rustc_next_trait_solver/
coherence.rs

1use std::fmt::Debug;
2use std::ops::ControlFlow;
3
4use derive_where::derive_where;
5use rustc_type_ir::inherent::*;
6use rustc_type_ir::{
7    self as ty, InferCtxtLike, Interner, TrivialTypeTraversalImpls, TypeVisitable,
8    TypeVisitableExt, TypeVisitor,
9};
10use tracing::instrument;
11
12/// Whether we do the orphan check relative to this crate or to some remote crate.
13#[derive(Copy, Clone, Debug)]
14pub enum InCrate {
15    Local { mode: OrphanCheckMode },
16    Remote,
17}
18
19#[derive(Copy, Clone, Debug)]
20pub enum OrphanCheckMode {
21    /// Proper orphan check.
22    Proper,
23    /// Improper orphan check for backward compatibility.
24    ///
25    /// In this mode, type params inside projections are considered to be covered
26    /// even if the projection may normalize to a type that doesn't actually cover
27    /// them. This is unsound. See also [#124559] and [#99554].
28    ///
29    /// [#124559]: https://github.com/rust-lang/rust/issues/124559
30    /// [#99554]: https://github.com/rust-lang/rust/issues/99554
31    Compat,
32}
33
34#[derive(Debug, Copy, Clone)]
35pub enum Conflict {
36    Upstream,
37    Downstream,
38}
39
40/// Returns whether all impls which would apply to the `trait_ref`
41/// e.g. `Ty: Trait<Arg>` are already known in the local crate.
42///
43/// This both checks whether any downstream or sibling crates could
44/// implement it and whether an upstream crate can add this impl
45/// without breaking backwards compatibility.
46#[instrument(level = "debug", skip(infcx, lazily_normalize_ty), ret)]
47pub fn trait_ref_is_knowable<Infcx, I, E>(
48    infcx: &Infcx,
49    trait_ref: ty::TraitRef<I>,
50    mut lazily_normalize_ty: impl FnMut(I::Ty) -> Result<I::Ty, E>,
51) -> Result<Result<(), Conflict>, E>
52where
53    Infcx: InferCtxtLike<Interner = I>,
54    I: Interner,
55    E: Debug,
56{
57    if orphan_check_trait_ref(infcx, trait_ref, InCrate::Remote, &mut lazily_normalize_ty)?.is_ok()
58    {
59        // A downstream or cousin crate is allowed to implement some
60        // generic parameters of this trait-ref.
61        return Ok(Err(Conflict::Downstream));
62    }
63
64    if trait_ref_is_local_or_fundamental(infcx.cx(), trait_ref) {
65        // This is a local or fundamental trait, so future-compatibility
66        // is no concern. We know that downstream/cousin crates are not
67        // allowed to implement a generic parameter of this trait ref,
68        // which means impls could only come from dependencies of this
69        // crate, which we already know about.
70        return Ok(Ok(()));
71    }
72
73    // This is a remote non-fundamental trait, so if another crate
74    // can be the "final owner" of the generic parameters of this trait-ref,
75    // they are allowed to implement it future-compatibly.
76    //
77    // However, if we are a final owner, then nobody else can be,
78    // and if we are an intermediate owner, then we don't care
79    // about future-compatibility, which means that we're OK if
80    // we are an owner.
81    if orphan_check_trait_ref(
82        infcx,
83        trait_ref,
84        InCrate::Local { mode: OrphanCheckMode::Proper },
85        &mut lazily_normalize_ty,
86    )?
87    .is_ok()
88    {
89        Ok(Ok(()))
90    } else {
91        Ok(Err(Conflict::Upstream))
92    }
93}
94
95pub fn trait_ref_is_local_or_fundamental<I: Interner>(tcx: I, trait_ref: ty::TraitRef<I>) -> bool {
96    trait_ref.def_id.is_local() || tcx.trait_is_fundamental(trait_ref.def_id)
97}
98
99TrivialTypeTraversalImpls! { IsFirstInputType, }
100
101#[derive(Debug, Copy, Clone)]
102pub enum IsFirstInputType {
103    No,
104    Yes,
105}
106
107impl From<bool> for IsFirstInputType {
108    fn from(b: bool) -> IsFirstInputType {
109        match b {
110            false => IsFirstInputType::No,
111            true => IsFirstInputType::Yes,
112        }
113    }
114}
115
116#[derive_where(Debug; I: Interner, T: Debug)]
117pub enum OrphanCheckErr<I: Interner, T> {
118    NonLocalInputType(Vec<(I::Ty, IsFirstInputType)>),
119    UncoveredTyParams(UncoveredTyParams<I, T>),
120}
121
122#[derive_where(Debug; I: Interner, T: Debug)]
123pub struct UncoveredTyParams<I: Interner, T> {
124    pub uncovered: T,
125    pub local_ty: Option<I::Ty>,
126}
127
128/// Checks whether a trait-ref is potentially implementable by a crate.
129///
130/// The current rule is that a trait-ref orphan checks in a crate C:
131///
132/// 1. Order the parameters in the trait-ref in generic parameters order
133/// - Self first, others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
134/// 2. Of these type parameters, there is at least one type parameter
135///    in which, walking the type as a tree, you can reach a type local
136///    to C where all types in-between are fundamental types. Call the
137///    first such parameter the "local key parameter".
138///     - e.g., `Box<LocalType>` is OK, because you can visit LocalType
139///       going through `Box`, which is fundamental.
140///     - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
141///       the same reason.
142///     - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
143///       not local), `Vec<LocalType>` is bad, because `Vec<->` is between
144///       the local type and the type parameter.
145/// 3. Before this local type, no generic type parameter of the impl must
146///    be reachable through fundamental types.
147///     - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
148///     - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is
149///       reachable through the fundamental type `Box`.
150/// 4. Every type in the local key parameter not known in C, going
151///    through the parameter's type tree, must appear only as a subtree of
152///    a type local to C, with only fundamental types between the type
153///    local to C and the local key parameter.
154///     - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
155///     is bad, because the only local type with `T` as a subtree is
156///     `LocalType<T>`, and `Vec<->` is between it and the type parameter.
157///     - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
158///     the second occurrence of `T` is not a subtree of *any* local type.
159///     - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
160///     `LocalType<Vec<T>>`, which is local and has no types between it and
161///     the type parameter.
162///
163/// The orphan rules actually serve several different purposes:
164///
165/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
166///    every type local to one crate is unknown in the other) can't implement
167///    the same trait-ref. This follows because it can be seen that no such
168///    type can orphan-check in 2 such crates.
169///
170///    To check that a local impl follows the orphan rules, we check it in
171///    InCrate::Local mode, using type parameters for the "generic" types.
172///
173///    In InCrate::Local mode the orphan check succeeds if the current crate
174///    is definitely allowed to implement the given trait (no false positives).
175///
176/// 2. They ground negative reasoning for coherence. If a user wants to
177///    write both a conditional blanket impl and a specific impl, we need to
178///    make sure they do not overlap. For example, if we write
179///    ```ignore (illustrative)
180///    impl<T> IntoIterator for Vec<T>
181///    impl<T: Iterator> IntoIterator for T
182///    ```
183///    We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
184///    We can observe that this holds in the current crate, but we need to make
185///    sure this will also hold in all unknown crates (both "independent" crates,
186///    which we need for link-safety, and also child crates, because we don't want
187///    child crates to get error for impl conflicts in a *dependency*).
188///
189///    For that, we only allow negative reasoning if, for every assignment to the
190///    inference variables, every unknown crate would get an orphan error if they
191///    try to implement this trait-ref. To check for this, we use InCrate::Remote
192///    mode. That is sound because we already know all the impls from known crates.
193///
194///    In InCrate::Remote mode the orphan check succeeds if a foreign crate
195///    *could* implement the given trait (no false negatives).
196///
197/// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
198///    add "non-blanket" impls without breaking negative reasoning in dependent
199///    crates. This is the "rebalancing coherence" (RFC 1023) restriction.
200///
201///    For that, we only allow a crate to perform negative reasoning on
202///    non-local-non-`#[fundamental]` if there's a local key parameter as per (2).
203///
204///    Because we never perform negative reasoning generically (coherence does
205///    not involve type parameters), this can be interpreted as doing the full
206///    orphan check (using InCrate::Local mode), instantiating non-local known
207///    types for all inference variables.
208///
209///    This allows for crates to future-compatibly add impls as long as they
210///    can't apply to types with a key parameter in a child crate - applying
211///    the rules, this basically means that every type parameter in the impl
212///    must appear behind a non-fundamental type (because this is not a
213///    type-system requirement, crate owners might also go for "semantic
214///    future-compatibility" involving things such as sealed traits, but
215///    the above requirement is sufficient, and is necessary in "open world"
216///    cases).
217///
218/// Note that this function is never called for types that have both type
219/// parameters and inference variables.
220#[instrument(level = "trace", skip(infcx, lazily_normalize_ty), ret)]
221pub fn orphan_check_trait_ref<Infcx, I, E: Debug>(
222    infcx: &Infcx,
223    trait_ref: ty::TraitRef<I>,
224    in_crate: InCrate,
225    lazily_normalize_ty: impl FnMut(I::Ty) -> Result<I::Ty, E>,
226) -> Result<Result<(), OrphanCheckErr<I, I::Ty>>, E>
227where
228    Infcx: InferCtxtLike<Interner = I>,
229    I: Interner,
230    E: Debug,
231{
232    if trait_ref.has_param() {
233        panic!("orphan check only expects inference variables: {trait_ref:?}");
234    }
235
236    let mut checker = OrphanChecker::new(infcx, in_crate, lazily_normalize_ty);
237    Ok(match trait_ref.visit_with(&mut checker) {
238        ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)),
239        ControlFlow::Break(residual) => match residual {
240            OrphanCheckEarlyExit::NormalizationFailure(err) => return Err(err),
241            OrphanCheckEarlyExit::UncoveredTyParam(ty) => {
242                // Does there exist some local type after the `ParamTy`.
243                checker.search_first_local_ty = true;
244                let local_ty = match trait_ref.visit_with(&mut checker) {
245                    ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(local_ty)) => Some(local_ty),
246                    _ => None,
247                };
248                Err(OrphanCheckErr::UncoveredTyParams(UncoveredTyParams {
249                    uncovered: ty,
250                    local_ty,
251                }))
252            }
253            OrphanCheckEarlyExit::LocalTy(_) => Ok(()),
254        },
255    })
256}
257
258struct OrphanChecker<'a, Infcx, I: Interner, F> {
259    infcx: &'a Infcx,
260    in_crate: InCrate,
261    in_self_ty: bool,
262    lazily_normalize_ty: F,
263    /// Ignore orphan check failures and exclusively search for the first local type.
264    search_first_local_ty: bool,
265    non_local_tys: Vec<(I::Ty, IsFirstInputType)>,
266}
267
268impl<'a, Infcx, I, F, E> OrphanChecker<'a, Infcx, I, F>
269where
270    Infcx: InferCtxtLike<Interner = I>,
271    I: Interner,
272    F: FnOnce(I::Ty) -> Result<I::Ty, E>,
273{
274    fn new(infcx: &'a Infcx, in_crate: InCrate, lazily_normalize_ty: F) -> Self {
275        OrphanChecker {
276            infcx,
277            in_crate,
278            in_self_ty: true,
279            lazily_normalize_ty,
280            search_first_local_ty: false,
281            non_local_tys: Vec::new(),
282        }
283    }
284
285    fn found_non_local_ty(&mut self, t: I::Ty) -> ControlFlow<OrphanCheckEarlyExit<I, E>> {
286        self.non_local_tys.push((t, self.in_self_ty.into()));
287        ControlFlow::Continue(())
288    }
289
290    fn found_uncovered_ty_param(&mut self, ty: I::Ty) -> ControlFlow<OrphanCheckEarlyExit<I, E>> {
291        if self.search_first_local_ty {
292            return ControlFlow::Continue(());
293        }
294
295        ControlFlow::Break(OrphanCheckEarlyExit::UncoveredTyParam(ty))
296    }
297
298    fn def_id_is_local(&mut self, def_id: I::DefId) -> bool {
299        match self.in_crate {
300            InCrate::Local { .. } => def_id.is_local(),
301            InCrate::Remote => false,
302        }
303    }
304}
305
306enum OrphanCheckEarlyExit<I: Interner, E> {
307    NormalizationFailure(E),
308    UncoveredTyParam(I::Ty),
309    LocalTy(I::Ty),
310}
311
312impl<'a, Infcx, I, F, E> TypeVisitor<I> for OrphanChecker<'a, Infcx, I, F>
313where
314    Infcx: InferCtxtLike<Interner = I>,
315    I: Interner,
316    F: FnMut(I::Ty) -> Result<I::Ty, E>,
317{
318    type Result = ControlFlow<OrphanCheckEarlyExit<I, E>>;
319
320    fn visit_region(&mut self, _r: I::Region) -> Self::Result {
321        ControlFlow::Continue(())
322    }
323
324    fn visit_ty(&mut self, ty: I::Ty) -> Self::Result {
325        let ty = self.infcx.shallow_resolve(ty);
326        let ty = match (self.lazily_normalize_ty)(ty) {
327            Ok(norm_ty) if norm_ty.is_ty_var() => ty,
328            Ok(norm_ty) => norm_ty,
329            Err(err) => return ControlFlow::Break(OrphanCheckEarlyExit::NormalizationFailure(err)),
330        };
331
332        let result = match ty.kind() {
333            ty::Bool
334            | ty::Char
335            | ty::Int(..)
336            | ty::Uint(..)
337            | ty::Float(..)
338            | ty::Str
339            | ty::FnDef(..)
340            | ty::Pat(..)
341            | ty::FnPtr(..)
342            | ty::Array(..)
343            | ty::Slice(..)
344            | ty::RawPtr(..)
345            | ty::Never
346            | ty::Tuple(..)
347            // FIXME(unsafe_binders): Non-local?
348            | ty::UnsafeBinder(_) => self.found_non_local_ty(ty),
349
350            ty::Param(..) => panic!("unexpected ty param"),
351
352            ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => {
353                match self.in_crate {
354                    InCrate::Local { .. } => self.found_uncovered_ty_param(ty),
355                    // The inference variable might be unified with a local
356                    // type in that remote crate.
357                    InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
358                }
359            }
360
361            // A rigid alias may normalize to anything.
362            // * If it references an infer var, placeholder or bound ty, it may
363            //   normalize to that, so we have to treat it as an uncovered ty param.
364            // * Otherwise it may normalize to any non-type-generic type
365            //   be it local or non-local.
366            ty::Alias(kind, _) => {
367                if ty.has_type_flags(
368                    ty::TypeFlags::HAS_TY_PLACEHOLDER
369                        | ty::TypeFlags::HAS_TY_BOUND
370                        | ty::TypeFlags::HAS_TY_INFER,
371                ) {
372                    match self.in_crate {
373                        InCrate::Local { mode } => match kind {
374                            ty::Projection => {
375                                if let OrphanCheckMode::Compat = mode {
376                                    ControlFlow::Continue(())
377                                } else {
378                                    self.found_uncovered_ty_param(ty)
379                                }
380                            }
381                            _ => self.found_uncovered_ty_param(ty),
382                        },
383                        InCrate::Remote => {
384                            // The inference variable might be unified with a local
385                            // type in that remote crate.
386                            ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
387                        }
388                    }
389                } else {
390                    // Regarding *opaque types* specifically, we choose to treat them as non-local,
391                    // even those that appear within the same crate. This seems somewhat surprising
392                    // at first, but makes sense when you consider that opaque types are supposed
393                    // to hide the underlying type *within the same crate*. When an opaque type is
394                    // used from outside the module where it is declared, it should be impossible to
395                    // observe anything about it other than the traits that it implements.
396                    //
397                    // The alternative would be to look at the underlying type to determine whether
398                    // or not the opaque type itself should be considered local.
399                    //
400                    // However, this could make it a breaking change to switch the underlying hidden
401                    // type from a local type to a remote type. This would violate the rule that
402                    // opaque types should be completely opaque apart from the traits that they
403                    // implement, so we don't use this behavior.
404                    // Addendum: Moreover, revealing the underlying type is likely to cause cycle
405                    // errors as we rely on coherence / the specialization graph during typeck.
406
407                    self.found_non_local_ty(ty)
408                }
409            }
410
411            // For fundamental types, we just look inside of them.
412            ty::Ref(_, ty, _) => ty.visit_with(self),
413            ty::Adt(def, args) => {
414                if self.def_id_is_local(def.def_id()) {
415                    ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
416                } else if def.is_fundamental() {
417                    args.visit_with(self)
418                } else {
419                    self.found_non_local_ty(ty)
420                }
421            }
422            ty::Foreign(def_id) => {
423                if self.def_id_is_local(def_id) {
424                    ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
425                } else {
426                    self.found_non_local_ty(ty)
427                }
428            }
429            ty::Dynamic(tt, ..) => {
430                let principal = tt.principal().map(|p| p.def_id());
431                if principal.is_some_and(|p| self.def_id_is_local(p)) {
432                    ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
433                } else {
434                    self.found_non_local_ty(ty)
435                }
436            }
437            ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
438            ty::Closure(did, ..) | ty::CoroutineClosure(did, ..) | ty::Coroutine(did, ..) => {
439                if self.def_id_is_local(did) {
440                    ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
441                } else {
442                    self.found_non_local_ty(ty)
443                }
444            }
445            // This should only be created when checking whether we have to check whether some
446            // auto trait impl applies. There will never be multiple impls, so we can just
447            // act as if it were a local type here.
448            ty::CoroutineWitness(..) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
449        };
450        // A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so
451        // the first type we visit is always the self type.
452        self.in_self_ty = false;
453        result
454    }
455
456    /// All possible values for a constant parameter already exist
457    /// in the crate defining the trait, so they are always non-local[^1].
458    ///
459    /// Because there's no way to have an impl where the first local
460    /// generic argument is a constant, we also don't have to fail
461    /// the orphan check when encountering a parameter or a generic constant.
462    ///
463    /// This means that we can completely ignore constants during the orphan check.
464    ///
465    /// See `tests/ui/coherence/const-generics-orphan-check-ok.rs` for examples.
466    ///
467    /// [^1]: This might not hold for function pointers or trait objects in the future.
468    /// As these should be quite rare as const arguments and especially rare as impl
469    /// parameters, allowing uncovered const parameters in impls seems more useful
470    /// than allowing `impl<T> Trait<local_fn_ptr, T> for i32` to compile.
471    fn visit_const(&mut self, _c: I::Const) -> Self::Result {
472        ControlFlow::Continue(())
473    }
474}