthesis,
    /// `{ ... }`
    Brace,
    /// `[ ... ]`
    Bracket,
    /// `∅ ... ∅`
    /// An invisible delimiter, that may, for example, appear around tokens coming from a
    /// "macro variable" `$var`. It is important to preserve operator priorities in cases like
    /// `$var * 3` where `$var` is `1 + 2`.
    /// Invisible delimiters might not survive roundtrip of a token stream through a string.
    Invisible,
}

// Note that the suffix is *not* considered when deciding the `LitKind` in this
// type. This means that float literals like `1f32` are classified by this type
// as `Int`. Only upon conversion to `ast::LitKind` will such a literal be
// given the `Float` kind.
#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum LitKind {
    Bool, // AST only, must never appear in a `Token`
    Byte,
    Char,
    Integer, // e.g. `1`, `1u8`, `1f32`
    Float,   // e.g. `1.`, `1.0`, `1e3f32`
    Str,
    StrRaw(u8), // raw string delimited by `n` hash symbols
    ByteStr,
    ByteStrRaw(u8), // raw byte string delimited by `n` hash symbols
    CStr,
    CStrRaw(u8),
    Err(ErrorGuaranteed),
}

/// A literal token.
#[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct Lit {
    pub kind: LitKind,
    pub symbol: Symbol,
    pub suffix: Option<Symbol>,
}

impl Lit {
    pub fn new(kind: LitKind, symbol: Symbol, suffix: Option<Symbol>) -> Lit {
        Lit { kind, symbol, suffix }
    }

    /// Returns `true` if this is semantically a float literal. This includes
    /// ones like `1f32` that have an `Integer` kind but a float suffix.
    pub fn is_semantic_float(&self) -> bool {
        match self.kind {
            LitKind::Float => true,
            LitKind::Integer => match self.suffix {
                Some(sym) => sym == sym::f32 || sym == sym::f64,
                None => false,
            },
            _ => false,
        }
    }

    /// Keep this in sync with `Token::can_begin_literal_maybe_minus` excluding unary negation.
    pub fn from_token(token: &Token) -> Option<Lit> {
        match token.uninterpolate().kind {
            Ident(name, IdentIsRaw::No) if name.is_bool_lit() => Some(Lit::new(Bool, name, None)),
            Literal(token_lit) => Some(token_lit),
            Interpolated(ref nt)
                if let NtExpr(expr) | NtLiteral(expr) = &**nt
                    && let ast::ExprKind::Lit(token_lit) = expr.kind =>
            {
                Some(token_lit)
            }
            _ => None,
        }
    }
}

impl fmt::Display for Lit {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let Lit { kind, symbol, suffix } = *self;
        match kind {
            Byte => write!(f, "b'{symbol}'")?,
            Char => write!(f, "'{symbol}'")?,
            Str => write!(f, "\"{symbol}\"")?,
            StrRaw(n) => write!(
                f,
                "r{delim}\"{string}\"{delim}",
                delim = "#".repeat(n as usize),
                string = symbol
            )?,
            ByteStr => write!(f, "b\"{symbol}\"")?,
            ByteStrRaw(n) => write!(
                f,
                "br{delim}\"{string}\"{delim}",
                delim = "#".repeat(n as usize),
                string = symbol
            )?,
            CStr => write!(f, "c\"{symbol}\"")?,
            CStrRaw(n) => {
                write!(f, "cr{delim}\"{symbol}\"{delim}", delim = "#".repeat(n as usize))?
            }
            Integer | Float | Bool | Err(_) => write!(f, "{symbol}")?,
        }

        if let Some(suffix) = suffix {
            write!(f, "{suffix}")?;
        }

        Ok(())
    }
}

impl LitKind {
    /// An English article for the literal token kind.
    pub fn article(self) -> &'static str {
        match self {
            Integer | Err(_) => "an",
            _ => "a",
        }
    }

    pub fn descr(self) -> &'static str {
        match self {
            Bool => "boolean",
            Byte => "byte",
            Char => "char",
            Integer => "integer",
            Float => "float",
            Str | StrRaw(..) => "string",
            ByteStr | ByteStrRaw(..) => "byte string",
            CStr | CStrRaw(..) => "C string",
            Err(_) => "error",
        }
    }

    pub(crate) fn may_have_suffix(self) -> bool {
        matches!(self, Integer | Float | Err(_))
    }
}

pub fn ident_can_begin_expr(name: Symbol, span: Span, is_raw: IdentIsRaw) -> bool {
    let ident_token = Token::new(Ident(name, is_raw), span);

    !ident_token.is_reserved_ident()
        || ident_token.is_path_segment_keyword()
        || [
            kw::Async,
            kw::Do,
            kw::Box,
            kw::Break,
            kw::Const,
            kw::Continue,
            kw::False,
            kw::For,
            kw::Gen,
            kw::If,
            kw::Let,
            kw::Loop,
            kw::Match,
            kw::Move,
            kw::Return,
            kw::True,
            kw::Try,
            kw::Unsafe,
            kw::While,
            kw::Yield,
            kw::Safe,
            kw::Static,
        ]
        .contains(&name)
}

fn ident_can_begin_type(name: Symbol, span: Span, is_raw: IdentIsRaw) -> bool {
    let ident_token = Token::new(Ident(name, is_raw), span);

    !ident_token.is_reserved_ident()
        || ident_token.is_path_segment_keyword()
        || [kw::Underscore, kw::For, kw::Impl, kw::Fn, kw::Unsafe, kw::Extern, kw::Typeof, kw::Dyn]
            .contains(&name)
}

#[derive(PartialEq, Encodable, Decodable, Debug, Copy, Clone, HashStable_Generic)]
pub enum IdentIsRaw {
    No,
    Yes,
}

impl From<bool> for IdentIsRaw {
    fn from(b: bool) -> Self {
        if b { Self::Yes } else { Self::No }
    }
}

impl From<IdentIsRaw> for bool {
    fn from(is_raw: IdentIsRaw) -> bool {
        matches!(is_raw, IdentIsRaw::Yes)
    }
}

// SAFETY: due to the `Clone` impl below, all fields of all variants other than
// `Interpolated` must impl `Copy`.
#[derive(PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum TokenKind {
    /* Expression-operator symbols. */
    /// `=`
    Eq,
    /// `<`
    Lt,
    /// `<=`
    Le,
    /// `==`
    EqEq,
    /// `!=`
    Ne,
    /// `>=`
    Ge,
    /// `>`
    Gt,
    /// `&&`
    AndAnd,
    /// `||`
    OrOr,
    /// `!`
    Not,
    /// `~`
    Tilde,
    BinOp(BinOpToken),
    BinOpEq(BinOpToken),

    /* Structural symbols */
    /// `@`
    At,
    /// `.`
    Dot,
    /// `..`
    DotDot,
    /// `...`
    DotDotDot,
    /// `..=`
    DotDotEq,
    /// `,`
    Comma,
    /// `;`
    Semi,
    /// `:`
    Colon,
    /// `::`
    PathSep,
    /// `->`
    RArrow,
    /// `<-`
    LArrow,
    /// `=>`
    FatArrow,
    /// `#`
    Pound,
    /// `$`
    Dollar,
    /// `?`
    Question,
    /// Used by proc macros for representing lifetimes, not generated by lexer right now.
    SingleQuote,
    /// An opening delimiter (e.g., `{`).
    OpenDelim(Delimiter),
    /// A closing delimiter (e.g., `}`).
    CloseDelim(Delimiter),

    /* Literals */
    Literal(Lit),

    /// Identifier token.
    /// Do not forget about `NtIdent` when you want to match on identifiers.
    /// It's recommended to use `Token::(ident,uninterpolate,uninterpolated_span)` to
    /// treat regular and interpolated identifiers in the same way.
    Ident(Symbol, IdentIsRaw),
    /// This identifier (and its span) is the identifier passed to the
    /// declarative macro. The span in the surrounding `Token` is the span of
    /// the `ident` metavariable in the macro's RHS.
    NtIdent(Ident, IdentIsRaw),

    /// Lifetime identifier token.
    /// Do not forget about `NtLifetime` when you want to match on lifetime identifiers.
    /// It's recommended to use `Token::(lifetime,uninterpolate,uninterpolated_span)` to
    /// treat regular and interpolated lifetime identifiers in the same way.
    Lifetime(Symbol, IdentIsRaw),
    /// This identifier (and its span) is the lifetime passed to the
    /// declarative macro. The span in the surrounding `Token` is the span of
    /// the `lifetime` metavariable in the macro's RHS.
    NtLifetime(Ident, IdentIsRaw),

    /// An embedded AST node, as produced by a macro. This only exists for
    /// historical reasons. We'd like to get rid of it, for multiple reasons.
    /// - It's conceptually very strange. Saying a token can contain an AST
    ///   node is like saying, in natural language, that a word can contain a
    ///   sentence.
    /// - It requires special handling in a bunch of places in the parser.
    /// - It prevents `Token` from implementing `Copy`.
    /// It adds complexity and likely slows things down. Please don't add new
    /// occurrences of this token kind!
    ///
    /// The span in the surrounding `Token` is that of the metavariable in the
    /// macro's RHS. The span within the Nonterminal is that of the fragment
    /// passed to the macro at the call site.
    Interpolated(Lrc<Nonterminal>),

    /// A doc comment token.
    /// `Symbol` is the doc comment's data excluding its "quotes" (`///`, `/**`, etc)
    /// similarly to symbols in string literal tokens.
    DocComment(CommentKind, ast::AttrStyle, Symbol),

    /// End Of File
    Eof,
}

impl Clone for TokenKind {
    fn clone(&self) -> Self {
        // `TokenKind` would impl `Copy` if it weren't for `Interpolated`. So
        // for all other variants, this implementation of `clone` is just like
        // a copy. This is faster than the `derive(Clone)` version which has a
        // separate path for every variant.
        match self {
            Interpolated(nt) => Interpolated(Lrc::clone(nt)),
            _ => unsafe { std::ptr::read(self) },
        }
    }
}

#[derive(Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct Token {
    pub kind: TokenKind,
    pub span: Span,
}

impl TokenKind {
    pub fn lit(kind: LitKind, symbol: Symbol, suffix: Option<Symbol>) -> TokenKind {
        Literal(Lit::new(kind, symbol, suffix))
    }

    /// An approximation to proc-macro-style single-character operators used by
    /// rustc parser. If the operator token can be broken into two tokens, the
    /// first of which has `n` (1 or 2) chars, then this function performs that
    /// operation, otherwise it returns `None`.
    pub fn break_two_token_op(&self, n: u32) -> Option<(TokenKind, TokenKind)> {
        assert!(n == 1 || n == 2);
        Some(match (self, n) {
            (Le, 1) => (Lt, Eq),
            (EqEq, 1) => (Eq, Eq),
            (Ne, 1) => (Not, Eq),
            (Ge, 1) => (Gt, Eq),
            (AndAnd, 1) => (BinOp(And), BinOp(And)),
            (OrOr, 1) => (BinOp(Or), BinOp(Or)),
            (BinOp(Shl), 1) => (Lt, Lt),
            (BinOp(Shr), 1) => (Gt, Gt),
            (BinOpEq(Plus), 1) => (BinOp(Plus), Eq),
            (BinOpEq(Minus), 1) => (BinOp(Minus), Eq),
            (BinOpEq(Star), 1) => (BinOp(Star), Eq),
            (BinOpEq(Slash), 1) => (BinOp(Slash), Eq),
            (BinOpEq(Percent), 1) => (BinOp(Percent), Eq),
            (BinOpEq(Caret), 1) => (BinOp(Caret), Eq),
            (BinOpEq(And), 1) => (BinOp(And), Eq),
            (BinOpEq(Or), 1) => (BinOp(Or), Eq),
            (BinOpEq(Shl), 1) => (Lt, Le),         // `<` + `<=`
            (BinOpEq(Shl), 2) => (BinOp(Shl), Eq), // `<<` + `=`
            (BinOpEq(Shr), 1) => (Gt, Ge),         // `>` + `>=`
            (BinOpEq(Shr), 2) => (BinOp(Shr), Eq), // `>>` + `=`
            (DotDot, 1) => (Dot, Dot),
            (DotDotDot, 1) => (Dot, DotDot), // `.` + `..`
            (DotDotDot, 2) => (DotDot, Dot), // `..` + `.`
            (DotDotEq, 2) => (DotDot, Eq),
            (PathSep, 1) => (Colon, Colon),
            (RArrow, 1) => (BinOp(Minus), Gt),
            (LArrow, 1) => (Lt, BinOp(Minus)),
            (FatArrow, 1) => (Eq, Gt),
            _ => return None,
        })
    }

    /// Returns tokens that are likely to be typed accidentally instead of the current token.
    /// Enables better error recovery when the wrong token is found.
    pub fn similar_tokens(&self) -> Option<Vec<TokenKind>> {
        match *self {
            Comma => Some(vec![Dot, Lt, Semi]),
            Semi => Some(vec![Colon, Comma]),
            Colon => Some(vec![Semi]),
            FatArrow => Some(vec![Eq, RArrow, Ge, Gt]),
            _ => None,
        }
    }

    pub fn should_end_const_arg(&self) -> bool {
        matches!(self, Gt | Ge | BinOp(Shr) | BinOpEq(Shr))
    }
}

impl Token {
    pub fn new(kind: TokenKind, span: Span) -> Self {
        Token { kind, span }
    }

    /// Some token that will be thrown away later.
    pub fn dummy() -> Self {
        Token::new(TokenKind::Question, DUMMY_SP)
    }

    /// Recovers a `Token` from an `Ident`. This creates a raw identifier if necessary.
    pub fn from_ast_ident(ident: Ident) -> Self {
        Token::new(Ident(ident.name, ident.is_raw_guess().into()), ident.span)
    }

    /// For interpolated tokens, returns a span of the fragment to which the interpolated
    /// token refers. For all other tokens this is just a regular span.
    /// It is particularly important to use this for identifiers and lifetimes
    /// for which spans affect name resolution and edition checks.
    /// Note that keywords are also identifiers, so they should use this
    /// if they keep spans or perform edition checks.
    pub fn uninterpolated_span(&self) -> Span {
        match self.kind {
            NtIdent(ident, _) | NtLifetime(ident, _) => ident.span,
            Interpolated(ref nt) => nt.use_span(),
            _ => self.span,
        }
    }

    pub fn is_range_separator(&self) -> bool {
        [DotDot, DotDotDot, DotDotEq].contains(&self.kind)
    }

    pub fn is_punct(&self) -> bool {
        match self.kind {
            Eq | Lt | Le | EqEq | Ne | Ge | Gt | AndAnd | OrOr | Not | Tilde | BinOp(_)
            | BinOpEq(_) | At | Dot | DotDot | DotDotDot | DotDotEq | Comma | Semi | Colon
            | PathSep | RArrow | LArrow | FatArrow | Pound | Dollar | Question | SingleQuote => {
                true
            }

            OpenDelim(..) | CloseDelim(..) | Literal(..) | DocComment(..) | Ident(..)
            | NtIdent(..) | Lifetime(..) | NtLifetime(..) | Interpolated(..) | Eof => false,
        }
    }

    pub fn is_like_plus(&self) -> bool {
        matches!(self.kind, BinOp(Plus) | BinOpEq(Plus))
    }

    /// Returns `true` if the token can appear at the start of an expression.
    ///
    /// **NB**: Take care when modifying this function, since it will change
    /// the stable set of tokens that are allowed to match an expr nonterminal.
    pub fn can_begin_expr(&self) -> bool {
        match self.uninterpolate().kind {
            Ident(name, is_raw)              =>
                ident_can_begin_expr(name, self.span, is_raw), // value name or keyword
            OpenDelim(..)                     | // tuple, array or block
            Literal(..)                       | // literal
            Not                               | // operator not
            BinOp(Minus)                      | // unary minus
            BinOp(Star)                       | // dereference
            BinOp(Or) | OrOr                  | // closure
            BinOp(And)                        | // reference
            AndAnd                            | // double reference
            // DotDotDot is no longer supported, but we need some way to display the error
            DotDot | DotDotDot | DotDotEq     | // range notation
            Lt | BinOp(Shl)                   | // associated path
            PathSep                            | // global path
            Lifetime(..)                      | // labeled loop
            Pound                             => true, // expression attributes
            Interpolated(ref nt) =>
                matches!(&**nt,
                    NtBlock(..)   |
                    NtExpr(..)    |
                    NtLiteral(..) |
                    NtPath(..)
                ),
            _ => false,
        }
    }

    /// Returns `true` if the token can appear at the start of a pattern.
    ///
    /// Shamelessly borrowed from `can_begin_expr`, only used for diagnostics right now.
    pub fn can_begin_pattern(&self, pat_kind: NtPatKind) -> bool {
        match &self.uninterpolate().kind {
            // box, ref, mut, and other identifiers (can stricten)
            Ident(..) | NtIdent(..) |
            OpenDelim(Delimiter::Parenthesis) |  // tuple pattern
            OpenDelim(Delimiter::Bracket) |      // slice pattern
            BinOp(And) |                  // reference
            BinOp(Minus) |                // negative literal
            AndAnd |                      // double reference
            Literal(_) |                  // literal
            DotDot |                      // range pattern (future compat)
            DotDotDot |                   // range pattern (future compat)
            PathSep |                     // path
            Lt |                          // path (UFCS constant)
            BinOp(Shl) => true,           // path (double UFCS)
            // leading vert `|` or-pattern
            BinOp(Or) => matches!(pat_kind, PatWithOr),
            Interpolated(nt) =>
                matches!(&**nt,
                    | NtExpr(..)
                    | NtLiteral(..)
                    | NtMeta(..)
                    | NtPat(..)
                    | NtPath(..)
                    | NtTy(..)
                ),
            _ => false,
        }
    }

    /// Returns `true` if the token can appear at the start of a type.
    pub fn can_begin_type(&self) -> bool {
        match self.uninterpolate().kind {
            Ident(name, is_raw)        =>
                ident_can_begin_type(name, self.span, is_raw), // type name or keyword
            OpenDelim(Delimiter::Parenthesis) | // tuple
            OpenDelim(Delimiter::Bracket)     | // array
            Not                         | // never
            BinOp(Star)                 | // raw pointer
            BinOp(And)                  | // reference
            AndAnd                      | // double reference
            Question                    | // maybe bound in trait object
            Lifetime(..)                | // lifetime bound in trait object
            Lt | BinOp(Shl)             | // associated path
            PathSep                      => true, // global path
            Interpolated(ref nt) => matches!(&**nt, NtTy(..) | NtPath(..)),
            // For anonymous structs or unions, which only appear in specific positions
            // (type of struct fields or union fields), we don't consider them as regular types
            _ => false,
        }
    }

    /// Returns `true` if the token can appear at the start of a const param.
    pub fn can_begin_const_arg(&self) -> bool {
        match self.kind {
            OpenDelim(Delimiter::Brace) | Literal(..) | BinOp(Minus) => true,
            Ident(name, IdentIsRaw::No) if name.is_bool_lit() => true,
            Interpolated(ref nt) => matches!(&**nt, NtExpr(..) | NtBlock(..) | NtLiteral(..)),
            _ => false,
        }
    }

    /// Returns `true` if the token can appear at the start of an item.
    pub fn can_begin_item(&self) -> bool {
        match self.kind {
            Ident(name, _) => [
                kw::Fn,
                kw::Use,
                kw::Struct,
                kw::Enum,
                kw::Pub,
                kw::Trait,
                kw::Extern,
                kw::Impl,
                kw::Unsafe,
                kw::Const,
                kw::Safe,
                kw::Static,
                kw::Union,
                kw::Macro,
                kw::Mod,
                kw::Type,
            ]
            .contains(&name),
            _ => false,
        }
    }

    /// Returns `true` if the token is any literal.
    pub fn is_lit(&self) -> bool {
        matches!(self.kind, Literal(..))
    }

    /// Returns `true` if the token is any literal, a minus (which can prefix a literal,
    /// for example a '-42', or one of the boolean idents).
    ///
    /// In other words, would this token be a valid start of `parse_literal_maybe_minus`?
    ///
    /// Keep this in sync with and `Lit::from_token`, excluding unary negation.
    pub fn can_begin_literal_maybe_minus(&self) -> bool {
        match self.uninterpolate().kind {
            Literal(..) | BinOp(Minus) => true,
            Ident(name, IdentIsRaw::No) if name.is_bool_lit() => true,
            Interpolated(ref nt) => match &**nt {
                NtLiteral(_) => true,
                NtExpr(e) => match &e.kind {
                    ast::ExprKind::Lit(_) => true,
                    ast::ExprKind::Unary(ast::UnOp::Neg, e) => {
                        matches!(&e.kind, ast::ExprKind::Lit(_))
                    }
                    _ => false,
                },
                _ => false,
            },
            _ => false,
        }
    }

    pub fn can_begin_string_literal(&self) -> bool {
        match self.uninterpolate().kind {
            Literal(..) => true,
            Interpolated(ref nt) => match &**nt {
                NtLiteral(_) => true,
                NtExpr(e) => match &e.kind {
                    ast::ExprKind::Lit(_) => true,
                    _ => false,
                },
                _ => false,
            },
            _ => false,
        }
    }

    /// A convenience function for matching on identifiers during parsing.
    /// Turns interpolated identifier (`$i: ident`) or lifetime (`$l: lifetime`) token
    /// into the regular identifier or lifetime token it refers to,
    /// otherwise returns the original token.
    pub fn uninterpolate(&self) -> Cow<'_, Token> {
        match self.kind {
            NtIdent(ident, is_raw) => Cow::Owned(Token::new(Ident(ident.name, is_raw), ident.span)),
            NtLifetime(ident, is_raw) => {
                Cow::Owned(Token::new(Lifetime(ident.name, is_raw), ident.span))
            }
            _ => Cow::Borrowed(self),
        }
    }

    /// Returns an identifier if this token is an identifier.
    #[inline]
    pub fn ident(&self) -> Option<(Ident, IdentIsRaw)> {
        // We avoid using `Token::uninterpolate` here because it's slow.
        match self.kind {
            Ident(name, is_raw) => Some((Ident::new(name, self.span), is_raw)),
            NtIdent(ident, is_raw) => Some((ident, is_raw)),
            _ => None,
        }
    }

    /// Returns a lifetime identifier if this token is a lifetime.
    #[inline]
    pub fn lifetime(&self) -> Option<(Ident, IdentIsRaw)> {
        // We avoid using `Token::uninterpolate` here because it's slow.
        match self.kind {
            Lifetime(name, is_raw) => Some((Ident::new(name, self.span), is_raw)),
            NtLifetime(ident, is_raw) => Some((ident, is_raw)),
            _ => None,
        }
    }

    /// Returns `true` if the token is an identifier.
    pub fn is_ident(&self) -> bool {
        self.ident().is_some()
    }

    /// Returns `true` if the token is a lifetime.
    pub fn is_lifetime(&self) -> bool {
        self.lifetime().is_some()
    }

    /// Returns `true` if the token is an identifier whose name is the given
    /// string slice.
    pub fn is_ident_named(&self, name: Symbol) -> bool {
        self.ident().is_some_and(|(ident, _)| ident.name == name)
    }

    /// Returns `true` if the token is an interpolated path.
    fn is_whole_path(&self) -> bool {
        if let Interpolated(nt) = &self.kind
            && let NtPath(..) = &**nt
        {
            return true;
        }

        false
    }

    /// Is this a pre-parsed expression dropped into the token stream
    /// (which happens while parsing the result of macro expansion)?
    pub fn is_whole_expr(&self) -> bool {
        if let Interpolated(nt) = &self.kind
            && let NtExpr(_) | NtLiteral(_) | NtPath(_) | NtBlock(_) = &**nt
        {
            return true;
        }

        false
    }

    /// Is the token an interpolated block (`$b:block`)?
    pub fn is_whole_block(&self) -> bool {
        if let Interpolated(nt) = &self.kind
            && let NtBlock(..) = &**nt
        {
            return true;
        }

        false
    }

    /// Returns `true` if the token is either the `mut` or `const` keyword.
    pub fn is_mutability(&self) -> bool {
        self.is_keyword(kw::Mut) || self.is_keyword(kw::Const)
    }

    pub fn is_qpath_start(&self) -> bool {
        self == &Lt || self == &BinOp(Shl)
    }

    pub fn is_path_start(&self) -> bool {
        self == &PathSep
            || self.is_qpath_start()
            || self.is_whole_path()
            || self.is_path_segment_keyword()
            || self.is_ident() && !self.is_reserved_ident()
    }

    /// Returns `true` if the token is a given keyword, `kw`.
    pub fn is_keyword(&self, kw: Symbol) -> bool {
        self.is_non_raw_ident_where(|id| id.name == kw)
    }

    /// Returns `true` if the token is a given keyword, `kw` or if `case` is `Insensitive` and this token is an identifier equal to `kw` ignoring the case.
    pub fn is_keyword_case(&self, kw: Symbol, case: Case) -> bool {
        self.is_keyword(kw)
            || (case == Case::Insensitive
                && self.is_non_raw_ident_where(|id| {
                    id.name.as_str().to_lowercase() == kw.as_str().to_lowercase()
                }))
    }

    pub fn is_path_segment_keyword(&self) -> bool {
        self.is_non_raw_ident_where(Ident::is_path_segment_keyword)
    }

    /// Returns true for reserved identifiers used internally for elided lifetimes,
    /// unnamed method parameters, crate root module, error recovery etc.
    pub fn is_special_ident(&self) -> bool {
        self.is_non_raw_ident_where(Ident::is_special)
    }

    /// Returns `true` if the token is a keyword used in the language.
    pub fn is_used_keyword(&self) -> bool {
        self.is_non_raw_ident_where(Ident::is_used_keyword)
    }

    /// Returns `true` if the token is a keyword reserved for possible future use.
    pub fn is_unused_keyword(&self) -> bool {
        self.is_non_raw_ident_where(Ident::is_unused_keyword)
    }

    /// Returns `true` if the token is either a special identifier or a keyword.
    pub fn is_reserved_ident(&self) -> bool {
        self.is_non_raw_ident_where(Ident::is_reserved)
    }

    /// Returns `true` if the token is the identifier `true` or `false`.
    pub fn is_bool_lit(&self) -> bool {
        self.is_non_raw_ident_where(|id| id.name.is_bool_lit())
    }

    pub fn is_numeric_lit(&self) -> bool {
        matches!(
            self.kind,
            Literal(Lit { kind: LitKind::Integer, .. }) | Literal(Lit { kind: LitKind::Float, .. })
        )
    }

    /// Returns `true` if the token is the integer literal.
    pub fn is_integer_lit(&self) -> bool {
        matches!(self.kind, Literal(Lit { kind: LitKind::Integer, .. }))
    }

    /// Returns `true` if the token is a non-raw identifier for which `pred` holds.
    pub fn is_non_raw_ident_where(&self, pred: impl FnOnce(Ident) -> bool) -> bool {
        match self.ident() {
            Some((id, IdentIsRaw::No)) => pred(id),
            _ => false,
        }
    }

    pub fn glue(&self, joint: &Token) -> Option<Token> {
        let kind = match self.kind {
            Eq => match joint.kind {
                Eq => EqEq,
                Gt => FatArrow,
                _ => return None,
            },
            Lt => match joint.kind {
                Eq => Le,
                Lt => BinOp(Shl),
                Le => BinOpEq(Shl),
                BinOp(Minus) => LArrow,
                _ => return None,
            },
            Gt => match joint.kind {
                Eq => Ge,
                Gt => BinOp(Shr),
                Ge => BinOpEq(Shr),
                _ => return None,
            },
            Not => match joint.kind {
                Eq => Ne,
                _ => return None,
            },
            BinOp(op) => match joint.kind {
                Eq => BinOpEq(op),
                BinOp(And) if op == And => AndAnd,
                BinOp(Or) if op == Or => OrOr,
                Gt if op == Minus => RArrow,
                _ => return None,
            },
            Dot => match joint.kind {
                Dot => DotDot,
                DotDot => DotDotDot,
                _ => return None,
            },
            DotDot => match joint.kind {
                Dot => DotDotDot,
                Eq => DotDotEq,
                _ => return None,
            },
            Colon => match joint.kind {
                Colon => PathSep,
                _ => return None,
            },
            SingleQuote => match joint.kind {
                Ident(name, is_raw) => Lifetime(Symbol::intern(&format!("'{name}")), is_raw),
                _ => return None,
            },

            Le | EqEq | Ne | Ge | AndAnd | OrOr | Tilde | BinOpEq(..) | At | DotDotDot
            | DotDotEq | Comma | Semi | PathSep | RArrow | LArrow | FatArrow | Pound | Dollar
            | Question | OpenDelim(..) | CloseDelim(..) | Literal(..) | Ident(..) | NtIdent(..)
            | Lifetime(..) | NtLifetime(..) | Interpolated(..) | DocComment(..) | Eof => {
                return None;
            }
        };

        Some(Token::new(kind, self.span.to(joint.span)))
    }
}

impl PartialEq<TokenKind> for Token {
    #[inline]
    fn eq(&self, rhs: &TokenKind) -> bool {
        self.kind == *rhs
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq, Encodable, Decodable)]
pub enum NtPatKind {
    // Matches or-patterns. Was written using `pat` in edition 2021 or later.
    PatWithOr,
    // Doesn't match or-patterns.
    // - `inferred`: was written using `pat` in edition 2015 or 2018.
    // - `!inferred`: was written using `pat_param`.
    PatParam { inferred: bool },
}

#[derive(Debug, Copy, Clone, PartialEq, Eq, Encodable, Decodable)]
pub enum NtExprKind {
    // Matches expressions using the post-edition 2024. Was written using
    // `expr` in edition 2024 or later.
    Expr,
    // Matches expressions using the pre-edition 2024 rules.
    // - `inferred`: was written using `expr` in edition 2021 or earlier.
    // - `!inferred`: was written using `expr_2021`.
    Expr2021 { inferred: bool },
}

#[derive(Clone, Encodable, Decodable)]
/// For interpolation during macro expansion.
pub enum Nonterminal {
    NtItem(P<ast::Item>),
    NtBlock(P<ast::Block>),
    NtStmt(P<ast::Stmt>),
    NtPat(P<ast::Pat>),
    NtExpr(P<ast::Expr>),
    NtTy(P<ast::Ty>),
    NtLiteral(P<ast::Expr>),
    /// Stuff inside brackets for attributes
    NtMeta(P<ast::AttrItem>),
    NtPath(P<ast::Path>),
    NtVis(P<ast::Visibility>),
}

#[derive(Debug, Copy, Clone, PartialEq, Encodable, Decodable)]
pub enum NonterminalKind {
    Item,
    Block,
    Stmt,
    Pat(NtPatKind),
    Expr(NtExprKind),
    Ty,
    Ident,
    Lifetime,
    Literal,
    Meta,
    Path,
    Vis,
    TT,
}

impl NonterminalKind {
    /// The `edition` closure is used to get the edition for the given symbol. Doing
    /// `span.edition()` is expensive, so we do it lazily.
    pub fn from_symbol(
        symbol: Symbol,
        edition: impl FnOnce() -> Edition,
    ) -> Option<NonterminalKind> {
        Some(match symbol {
            sym::item => NonterminalKind::Item,
            sym::block => NonterminalKind::Block,
            sym::stmt => NonterminalKind::Stmt,
            sym::pat => {
                if edition().at_least_rust_2021() {
                    NonterminalKind::Pat(PatWithOr)
                } else {
                    NonterminalKind::Pat(PatParam { inferred: true })
                }
            }
            sym::pat_param => NonterminalKind::Pat(PatParam { inferred: false }),
            sym::expr => {
                if edition().at_least_rust_2024() {
                    NonterminalKind::Expr(Expr)
                } else {
                    NonterminalKind::Expr(Expr2021 { inferred: true })
                }
            }
            sym::expr_2021 => NonterminalKind::Expr(Expr2021 { inferred: false }),
            sym::ty => NonterminalKind::Ty,
            sym::ident => NonterminalKind::Ident,
            sym::lifetime => NonterminalKind::Lifetime,
            sym::literal => NonterminalKind::Literal,
            sym::meta => NonterminalKind::Meta,
            sym::path => NonterminalKind::Path,
            sym::vis => NonterminalKind::Vis,
            sym::tt => NonterminalKind::TT,
            _ => return None,
        })
    }

    fn symbol(self) -> Symbol {
        match self {
            NonterminalKind::Item => sym::item,
            NonterminalKind::Block => sym::block,
            NonterminalKind::Stmt => sym::stmt,
            NonterminalKind::Pat(PatParam { inferred: true } | PatWithOr) => sym::pat,
            NonterminalKind::Pat(PatParam { inferred: false }) => sym::pat_param,
            NonterminalKind::Expr(Expr2021 { inferred: true } | Expr) => sym::expr,
            NonterminalKind::Expr(Expr2021 { inferred: false }) => sym::expr_2021,
            NonterminalKind::Ty => sym::ty,
            NonterminalKind::Ident => sym::ident,
            NonterminalKind::Lifetime => sym::lifetime,
            NonterminalKind::Literal => sym::literal,
            NonterminalKind::Meta => sym::meta,
            NonterminalKind::Path => sym::path,
            NonterminalKind::Vis => sym::vis,
            NonterminalKind::TT => sym::tt,
        }
    }
}

impl fmt::Display for NonterminalKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.symbol())
    }
}

impl Nonterminal {
    pub fn use_span(&self) -> Span {
        match self {
            NtItem(item) => item.span,
            NtBlock(block) => block.span,
            NtStmt(stmt) => stmt.span,
            NtPat(pat) => pat.span,
            NtExpr(expr) | NtLiteral(expr) => expr.span,
            NtTy(ty) => ty.span,
            NtMeta(attr_item) => attr_item.span(),
            NtPath(path) => path.span,
            NtVis(vis) => vis.span,
        }
    }

    pub fn descr(&self) -> &'static str {
        match self {
            NtItem(..) => "item",
            NtBlock(..) => "block",
            NtStmt(..) => "statement",
            NtPat(..) => "pattern",
            NtExpr(..) => "expression",
            NtLiteral(..) => "literal",
            NtTy(..) => "type",
            NtMeta(..) => "attribute",
            NtPath(..) => "path",
            NtVis(..) => "visibility",
        }
    }
}

impl PartialEq for Nonterminal {
    fn eq(&self, _rhs: &Self) -> bool {
        // FIXME: Assume that all nonterminals are not equal, we can't compare them
        // correctly based on data from AST. This will prevent them from matching each other
        // in macros. The comparison will become possible only when each nonterminal has an
        // attached token stream from which it was parsed.
        false
    }
}

impl fmt::Debug for Nonterminal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            NtItem(..) => f.pad("NtItem(..)"),
            NtBlock(..) => f.pad("NtBlock(..)"),
            NtStmt(..) => f.pad("NtStmt(..)"),
            NtPat(..) => f.pad("NtPat(..)"),
            NtExpr(..) => f.pad("NtExpr(..)"),
            NtTy(..) => f.pad("NtTy(..)"),
            NtLiteral(..) => f.pad("NtLiteral(..)"),
            NtMeta(..) => f.pad("NtMeta(..)"),
            NtPath(..) => f.pad("NtPath(..)"),
            NtVis(..) => f.pad("NtVis(..)"),
        }
    }
}

impl<CTX> HashStable<CTX> for Nonterminal
where
    CTX: crate::HashStableContext,
{
    fn hash_stable(&self, _hcx: &mut CTX, _hasher: &mut StableHasher) {
        panic!("interpolated tokens should not be present in the HIR")
    }
}

// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
    use rustc_data_structures::static_assert_size;

    use super::*;
    // tidy-alphabetical-start
    static_assert_size!(Lit, 12);
    static_assert_size!(LitKind, 2);
    static_assert_size!(Nonterminal, 16);
    static_assert_size!(Token, 24);
    static_assert_size!(TokenKind, 16);
    // tidy-alphabetical-end
}